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A B S T R A C T

Propensity score matching (PSM) is a pseudo-experimental method that uses statistical tech-
niques to construct an artificial control group by matching each treated unit with one or more
untreated units of similar characteristics. To date, the problem of determining the optimal
number of matches per unit, which plays an important role in PSM, has not been adequately
addressed. We propose a tuning-parameter-free PSM approach to causal inference based on the
nonparametric maximum-likelihood estimation of the propensity score under the monotonicity
constraint. The estimated propensity score is piecewise constant, and therefore automatically
groups data. Hence, our proposal is free of tuning parameters. The proposed causal effect
estimator is asymptotically semiparametric efficient when the covariate is univariate or the
outcome and the propensity score depend on the covariate through the same index 𝐗⊤𝜷. We
conclude that matching methods based on the propensity score alone cannot, in general, be
efficient.

1. Introduction

To assess the treatment effect in medical studies, randomized and controlled clinical trials are the gold standard because the
baseline covariates are balanced in the treatment and control arms by the randomization. To evaluate the effectiveness of an
economic program or policy in econometrics or political science, however, randomization is difficult or impossible to implement
for various reasons. In observational studies, the available covariate information from people who participated in the program or
not may be unbalanced. The simple two-sample 𝑡-test is likely to produce biased results. It is desirable to replicate a randomized
experiment as closely as possible by obtaining treated and control groups with similar covariate distributions. Due to the simplicity
and intuitiveness of adjusting the distribution of covariates among samples from different populations, matching methods are widely
used in applied statistics, econometrics, and epidemiology. Many examples can be found in a comprehensive review paper by Stuart
(2010).

A common feature of matching methods is the outcome-independence of matching, i.e., outcome values are not used in the
matching process even if they are available at the time of matching. Commonly used matching methods are all based on covariate
values. They use the ‘‘distance’’ between treated and untreated individuals, which is a measure of the similarity between two
individuals. A well-known example is the Mahalanobis distance. Another popular matching method is propensity score matching,
which was proposed by Rosenbaum and Rubin (1983). The propensity score is the conditional probability of assignment to a
treatment given a vector of covariates. Suppose that adjusting for a set of covariates is sufficient to eliminate confounding. A
key observation made by Rosenbaum and Rubin (1983) is that adjusting for the propensity score is also sufficient to eliminate
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confounding. In contrast to covariate-based distance matching methods, propensity score matching (PSM) has the advantage of
reducing the dimensionality of matching to a single dimension, making the matching process much easier.

Although various matching methods have been used, the theoretical results have only recently been studied by Abadie and
mbens (2006, 2012, 2016). This series of papers showed that matching estimators based on the covariate distance involve a
iased term that is only negligible under certain regularity conditions. Moreover, the matching estimators are not necessarily root-
-consistent, and some strong conditions are needed to guarantee the root-𝑛-consistency. Furthermore, they demonstrated that,

even in settings where matching estimators are root-𝑛-consistent, simple matching estimators with a fixed number of matches
do not attain the semiparametric efficiency bound. Furthermore, they found that matching estimators based on the estimated
propensity score have smaller variances than those based on the true PSM. To make the matching methods accessible to practitioners,
Imbens (2015) used three examples to demonstrate practical implementations from the theoretical literature, and provided detailed
recommendations on how the procedures should be performed. In her review paper in Statistical Science, Stuart (2010) lists
some of the major software packages that implement matching procedures. A regularly updated version is available at https:
//www.elizabethstuart.org/psoftware/.

In the PSM approach, there are a number of matching methods that can be employed. The most commonly used include: (1)
Nearest neighbor matching (Rubin, 1973) matches for a given treated subject with 𝐾 untreated subjects (𝐾 ≥ 1), whose propensity
cores are closest to that of the treated subject. (2) Caliper matching (Rosenbaum, 1985) establishes a caliper, and matches for
ach treated subjects all untreated subject whose propensity scores are within the given caliper of the treated subject. (3) Kernel
atching (Heckman et al., 1998) compares the outcome of each treated subject with a kernel-based weighted average of the

utcomes of all untreated subjects, where the weights are based on the distance of the propensity score of the untreated subjects
o that of the treated subject’s. The performance of the PSM approach is always influenced by the choice of the involved tuning
arameter, which is generally artificial. A too small tuning parameter may lead to inflated variances, whereas a too large tuning
arameter may lead to biased results (Cochran, 1968). A natural question is ‘‘Are there any optimal methods for choosing the
nvolved tuning parameter?’’ To the best of our knowledge, no theoretical research has yet been conducted to address this issue.

In this paper, we present a tuning-parameter-free propensity score matching method under a monotone single-index model for
he propensity score. Our model assumption on propensity score is a semi-parametric extension of the commonly-used parametric
odels including the popular linear logistic and probit models; it not only sufficiently alleviate the risk of model mis-specification

ut also circumvents the curse of dimensionality problem in the multivariate covariate case. In contrast, the method of Hirano et al.
2003) based on a nonparametric propensity score estimate is difficult to implement due to the curse of dimensionality problem.
ur first contribution in this paper is to establish the semiparametric efficiency lower bounds (SELBs) for parameters of interest
nder a single-index model on the propensity score (See Theorem 1), which are new in the literature. We find that the SLEBs are
he same whether the link function in the single index model is completely nonparametric or monotone.

Our second contribution is to develop an estimation method based on the semiparametric maximum-likelihood estimation of the
ropensity score function. This method can be efficiently implemented by the well-known pool adjacent violated algorithm (Ayer
t al., 1955, PAVA). As the semiparametric maximum-likelihood estimator (MLE) of the propensity score is a piecewise step function,
ndividuals in the treatment arm can be exactly matched by individuals in the control arm based on their estimated propensity scores.
his matching method is purely data-driven and involves no artificial interference. We also find a surprising result: the proposed
uning-free matching estimator is numerically equivalent to an inverse probability weighting (IPW) estimator, which is not the
ase in general. Theoretically the proposed estimator is not only asymptotically unbiased, but also achieves the SELB if (1) the
ovariate is univariate, or (2) the covariate is multivariate and the outcome and propensity score depend on the covariate through
he same index 𝐗⊤𝜷. This finding discloses that semiparametric efficient estimation of causal effects depends on the coincidence of
he directions through which the outcome and the propensity score depend on the covariate, or equivalently the so-called index bias
s zero (Lee, 2018). The latter implies the zero covariance condition in Abadie and Imbens (2016). In the meanwhile, the matching
stimator using the true propensity score cannot achieve the SELB, and therefore is less efficient than our estimator, which uses the
AVA estimator of the propensity score. Otherwise, the proposed estimator remains consistent, but is not efficient. In this situation,
ther PSM methods are relatively inefficient. Our theoretical results depend critically on shape-restricted inference and empirical
rocess theory. Our numerical simulation results show that the proposed method outperforms existing commonly used PSM methods
n terms of mean square error even when the parametric form of the propensity score is known.

The rest of the paper is organized as follows. Section 2 introduces our model assumptions, establishes two SELBs, presents the
roposed PSM estimation method and investigates its large-sample properties. Simulation results are provided in Section 3. Section 4
pplies our methods to a real econometric dataset. Section 5 contains concluding remarks. All technical proofs are given in the
upplementary material for clarity.

. Efficient estimation under shape constraints

This section establishes the SELBs for parameters of interest, and presents our PSM estimation procedure after introducing the
asic setup, namely the potential outcome framework.

.1. The potential outcome framework

We adopt the potential outcome framework (Neyman, 1923–1990; Rubin, 1974) with a binary treatment. Let 𝑌 (1) and 𝑌 (0) be the
𝑝

2

nivariate potential outcomes of a treatment and a control, respectively, which cannot be observed simultaneously. Let 𝐗 ∈  ⊂ R

https://www.elizabethstuart.org/psoftware/
https://www.elizabethstuart.org/psoftware/
https://www.elizabethstuart.org/psoftware/
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be the baseline covariate, and 𝐷 be the treatment indicator with 𝐷 = 1 denoting a treatment and 𝐷 = 0 denoting a control. The
outcome is 𝑌 (1) if 𝐷 = 1 and 𝑌 (0) otherwise, which can be written as 𝑌 = 𝑌 (𝐷) = 𝐷𝑌 (1)+(1−𝐷)𝑌 (0). Let (𝑌𝑖,𝐗𝑖, 𝐷𝑖), 𝑖 = 1, 2,… ., 𝑛, be

independent and identically distributed (i.i.d.) observations from (𝑌 ,𝐗, 𝐷). We focus on the estimations of the average treatment
ffect on the treated (ATT; Wang and Han, 2024) 𝜏 = E{𝑌 (1) − 𝑌 (0)|𝐷 = 1} and the treatment response mean 𝜇1 = E{𝑌 (1)}; the
verage treatment effect E{𝑌 (1)−𝑌 (0)} can be estimated similarly. For the identifiability of treatment effects, we make the commonly
sed unconfoundedness assumption (Rubin, 1978; Rosenbaum and Rubin, 1983), i.e., conditional on the observed covariates, the
reatment indicator is independent of the potential outcomes.

ssumption 1 (Unconfounded Treatment Assignment). 𝐷 ⟂ (𝑌 (0), 𝑌 (1))|𝐗.

