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Abstract
Inverse probability weighting (IPW) methods are commonly used to analyze
nonignorable missing data (NIMD) under the assumption of a logistic model
for the missingness probability. However, solving IPW equations numerically
may involve nonconvergence problems when the sample size is moderate and
the missingness probability is high. Moreover, those equations often have mul-
tiple roots, and identifying the best root is challenging. Therefore, IPWmethods
may have low efficiency or even produce biased results. We identify the pitfall
in these methods pathologically: they involve the estimation of a moment-
generating function (MGF), and such functions are notoriously unstable in
general. As a remedy, we model the outcome distribution given the covariates
of the completely observed individuals semiparametrically. After forming an
induced logistic regression (LR) model for the missingness status of the outcome
and covariate, we develop amaximum conditional likelihoodmethod to estimate
the underlying parameters. The proposed method circumvents the estimation
of an MGF and hence overcomes the instability of IPW methods. Our theoreti-
cal and simulation results show that the proposed method outperforms existing
competitors greatly. Two real data examples are analyzed to illustrate the advan-
tages of ourmethod.We conclude that if only a parametric LR is assumed but the
outcome regression model is left arbitrary, then one has to be cautious in using
any of the existing statistical methods in problems involving NIMD.

KEYWORDS
density ratio model, inverse probability weighting, location-scale model, logistic regression,
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1 INTRODUCTION

Problems involving nonignorable missing data (NIMD)
have attracted much attention in recent years (Tang & Ju,
2018) because they are encountered frequently in many
areas but are much more challenging to handle than are
problems involving missing at random (MAR) data. Data
are MAR if the missingness probability depends only on
the observed data and not on the unobserved data; oth-

erwise they are nonignorable missing or missing not at
random (Little & Rubin, 2002; Rubin, 1987). We assume
that the outcome variable 𝑌 may be missing and that the
covariate 𝑋 is always observable. Denote the missingness
indicator of 𝑌 as 𝑅, which equals 0 if 𝑌 is missing or
1 otherwise.
Two facts make NIMDmore challenging to handle than

MAR data. First, for MAR data, the (conditional) miss-
ingness probability or propensity score pr(𝑅 = 1|𝑋,𝑌) =
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pr(𝑅 = 1|𝑋) and the (conditional) outcome regression
function pr(𝑌|𝑋) are separable in the likelihood, therefore
inferences can bemade for either of themwithout the need
to know the other; this is not the case for NIMD because
pr(𝑅 = 1|𝑋,𝑌) and pr(𝑌|𝑋) are entangled together in the
likelihood. Second, no identifiability issue is involved in
MAR data problems, whereas models may not be identi-
fiable based on NIMD even if fully parametric models are
postulated on both pr(𝑅 = 1|𝑋,𝑌) and pr(𝑌|𝑋) (Greenless
et al., 1982; Heckman, 1979; Miao et al., 2016).
The identification issue must be overcome in NIMD

problems before valid statistical inferences are made, oth-
erwise the inference target is vague and meaningless.
Robins and Ritov (1997) pointed out that it is impossible to
identify the underlying parameters based on NIMD if both
pr(𝑅 = 1|𝑋,𝑌) and pr(𝑌|𝑋) are left completely unspeci-
fied. Attention has been paid to the case in which one
of these probabilities is parametric or semiparametric and
the other is left unspecified (Chang & Kott, 2008; Kott
& Chang, 2010; Kim & Yu, 2011; Morikawa et al., 2017;
Morikawa & Kim, 2021; Qin et al., 2002; Riddles et al.,
2016; Tang et al., 2003; Wang et al., 2014). When no gen-
eral identification results are available for NIMD, the joint
distribution of the full data can be identified only under
specific model assumptions. A popular and general condi-
tion for model identifiability with NIMD is the existence
of an “instrumental variable” (Wang et al., 2014) or equiv-
alently an “ancillary variable” (Miao& Tchetgen Tchetgen,
2016), which does not affect the missingness probability
butmay affect the outcome regression function.Miao et al.
(2019) found that the full data distribution can be identified
with the aid of a shadow variable, which does not affect
the missingness probability but may affect the observed
outcome regression function pr(𝑌|𝑋, 𝑅 = 1).
In recent years, many estimation approaches have been

developed for identifiable model parameters based on
NIMD (Tang & Ju, 2018; Wang & Kim, 2021). Of those,
inverse probability weighting (IPW) methods are the ones
used most commonly to deal with missing data including
both MAR data (Seaman &White, 2011) and NIMD under
a parametric or semiparametric model for the missingness
probability. Special cases include augmented IPW estima-
tion or double robust estimation for MAR data (Robins
et al., 1995), and the generalized method of moments with
an instrumental variable for NIMD (Shao, 2018; Shao &
Wang, 2016; Wang et al., 2014; Zhao & Shao, 2015). Double
robust estimation under NIMD has also been investigated
in the presence of an instrumental or ancillary variable (Ai
et al., 2020; Liu et al., 2022; Miao & Tchetgen Tchetgen,
2016; Morikawa & Kim, 2021).
Playing a central role in IPW methods are unbiased

IPW estimating equations. However, solving IPW equa-
tions numerically may involve nonconvergence problems

when the sample size is moderate and the missingness
probability is high. In addition, these equations often have
multiple roots, and it is challenging to identify the best
root as a parameter estimate. Therefore, IPW methods
may have low efficiency or even produce biased results.
In this paper, under the most popular logistic regres-
sion (LR) model for the missingness probability, we find
that the instability of IPW methods arises mainly from
the fact that IPW equations involve the estimation of
a moment-generating function (MGF) (Section 2), and
such functions are notoriously unstable in general. As a
remedy,we proposemodeling the conditional outcomedis-
tribution given the covariates of the completely observed
individuals by an accelerated time regression model or a
semiparametric location-shift model. After transforming
the model assumptions to an LR model for the miss-
ingness status of the outcome and covariate, we propose
estimating the underlying parameters in the propensity
score by maximizing a conditional likelihood (Section 3).
Our estimation procedure circumvents the estimation of
anMGF and hence overcomes the instability of IPWmeth-
ods. For clarity, all technical details are postponed to the
supporting information.

2 INSTABILITY OF INVERSE
PROBABILITYWEIGHTINGMETHODS

The instability of IPW methods for estimating 𝐸(𝑌) has
been well recognized in the literature when the missing
mechanism is MAR and pr(𝑅 = 1|𝑋 = 𝑥) is consistently
estimated; seeMa andWang (2020) and references therein.
In this section, we begin by discussing the instability
of IPW method for estimating the unknown parameters
in pr(𝑅 = 1|𝑋 = 𝑥,𝑌 = 𝑦) when the missing mechanism
is nonignorable.
Suppose that the missingness probability satisfies the

commonly used LR model

pr(𝑅 = 1|𝑥, 𝑦) = pr(𝑅 = 1|𝑋 = 𝑥,𝑌 = 𝑦) = 1

1 + exp(𝛼0 + 𝑥
⊤

1𝛽 + 𝑦𝛾)
, (1)

where 𝑥1 is equal to either 𝑥 or a subvector of 𝑥. Suppose
that we have 𝑛 independent and identically distributed
randomvectors (𝑟𝑖, 𝑥𝑖, 𝑦𝑖) (1 ≤ 𝑖 ≤ 𝑛) frommodel (1). In the
absence of missing data, the score function of (𝛼0, 𝛽, 𝛾) is

