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Abstract
We propose and study a fully efficient method to estimate associations of an exposure

with disease incidence when both, incident cases and prevalent cases, i.e., individu-

als who were diagnosed with the disease at some prior time point and are alive at

the time of sampling, are included in a case-control study. We extend the exponential

tilting model for the relationship between exposure and case status to accommodate

two case groups, and correct for the survival bias in the prevalent cases through a

tilting term that depends on the parametric distribution of the backward time, i.e., the

time from disease diagnosis to study enrollment. We construct an empirical likelihood

that also incorporates the observed backward times for prevalent cases, obtain effi-

cient estimates of odds ratio parameters that relate exposure to disease incidence and

propose a likelihood ratio test for model parameters that has a standard chi-squared

distribution. We quantify the changes in efficiency of association parameters when

incident cases are supplemented with, or replaced by, prevalent cases in simulations.

We illustrate our methods by estimating associations of single nucleotide polymor-

phisms (SNPs) with breast cancer incidence in a sample of controls, incident and

prevalent cases from the U.S. Radiologic Technologists Health Study.

KEYWORDS
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1 INTRODUCTION

Case-control studies that compare the frequency of expo-

sures in incident cases to that in healthy individuals to assess

associations with risk of disease incidence are popular for

rare outcomes, as they are more economical than prospec-

tive cohorts. However, like all observational studies, case-

control studies are also vulnerable to biases that result in

distorted estimates of exposures’ associations with disease

risk. One possible bias, often called survival bias, occurs

when prevalent cases, i.e., individuals diagnosed with the

disease at some prior time point and alive at the time of sam-

pling for the case-control study, are used in addition to, or

instead of, individuals newly diagnosed with disease, namely

incident cases. If the exposure also impacts survival after

disease onset, the estimated association of an exposure with

disease incidence over- or underestimates the true associa-

tion. This is a particularly serious problem for diseases that

are rapidly fatal, as survivors may comprise a very special

subgroup of cases. Many epidemiologic textbooks (e.g. Sch-

lesselman, 1982, p. 133) point out that simply including preva-

lent cases in case-control studies without any adjustment for

the survival bias leads to biased estimates of incidence odds

ratios.

There are several approaches to correct for survival bias

in the analysis of cohorts comprised of prevalent cases that

are then followed to an event of interest such as death

(e.g. Cheng and Huang, 2014), but only one approach has
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been proposed to explicitly correct for survival bias when

prevalent cases are compared with controls. Begg and Gray

(1987) subtracted a bias term estimated from a survival

model for the backward time, the time between disease

diagnosis and sampling, from the log odds ratio estimates

obtained from a standard logistic model fit to controls

and prevalent cases. An approach to allow incorporating

information from prevalent cases in addition to incident

cases is thus needed to enhance inference based on case-

control data for rare diseases like cancer, where preva-

lent cases become more readily available due to improved

treatment.

Our work was motived by a case-control study conducted

within the U.S. Radiologic Technologists Study (USRTS)

to assess the associations of single nucleotide polymor-

phisms (SNPs) with risk of female breast cancer (Bhatti

et al., 2008). The USRTS was initiated in 1982 by the

National Cancer Institute and other institutions to study

health effects from low-dose occupational radiation expo-

sure. Information on participants was collected via several

surveys conducted between 1984 and 2014, and blood sam-

ple collection began in 1999. As the number of incident

breast cancer cases with blood samples for genetic analysis

was limited, we developed methods to also include informa-

tion on prevalent cases, i.e., women whose breast cancers

were diagnosed prior to blood sample collection, to estimate

odds ratios for the associations of SNPs with breast cancer

incidence.

Our work is based on the well known result on the equiva-

lence between the logistic regression model for prospectively

collected data and the exponential tilting, or density ratio

model, for retrospectively collected data (Qin, 1998). To

accommodate data from incident cases, prevalent cases and

controls, we discuss a three-sample exponential tilting density

ratio model. For prevalent cases, in addition to covariate infor-

mation, we observe their backward time, i.e., the time between

disease diagnosis and sampling. We model the backward time

distribution based on a parametric model for the survival time

conditional on surviving to time of sampling (Section 2). In

Section 3 we derive a semi-parametric likelihood that com-

bines information from controls, incident and prevalent cases.

We estimate log odds ratios for the associations between dis-

ease incidence and exposures, and parameters in the model

for the backward time using empirical likelihood techniques,

and derive the asymptotic properties of the estimates. In

Section 4, we assess the performance of the method in simu-

lations and study efficiency of the estimates when prevalent

cases are used in addition to, or instead of, incident cases

in a study under various scenarios. We illustrate the meth-

ods with data from the motivating study on the association of

breast cancer risk and SNPs among women sampled from the

USRTS (Section 5), before closing with a discussion (Section

6).

2 SEMI-PARAMETRIC MODEL
FOR CASE-CONTROL STUDIES
WITH INCIDENT AND PREVALENT
CASES

Let 𝐷 denote the disease indicator, with 𝐷 = 1 for individuals

with disease and 0 for those without (controls), and 𝑋 denotes

a (vector of) covariate(s).