Denote the propensity score as 𝑒(𝐱) = pr(𝐷 = 1|𝐗 = 𝐱). Under Assumption 1, Rosenbaum and Rubin (1983) showed that 𝐷 and
𝑌 (0), 𝑌 (1)) are conditionally independent when 𝐗 is replaced by 𝑒(𝐗) in the condition, namely 𝐷 ⟂ (𝑌 (0), 𝑌 (1))|𝑒(𝐗).

The most popular parametric models for propensity score are the linear logistic and probit models, although they always suffer
rom model mis-specification, which may lead to inconsistent or misleading treatment effect estimators. A common feature of them
s that they are monotonic increasing functions of a linear combination of covariates. This motivates us to consider a semiparametric
ingle-index propensity score model with a nonparametric and monotone nondecreasing link function, namely

𝑒(𝐱) = pr(𝐷 = 1|𝐗 = 𝐱) = 𝜋(𝐱⊤𝜷), (1)

here 𝜋 is a monotone nondecreasing function and 𝜷 is an unknown true 𝑝-variate parameter. We assume that ‖𝜷‖ = 1
or identifiability with its first component being positive. This model reduces to a completely nonparametric and monotone
ondecreasing function for the propensity score if the covariate is univariate. Commonly-used parametric propensity score models
uch as the linear logistic, probit and complementary log–log models and, more generally, linear latent variable models all satisfy
odel (1). Thus, model (1) is a semiparametric extension of the commonly-used parametric probability models. It circumvents

he choice of different link functions and hence alleviates of the risk of model misspecification. Moreover, our estimation method
pplies to more general propensity scores 𝑒(𝐱) = 𝜋(ℎ⊤(𝐱)𝜷), where ℎ(𝐱) is a known function of 𝐱. To our surprise, the nonparametric
onotonicity of 𝜋(⋅) in model (1) together with the maximum likelihood estimation method gives natural partitions of propensity

cores and data, and hence leads to a natural PSM estimation method with exact matching of propensity scores.

.2. Efficiency bounds

In this subsection, we establish the SELBs for 𝜇1 and 𝜏. Assumption 2, which requires the covariate to be nondegenerate and the
utcome and covariate variables to have finite variances, is trivial.

ssumption 2. The variance matrix Var(𝐗) is positive positive-definite. For 𝑘 = 0, 1, the functions 𝜇𝑘(𝐗) = E{𝑌 (𝑘)|𝐗} and
2
𝑘(𝑋) = Var(𝑌 (𝑘)|𝐗) are all well-defined, and the quantities E{𝑌 2(𝑘)} and E{𝜇2

𝑘(𝐗)} are all finite.

Under a partially linear regression model, Tripathi (2000) disclosed that monotonicity of the nonparametric function does not
mprove the semiparametric efficiency lower bounds of the coefficient in the linear part. We show that this is also the case in the
stimation of 𝜇1 and 𝜏. See also Severini and Tripathi (2013). Throughout the paper, we use 𝜷 to denote the true value of 𝜷, and
enote 𝜂 = E(𝐷), 𝛥(𝐗) = 𝜇1(𝐗) − 𝜇0(𝐗), 𝑍 = 𝐗⊤𝜷 and 𝐗̃ = 𝐗 − E(𝐗|𝑍).

heorem 1. Suppose that Assumptions 1–2 are valid and that the propensity score 𝑒(𝐗) satisfies model (1) with 𝜋(⋅) monotone or not.
he SELBs for 𝜇1 and 𝜏 are,

𝜎2𝜇1 ,eff ,sim = E

[

𝜎21 (𝐗)
𝜋(𝑍)

+ Var{𝜇1(𝐗)}
]

, (2)

𝜎2𝜏,eff ,sim = 1
𝜂2

E
[

𝜋(𝑍)(1 − 𝜋(𝑍)){E(𝛥(𝐗)|𝑍) − 𝜏}2

+𝜋(𝑍){1 − 𝜋(𝑍)}E{𝛥(𝐗)𝐗̃|𝑍}⊤{E(𝐗̃𝐗̃⊤
|𝑍)}−1E{𝛥(𝐗)𝐗̃|𝑍}

+𝜋2(𝑍){𝛥(𝐗) − 𝜏}2 + 𝜋(𝑍)𝜎21 (𝐗) +
𝜋2(𝑍)

1 − 𝜋(𝑍)
𝜎20 (𝐗)

]

, (3)

respectively, provided the involved expectations are well defined.

If there is no model assumption on the propensity score, Hahn (1998) showed that the SELBs for 𝜇1 and 𝜏 are 𝜎2𝜇1 ,eff ,np =
[

𝜎21 (𝐗)∕𝑒(𝐗) + Var{𝜇1(𝐗)}
]

and

𝜎2𝜏,eff ,np =
1
𝜂2

E
[

𝑒(𝐗){𝛥(𝐗) − 𝜏}2 + 𝑒(𝐗)𝜎21 (𝐱) +
𝑒2(𝐗)

1 − 𝑒(𝐗)
𝜎20 (𝐗)

]

,

espectively. Under model (1), 𝑒(𝐗) = 𝜋(𝑍), therefore 𝜎2𝜇1 ,eff ,sim = 𝜎2𝜇1 ,eff ,np but 𝜎2𝜏,eff ≠ 𝜎2𝜏,eff ,np. These results coincides with Hahn

(1998)’s finding that the propensity score is ancillary for estimation of the average treatment effect (including 𝜇1) but is not ancillary
for estimation of 𝜏. Note that 𝜎2 −𝜎2 −2 ̃ ⊤ 2
3

𝜏,eff ,np 𝜏,eff ,sim = 𝜂 E[𝜋(𝑍){1−𝜋(𝑍)}𝑔(𝑍)] with 𝑔(𝑍) = inf𝜸 E[{𝛥(𝐗)−E(𝛥(𝐗)|𝑍)−𝐗 𝜸} |𝑍]. Because
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𝑔(𝑍) ≥ 0, the difference 𝜎2𝜏,eff ,np − 𝜎2𝜏,eff ,sim is nonnegative and indicates the marginal value (in the estimation of 𝜏) of the knowledge
f the single-index structure in the propensity score.

If 𝑒(𝐗) is completely known, Hahn (1998) showed the SELB for 𝜏 is

𝜎2𝜏,eff ,kn =
1
𝜂2

E
[

𝑒2(𝐗){𝛥(𝐗) − 𝜏}2 + 𝑒(𝐗)𝜎21 (𝐗) +
𝑒(𝐗)

1 − 𝑒(𝐗)
𝜎20 (𝐗)

]

.

nder model (1), 𝜎2𝜏,eff ,kn ≤ 𝜎2𝜏,eff ,sim ≤ 𝜎2𝜏,eff ,np as model (1) lies between a completely known 𝑒(𝐗) and a completely nonparametric
odel. When 𝑒(𝐗) satisfies a general parametric model, Chen et al. (2008) establishes the SELBs for parameters defined through

eneral moment restrictions with missing data. Their results are applicable to 𝜇1, but not directly applicable to 𝜏. We have derived
he SELB, say 𝜎2𝜏,eff ,para, for 𝜏 under a parametric propensity score model and shown that 𝜎2𝜏,eff ,para ≤ 𝜎2𝜏,eff ,sim; see Theorem 2.1 and
he followed remarks in the supplementary material. The difference 𝜎2𝜏,eff ,sim − 𝜎2𝜏,eff ,para indicates the value of the knowledge of the
ink function in the (monotone) single-index model for the propensity score. In summary, the aforementioned SELBs for 𝜏 satisfy
2
𝜏,eff ,kn ≤ 𝜎2𝜏,eff ,para ≤ 𝜎2𝜏,eff ,sim ≤ 𝜎2𝜏,eff ,np, namely SELB increases as model assumption becomes weaker and weaker.

.3. Proposed estimation procedure

For the time being, we suppose that a consistent estimator 𝜷 of 𝜷 is available. We shall consider the estimation for 𝜷 in Section 2.4.
et 𝑍𝑖 = 𝐗⊤

𝑖 𝜷 for 𝑖 = 1, 2,… , 𝑛. Without loss of generality, we assume that 𝑍1 ≤ 𝑍2 ≤ ⋯ ≤ 𝑍𝑛. Based on {(𝑍𝑖, 𝐷𝑖) ∶ 1 ≤ 𝑖 ≤ 𝑛}, the
og-likelihood of 𝜋 is

𝑛
∑

𝑖=1

[

𝐷𝑖 log𝜋(𝑍𝑖) + (1 −𝐷𝑖) log{1 − 𝜋(𝑍𝑖)}
]

, s.t. 𝜋(𝑍1) ≤ ⋯ ≤ 𝜋(𝑍𝑛).

y Theorem 2.12 of Barlow et al. (1972), maximizing this likelihood with respect to 𝜋 is equivalent to minimizing ∑𝑛
𝑖=1{𝐷𝑖−𝜋(𝑍𝑖)}2

nder the same monotonicity constraint, which can be efficiently solved by the well-known PAVA algorithm (Ayer et al., 1955). The
olution or the MLE 𝜋 always exists uniquely, and it is the left derivative of the greatest convex minorant of the cumulative sum
iagram (Barlow et al., 1972, Theorem 1.1). Specifically, 𝜋(⋅) is a step function determined by 𝜋(𝑍1), 𝜋(𝑍2),…𝜋(𝑍𝑛), which always
atisfies the monotonicity restriction 𝜋(𝑍1) ≤ 𝜋(𝑍2)⋯ ≤ 𝜋(𝑍𝑛). If the steps of 𝜋(⋅) are known, then the value of 𝜋(⋅) in each step is
imply the least square constant regression estimate based on (𝐷𝑖, 𝑍𝑖)’s in the step.