−

𝑛∑
𝑖=1

{𝑟𝑖 − pr(𝑅 = 1|𝑥𝑖, 𝑦𝑖)} × (1, 𝑥⊤𝑖1, 𝑦𝑖)⊤.
Because pr(𝑅 = 1|𝑥𝑖, 𝑦𝑖) is uniformly bounded, the esti-
mator of (𝛼0, 𝛽, 𝛾) that solves the score equations usually
behaves stably.
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In the presence of missing response (the 𝑦𝑖 with 𝑟𝑖 = 0
are missing), for any function 𝑔(𝑥), the IPW equation

𝑛∑
𝑖=1

{
𝑟𝑖

pr(𝑅 = 1|𝑥𝑖, 𝑦𝑖) − 1
}
𝑔(𝑥𝑖) = 0

is equivalent to

𝑛∑
𝑖=1

{
𝑟𝑖 exp(𝛼0 + 𝑥

⊤

𝑖1
𝛽 + 𝑦𝑖𝛾) + 𝑟𝑖 − 1

}
𝑔(𝑥𝑖) = 0. (2)

Essentially, the first term involves estimating the MGF of
pr(𝑦|𝑥, 𝑅 = 1) = pr(𝑌 = 𝑦|𝑋 = 𝑥, 𝑅 = 1). In the statistical
literature, high-order moment estimates are notoriously
unstable, let al estimates of an MGF, and it is this unstable
estimation that often causes the resulting IPW estimator to
perform unstably.
For illustration, we consider a toy example, which is

Example 1 in Section 4with𝛼0 = −1.7 and 𝜖 ∼ 𝑁(0, 4), that
is,

pr(𝑅 = 1|𝑥, 𝑦) = 1

1 + exp(−1.7 − 0.4𝑥1 + 0.5𝑦)
,

𝑌|𝑋 = 𝑥, 𝑅 = 1 ∼ 𝑁(2.5 − 𝑥1 + 1.5𝑥2, 4), (3)

where 𝑋1 ∼ 𝑁(1, 1), 𝑋2 ∼ 𝑁(0, 1), and they are indepen-
dent. The missingness rate is around 33.9%. An IPW
estimator of (𝛼0, 𝛽, 𝛾) can be obtained by solving

𝑛∑
𝑖=1

{𝑟𝑖 exp(𝛼0 + 𝑥𝑖1𝛽 + 𝑦𝑖𝛾) + 𝑟𝑖 − 1}(1, 𝑥𝑖1, 𝑥𝑖2)
⊤ = 0.

Based on 2000 simulation repetitions for the IPW method
with 𝑛 = 500, we have the following observations: (1) the
IPWmethod has multiple roots for 171 times, and does not
converge for 74 times and (2) the IPW estimate of 𝛾 lies
outside [−3, 3] for three times, although its true value is
0.5. If we exclude the above 248 simulated samples, based
on the remaining 1752 samples, the relative biases (RBs)
of the IPW estimates of 𝛼0, 𝛽, and 𝛾 are 14.22%, 7.35%,
10.75%, respectively, with standard deviations of 1.14, 0.26,
and 0.20, respectively.
The above example shows that the IPW approach by

assuming a parametric model for the propensity score
function only may not be good enough to estimate
the underlying parameters accurately. To overcome this
issue, we can make a parametric model assumption, say
𝑓(𝑦|𝑥, 𝜉), on pr(𝑦|𝑥, 𝑅 = 1) (Kim & Morikawa, 2022; Lee
& Marsh, 2000; Liu et al., 2022; Riddles et al., 2016) in
addition to the LR model (1). The instability of the IPW
method can then be overcome using themethod due to Liu
et al. (2022). A brief explanation follows, in which because

the parameter 𝜉 can be estimated consistently by the
maximizer of the conditional likelihood

∏
𝑖∶𝑟𝑖=1

𝑓(𝑦𝑖|𝑥𝑖, 𝜉)
under mild conditions, we take it as known for ease
of presentation.
Model (1) implies pr(𝑅 = 0|𝑥, 𝑦)∕pr(𝑅 = 1|𝑥, 𝑦) =

exp(𝛼0 + 𝑥
⊤

1𝛽 + 𝑦𝛾). By Lemma 8.1 of Kim and Shao
(2021), we have

pr(𝑅 = 0|𝑥)
pr(𝑅 = 1|𝑥) = 𝐸

{
pr(𝑅 = 0|𝑋,𝑌)
pr(𝑅 = 1|𝑋,𝑌) |||𝑋 = 𝑥, 𝑅 = 1

}
= exp{𝛼0 + 𝑥

⊤

1𝛽 + 𝑐(𝑥; 𝛾, 𝜉)}, (4)

where 𝑐(𝑥; 𝛾, 𝜉) = log{𝐸(𝑒𝛾𝑌|𝑋 = 𝑥, 𝑅 = 1)}. Note that (4)
implies a new LR model

pr(𝑅 = 1|𝑥) = pr(𝑅 = 1|𝑋 = 𝑥) = 1

1 + exp{𝛼0 + 𝑥
⊤
1 𝛽 + 𝑐(𝑥; 𝛾, 𝜉)}

. (5)

The data {(𝑥𝑖, 𝑟𝑖), 𝑖 = 1, 2, … , 𝑛} are all completely
observed and follow the new LR model (5). Based on such
data, the score equations for (𝛼0, 𝛽, 𝛾) under model (5)
are

0 = −

𝑛∑
𝑖=1

{𝑟𝑖 − pr(𝑅 = 1|𝑥𝑖)}(1, 𝑥⊤𝑖1, ∇𝛾𝑐(𝑥𝑖; 𝛾, 𝜉))⊤, (6)
where ∇𝛾 = 𝜕∕𝜕𝛾. Again, because pr(𝑅 = 1|𝑥𝑖) is uni-
formly bounded, the resulting estimator of (𝛼0, 𝛽, 𝛾) that
solves the score equations behaves more stably than does
the IPW estimator.
As we demonstrate in Section 4, Liu et al.’s (2022)

method seems to be sensitive to the parametric model
assumption on pr(𝑦|𝑥, 𝑅 = 1). To alleviate this issue, in
Section 3, we consider a semiparametric model assump-
tion for pr(𝑦|𝑥, 𝑅 = 1), and then propose a maximum
conditional likelihood method to estimate the unknown
parameters in (1) and 𝐸(𝑌). Under the toy example in
(3), the newly proposed method did not encounter the
multiple roots, nonconvergence, or unstable estimation
problems. Further, based on all 2000 repetitions, the RBs
of the proposed estimates of 𝛼0, 𝛽, 𝛾 are 1.91%, 1.21%,
and 1.55%, respectively, with standard deviations of 0.42,
0.15, and 0.09, respectively. Clearly, the proposed estimates
have much smaller RBs and standard deviations than the
IPW estimates.

3 SEMIPARAMETRIC APPROACH

We assume the same LRmodel as in (1) for themissingness
probability, butwe relax the parametricmodel𝑓(𝑦|𝑥, 𝜉) for
the conditional density function of 𝑌 given 𝑋 = 𝑥 and 𝑅 =
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1 to a semiparametric location-scale model

𝑦 = 𝜇(𝑥; 𝜉) + 𝜖, (7)

where 𝜇(𝑥; 𝜉) is a known function up to 𝜉 and 𝐸(𝜖) =
0. Here, the distribution of 𝜖, denoted as 𝑓𝜖(⋅), is com-
pletely unknown and 𝜖 is independent of 𝑋 given 𝑅 = 1.
We wish to estimate 𝜏 = 𝐸(𝑌), and model (7) decreases to
some extent the risk of model misspecification of a fully
parametric model on 𝑝(𝑦|𝑥, 𝑅 = 1).
Throughout this section, we assume that bothmodels (1)

and (7) are satisfied, under which we discuss the identifi-
ability issue of the underlying parameters and present our
estimation procedure.