Write 𝜋𝑖 = 𝜋(𝑍𝑖). Suppose that there are 𝑘 distinct values in 𝜋𝑖, 1 ≤ 𝑖 ≤ 𝑛, and let 0 = 𝑚0 < 𝑚1 < ⋯ < 𝑚𝑘 = 𝑛 be the locations of
he inflection points of the greatest convex minorant of the cumulative sum diagram. Then,

𝜋𝑖 = 𝜋(𝑍𝑖) = 𝜋𝑚𝑗
, 𝑚𝑗−1 < 𝑖 ≤ 𝑚𝑗 , 𝑗 = 1,… , 𝑘. (4)

ccording to the lemma on page 34 of Barlow et al. (1972),

𝜋𝑚𝑗
=

∑𝑚𝑗
𝑙=𝑚𝑗−1+1

𝐷𝑙

𝑚𝑗 − 𝑚𝑗−1
, 1 ≤ 𝑗 ≤ 𝑘. (5)

We propose to estimate 𝜇1 = E{𝑌 (1)} by

𝜇1 =
1
𝑛

𝑛
∑

𝑖=1

𝐷𝑖𝑌𝑖
𝜋(𝑍𝑖)

= 1
𝑛

𝑘
∑

𝑗=1

1
𝜋𝑚𝑗

𝑚𝑗
∑

𝑙=𝑚𝑗−1+1
𝐷𝑙𝑌𝑙 =

𝑘
∑

𝑗=1
𝜌𝑗𝜇1𝑗 , (6)

where 𝜌𝑗 = (𝑚𝑗 − 𝑚𝑗−1)∕𝑛 is the proportion of observations 𝐗𝑠’s satisfying 𝑍𝑚𝑗−1
= 𝐗⊤

𝑚𝑗−1
𝜷 < 𝐗⊤

𝑠 𝜷 ≤ 𝐗⊤
𝑚𝑗
𝜷 = 𝑍𝑚𝑗

, and

1̂𝑗 =
∑𝑚𝑗

𝑙=𝑚𝑗−1+1
𝐷𝑙𝑌𝑙∕

∑𝑚𝑗
𝑙=𝑚𝑗−1+1

𝐷𝑙 is the group mean. Essentially, 𝜇1 is a weighted average of subgroup means, where the subgroups

re formed by the steps of the shape-restricted nonparametric MLE 𝜋. Note that this grouping method is automatically data-driven
nd is free from any tuning parameter.

emark 1. It seems that 𝜇1 is not well defined if 𝜋(𝑍𝑖) = 0 for some 𝑖. We claim that this does not matter. Note that
1̂ = (1∕𝑛)

∑

𝑖∶𝐷𝑖=1 𝑌𝑖∕𝜋(𝑍𝑖). For each 𝑖, according to result (4), there must be 1 ≤ 𝑗 ≤ 𝑘 such that 𝑚𝑗−1 < 𝑖 ≤ 𝑚𝑗 and
̂(𝑍𝑖) =

∑𝑚𝑗
𝑟=𝑚𝑗−1+1

𝐷𝑟∕(𝑚𝑗 − 𝑚𝑗−1) (by combining (4) and (5)). Thus 𝜋(𝑍𝑖) > 1∕(𝑚𝑗 − 𝑚𝑗−1) > 0 for each 𝑖 with 𝐷𝑖 = 1, therefore
1̂ is well defined.

Let 𝑛1 =
∑𝑛

𝑖=1 𝐷𝑖. By PSM, we propose to estimate the ATT 𝜏 by

𝜏 = 1
𝑛1

𝑛
∑

𝑖=1
𝐷𝑖

{

𝑌𝑖 −

∑𝑛
𝑗=1(1 −𝐷𝑗 )𝑌𝑗𝐼(𝜋(𝑍𝑗 ) = 𝜋(𝑍𝑖))
∑𝑛

𝑟=1(1 −𝐷𝑟)𝐼(𝜋(𝑍𝑟) = 𝜋(𝑍𝑖))

}

. (7)

emma 1. The proposed PSM estimator 𝜏 can be equivalently expressed as

𝜏 = 1
𝑛1

𝑛
∑

𝑗=1

{

𝐷𝑗𝑌𝑗 − (1 −𝐷𝑗 )𝑌𝑗
𝜋𝑗

1 − 𝜋𝑗

}

, (8)

which is an IPW estimator.
4
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Interestingly, Lemma 1 discloses that the PSM estimator 𝜏 for the ATT 𝜏 is numerically equivalent to an IPW estimator based
on the same shape-restricted propensity score estimator. Usually matching and weighting estimators have different expressions and
perform quite differently, but Lemma 1 seems to unify them through estimating the propensity score using the shape-restricted
semiparametric MLE. The IPW expression of 𝜏 in Lemma 1 also makes it much more convenient to study its asymptotic properties.
With the expression (8), by similar reasoning to that in Remark 1, we can show that 𝜋(𝑍𝑖) ≤ 1−1∕(𝑚𝑗−1−𝑚𝑗 ) < 1 if 𝐷𝑖 = 0, therefore
̂ is well defined.

With the estimated propensity scores 𝜋𝑖, the estimator of 𝜏 developed by Hirano et al. (2003) is

𝜏 = 1
∑𝑛

𝑗=1 𝜋𝑗

𝑛
∑

𝑖=1

{

𝐷𝑖𝑌𝑖 − (1 −𝐷𝑖)𝑌𝑖
𝜋𝑖

1 − 𝜋𝑖

}

.

y Theorem 1.7 of Barlow et al. (1972), the shape-restricted MLEs 𝜋𝑖 satisfy ∑𝑛
𝑖=1(𝜋𝑖−𝐷𝑖) = 0 or, equivalently, ∑𝑛

𝑖=1 𝜋𝑖 =
∑𝑛

𝑖=1 𝐷𝑖 = 𝑛1.
We find that 𝜏 = 𝜏, i.e., the proposed PSM estimator is equal to that of Hirano et al. (2003) in the form for the ATT.

Remark 2. Like 𝜇1, 𝜏 may not be well defined if 𝜋(𝑍𝑖) = 1 for some 𝑖. Suppose that 𝑖 and 𝑗 satisfy 𝑚𝑗−1 < 𝑖 ≤ 𝑚𝑗 . We immediately
have 𝜋(𝑍𝑖) < 1 − 1∕(𝑚𝑗−1 − 𝑚𝑗 ) < 1 if 𝐷𝑖 = 0, therefore 𝜏 is well defined.

Remark 3. One referee highlighted that our PSM estimator for the ATT can be interpreted as a regression estimator, employing
the PAVA estimator 𝜋(𝑥) as a generated regressor. Also it is equivalent to the kernel regression estimator in Lee (2018) when a
rectangular/uniform kernel is applied. Since the PAVA estimator 𝜋(𝑥) is a piecewise step function, this kernel regression estimator
does not require the tuning parameter (i.e. the bandwidth) for the uniform kernel. Consequently, these three estimators — matching,
inverse probability weighting, and regression estimator (Lee, 2018) — are considered equivalent.

Assumption 3. The ranges of 𝐗 and 𝜷,  and , are compact. Let 𝑡low = inf{𝐗⊤𝜸 ∶ 𝐗 ∈  , 𝜸 ∈ } − 𝜀0 and 𝑡up = sup{𝐗⊤𝜸 ∶ 𝐗 ∈
 , 𝜸 ∈ } + 𝜀0 for some 𝜀0 > 0.

Assumption 4. There exists 𝑐0 ∈ (0, 1) such that 𝑐0 ≤ 𝜋(𝑡) ≤ 1 − 𝑐0 and 𝜋 has a continuous second derivative on [𝑡low, 𝑡up], where
𝑡low and 𝑡up are defined in Assumption 3.

Under Assumption 4, 𝜋′(𝑡) is also continuous on the closed interval [𝑡low, 𝑡up]. Therefore, it must be Lipschitz-continuous, i.e., there
exists 𝑐1 > 0 such that |𝜋′(𝑡) − 𝜋′(𝑠)| ≤ 𝑐1|𝑠 − 𝑡| for any 𝑡low ≤ 𝑠, 𝑡 ≤ 𝑡up.

Assumption 5. There exists a constant 𝑀 > 0 such that the density function 𝑓𝐗⊤𝜸 (𝑢) of 𝐗⊤𝜸 satisfies 𝑓𝐗⊤𝜸 (𝑢) ≤ 𝑀 for all 𝐱 ∈ 
and 𝜸 ∈ .

Define 𝜇∗
1 (𝑢; 𝜸) = E{𝑌 (1)|𝐗⊤𝜸 = 𝑢} = E{𝜇1(𝐗)|𝐗⊤𝜸 = 𝑢}, and 𝜇∗

0 (𝑢; 𝜸) = E{𝑌 (0)|𝐗⊤𝜸 = 𝑢} = E{𝜇0(𝐗)|𝐗⊤𝜸 = 𝑢}.

Assumption 6. The function 𝜇∗
1 (𝑢; 𝜸) is continuous in both 𝑢 and 𝜸.