3.1 Parameter identifiability

As we pointed out in the introduction, the issue of
parameter identifiability always exists in NIMD prob-
lems regardless of which model assumptions are made.
Before conducting valid statistical inference about the
model parameters in models (1) and (7) and 𝜏, we need to
investigate under what conditions they are identifiable.
Because the data with 𝑅 = 1 are all observed, we assume

that 𝜉 and 𝑓𝜖 in model (7) are identifiable. Without loss
of generality, we further regard 𝜉 and 𝑓𝜖 as known in
this subsection. It remains to study the identifiability of
(𝛼0, 𝛽, 𝛾).
Let 𝑀1(𝑡) = 𝐸(𝑒𝑡𝜖) be the MGF of 𝜖. Under mod-

els (1) and (7), 𝑐(𝑥; 𝛾, 𝜉) = 𝛾𝜇(𝑥; 𝜉) + log𝑀1(𝛾), and the LR
model (5) becomes

𝜋(𝑥; 𝜃, 𝜉) = pr(𝑅 = 1|𝑥) = 1

1 + exp{𝛼 + 𝑥⊤1𝛽 + 𝛾𝜇(𝑥; 𝜉)}
, (8)

where 𝛼 = 𝛼0 + log{𝑀1(𝛾)} and 𝜃 = (𝛼, 𝛽⊤, 𝛾)⊤. Because 𝑓𝜖
is identifiable, the identifiability of (𝛼0, 𝛽, 𝛾) is equivalent
to that of 𝜃.
Both 𝑅 and 𝑋 are observed, pr(𝑅 = 1|𝑥) is identifiable.

With (8), 𝜃 is identifiable if and only if 𝜇(𝑥; 𝜉) is not a lin-
ear function of 𝑥1. Let 𝑥 = (𝑥⊤1 , 𝑥

⊤

2 )
⊤. If 𝑥2 is not empty,

then it is called an instrumental or shadow variable (Miao
& Tchetgen Tchetgen, 2016). Here are two special cases:
(i) if 𝜇(𝑥; 𝜉) is a nonlinear function of 𝑥, then 𝜃 is iden-
tifiable even if there is no instrumental variable or 𝑥2 is
empty; (ii) if 𝜇(𝑥; 𝜉) is a linear function of 𝑥 and 𝑥2 is not
empty, that is, there exists an instrumental variable, then
𝜃 is identifiable.

3.2 Estimation of model parameters and
𝝉

In this subsection, we propose using a two-step proce-
dure to estimate the model parameters in (1) and (7)

based on {(𝑦𝑖𝑟𝑖, 𝑥𝑖, 𝑟𝑖)}𝑛𝑖=1, where 𝑦𝑖 is observed if 𝑟𝑖 = 1 or
missing otherwise.
In step 1, we estimate the unknown parameter 𝜉 in

model (7) by the least squares estimator

�̂� = argmin
𝜉

𝑛∑
𝑖=1

𝑟𝑖{𝑦𝑖 − 𝜇(𝑥𝑖; 𝜉)}
2. (9)

This step is implemented easily with the R function lm
when 𝜇(𝑥; 𝜉) is a linear function of 𝑥 or nls when 𝜇(𝑥; 𝜉)
is a nonlinear function of 𝑥.
In step 2, we estimate the unknown parameters (𝛼0, 𝛽, 𝛾)

in model (1). Note that the conditional likelihood of {𝑟𝑖}𝑛𝑖=1
given {𝑥𝑖}𝑛𝑖=1 is

𝑙𝑛(𝜃, 𝜉) =

𝑛∑
𝑖=1

[𝑟𝑖 log{𝜋(𝑥; 𝜃, 𝜉)} + (1 − 𝑟𝑖) log{1 − 𝜋(𝑥; 𝜃, 𝜉)}].

Instead of directly estimating 𝛼0, we treat 𝛼 = 𝛼0 +
log{𝑀1(𝛾)} as a new unknown parameter and estimate 𝜃 =
(𝛼, 𝛽⊤, 𝛾)⊤ first by maximizing the conditional likelihood
𝑙𝑛(𝜃, 𝜉) with 𝜉 replaced by �̂�, that is,

�̂� = argmax
𝜃
𝑙𝑛(𝜃, �̂�). (10)

An obvious advantage of this strategy is that we do
not need to evaluate log{𝑀1(𝛾)} in the estimation of 𝛼.
As 𝑙𝑛(𝜃, �̂�) can be regarded as the log-likelihood func-
tion under the standard LR model with {𝑟𝑖}𝑛𝑖=1 being the
response and {𝑥𝑖1, 𝜇(𝑥𝑖; �̂�)}𝑛𝑖=1 being the covariates, this
step can be implemented with the R function glm. Once
(�̂�, �̂�) are obtained, we estimate 𝛼0 by �̂�0 = �̂� − log �̂�1(�̂�),
where �̂�1(𝑡) =

∑𝑛
𝑖=1
𝑟𝑖𝑒
𝑡�̂�𝑖 ∕

∑𝑛
𝑖=1
𝑟𝑖 with �̂�𝑖 = 𝑦𝑖 − 𝜇(𝑥𝑖; �̂�).

Kim and Shao (2021) also discussed the conditional like-
lihood 𝑙𝑛(𝜃, 𝜉). However, they used it not for parameter
estimation but only to motivate the identifiability issue
with NIMD.
We provide some insights on why the proposed method

works and how it remedies the problems associated with
the IPW method. In step 1 of the proposed method, as
long as 𝜉 is identifiable and

∑𝑛
𝑖=1
𝑟𝑖 is not too small,

then
∑𝑛
𝑖=1
𝑟𝑖{𝑦𝑖 − 𝜇(𝑥𝑖, 𝜉)}

2 usually has an unique mini-
mum point and the least square estimator �̂� is very stable
based on our numerical experience. In step 2, 𝑙𝑛(𝜃, �̂�)
is strictly concave and the maximum point of 𝑙𝑛(𝜃, �̂�) is
unique, if 𝑥1 and 𝜇(𝑥; �̂�) are not highly linearly corre-
lated, which is ensured when 𝜃 is identifiable and 𝜉 can
be estimated reasonably well in step 1. In that situation,
the estimator �̂� is also quite stable. In summary, as long
as both 𝜃 and 𝜉 are identifiable and

∑𝑛
𝑖=1
𝑟𝑖 is not too

small, the proposed estimators (�̂�, �̂�) are uniquely defined
and very stable numerically, leading to a stable estimator
�̂�0 of 𝛼0.

 15410420, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/biom

.13881 by E
ast C

hina N
orm

al U
niversity, W

iley O
nline L

ibrary on [26/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



LI et al. 5

In Section 1 of the supporting information, we ana-
lyze three simulated datasets of sample size 500, which
are generated from the toy example in (3). In the estima-
tion of (𝛼0, 𝛽, 𝛾) based on these datasets, the IPW method
has either the multiple roots, nonconvergence, or insta-
bility problem. In contrast, the proposed method always
works stably.
Next, we present the proposed estimator for the target

parameter 𝜏 = 𝐸(𝑌), which can be expressed as a func-
tion of 𝜂 = pr(𝑅 = 1), 𝜉, and 𝜃. Under model (7), 𝐸(𝑌|𝑋 =
𝑥, 𝑅 = 1) = 𝜇(𝑥; 𝜉). Define 𝑀2(𝑡) = 𝐸(𝜖𝑒𝑡𝜖). If model (1)
also holds, then

𝐸(𝑌|𝑋 = 𝑥, 𝑅 = 0) = 𝜇(𝑥; 𝜉) + 𝑀2(𝛾)∕𝑀1(𝛾) ∶= 𝑚0(𝑥; 𝜉, 𝛾);
(11)

see Section 2 of the supporting information for a proof.
Therefore,

𝐸(𝑌|𝑋, 𝑅) = 𝑅 ⋅ 𝜇(𝑋; 𝜉) + (1 − 𝑅) ⋅ 𝑚0(𝑋; 𝜉, 𝛾).
By the law of total expectation, we have

𝜏 = 𝐸{𝑅 ⋅ 𝜇(𝑋; 𝜉) + (1 − 𝑅) ⋅ 𝑚0(𝑋; 𝜉, 𝛾)} = 𝐸{𝜇(𝑋, 𝜉)} + (1 − 𝜂)
𝑀2(𝛾)

𝑀1(𝛾)
,(12)

where we have used equality (11) and 𝜂 = 𝐸(𝑅). Note that
(12) suggests that a natural estimators for 𝜏 is

�̂� =
1

𝑛

𝑛∑
𝑖=1

𝜇(𝑥𝑖, �̂�) + (1 − 𝜂)
�̂�2(�̂�)

�̂�1(�̂�)
, (13)

where 𝜂 =
∑𝑛
𝑖=1
𝑟𝑖∕𝑛 and �̂�2(𝑡) =

∑𝑛
𝑖=1
𝑟𝑖�̂�𝑖𝑒

𝑡�̂�𝑖 ∕
∑𝑛
𝑖=1
𝑟𝑖 .

Remark 1. The proposed estimator �̂� relies on the regres-
sion model (7) and the missingness probability model (1).
Based on the completely observed data {(𝑦𝑖𝑟𝑖, 𝑥𝑖, 𝑟𝑖)}𝑛𝑖=1, the
correctness of (7) can be verified by using the score test
for non-constant error variance proposed by Breusch and
Pagan (1979) and Cook and Weisberg (1983); this test is
available in R as ncvTest. Because we do not have the
observed values for 𝑌 when 𝑟𝑖 = 0, model (1) cannot be
verified directly; nevertheless, it can be transformed into
the LR model (8), and hence we can check (1) indirectly
by testing the goodness of fit of the LR model (8). Hos-
mer et al. (1997) compared several goodness-of-fit tests
for the LR model and recommended the one involving
the unweighted sum of squares (USS) (le Cessie & van
Houwelingen, 1995); this test is available as resid in the
R package rms.

3.3 Asymptotics

In this subsection, we establish the asymptotic dis-
tributions of the proposed estimators �̂�, �̂�, and �̂�. Let
𝜂0, 𝜉0, 𝜃0, and 𝜏0 be the true values of 𝜂, 𝜉, 𝜃, and
𝜏, respectively, let 𝐵⊗2 = 𝐵𝐵⊤ for any matrix or vec-
tor 𝐵, and let 𝜋(𝑥) = 𝜋(𝑥; 𝜃0, 𝜉0). Define 𝜙(𝑥; 𝜃, 𝜉) =
𝛼 + 𝑥⊤1𝛽 + 𝛾𝜇(𝑥; 𝜉) and 𝐴1 = 𝐸[𝑅{∇𝜉𝜇(𝑋; 𝜉0)}

⊗2],
𝐴2 = 𝐸[𝜋(𝑋){1 − 𝜋(𝑋)}{∇𝜃𝜙(𝑋; 𝜃0, 𝜉0)}

⊗2], 𝐴3 =

𝐸[𝜋(𝑋){1 − 𝜋(𝑋)}{∇𝜃𝜙(𝑋; 𝜃0, 𝜉0)}{∇𝜉𝜇(𝑋; 𝜉0)}
⊤], and

𝐴4 = 𝐸{∇𝜉𝜇(𝑋; 𝜉0)}.

Theorem 1. Suppose that models (1) and (7), and the regu-
larity conditions in Section 4 of the supporting information
are satisfied. As 𝑛 → ∞,

√
𝑛(�̂�⊤ − 𝜉⊤0 , �̂�

⊤ − 𝜃⊤0 )
⊤ → 𝑁(0, Σ)

in distribution, where

Σ =

(
𝜎2𝐴−11 −𝛾0𝜎

2𝐴−11 𝐴
⊤

3𝐴
−1
2

−𝛾0𝜎
2𝐴−12 𝐴3𝐴

−1
1 𝐴−12 + 𝛾

2
0𝜎
2𝐴−12 𝐴3𝐴

−1
1 𝐴

⊤

3𝐴
−1
2

)

and 𝜎2 = 𝕍ar(𝜖).

To use the results in Theorem 1 to construct a Wald-
type confidence interval (CI) for the parameters in 𝜉 or
𝜃, we need a consistent estimator for Σ, which can be
constructed based on consistent estimators of 𝛾0, 𝜎2, and
𝐴1–𝐴3. Reasonable estimators of 𝛾0, 𝜎2, and𝐴1 are �̂�, �̂�2 =∑𝑛
𝑖=1
𝑟𝑖𝜖
2
𝑖
∕
∑𝑛
𝑖=1
𝑟𝑖 , and

�̂�1 = 𝑛
−1

𝑛∑
𝑖=1

[
𝑟𝑖

{
∇𝜉𝜇(𝑥𝑖; �̂�)

}⊗2]
, (14)

respectively. The estimators �̂�2 and �̂�3 for 𝐴2 and 𝐴3 can
be constructed in a similar way to (14). Inserting �̂�2, �̂�, and
�̂�1–�̂�3 intoΣ, wehave an estimator Σ̂ forΣ.With the results
in Theorem 1, it can be verified that Σ̂ is consistent with Σ.
To present the asymptotic distribution of �̂�, we

need additional notation. Let 𝜇0 = 𝔼{𝜇(𝑋; 𝜉0)},
𝐵𝑘 = 𝔼(𝑅𝜖

𝑘−1𝑒𝛾0𝜖) for 𝑘 = 1, 2, 3, and 𝐶𝑘 =

𝔼{𝑅𝜖𝑘−1𝑒𝛾0𝜖∇𝜉𝜇(𝑋; 𝜉0)} for 𝑘 = 1, 2. Furthermore, let
𝑆 = (𝑆0, 𝑆

⊤

1 , 𝑆
⊤

2 )
⊤ with 𝑆0 = 𝑅 − 𝜂0,

𝑆1 =
(
𝑅𝜖{∇𝜉𝜇(𝑋; 𝜉0)}

⊤, {𝑅 − 𝜋(𝑋)}{∇𝜃𝜙(𝑋; 𝜃0, 𝜉0)}
⊤
)⊤
,

𝑆2 = (𝜇(𝑋; 𝜉0) − 𝜇0, 𝑅𝑒
𝛾0𝜖 − 𝐵1, 𝑅𝜖𝑒

𝛾0𝜖 − 𝐵2)
⊤
.

It can be verified that 𝔼(𝑆) = 0. Denote 𝑉 = 𝕍ar(𝑆) =
𝔼(𝑆⊗2). Finally, let 𝑝 be the dimension of 𝜃, and let 𝑒𝑝 be
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6 LI et al.

a 𝑝 × 1 vector with the 𝑝th element being 1 and the other
elements being 0.