Because  and  are both compact, Assumptions 5 and 6 imply that the function 𝜇∗
1 (𝐗

⊤𝜸1; 𝜸2) is Lipschitz-continuous with respect
to (𝜸1, 𝜸2), i.e., there exists a constant 𝐿 such that

|𝜇∗
1 (𝐗

⊤𝜸1; 𝜸2) − 𝜇∗
1 (𝐗

⊤𝜸3; 𝜸4)| ≤ 𝐿(‖𝜸1 − 𝜸3‖ + ‖𝜸2 − 𝜸4‖), 𝜸1,… , 𝜸4 ∈ .

The function 𝜇∗
0 has the same property under Assumptions 5 and 7. In general, if 𝜷 is

√

𝑛-consistent and asymptotically normal,
the proposed estimators for 𝜇1 and 𝜏 both follow asymptotically normal distributions, and both are asymptotically semiparametric
efficient under certain additional conditions. Let P𝑛 denote the empirical measure based on data {(𝑌𝑖,𝐗𝑖, 𝐷𝑖) ∶ 1 ≤ 𝑖 ≤ 𝑛}.

Theorem 2. Suppose that model (1) is true, and that Assumptions 1–6 are satisfied. Define 𝐁1 = E[{𝜇1(𝐗) − 𝜇∗
1 (𝑍; 𝜷)}𝐗⊤𝜋′(𝑍)∕𝜋(𝑍)],

here 𝑍 = 𝐗⊤𝜷 is defined previously. If 𝜷 − 𝜷 = 𝑂𝑝(𝑛−1∕2), then the following results hold as 𝑛 → ∞.

(1) A linear approximation for 𝜇1 is

𝜇1 = 𝜇1 + P𝑛

[ 𝐷 − 𝜋(𝑍)
𝜋(𝑍)

{𝜇1(𝐗) − 𝜇∗
1 (𝑍; 𝜷)} +

𝐷(𝑌 − 𝜇1(𝐗))
𝜋(𝑍)

+𝜇1(𝐗) − 𝜇1
]

+𝐁1(𝜷 − 𝜷) + 𝑜𝑝(𝑛−1∕2). (9)

(2) If 𝜇1(𝐗) = 𝜇̃1(𝑍) for some 𝜇̃1(⋅), then 𝜇∗
1 (𝑍; 𝜷) = 𝜇̃1(𝑍), 𝐁1 = 𝟎 and

√

𝑛(𝜇1 − 𝜇1) =
√

𝑛P𝑛

{

𝐷(𝑌 − 𝜇̃1(𝑍))
𝜋(𝑍)

+ 𝜇̃1(𝑍) − 𝜇1

}

+ 𝑜𝑝(1)

𝑑
⟶ 𝑁(0, 𝜎2𝜇,m),

where
𝑑

⟶ means ‘‘converge in distribution to’’ and 𝜎2 = Var(𝜇̃ (𝑍)) + E{𝜎2(𝐗)∕𝜋(𝑍)}.
5

𝜇,m 1 1
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By Theorem 2, if 𝜇1(𝐗) = 𝜇̃1(𝑍) for some function 𝜇̃1 and model (1) is true, then 𝜎2𝜇,m = 𝜎2𝜇,eff , which implies that in this
situation 𝜇1 achieves the SELB in Theorem 1. Namely, if both the propensity score 𝑒(𝐗) and the regression function 𝜇1(𝐗) depend
on the covariate 𝐗 through the same index 𝐗⊤𝜷, or equivalently there exist functions 𝜋(⋅) and 𝜇̃1(⋅) such that 𝑒(𝐗) = 𝜋(𝐗⊤𝜷) and
𝜇1(𝐗) = 𝜇̃1(𝐗⊤𝜷) for the same vector 𝜷, then 𝜇1 is asymptotically semiparametric efficient for any 𝑛1∕2-consistent estimator 𝜷.

ssumption 7. The function 𝜇∗
0 (𝑢; 𝜸) is continuous in both 𝑢 and 𝜸.

heorem 3. Suppose that model (1) is true, and that Assumptions 1–5 and 7 are satisfied. Define 𝐁2 = E[{𝜇0(𝐗)−𝜇∗
0 (𝑍; 𝜷)}𝐗⊤𝜋′(𝑍)∕1−

(𝑍)]. If 𝜷 − 𝜷 = 𝑂𝑝(𝑛−1∕2), then the following results hold as 𝑛 → ∞.

(1) A linear approximation for 𝜏 is

𝜏 = 𝜏 + 1
𝜂
P𝑛

[

{𝐷(𝛥(𝐗) − 𝜏) +𝐷(𝑌 (1) − 𝜇1(𝐗))}

−(1 −𝐷)
{𝑌 (0) − 𝜇0(𝑋)}𝜋(𝑍)

1 − 𝜋(𝑍)

+
𝐷 − 𝜋(𝑍)
1 − 𝜋(𝑍)

{𝜇0(𝐗) − 𝜇∗
0 (𝑍; 𝜷)}

]

−1
𝜂
𝐁2(𝜷 − 𝜷)

+ 𝑜𝑝(𝑛−1∕2). (10)

(2) If 𝜇0(𝐗) = 𝜇̃0(𝑍) for some function 𝜇̃0(⋅), then 𝜇0(𝐗) = 𝜇∗
0 (𝑍; 𝜷) = 𝜇̃0(𝑍), 𝐁2 = 𝟎 and

√

𝑛(𝜏 − 𝜏) = 1
𝜂
√

𝑛P𝑛

[

𝐷(𝛥(𝐗) − 𝜏) +𝐷(𝑌 (1) − 𝜇1(𝐗))

−(1 −𝐷){𝑌 (0) − 𝜇0(𝐗)}
𝜋(𝑍)

1 − 𝜋(𝑍)

]

+𝑜𝑝(1)

𝑑
⟶ 𝑁(0, 𝜎2𝜏,m),

where

𝜎2𝜏,m = 1
𝜂2

E
[

𝜋(𝑍)(𝛥(𝐗) − 𝜏)2 + 𝜋(𝑍)𝜎21 (𝐗) + 𝜎20 (𝐗)
{𝜋(𝑍)}2

1 − 𝜋(𝑍)

]

.

Under model (1), if 𝜇0(𝐗) = 𝜇̃0(𝑍) for a function 𝜇̃0(⋅), then 𝜎2𝜏,m is equal to the 𝜎2𝜏,eff ,np, i.e., 𝜏 achieves the SELB 𝜎2𝜏,eff ,np, although
it is not the genuine SELB under model (1). If it also holds that 𝜇1(𝐗) = 𝜇̃1(𝑍) for some function 𝜇̃1(⋅), then 𝛥(𝐗) can be written
s 𝛥(𝑍) ≡ 𝜇̃1(𝑍) − 𝜇̃0(𝑍). Therefore E{𝛥(𝐗)|𝑍} = 𝛥(𝐗) and E{𝛥(𝐗)𝐗̃|𝑍} = 0. In this situation, the SELB 𝜎2𝜏,eff ,sim for 𝜏 derived in
heorem 1 is exactly 𝜎2𝜏,m. In other words, if the propensity score and both the regression functions, 𝜇0(𝐗) and 𝜇1(𝐗), depend on
ovariate 𝐗 through the same index 𝐗⊤𝜷, then 𝜏 achieves the genuine SELB 𝜎2𝜏,eff ,sim for any 𝑛1∕2-consistent estimator 𝜷.

Besides the asymptotic normality and efficiency results, Theorems 2 and 3 also indicate that if the propensity score and regression
unctions depend on the covariate 𝑋 in different directions, or the regression functions do not obey single-index models, then neither
1̂ nor 𝜏 is asymptotically semiparametric efficient.

emark 4. Imai and Ratkovic (2014) introduced a covariate balancing propensity score methodology that models treatment
ssignment while optimizing the covariate balance. Suppose that 𝜋(𝐗⊤𝜷) is a correctly specified model for the propensity score.
bserving the fact that, for any function 𝐡(𝐗),

E
{

𝐷
𝜋(𝑍)

𝐡(𝐗) − 1 −𝐷
1 − 𝜋(𝑍)

𝐡(𝐗)
}

= 0,

instead of estimating 𝜷 by the maximum-likelihood method, Imai and Ratkovic (2014) proposed to estimate 𝜷 by solving

P𝑛

[

𝐷 − 𝜋(𝑍)
𝜋(𝑍){1 − 𝜋(𝑍)}

𝐡(𝐗)
]

= 0

for some function 𝐡(𝐱). For example, 𝐡(𝐗) = 𝐗, 𝜋′(𝑍)𝐗, or the vector consisting of all the linear and quadratic terms of 𝐗. They
argue that if the propensity score model is misspecified, the MLE of the propensity score might not balance the covariates, while
their proposed approach can balance the first and second moments between the two arms. If the dimension of 𝐡(𝐗) is greater than
that of 𝜷, this is a well-known over-identified estimation problem. They estimate 𝜷 using the generalized method of moments and
the empirical likelihood method. In general, a higher dimension of 𝐡 produces more efficient estimators, but creates a heavier
computational burden. In practical applications, one has to make a trade-off between computational cost and estimation efficiency.