Theorem 2. Suppose that the conditions in Theorem 1 are
satisfied. As𝑛 → ∞,

√
𝑛(�̂� − 𝜏0) → 𝑁(0, 𝜎

2
𝜏) in distribution,

where 𝜎2𝜏 = 𝐷⊤𝑉𝐷. Here,

𝐷 =

(
−
𝐵2
𝐵1
,𝐻1,𝐻2, 1, −(1 − 𝜂0)

𝐵2

𝐵21
,
1 − 𝜂0
𝐵1

)⊤

with

𝐻1 = 𝐴
⊤

4𝐴
−1
1 + (1 − 𝜂0)

(
𝐵2

𝐵21
𝐶⊤1 −

1

𝐵1
𝐶⊤1 −

𝛾0
𝐵1
𝐶⊤2

)
𝐴−11

+
(1 − 𝜂0)𝛾0

𝐵21
(𝐵2 − 𝐵1𝐵3)𝑒

⊤
𝑝𝐴
−1
2 𝐴3𝐴

−1
1

and𝐻2 = (𝐵22 − 𝐵1𝐵3)𝑒
⊤
𝑝𝐴
−1
2 (1 − 𝜂0)∕𝐵

2
1 .

To construct a Wald CI for 𝜏 based on Theo-
rem 2, we need a consistent estimator of 𝜎2𝜏 , which
depends on 𝑉. We first construct a desirable estima-
tor for 𝑉. Let 𝜂 = 𝑛−1

∑𝑛
𝑖=1
𝑟𝑖 , �̂�0 = 𝑛−1

∑𝑛
𝑖=1
𝜇(𝑥𝑖; �̂�),

�̂�𝑘 = 𝑛
−1∑𝑛

𝑖=1
(𝑟𝑖 �̂�

𝑘−1
𝑖
𝑒�̂��̂�𝑖 ), and �̂�𝑖 = (�̂�0𝑖, �̂�⊤1𝑖, �̂�

⊤

2𝑖
)⊤ with

�̂�0𝑖 = 𝑟𝑖 − 𝜂,

�̂�1𝑖 =
(
𝑟𝑖�̂�𝑖{∇𝜉𝜇(𝑥𝑖; �̂�)}

⊤, {𝑟𝑖 − 𝜋(𝑥𝑖; �̂�, �̂�)}{∇𝜃𝜙(𝑥𝑖; �̂�, �̂�)}
⊤

)⊤
,

�̂�2𝑖 =
(
𝜇(𝑥𝑖; �̂�) − �̂�0, 𝑟𝑖𝑒

�̂��̂�𝑖 − �̂�1, 𝑟𝑖 �̂�𝑖𝑒
�̂��̂�𝑖 − �̂�2

)⊤
.

Then a natural estimator for 𝑉 is �̂� = 𝑛−1
∑𝑛
𝑖=1
�̂�𝑖�̂�

⊤

𝑖
. With

the results in Theorem 1, it can be verified that �̂� is con-
sistent with 𝑉. Using the techniques used to construct Σ̂,
we can construct a consistent estimator �̂� for 𝐷. Finally,
we estimate 𝜎2𝜏 by �̂�2𝜏 = �̂�⊤�̂��̂�, and a 100(1 − 𝑎)% CI of 𝜏
is 𝜏 = [�̂� − 𝑍1−𝑎∕2�̂�𝜏, �̂� + 𝑍1−𝑎∕2�̂�𝜏], where 𝑍1−𝑎∕2 is the
(1 − 𝑎∕2)th quantile of 𝑁(0, 1).

4 SIMULATION

4.1 Setup

We compare the proposed estimator �̂� of 𝜏 with the
following competitors developed recently in the literature:

∙ �̂�𝑃, the maximum empirical likelihood estimator due to
Liu et al. (2022), where the model for 𝑌 given𝑋 = 𝑥 and
𝑅 = 1 is (7) with the error distribution being normal;

∙ �̂�IPW, the IPW estimator which solves (2) with the form
of 𝑔(𝑥) being discussed later;

∙ �̂�𝐴1, the parametric adaptive method due to Morikawa
and Kim (2021), where the working model for 𝑌 given
𝑋 = 𝑥 and 𝑅 = 1 is (7) with the error distribution being
normal;

∙ �̂�𝐴2, the nonparametric adaptive method due to
Morikawa and Kim (2021), where the working model
for 𝑌 given 𝑋 = 𝑥 and 𝑅 = 1 is fully nonparametric
and the kernel function and bandwidth are those
recommended by Morikawa and Kim (2021);

∙ �̂�𝐺𝑘, the generalized moment method due to Ai
et al. (2020), where the basis functions comprise
{
∏
𝑥
𝑖1
1 ⋯𝑥

𝑖𝑑
𝑑
∶ 𝑖1 ≥ 0, … , 𝑖𝑑 ≥ 0,

∑𝑑
𝑗=1
𝑖𝑗 ≤ 𝑘}.

We generate data from two examples.

Example 1. Suppose that there are only two covari-
ates 𝑋1 ∼ 𝑁(1, 1) and 𝑋2 ∼ 𝑁(0, 1), which are inde-
pendent. We set pr(𝑅 = 1|𝑥, 𝑦) = 1∕{1 + exp(𝛼0 − 0.4𝑥1 +
0.5𝑦)} and 𝑦 = 2.5 − 𝑥1 + 1.5𝑥2 + 𝜖 given𝑋 = 𝑥 and𝑅 = 1.
We consider two values of 𝛼0, that is, −1.7 and −1.2, and
the missingness probability increases as 𝛼0 increases.

Example 2. Suppose that there is only one covariate 𝑋 ∼
𝑁(0, 1). We set pr(𝑅 = 1|𝑥, 𝑦) = 1∕{1 + exp(𝛼0 − 0.4𝑥 +
0.5𝑦)} and 𝑦 = 2 − 𝑥 + 𝑥2 + 𝜖 given 𝑋 = 𝑥 and 𝑅 = 1. We
consider two values of 𝛼0, that is,−2.7 and−2.2, and again
the missingness probability increases as 𝛼0 increases.

In both examples, we consider two distributions for 𝜖,
that is, 2∕3𝑁(−𝛿, 4 − 3𝛿2) + 1∕3𝑁(2𝛿, 4)with 𝛿 = 0 and 1.
The error distribution is just 𝑁(0, 4) when 𝛿 = 0, and it
is a normal mixture 2∕3𝑁(−1, 1) + 1∕3𝑁(2, 4) when 𝛿 =
1. The true values of 𝜏 and the missingness probability
pr(𝑅 = 0) for the two examples are tabulated in Table 1. For
the IPW method, we set 𝑔(𝑥) in (2) to be (1, 𝑥1, 𝑥2)⊤ and
(1, 𝑥, 𝑥2)⊤ in Examples 1 and 2, respectively. The number
of repetitions is 2000.

4.2 Results for point estimates

We summarize the results in terms of RB andmean square
error (MSE) for estimating 𝜏 in Tables 2 and 3. Note
that we encountered numerical problems in implement-
ing the standard IPW method, the adaptive methods due
to Morikawa and Kim (2021) and the generalized moment
method due to Ai et al. (2020). In the simulation study,
we count the number of multiple roots, nonconvergence,
or nonreliable cases for each method, where a nonreli-
able case is one simulation repetition in which either the
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LI et al. 7

TABLE 1 True values of 𝜏 and missingness probability pr(𝑅 = 0) in examples 1 and 2.