Let 𝜋(⋅) be the MLE of 𝜋(⋅) under the monotonicity constraint based on observations {𝐗⊤
𝑖 𝜷 ∶ 1 ≤ 𝑖 ≤ 𝑛} for any given 𝜷. By the

haracterization of such a shape-restricted MLE (Barlow et al., 1972), we have

P𝑛[{𝐷 − 𝜋(𝐗⊤𝜷)}𝐡(𝜋(𝐗⊤𝜷))] = 0

or any function ℎ. Moreover, we can show that

P [{𝐷 − 𝜋(𝐗⊤𝜷)}𝐡(𝐗⊤𝜷)] = 𝑜 (𝑛−1∕2),
6

𝑛 𝑝
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if 𝐡 and 𝜋 are continuously differentiable (see the proof of Lemma 4.4 in the supplementary material). In other words, our proposal
can balance any covariate function of the form 𝐡(𝐗⊤𝜷) up to 𝑜𝑝(𝑛−1∕2), higher than root-𝑛. As far as we know, the proposed PSM

ethod is the first in the literature that can approximately balance so many functions.

emark 5. When the covariate is univariate (Univariate variables are written in non-bold font), namely 𝑝 = 1, the index coefficient
is exactly equal to 1, the index term 𝑍 equals 𝑋 and the propensity score satisfying model (1) becomes a nonparametric
onotone increasing function 𝜋(𝑋). Since 𝑋̃ = 𝑋 − E(𝑋|𝑍) = 0, the SELBs in (2) and (3) for 𝜇1 and 𝜏 are simplified to be
2
𝜇1 ,eff ,sim

= E[Var{𝜇1(𝑋)} + 𝜎21 (𝑋)∕𝜋(𝑋)] and

𝜎2𝜏,eff ,sim = 1
𝜂2

E
[

𝜋(𝑋){𝛥(𝑋) − 𝜏}2 + 𝜋(𝑋)𝜎21 (𝑋) +
𝜋2(𝑋)

1 − 𝜋(𝑋)
𝜎20 (𝐗)

]

.

Because 𝑍 = 𝑋 and 𝐵1 = 𝐵2 = 0 in this situation, the asymptotic variances of 𝜇1 and 𝜏 are exactly 𝜎2𝜇,m = 𝜎2𝜇1 ,eff ,sim and 𝜎2𝜏,m = 𝜎2𝜏,eff ,sim,
espectively. In other words, the proposed estimators 𝜇1 and 𝜏 both automatically achieves their SELBs when the covariate is
nivariate.

.4. Estimation of 𝜷

The proposed estimation procedure for 𝜇1 and 𝜏 both requires a 𝑛1∕2-consistent estimator of 𝜷 in model (1). There are many well-
eveloped methods that can produce 𝑛1∕2-consistent estimator for the index coefficient under a general monotone single-index model.
ell-known examples include the maximum rank correlation estimator of Han (1987), the monotone rank estimators of Cavanagh

nd Sherman (1998), the partial rank estimator (Khan and Tamer, 2007), and the simple score estimator (SSE) of Balabdaoui et al.
2019), etc. We choose to estimate 𝜷 by the SSE 𝜷 as its calculation is relatively simple and convenient.

We briefly review the SSE of Balabdaoui et al. (2019). Given 𝜸, let 𝑍𝑖(𝜸) = 𝐗⊤
𝑖 𝜸 and assume that 𝑍1(𝜸) ≤ 𝑍2(𝜸) ≤ ⋯ ≤ 𝑍𝑛(𝜸). Let

𝜸̂ denote the PAVA estimator of 𝜋(⋅) that minimizes ∑𝑛
𝑖=1{𝐷𝑖 − 𝜋(𝑍𝑖(𝜸))}2. Define a 𝑑 − 1-dimensional sphere as 𝑑−1 = {𝜸 ∶ 𝜸 ∈

𝑑 , ‖𝜸‖ = 1}, a one-to-one map S ∶ [0, 𝜋](𝑑−2) × [0, 2𝜋) ↦ 𝑑−1 as

𝜻 ≡ (𝜁(1), 𝜁(2),… , 𝜁(𝑑−1)) ↦ (cos(𝜁(1)), sin(𝜁(1)) cos(𝜁(2)),… ,

sin(𝜁(1))… sin(𝜁(𝑑−2)) cos(𝜁(𝑑−1)), sin(𝜁(1))… sin(𝜁(𝑑−2)) sin(𝜁(𝑑−1))), (11)

nd a 𝑑 × (𝑑 − 1) matrix as 𝐉(𝜻) = 𝜕S⊤(𝜻)∕𝜕𝜻 . Let 𝜻0 satisfy 𝜷 = S(𝜻0) and 𝜻 be a zero-crossing of the function

𝝓𝑛(𝜻) = P𝑛[𝐉⊤(𝜻)𝐗{𝐷 − 𝜋S(𝜻)(𝐗⊤S(𝜻))}] (12)

(see page 521 of Balabdaoui et al. (2019) for the definition of zero-crossing). Accordingly, we estimate 𝜷 by 𝜷 = S(𝜻), and estimate
the propensity score function by 𝜋𝜷 (⋅𝜷). The resulting PSM estimators for 𝜇1 and 𝜏 are

𝜇1 =
1
𝑛

𝑛
∑

𝑖=1

𝐷𝑖𝑌𝑖
𝜋𝜷 (𝐗

⊤
𝑖 𝜷)

and 𝜏 = 1
𝑛1

𝑛
∑

𝑗=1

⎧

⎪

⎨

⎪

⎩

𝐷𝑗𝑌𝑗 − (1 −𝐷𝑗 )𝑌𝑗
𝜋𝜷 (𝐗

⊤
𝑗 𝜷)

1 − 𝜋𝜷 (𝐗
⊤
𝑗 𝜷)

⎫

⎪

⎬

⎪

⎭

,

respectively. To study the large-sample properties of the two estimators, we assume the following conditions, which correspond to
Assumptions A3, A5, A7, and A9, respectively, of Balabdaoui et al. (2019).

Assumption 8. There exists 𝛿0 > 0 such that the function 𝜋𝜸 (𝑢) = E{𝜋(𝑍)|𝐗⊤𝜸 = 𝑢} is monotone increasing on 𝐼𝜸 = {𝐗⊤𝜸 ∶ 𝐗 ∈ }
or all 𝜸 ∈ (𝜷, 𝛿0) = {𝜸 ∶ ‖𝜸 − 𝜷‖ ≤ 𝛿0}.

ssumption 9. The distribution of 𝐗 admits a density 𝑓𝐗(𝐱) that is differentiable on  . In addition, there exist positive constants
1, 𝑐2, 𝑐3, 𝑐4 > 0 such that 𝑐1 ≤ 𝑓𝐗(𝐱) ≤ 𝑐2 and 𝑐3 ≤ 𝜕𝑓𝐗(𝐱)∕𝜕𝑥𝑗 ≤ 𝑐4 on  for all 1 ≤ 𝑗 ≤ 𝑑.

ssumption 10. For all 𝜻 ≠ 𝜻0 such that S(𝜻) ∈ (𝜷, 𝛿0), the random variable Cov[(𝜻0 − 𝜻)⊤𝐉⊤(𝜻0)𝐗, 𝜋(𝐗⊤S(𝜻0))|(𝐗⊤S(𝜻0))] ≠ 0
lmost surely.

ssumption 11. 𝐉⊤(𝜻0)E{𝜋′(𝑍)Var(𝐗|𝑍)}𝐉(𝜻0) is nonsingular.

If Assumptions 3 and 8–11 are satisfied, then Theorem 3 of Balabdaoui et al. (2019) implies that the estimator 𝜷 = S(𝜻) is
onsistent and asymptotically normal (see Lemma 12 in the supplementary material).

heorem 4. Suppose that model (1) is true, and that Assumptions 1–11 are satisfied. Define 𝐁3 = 𝐉(𝜻0)[𝐉⊤(𝜻0)E{𝜋′(𝑍)Var(𝐗|𝑍)}𝐉(𝜻0)]−1
⊤(𝜻0). Then, the following results hold as 𝑛 → ∞.

(1)
√

𝑛(𝜇1 − 𝜇1)
𝑑

⟶ 𝑁(0, 𝜎2𝜇,sse), where

𝜎2𝜇,sse = E
[

1 − 𝜋(𝑍){
𝜇1(𝐗) − 𝜇∗(𝑍; 𝜷) + 𝐁1𝐁3(𝐗 − E(𝐗|𝑍))𝜋(𝑍)

}2
]

7
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{

𝜎21 (𝐗)
𝜋(𝑍)

}

+ Var{𝜇1(𝐗)}.

(2)
√

𝑛(𝜏 − 𝜏)
𝑑

⟶ 𝑁(0, 𝜎2𝜏,sse), where

𝜎2𝜏,sse = 1
𝜂2

E
[

𝜋(𝑍)𝜎21 (𝐗)
]

+ 1
𝜂2

E
[

𝜎20 (𝐗)
{𝜋(𝑍)}2

1 − 𝜋(𝑍)

]

+ 1
𝜂2

E{𝜋(𝑍)(𝛥(𝐗) − 𝜏)2}

+ 1
𝜂2

E
[

𝜋(𝑍){1 − 𝜋(𝑍)}
{𝜇0(𝐗) − 𝜇∗

0 (𝑍; 𝜷)
1 − 𝜋(𝑍)

− 𝐁2𝐁3(𝐗 − E(𝐗|𝑍))
}2]

+ 2
𝜂2

E
[

(𝛥(𝐗) − 𝜏)𝜋(𝑍){1 − 𝜋(𝑍)}
{ 𝜇0(𝐗) − 𝜇∗

0 (𝑍; 𝜷)
1 − 𝜋(𝑍)

−𝐁2𝐁3(𝐗 − E(𝐗|𝑍))
}]

.