Example 𝜶𝟎 𝜹 𝝉 𝑷(𝑹 = 𝟎) Example 𝜶𝟎 𝜹 𝝉 𝑷(𝑹 = 𝟎)

1 −1.7 0 2.177 0.339 1 −1.7 1 2.587 0.369
1 −1.2 0 2.364 0.432 1 −1.2 1 2.868 0.465
2 −2.7 0 3.677 0.338 2 −2.7 1 4.088 0.369
2 −2.2 0 3.869 0.434 2 −2.2 1 4.381 0.469

TABLE 2 Relative bias (RB; ×100), mean square error (MSE; ×100), and number of multiple root, nonconvergence, or nonreliable cases
(MNCR) of six estimators of 𝜏 (example 1).

RB MSE MNCR RB MSE MNCR RB MSE MNCR RB MSE MNCR
𝝐 ∼ 𝑵(𝟎, 𝟒)

𝜶𝟎 = −𝟏.𝟕 𝜶𝟎 = −𝟏.𝟐

𝒏 = 𝟓𝟎𝟎 𝒏 = 𝟐𝟎𝟎𝟎 𝒏 = 𝟓𝟎𝟎 𝒏 = 𝟐𝟎𝟎𝟎

�̂� −0.16 4.18 0 0.17 1.06 0 −0.26 5.64 0 0.04 1.39 0
�̂�𝑃 0.02 3.95 0 0.18 0.97 0 0.00 5.03 0 0.09 1.23 0
�̂�IPW 0.11 5.90 248 0.44 1.44 122 0.03 8.12 261 0.52 2.57 121
�̂�𝐴1 −1.12 11.57 13 0.09 1.21 1 −1.77 21.45 14 −0.11 1.72 0
�̂�𝐴2 −30.39 46.39 0 −29.96 43.16 0 −35.88 75.02 0 −35.20 69.99 0
�̂�𝐺1 1.70 7.85 13 0.95 2.28 4 2.00 11.04 16 1.24 4.55 5
�̂�𝐺2 −6.08 6.22 6 −2.15 1.45 0 −8.02 9.74 10 −2.93 2.21 0

𝜖 ∼ 2∕3𝑁(−1, 1) + 1∕3𝑁(2, 4)

𝛼0 = −1.7 𝛼0 = −1.2

𝑛 = 500 𝑛 = 2000 𝑛 = 500 𝑛 = 2000

�̂� −0.27 10.09 0 −0.10 2.38 0 −0.67 14.49 0 −0.26 3.60 0
�̂�𝑃 −13.18 17.17 0 −13.39 13.31 0 −15.20 26.54 0 −15.27 20.96 0
�̂�IPW 0.11 15.42 428 1.09 5.95 212 -0.06 24.63 475 1.47 10.16 199
�̂�𝐴1 −0.55 32.81 31 −0.22 7.89 4 −1.29 44.22 41 −0.37 7.55 7
�̂�𝐴2 −41.59 118.50 0 −41.37 115.20 0 −47.39 188.29 0 −46.95 182.17 0
�̂�𝐺1 2.39 18.50 49 2.62 9.53 14 2.46 29.47 57 2.97 14.20 13
�̂�𝐺2 −11.83 19.34 12 −5.04 5.17 0 −14.93 33.29 13 −6.47 8.62 0

estimate of 𝜏 is outside the range [−10, 10] or the estimate
of 𝛾 is outside the range [−3, 3]. For each method, the RB
andMSE results reported are evaluated based on the cases,
in which there are no multiple roots, nonconvergence, or
nonreliable estimates.
From the simulation results, we make the following

observations. (1) The proposed estimator �̂� performs sim-
ilarly to the estimator �̂�𝑃 due to Liu et al. (2022) when the
error distribution is normal, while �̂� has smaller RB and
MSE than those of �̂�𝑃 when the error distribution is a mix-
ture of normal distributions. This shows the robustness of
the proposed method. (2) As we discussed before, the IPW
method andmethods due toMorikawa andKim (2021) and
Ai et al. (2020) may experience numerical issues, which
becomemore prominentwhen the sample size is small, the
missingness probability is high, and/or no instrumental
variable exists. (3) Even after the cases producing mul-
tiple roots, nonconvergence, or nonreliable estimates are

excluded, the IPW estimator �̂�IPW still has much larger
MSE than our estimator �̂�. 4) The parametric adaptive
method due to Morikawa and Kim (2021) produces much
largerMSE than does our estimator �̂�, although the former
far outperforms their nonparametric adaptive method in
terms of both RB andMSE. 5) The performance of the gen-
eralizedmomentmethod due toAi et al. (2020) depends on
the choice of basis functions. When the number of basis
functions increases, the bias increases and the variance
decreases. Compared with the proposed method, the gen-
eralized moment method usually produces an MSE that is
at least 50% and can be double or ever higher.
We also compare the proposed method with the max-

imum empirical likelihood estimator of Liu et al. (2022)
for a binary outcome; see Section 3 of the Supporting
Information. In this scenario, model (7) is misspecified for
the proposed method, while the models are all correctly
specified for Liu et al.’s (2022) method. We observe that
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8 LI et al.

TABLE 3 Relative bias (RB; ×100), mean square error (MSE; ×100), and number of multiple-root, nonconvergence, or nonreliable cases
(MNCR) of seven estimators of 𝜏 (example 2).

RB MSE MNCR RB MSE MNCR RB MSE MNCR RB MSE MNCR
𝝐 ∼ 𝑵(𝟎, 𝟒)

𝜶𝟎 = −𝟐.𝟕 𝜶𝟎 = −𝟐.𝟐

𝒏 = 𝟓𝟎𝟎 𝒏 = 𝟐𝟎𝟎𝟎 𝒏 = 𝟓𝟎𝟎 𝒏 = 𝟐𝟎𝟎𝟎

�̂� 0.25 4.99 0 0.14 1.15 0 0.36 7.14 0 0.21 1.68 0
�̂�𝑃 0.39 4.59 0 0.20 1.06 0 0.55 6.60 0 0.27 1.52 0
�̂�IPW 3.29 12.29 468 2.2 4.24 160 4.14 19.49 541 3.37 8.69 170
�̂�𝐴1 −1.01 61.34 133 −0.03 2.64 4 −0.87 107.69 195 0.06 7.05 10
�̂�𝐴2 −11.81 22.72 16 −8.71 11.30 3 −14.77 38.04 18 −10.73 18.76 2
�̂�𝐺2 4.25 14.48 79 2.83 5.65 3 5.33 23.20 101 4.17 11.44 1
�̂�𝐺3 −3.99 15.57 144 −1.48 2.84 10 −4.06 20.79 135 −1.54 3.96 16
�̂�𝐺4 −6.96 17.07 92 −3.93 4.38 16 −7.58 24.74 59 −4.61 6.69 5

𝜖 ∼ 2∕3𝑁(−1, 1) + 1∕3𝑁(2, 4)

𝛼0 = −2.7 𝛼0 = −2.2

𝑛 = 500 𝑛 = 2000 𝑛 = 500 𝑛 = 2000

�̂� −0.27 11.94 0 0.15 3.05 0 −0.10 19.15 0 0.20 5.18 0
�̂�𝑃 −8.32 17.87 0 −8.35 13.16 0 −9.68 27.27 0 −9.89 21.00 0
�̂�IPW 3.38 26.8 863 4.83 18.11 343 3.49 42.34 983 6.06 33.65 466
�̂�𝐴1 −0.70 180.78 208 0.24 21.22 29 0.98 428.26 575 0.76 39.74 52
�̂�𝐴2 −20.57 75.86 100 −16.35 46.33 32 −24.77 124.82 209 −19.90 78.37 32
�̂�𝐺2 4.18 26.72 164 6.28 22.98 16 3.89 42.10 213 8.00 41.48 38
�̂�𝐺3 −6.15 27.81 149 −1.96 8.77 22 −7.40 44.09 139 −2.34 17.44 40
�̂�𝐺4 −9.22 30.05 61 −5.33 12.07 12 −11.37 52.25 41 −6.60 23.75 16

our method has very similar performance to that of Liu
et al.’s (2022) method, which implies that our method has
certain robustness.

4.3 Results for confidence intervals

In this subsection, we evaluate the performance of the pro-
posed CI 𝜏 for 𝜏. To improve the performance of 𝜏, we
also consider the bootstrap 𝑡-type CI, which is 𝜏 with
the normal quantile replaced by the corresponding non-
parametric bootstrap quantiles based on 1000 bootstrap
samples; we denote the bootstrap 𝑡-type CI by 𝐵𝜏 . The sim-
ulated coverage probabilities of 𝜏 and 

𝐵
𝜏 are provided in

Table 4. We did not compare the proposed CIs with those
based on othermethods because �̂�𝑃 produces biased results
when the error distribution is not normal, and the IPW
method and the methods due to Morikawa and Kim (2021)
and Ai et al. (2020) may experience numerical issues.
Table 4 shows that𝜏 has accurate coverage probabilities

when the error distribution is either normal or nonnormal
with 𝑛 = 2000, but it experiences undercoverage when the
error distribution is nonnormal with 𝑛 = 500. By contrast,
the bootstrap 𝑡-type CI has accurate coverage probabilities
in all situations and so is recommended in applications.

TABLE 4 Coverage probabilities of 𝜏 and 𝐵𝜏 at 95% nominal
level.

Example 𝜶𝟎 𝝉 
𝑩
𝝉 𝝉 

𝑩
𝝉

𝝐 ∼ 𝑵(𝟎, 𝟒)

𝒏 = 𝟓𝟎𝟎 𝒏 = 𝟐𝟎𝟎𝟎

1 −1.7 95.0 94.7 95.4 95.0
1 −1.2 94.1 94.8 95.4 94.7
2 −2.7 95.0 95.0 95.5 94.7
2 −2.2 94.8 95.4 95.6 94.8

𝜖 ∼ 2∕3𝑁(−1, 1) + 1∕3𝑁(2, 4)

𝑛 = 500 𝑛 = 2000

1 −1.7 93.2 94.4 95.0 95.2
1 −1.2 92.6 94.4 94.7 95.0
2 −2.7 92.7 94.7 95.0 95.0
2 −2.2 92.6 95.0 94.7 95.4

5 REAL EXAMPLES

We analyze two real examples for illustration. The first
example involves human immunodeficiency virus (HIV)
data from the AIDS Clinical Trials Group Protocol 175
(ACTG175) (Hammer et al., 1996), in which 𝑛 = 2139HIV-
infected patients were enrolled. The patients were divided

 15410420, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/biom

.13881 by E
ast C

hina N
orm

al U
niversity, W

iley O
nline L

ibrary on [26/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



LI et al. 9

randomly into four arms according to the regimen of treat-
ment that they received: (I) zidovudine monotherapy, (II)
zidovudine + didanosine, (III) zidovudine + zalcitabine,
and (IV) didanosinemonotherapy. For illustration,we con-
sider the patients in arm III; analysis for the other arms can
be conducted similarly.
The data recordmanymeasurements from each patient,

including their age (in years), weight (in kilograms), CD4
cell count at baseline (cd40), CD4 cell count at 20 ± 5
weeks (cd420), CD4 cell count at 96 ± 5 weeks (cd496),
CD8 cell count at baseline (cd80), CD8 cell count at 20 ±
5 weeks (cd820), and arm number (arms). The data are
available from the R package speff2trial. The effective-
ness of an HIV treatment can be assessed by monitoring
the CD4 cell counts of HIV-positive patients: an increase
indicates an improvement in the patients’ health. An inter-
esting problem is determining the mean of the CD4 cell
counts after the patients were treated for about 96 weeks.
We take cd496 as the response variable 𝑌, and we take
age, weight, cd40, cd420, cd80, and cd820 as covariates
𝑋1,… , 𝑋6, respectively. Because of either the trial end-
ing or lack of follow-up, 35.7% of the patients’ responses
were missing.
We take𝑋 = (𝑋1, 𝑋3, 𝑋4, 𝑋6) and consider the following

location-scale model for 𝑌 given 𝑋 = 𝑥 and 𝑅 = 1:

𝑦 = 𝜇(𝑥, 𝜉) + 𝜖 = 𝜉1 + 𝜉2𝑥1 + 𝜉3𝑥3 + 𝜉4𝑥4 + 𝜉5𝑥6 + +𝜉6𝑥
2
1 + 𝜉7𝑥

2
4 + 𝜖. (15)

This model is chosen by the all-subset selection method
coupled with the Akaike information criterion among the
six covariates and their quadratic terms. The score test
for nonconstant error variance proposed by Breusch and
Pagan (1979) and Cook and Weisberg (1983) gives a 𝑝-
value of around 0.560, which supports the assumption of
constant error variance. To check whether the normality
assumption is suitable for the errors in (15), we perform
a Shapiro–Wilk test for the residuals, which produces a
𝑝-value of around 4.28 × 10−8. Therefore, we have no evi-
dence against the location-scale mode with a constant
error in (15), but the normal error assumption may not
be suitable.
Next, we considermodeling themissingness probability.

Recall that the location-scale model (7) and the missing-
ness probability model (1) imply the LR model (8) for 𝑅
given 𝑋 = 𝑥. With the available data {(𝑥𝑖, 𝑟𝑖)}𝑛𝑖=1 and the
chosenmodel𝜇(𝑥; 𝜉), we use the all-subset sectionmethod
coupled with the Akaike information criterion to choose
the most appropriate model for 𝑅 given 𝑋 = 𝑥, which is

pr(𝑅 = 1|𝑥) = 1

1 + exp{𝛼0 + 𝑥1𝛽1 + 𝑥3𝛽2 + 𝛾𝜇(𝑥; 𝜉)}
. (16)

To evaluate the goodness of fit of this model, the USS
test due to le Cessie and van Houwelingen (1995) gives a
𝑝-value of around 0.722. Therefore, model (16) provides
a reasonable fit for 𝑅 given 𝑋 = 𝑥, which together with
the location-scale model (15) for 𝑌 given 𝑋 = 𝑥 and 𝑅 = 1
implies that the missingness probability model

pr(𝐷 = 1|𝑥, 𝑦) = 1

1 + exp(𝛼0 + 𝑥1𝛽1 + 𝑥3𝛽2 + 𝑦𝛾)
(17)

is suitable.
We now apply the proposed estimator �̂� andCI𝐵𝜏 , based

on models (15) and (17), to the ACTG175 data for patients
in arm III. For comparison, we include �̂�𝑃, �̂�IPW, �̂�𝐴1, and
�̂�𝐺1 and their corresponding bootstrap percentile CIs based
on 1000 bootstrap samples. The IPW method solves (2)
with 𝑔(𝑥) = (1, 𝑥1, 𝑥3, 𝜇(𝑥; �̂�))⊤. We chose not to include
the nonparametric adaptive method due to Morikawa and
Kim (2021) and �̂�𝐺𝑘 due to Ai et al. (2020) for 𝑘 ≥ 2, as
both methods show large biases in our simulation study.
The results are summarized in Table 5. In the analysis of
ACTG175 data, we do not encounter numerical problems
in implementing �̂�IPW. This may explain why the proposed
method and the IPW method give similar point estimates.
The other three point estimates �̂�𝑃, �̂�𝐴1, and �̂�𝐺1 are slightly
different from the proposed estimate �̂�. Based on our sim-
ulation results for the nonnormal case, �̂� always has quite
small biases, so we reason that the result for �̂� is more reli-
able. The CI based on �̂� is the smallest length among the
five methods, which shows the advantage of the proposed
method for the nonnormal error case.
The second example involves the Peabody Picture