Theorem 4 indicates that, if 𝜷 is estimated by Balabdaoui et al. (2019)’s SSE, the proposed estimators 𝜇1 and 𝜏 are still consistent
and asymptotically normal. However, by Theorems 2 and 3, they are not asymptotically semiparametric efficient if 𝑌 (1) or 𝑌 (0) does
not depend on the covariate through the same index as the treatment indicator does.

2.5. Variance estimation

When constructing confidence intervals for 𝜏 based on the asymptotic normality results in Theorems 3–4, we need to construct
consistent estimators for the asymptotic variances, which involve quantities such as 𝜎20 (𝐗) or 𝜎21 (𝐗); we have to resort to
onparametric techniques such as kernel methods, in which tuning parameters have to be chosen. To keep tuning-parameter-free,
e propose to construct confidence intervals by the nonparametric bootstrap (Efron, 1979). Specifically, we use the nonparametric
ootstrap procedure in Algorithm 1 to estimate the asymptotic variance of 𝜏.

Algorithm 1: Nonparametric bootstrap variance estimation
Data:  = {𝑊𝑖}𝑛𝑖=1 with 𝑊𝑖 = (𝐷𝑖,𝐗𝑖, 𝑌𝑖).
Input: 𝐵: number of bootstrap samples; : estimation method of 𝜷
Output: Variance estimate of the ATT 𝜏

1 Prepare
• Calculate an estimate 𝜷 for 𝜷 by method  based on  .
• Obtain the MLE 𝜋 by maximizing 𝓁(𝜋) over 𝒢 = {𝑞(⋅) ∶ 0 ≤ 𝑞(𝑡) ≤ 1, 𝑞(𝑡) is nondecreasing}.
• Obtain the proposed ATT estimate 𝜏 based on  .

2 for 𝑏 = 1 ∶ 𝐵 do

• Let ∗
𝑏 = {𝑊 ∗

𝑏1,… ,𝑊 ∗
𝑏𝑛} be a sample from  by the simple random sampling with replacement.

• Calculate 𝜷
∗
𝑏 , 𝜋

∗
𝑏 , and 𝜏∗𝑏 , which are the bootstrap version of 𝜷, 𝜋, and 𝜏, respectively, based on the bootstrap sample

∗
𝑏

Result: An estimator for the asymptotic variance of 𝜏 is the sample variance, say 𝜎2boot , of {𝜏∗1 ,… , 𝜏∗𝐵}

In general, the nonparametric bootstrap is not valid for the nonparametric maximum likelihood estimator (NPMLE) under the
onotonicity constraint, including the well-known Grenander estimator (Sen et al., 2010). Groeneboom and Hendrickx (2017)

hows that it is possible to obtain the bootstrap validity for smooth functionals of the NPMLE. We show that the nonparametric
ootstrap method is asymptotically valid for the proposed ATT estimator when the method  in Algorithm 1 is chosen to be the

SSE of Balabdaoui et al. (2019).

Theorem 5. Let  = {(𝐷𝑖,𝐗𝑖, 𝑌𝑖)}𝑛𝑖=1 and 𝜏∗ be the proposed ATT estimator based on a nonparametric bootstrap sample ∗ from  .
nder the Assumptions of Theorem 4, sup𝑡∈R |P{

√

𝑛(𝜏∗ − 𝜏) ≤ 𝑡|} − P{
√

𝑛(𝜏 − 𝜏) ≤ 𝑡}| = 𝑜𝑝(1).

. Simulations

In this section, we conduct simulations to evaluate the finite-sample performance of the proposed estimators. In particular, we
ompare the following estimation methods: (I) PAVA1: the proposed PSM method with 𝜷 estimated by the MLE under the logistic
ropensity score model and 𝜋 estimated by PAVA; (II) PAVA2: the proposed PSM method with 𝜷 estimated by SSE and 𝜋 estimated

by PAVA; (III) PARA: the proposed PSM estimator (7) with 𝜋 replaced by the logistic function and 𝜷 being the MLE under the
ogistic propensity score model; (IV) PSM or PSM𝑘: the PSM method with the propensity score estimated by the logistic regression
odel and each case matched with 𝑘 controls. Four choices of 𝑘 are considered: 3, 5, 10, and 15. (V) KN or KN𝑐: the IPW method
8
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Table 1
Simulated biases and RMSEs based on 1000 samples of size 𝑛 = 500 when 𝜋(⋅) is set to the standard logistic distribution function in the data generating process.
𝑎 𝑏 PAVA1 PAVA2 PARA PSM3 PSM5 PSM10 PSM15 KN0.5 KN0.6 KN1.0 KN1.5

Model = 1: ℎ = cos(𝑋1 + 𝑏𝑋6); RMSE

1 1 0.477 0.527 1.704 0.657 0.771 0.990 1.141 13.005 0.301 0.605 0.727
1 0 0.395 0.398 0.902 0.492 0.475 0.493 0.520 11.049 0.958 1.350 1.477
1 −1 0.480 0.531 0.710 0.526 0.491 0.440 0.416 1.629 0.729 0.903 0.960
2 1 0.983 0.943 1.828 1.095 1.234 1.482 1.611 24.813 0.694 0.531 0.509
2 0 0.545 0.542 1.199 0.629 0.600 0.592 0.588 3.469 0.552 0.769 0.836
2 −1 0.820 0.818 1.112 1.004 0.946 0.856 0.813 4.024 0.681 0.814 0.864

Model = 2: ℎ = 𝑋1; RMSE

1 1 0.421 0.483 0.953 0.497 0.451 0.415 0.416 2.199 0.278 0.218 0.201
1 0 0.393 0.498 0.671 0.403 0.412 0.456 0.505 4.123 0.523 0.417 0.381
1 −1 0.487 0.638 0.874 0.429 0.463 0.574 0.690 1.419 0.776 0.626 0.573
2 1 0.572 0.559 1.422 0.579 0.554 0.500 0.441 10.780 0.638 0.917 1.032
2 0 0.361 0.528 0.517 0.462 0.460 0.492 0.561 2.907 0.295 0.250 0.321
2 −1 0.649 0.768 0.936 0.850 0.839 0.839 0.909 62.139 0.659 1.075 1.232

Model = 1: ℎ = cos(𝑋1 + 𝑏𝑋6); Bias

1 1 −0.170 −0.296 0.033 −0.495 −0.657 −0.928 −1.098 −0.065 0.164 0.596 0.721
1 0 0.102 0.044 −0.023 −0.223 −0.265 −0.357 −0.416 0.886 0.926 1.346 1.474
1 −1 0.138 0.151 −0.047 −0.015 −0.011 0.009 0.005 0.399 0.705 0.898 0.956
2 1 −0.636 −0.548 −0.239 −0.908 −1.111 −1.413 −1.563 −0.632 −0.657 −0.510 −0.490
2 0 −0.029 0.000 −0.034 −0.301 −0.348 −0.404 −0.433 0.291 0.505 0.757 0.826
2 −1 −0.122 −0.097 −0.002 0.050 0.057 0.046 0.057 −0.303 −0.610 −0.795 −0.851

Model = 2: ℎ = 𝑋1; Bias

1 1 0.078 0.162 −0.034 0.072 0.101 0.162 0.202 0.231 0.240 0.197 0.182
1 0 0.166 0.304 −0.003 0.157 0.208 0.323 0.407 0.505 0.501 0.404 0.369
1 −1 0.287 0.494 0.044 0.256 0.335 0.491 0.628 0.921 0.761 0.619 0.566
2 1 −0.302 −0.064 0.021 −0.290 −0.322 −0.304 −0.245 −0.118 −0.584 −0.903 −1.022
2 0 0.048 0.266 0.012 0.102 0.163 0.285 0.401 0.328 0.092 −0.189 −0.285
2 −1 −0.055 0.164 −0.012 0.248 0.345 0.514 0.646 −2.087 −0.546 −1.058 −1.222

with the propensity scores estimated by the kernel estimate, i.e. (𝑛ℎ)−1 ∑𝑛
𝑗=1 𝜙((𝑍𝑗 −𝑍𝑖)∕ℎ). Here 𝜙(⋅) is the standard normal density

unction, 𝑍𝑖 = 𝐗⊤
𝑖 𝜷 with 𝜷 being the SSE estimate of 𝜷, ℎ = 𝑐 × 𝑛−1∕5 × 𝑠 is the bandwidth and 𝑠 is the standard deviation of 𝑍𝑖’s.

our choices of 𝑐 are considered: 0.5, 0.6, 1, and 1.5.
To generate data, we consider a 10-dimensional 𝐗 = (𝑋1,… , 𝑋10)⊤, where 𝑋1,… , 𝑋5 are i.i.d. as 𝑁(0, 1), 𝑋6,… , 𝑋10 are i.i.d.

s centralized Binomial(4, 0.5) and all of them are independent from each other. Given 𝐗, we generate 𝐷 from the propensity score
odel pr(𝐷 = 1|𝐗) = 𝜋(2 +𝑋1 +𝑋6). The potential outcomes satisfy the following regression models:

𝑌 (1) = −(𝑋1 +𝑋6)𝑎 + 𝜖, 𝑌 (0) = 3ℎ(𝐗) − (𝑋1 + 𝑏𝑋6)𝑎 + 𝜖,

here 𝜖 ∼ 𝑁(0, 1). We choose 𝜋(𝑡) = 𝑒𝑡∕(1 + 𝑒𝑡) or the standard normal distribution function, ℎ(𝐗) = cos(𝑋1 + 𝑏𝑋6) (Model 1) or 𝑋1
Model 2), 𝑎 = 1 or 2, and 𝑏 = 1, 0 or −1. From each case, we generate 1000 samples with a sample size of 𝑛 = 500 and calculate
he eleven estimators for the ATT 𝜏.

We first examine the results in Table 1, which presents the Biases and root mean square errors (RMSEs) of the eleven
stimators when 𝜋(𝑡) = 𝑒𝑡∕(1 + 𝑒𝑡). The overall rate of nonmissing data is about 81.6%. As 𝜋(𝑡) is the logistic function, the eleven
stimators under comparison all have correctly specified propensity score models. The propensity score satisfies model (1) with
= (1, 0, 0, 0, 0, 1, 0, 0, 0, 0)⊤∕

√

2. In all cases, although having negligible biases, the PARA estimator (which uses the true logistic
propensity score function) always has the largest RMSE among the first seven estimators, meaning that it is always the most
unreliable. This coincides with the finding of Hirano et al. (2003) that ‘‘weighting by the inverse of a nonparametric estimate
of the propensity score, rather than the true propensity score, leads to an efficient estimate of the average treatment effect’’. The
kernel-based IPW estimator, KN𝑐, makes use of the single-index structure and does not suffer from the curse of dimensionality
roblem. However, it is still dramatically influenced by the bandwidth and often has very large Bias. The RMSE of KN0.5 is more
han 10 times of that of KN0.6 in many cases although the coefficient 𝑐 in the bandwidth changes only from 0.5 to 0.6, indicating

that the KN𝑐 estimator is very sensitive to the choice of bandwidth.
Under Model 1, the regression function in the control group is a single-index model 𝜇0(𝐗) = cos(

√

1 + 𝑏2 ⋅𝐗⊤𝜽)− (
√

1 + 𝑏2 ⋅𝐗⊤𝜽)𝑎

ith 𝜽 = (1, 0, 0, 0, 0, 𝑏, 0, 0, 0, 0)⊤∕
√

1 + 𝑏2. When 𝑏 = 1, 𝜽 = 𝜷. By Theorem 3, the proposed estimator 𝜏 in (7) is asymptotically
semiparametric efficient, regardless of whether 𝜷 is estimated by the MLE or SSE. We see from Table 1 that PAVA1 and PAVA2
have almost the same nice performance, and both of them perform better than the PARA, PSM𝑘 and KN𝑐 estimators in most cases
in terms of bias and RMSE. The performance of the PSM estimator is dramatically influenced by the number of matches, 𝑀 , per
nit; the PSM estimator has increasing Biases and RMSEs as 𝑀 increases from 3 to 15, and PSM15 has twice the Biases and RMSEs
s PSM3.
9
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Table 2
Simulated biases and RMSEs based on 1000 samples of size 𝑛 = 500 when 𝜋(⋅) is set to the standard normal distribution function in the data generating process.
𝑎 𝑏 PAVA1 PAVA2 PARA PSM3 PSM5 PSM10 PSM15 KN0.5 KN0.6 KN1.0 KN1.5

Model = 1: ℎ = cos(𝑋1 + 𝑏𝑋2); RMSE

1 1 0.339 0.409 0.821 1.713 1.702 1.614 1.477 0.795 0.769 0.907 0.953
1 0 0.724 0.711 0.873 0.870 0.812 0.800 0.782 1.921 1.434 1.588 1.642
1 −1 0.734 0.779 1.000 1.089 0.848 0.629 0.524 0.976 0.921 0.981 1.002
2 1 0.832 0.751 1.414 1.957 1.801 1.378 0.959 0.405 0.242 0.244 0.259
2 0 0.546 0.602 0.726 0.950 0.855 0.679 0.566 0.977 0.886 0.952 0.972
2 −1 0.990 1.033 1.522 1.906 1.593 1.261 1.069 1.232 0.854 0.902 0.920

Model = 2: ℎ = 𝑋1; RMSE

1 1 0.472 0.570 1.052 0.959 0.830 0.707 0.687 1.517 0.233 0.203 0.192
1 0 0.623 0.702 0.906 1.021 1.007 1.097 1.202 0.599 0.440 0.378 0.354
1 −1 0.856 0.955 1.097 1.263 1.352 1.586 1.785 0.785 0.645 0.552 0.515
2 1 0.562 0.571 0.741 1.010 0.909 1.058 1.364 0.833 0.787 0.954 1.027
2 0 0.466 0.627 0.820 1.357 1.348 1.499 1.709 1.863 0.230 0.319 0.368
2 −1 0.744 0.800 1.798 1.947 1.795 1.835 1.915 5.535 1.149 1.353 1.431

Model = 1: ℎ = cos(𝑋1 + 𝑏𝑋2); Bias

1 1 −0.102 −0.103 −0.477 −1.651 −1.660 −1.583 −1.447 0.614 0.761 0.904 0.950
1 0 0.628 0.583 0.241 −0.636 −0.650 −0.704 −0.712 1.204 1.429 1.586 1.640
1 −1 0.565 0.559 0.412 0.044 0.037 0.021 0.026 0.841 0.916 0.978 0.999
2 1 −0.748 −0.598 −1.035 −1.879 −1.724 −1.263 −0.761 −0.236 −0.197 −0.208 −0.227
2 0 0.360 0.386 0.097 −0.486 −0.478 −0.350 −0.266 0.783 0.875 0.944 0.964
2 −1 −0.519 −0.476 −0.396 −0.025 −0.025 −0.022 −0.036 −0.806 −0.834 −0.891 −0.910

Model = 2: ℎ = 𝑋1; Bias

1 1 0.234 0.269 0.196 0.295 0.365 0.441 0.507 0.267 0.210 0.184 0.174
1 0 0.534 0.595 0.528 0.706 0.809 1.004 1.143 0.465 0.427 0.368 0.344
1 −1 0.815 0.904 0.846 1.110 1.251 1.533 1.750 0.714 0.635 0.545 0.509
2 1 −0.371 −0.199 −0.194 0.112 0.297 0.767 1.184 −0.629 −0.765 −0.944 −1.019
2 0 0.240 0.363 0.386 0.846 0.994 1.317 1.584 −0.040 −0.142 −0.286 −0.343
2 −1 −0.229 −0.138 0.213 1.155 1.272 1.549 1.728 −1.102 −1.128 −1.345 −1.424

When 𝑏 ≠ 1, we have 𝜽 ≠ 𝜷. The proposed estimator 𝜏 loses its semiparametric optimality. Even so, when 𝑏 = 0 (the angle between
and 𝜷 is 45 degrees), the proposed estimators PAVA2 and PAVA1 still achieve better performances than the other estimators, but

he relative advantage is smaller. When 𝑏 = −1, 𝜽 is perpendicular to 𝜷, and the relative advantage of our estimators decreases
urther until PSM𝑘 and KN𝑐 becomes comparable or even better. Surprisingly, as 𝑀 increases from 3 to 15, the RMSE and Bias of
he PSM estimator both increase when 𝑏 = 1 and 0, but its RMSE decreases and its Bias keeps negligible when 𝑏 = −1. The KN𝑐
stimator has a similar property: any of the four choices of 𝑐 can lead to smallest RMES or Bias. These findings indicate that the
ptimal choices of the tuning parameters for the PSM𝑘 and KN𝑐 methods critically depend on the true regression function 𝜇0(𝐗),
nd without any information on 𝜇0(𝐗), it is impossible to correctly specify the optimal 𝑀 . Additionally, the performance of the
roposed estimator may be improved by making use of information on 𝜇0(𝐗).

Under model 2, 𝜇0(𝐗) does not follow a single-index model, and it cannot be written as 𝜇̃0(𝐗⊤𝜽) for some function 𝜇̃0. By
heorem 3, the proposed estimator 𝜏 is no longer semiparametric efficient, but is still asymptotically normal. The results in Table 1
orresponding to Model 2 suggest that, compared with the PSM𝑘 and KN𝑐 estimators, the proposed estimators are at least comparable
nd perform uniformly better in some cases.

Table 2 presents the results when 𝜋(𝑡) is chosen to be the standard normal distribution function. In this situation, the overall rate
f nonmissing data is about 87.5% and only PAVA2 and KN𝑐 have correctly specified propensity score models. Compared with the
our PSM𝑘 estimators, the proposed PAVA1 and PAVA2 estimators have uniformly smaller RMSEs and generally smaller biases. The
N𝑐 estimators still have quite unstable performance although they may outperform the proposed estimators in some situations.
gain, the two proposed estimators exhibit rather similar performance, although the index coefficient in the PAVA1 method is
stimated by the MLE under the misspecified logistic propensity score model. As 𝑀 increases from 3 to 15, the PSM method may
erform worse in some cases and better in other cases. When the true propensity score model changes from a logistic model to a
robit model, the RMSEs of the PAVA1 and PAVA2 estimators increase by no more than 30% in eight out of the twelve cases. In
ontrast, the RMSE of PSM3 increases by at least 50% in all cases, and can be as large as 190% (e.g., the case with Model 2, 𝑎 = 1,
nd 𝑏 = −1). This suggests that the PSM estimators are more sensitive than the proposed estimator to the misspecification of the
ropensity score model.