Vocabulary Test (PPVT) data analyzed by Chen et al.
(2022), which were collected as part of the National Longi-
tudinal Survey of Youth (NLSY79 Child and Young Adult
cohort). The PPVT comprises a number of items, each of
which involves four pictures; the interviewer says a word
out loud, and the child selects the picture of the four that
best describes the word’s meaning. The data come from
test results between 1986 and 1992 for children who were
aged between 3 and 4 years at the 1986 assessment and
whose mothers reported nonzero income in at least 1 year
between 1986 and 1992. In total, 𝑛 = 557 children are in
the sample.
We let the response 𝑌 be the logarithm of the difference

in PPVT score between 1986 and 1992. FollowingChen et al.
(2022), we consider seven covariates: gender (1 = male, 0
= female; 𝑥1), race (1 = White, 0 = Other; 𝑥2), mother’s
hourly income (𝑥3), mother’s education (1 ≥ 12 years, 0 ≤

12 years; 𝑥4), and three dummy variables (𝑥5–𝑥7) that clas-
sify the data by the four quartiles of the 1986 PPVT score,
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10 LI et al.

TABLE 5 Analysis results for ACTG175 data (𝑌 = CD496 cell counts of patients in arm III) and PPVT data (𝑌 = logarithm of difference
in PPVT score between 1986 and 1992 of children).

Point estimate Interval estimate Length of CI
ACTG175 data
�̂� 308.98 [279.68, 330.97] 51.29
�̂�𝑃 305.72 [278.51, 333.44] 54.93
�̂�IPW 309.00 [276.39, 336.25] 59.86
�̃�𝐴1 310.39 [281.94, 339.93] 58.00
�̃�𝐺1 313.68 [285.19, 338.48] 53.29
PPVT data
�̂� 4.302 [4.280, 4.323] 0.043
�̂�𝑃 4.303 [4.272, 4.330] 0.059
�̂�IPW 4.300 [4.266, 4.325] 0.058
�̂�𝐴1 4.301 [4.275, 4.324] 0.049
�̂�𝐺1 4.297 [4.261, 4.327] 0.067

that is, (𝑥5, 𝑥6, 𝑥7) = (0, 0, 0), (1,0,0), (0,1,0), or (0,0,1) if a
1986 PPVT score is in the first, second, third, or fourth quar-
tile, respectively. For various reasons, such as motivation,
family influence, and perceived poor performance, only
387 valid assessments were obtained in 1992, which gives
a missing-data rate of 30.5%.
We take 𝑋 = (𝑋1, … , 𝑋7) and consider the following

location-scale model for 𝑌 given 𝑋 = 𝑥 and 𝑅 = 1:

𝑦 = 𝜇(𝑥, 𝜉) + 𝜖 = 𝜉1 + 𝜉2𝑥1 +⋯+ 𝜉8𝑥7 + 𝜖. (18)

The𝑝-value of the score test for nonconstant error variance
is around 0.296, and that for the Shapiro–Wilk test on resid-
uals is around 5.74 × 10−12. These results indicate that the
location-scale model (18) is reasonable for 𝑌 given 𝑋 = 𝑥
and 𝑅 = 1 but that the normality assumption for the error
may not be suitable.
Following Chen et al. (2022), we use 𝑥5–𝑥7 as instru-

mental variables and consider the following missingness
probability model:

pr(𝑅 = 1|𝑥, 𝑦) = 1

1 + exp(𝛼0 + 𝑥1𝛽1 +⋯+ 𝛽4𝑥4 + 𝑦𝛾)
. (19)

The USS test due to le Cessie and van Houwelingen (1995)
for the goodness of fit of the induced LR model

pr(𝑅 = 1|𝑥) = 1

1 + exp{𝛼 + 𝑥1𝛽1 +⋯+ 𝛽4𝑥4 + 𝛾𝜇(𝑥; 𝜉)}
(20)

gives a 𝑝-value of around 0.737, which supports the
missingness probability model (19).
We now apply the proposed estimator �̂� andCI𝐵𝜏 , based

on (18) and (19), to the PPVT data. For comparison, we also
include the results for �̂�𝑃, �̂�IPW, �̂�𝐴1, and �̂�𝐺1. The results
are summarized in Table 5. It is worth mentioning that we

do not encounter numerical problems while implement-
ing �̂�IPW in the analysis of PPVT data. This observation
may explain the similarity between the proposed estimate
and the IPW estimate. The other three methods produced
point estimates similar to the proposed method for this
data. However, the proposed CI 𝐵𝜏 has the shortest length
among all five methods, which again shows the advantage
of the proposed method for non-normal data.

6 CONCLUDING REMARKS

As mentioned in the beginning of the introduction, infer-
ence for problems involving NIMD is much harder than
that for those involving MAR data. In general, one must
either specify the propensity score or make a parametric
assumption about the outcome given covariates, otherwise
the underlying models are not identifiable. The exist-
ing literature shows that it is possible to identify the
propensity-score parameters if one specifies a paramet-
ric model for the propensity score only and leaves the
regression model arbitrary. However, the IPW estimating
equations involve an MGF, and such functions can suffer
from slow convergence; consequently, such equations are
very unstable numerically and may have multiple roots.
Our extensive simulation studies have shown that infer-
ence based on a parametric logistic propensity-scoremodel
alone is very unreliable, and onemustmake some assump-
tion about the regression model, either parametrically or
semiparametrically. In this paper, we have proposed an
innovative method for NIMD problems when a paramet-
ric model for the propensity score is specified and the
observed outcome follows a location-shift model with an
unspecified error distribution. Extensive simulations have
shown that our method far outperforms the existing ones.
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LI et al. 11

We end up this paper with some discussion on possible
extensions of the proposedmethod. Kim and Yu (2011) and
Kim and Morikawa (2022) considered a semiparametric
model for the missingness probability:

pr(𝑅 = 1|𝑥, 𝑦) = 1

1 + exp{𝑔(𝑥1) + 𝛾𝑦}
, (21)

where 𝑔(⋅) is a completely unspecified function. We may
generalize our method to the setup when both (21) and (7)
are satisfied. Under these two model assumptions, similar
to (8), we have a new partially linear LR model

pr(𝑅 = 1|𝑥) = 1

1 + exp{𝑔∗(𝑥1) + 𝛾𝜇(𝑥; 𝜉)}
,

where 𝑔∗(𝑥1) = 𝑔(𝑥1) + log{𝑀1(𝛾)}. Our method can be
extended using either kernel method, local likelihood
method, or spline method to estimate 𝑔(⋅) and 𝛾. Wang
et al. (2021) proposed a data-adaptive method to choose
instrumental variables instead of assuming they are known
in advance. Our method may be extended for this purpose
as well. We leave both for future research.
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