To obtain further insights into the performance of the proposed estimators and the PSM estimators, Fig. 1 displays their boxplots
n the case of 𝑎 = 1 when 𝜋(𝑡) is correctly specified; those of the PARA and KN0.5 estimates are excluded as they spread too widely.
s we can see from the boxplots, PAVA1 and PAVA2 have smaller biases and better overall performance in most cases compared
ith the PSM𝑘 and KN𝑐 estimators. As the number of matches 𝑀 increases from 3 to 15, the PSM estimators exhibit decreasing
ariances, but increasing biases except in the case of Model 1, 𝑎 = 1, and 𝑏 = −1. The results are similar in the mis-specification
10

ase where 𝜋(𝑡) is set to the standard normal distribution function.
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Fig. 1. Boxplots of the seven estimators when 𝜋(⋅) is correctly specified, 𝑎 = 1, and 𝑛 = 500. As 𝑏 varies between 1, 0, and −1, the angle between 𝜷 and 𝜷
increases from 0 degrees to 90 degrees. Model 1: ℎ(𝐗) = cos(𝑋1 + 𝑏𝑋2); Model 2: ℎ(𝐗) = 𝑋1.

Overall, the proposed PAVA-based estimation method is more reliable than the PSM and KN methods: it usually has smaller
MSEs and biases, and is not influenced by the tuning parameters. The performances of the PSM and KN methods are strongly

nfluenced by tuning parameters, namely the number 𝑀 of matches per unit for PSM and the bandwidth for KN; however,
etermining the optimal value of 𝑀 is quite challenging and no research has been done on this issue. The direction in which
he control response depends on the covariate does not influence the consistency, but does affect the estimation efficiency of the
roposed method: if it coincides with the direction in which the treatment status depends on the covariate, the proposed method
chieves optimal performance both numerically and theoretically.
11
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Table 3
Estimation results for the ATT 𝜏 based on the Lalonde data. Point estimate: point estimate of 𝜏 based on the Lalonde data; Bootstrap mean and Standard
Deviation: the sample mean and sample variance of the bootstrap estimates of 𝜏 based on 1000 bootstrap samples from the Lalonde data. Lower and Upper are
the lower and upper bounds of the Wald confidence interval for 𝜏 with asymptotic variances estimated by bootstrap.

Methods PAVA1 PAVA2 PARA PSM-3 PSM-5 PSM-10 PSM-15

Case (a): 𝑋1 and 𝑋2 are covariates

Point estimate 917.33 911.47 875.37 514.42 714.39 802.88 898.99
Bootstrap mean 894.19 906.39 861.61 1071.51 1033.38 993.00 985.47
Standard deviation 496.56 495.75 487.74 603.06 558.29 523.40 510.66
Lower −55.91 −60.18 −80.58 −667.55 −379.84 −222.97 −101.89
Upper 1890.57 1883.12 1831.32 1696.40 1808.62 1828.73 1899.87

Case (b): 𝑋1, 𝑋2, 𝑋1𝑋2, 𝑋2
1 and 𝑋2

2 are covariates

Point estimate 913.10 918.46 809.43 88.21 337.75 947.25 903.67
Bootstrap mean 936.21 950.03 835.23 997.70 997.80 1019.41 1028.54
Standard deviation 507.33 508.74 503.50 645.31 592.54 532.30 515.47
Lower −81.25 −78.65 −177.41 −1176.57 −823.61 −96.04 −106.63
Upper 1907.45 1915.57 1796.27 1352.99 1499.11 1990.54 1913.97

4. Application to the Lalonde data

In this section, we apply the proposed PAVA-based estimation method to data from the National Supported Work (NSW)
emonstration, which have previously been analyzed by LaLonde (1986) and Dehejia and Wahba (2002). The primary parameters
f interest in these papers concern the average treatment effect of a job training program. We focus on the estimation of the ATT,
. The data consist of 297 treated and 425 untreated observations. We take earnings in 1978 as the outcome variable of interest
𝑌 ) and take age and education as the basic covariates 𝑋1 and 𝑋2, respectively. To examine the sensitivity of the proposed method

to the model specifications, we model the propensity score using a linear logistic model and a quadratic logistic model.
We calculate the point estimates of 𝜏 using the first seven estimation methods considered in the previous section. The KN

method is too sensitive to the choice of bandwidth and hence is excluded. When constructing confidence intervals for 𝜏, we use the
nonparametric bootstrap procedure in Algorithm 1 to estimate the asymptotic variances of all the estimators under comparison.
Table 3 presents point estimates of 𝜏 based on the Lalonde data, and bootstrap mean, bootstrap standard deviation, and the
orresponding Wald confidence intervals with asymptotic variances estimated using 1000 bootstrap samples from the Lalonde data.

Under either the linear or quadratic logistic model, the PAVA1 and PAVA2 point estimates are all around 915, indicating that the
roposed estimation methods are rather robust to different model specifications. As PAVA2 makes the weakest model assumption,
e believe that the results of PAVA2 should be the most trustable among the seven methods considered here. The bootstrap means
f all methods are around 950 and the point estimates of PSM-15 are about 900 in both cases, which seemingly provide evidence
or the rationality of the PAVA1 and PAVA2 point estimates. Although PARA also has bootstrap standard deviations of around 500,
t produces very different point estimates (875.37 and 809.43) in the linear and quadratic logistic propensity score models. The
SM method is rather sensitive to the number of matches per unit. Its point estimate changes from 514.42 to nearly 900 with the
inear logistic model, and varies even more dramatically with the quadratic logistic model.

In Section 7 of the supplementary material, we report a small simulation study to investigate the performance of the bootstrap
rocedure for variance and interval estimations. Our general findings are that the bootstrap variance estimates are very close to the
rue asymptotic variances, and that the resulting Wald type confidence intervals usually have very accurate coverage probabilities.
hese observations provide evidence for the rationality of the confidence intervals in Table 3. As the PAVA1 and PAVA2 point
stimates are more reliable than the other five estimates, we believe that the confidence intervals based on PAVA1 and PAVA2 are
lso the most reliable.

Fig. 2 displays the fitted propensity scores (versus the estimated index 𝑋⊤𝜷) using a parametrically logistic model and the
stimations of the semiparametric PAVA method after 𝜷 is replaced by its MLE under the logistic model. The parametric propensity
core estimates for both the linear and quadratic logistic models apparently form straight lines; unlike the semiparametric PAVA-
ased propensity score estimates, they may not capture local changes in the propensity score. As the semiparametric method requires
ewer model assumptions and is more flexible, we believe that the semiparametric PAVA-based propensity score estimates and the
orresponding PAVA1 estimates are more reliable than those based on the parametric propensity score estimates, including PARA
nd the four PSM methods. This may explain why the proposed PAVA-based method is superior to PARA and the four PSM methods.

. Concluding remarks

Motivated by the empirical likelihood method in the presence of auxiliary information and choice-based sampling, Hirano et al.
2003) proposed an efficient IPW method using the fully nonparametric estimated propensity score. Even though their theoretical
esults are elegant, the finite-sample performance of their method is unclear. Compared with other efficient estimates, Hirano et al.
2003) stated that ‘‘Which estimators have more attractive finite sample properties, and which have more attractive computational
roperties, remain open questions’’. The connection between their matching methods and the IPW method, however, is unclear. In
12

ontrast to Hirano et al. (2003), this paper has proposed an IPW method that uses the maximum shape-restricted semiparametric
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Fig. 2. Fitted propensity scores versus the estimated index 𝑋⊤𝜷 under a linear (left) and quadratic (right) logistic propensity score model based on the Lalonde
data. Here, 𝜷 is the MLE of 𝜷 under the corresponding linear logistic model. Solid line: link function estimated by PAVA; dashed line: link function set to the
logistic function.

likelihood estimation of the monotone index propensity score. Our method is very easy to implement using existing statistical
software in R, such as the Iso and Isotone packages. Remarkably, our IPW method is seamlessly related to the tuning-parameter-
free PSM method. Theoretical results show that our estimates can achieve the SELB for the average treatment effect and the ATT if the
explanatory variable is univariate or the regression function and propensity score depend on the explanatory variables through the
same index 𝐗⊤𝜷. Our results underline the important role played by the propensity score and the regression function in estimating
average causal effects. In general, the PSM method or the regression function matching method alone cannot be efficient. An efficient
estimation method should take both of them into consideration (Hu et al., 2012).

The results in this paper are built on the unconfounded treatment assignment assumption, which is widely adopted in the causal
inference literature. To guarantee this assumption to be satisfied, people are encouraged to collect as many covariates as possible in
practical applications. However, the high dimensionality of the covariate vector may affect the performance of the proposed PAVA
estimator, even though a single-index propensity score model is introduced for alleviating the impact of dimensionality. Motivated
by Fan et al. (2020), it is of great theoretical value to investigate the asymptotic properties of the proposed PAVA estimator with
a diverging number of covariates. To overcome the dimensionality challenge, Chen et al. (2024) proposed the use of feedforward
artificial neural networks (ANN) to estimate the propensity score and developed an efficient estimation procedure for treatment
effects. Taking shape restrictions into machine learning techniques such as ANN may produce more interpretable solutions to causal
inference. We leave these topics for future research.
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The supplementary materials contain proofs of all the technical results of this paper, and additional simulation results.
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