2.1 Background: exponential tilting model
For incident cases and controls, we assume that the associa-

tion between 𝑋 and 𝐷 in the population is captured by the

prospective logistic model

𝑃 (𝐷 = 1 |𝑋 = 𝑥) =
exp(𝛼0 + 𝑥𝛽)

1 + exp(𝛼0 + 𝑥𝛽)
, (1)

where 𝛼0 denotes an intercept term, and 𝛽 the log odds ratio for

the association of 𝑋 with 𝐷, the parameter of interest. In the

general population, the marginal probability of disease is 𝜋 =
𝑃 (𝐷 = 1) = ∫ 𝑃 (𝐷 = 1 |𝑥)𝑓 (𝑥)𝑑𝑥 where 𝑓 (𝑥) = 𝑑𝐹 (𝑥)∕𝑑𝑥

is the density of 𝑋, that is unspecified.

In a case-control study, independent samples of fixed sizes

𝑛0 and 𝑛1 are drawn from controls (𝐷 = 0) and cases (𝐷 =
1), respectively, and then information on the exposure 𝑋 is

obtained. Due to the retrospective sampling, only the condi-

tional densities 𝑓0(𝑥) = 𝑓 (𝑥 |𝐷 = 0) and 𝑓1(𝑥) = 𝑓 (𝑥 |𝐷 =
1) are observed. Using Bayes’ rule, the prospective model

in (1), and letting 𝛼∗ = 𝛼0 + log{(1 − 𝜋)∕𝜋}, we obtain the

two-sample exponential tilting (or density ratio) model

𝑓1(𝑥) =
exp(𝛼0 + 𝑥𝛽)

1 + exp(𝛼0 + 𝑥𝛽)
𝑓 (𝑥)
𝜋

= 𝑓0(𝑥) exp(𝛼0 + 𝑥𝛽)
(1 − 𝜋

𝜋

)
= 𝑓0(𝑥) exp(𝛼∗ + 𝑥𝛽).

(2)

Prentice and Pyke (1979) showed that fitting the prospective

model (1) to the retrospectively ascertained exposure data

yields consistent estimates of 𝛽 and the corresponding stan-

dard errors. Qin (1998) profiled out the baseline distribution

𝑓0(𝑥) in equation (2) and derived a constrained empirical

likelihood to estimate 𝛽 and the nuisance parameter 𝛼∗. We

adapt this profile likelihood method in the next Section to

incorporate information on prevalent cases.

2.2 Data and models for prevalent cases
We now assume that in addition to incident cases, on whom

exposure information is ascertained at time of diagnosis, we

also have information on exposure 𝑋 from prevalent cases,

i.e., individuals who developed disease previously and are

alive at the time of sample selection for the case-control study.

To formalize the notion of a prevalent case, let 𝑇 denote the

(unobserved) survival time from disease diagnosis to death,

with a survival function 𝑆(𝑡 | 𝑥) = 𝑃 (𝑇 > 𝑡 | 𝑥), and let 𝐴
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denote the backward time, defined as the time between disease

diagnosis and sampling. We only observe prevalent cases who

are alive at the time of sampling, i.e., if 𝑇 > 𝐴. The sampling

scheme for controls, incident and prevalent cases is depicted

in Figure 1. In what follows we assume that 𝑆 belongs to a

known parametric family indexed by parameters 𝜸 and use the

notation 𝑆(.|𝑥, 𝜸).
We now derive the joint distribution of the covariates 𝑋

and the observed backward time, 𝐴, among prevalent cases,

that we use in the overall case-control likelihood in the next

Section, and extend the exponential tilting model in (2). For

prevalent cases alive at the time of sampling,

𝑓 (𝑋=𝑥,𝐴=𝑎|𝐷=1, 𝑇 >𝐴)
=𝑓 (𝑋=𝑥|𝐷=1, 𝑇 >𝐴)𝑓 (𝐴=𝑎|𝑋=𝑥,𝐷=1, 𝑇 >𝐴).

(3)

Similar to Wang (1991), we assume that disease inci-

dence is stationary over time, and thus follows a Poisson

process with a constant rate. Conditional on the total number

of events 𝑛 observed in an interval [0, 𝜉], the ordered event

times 𝑍(1),… , 𝑍(𝑛) can be treated as order statistics from

a uniform distribution, U[0, 𝜉] (Theorem 2.3.1, p. 67, Ross

(1996)). Thus the backward times 𝐴𝑖 = 𝜉 −𝑍𝑖 also arise from

U[0, 𝜉]. Then, assuming that the disease onset times and death

times are independent, using equation (2) and Bayes’ theorem,

the density of 𝑋 for prevalent cases is

𝑓2(𝑋) = 𝑓 (𝑋 = 𝑥|𝐷 = 1, 𝑇 > 𝐴)

= 𝑃 (𝑇 > 𝐴|𝑋 = 𝑥,𝐷 = 1)𝑓 (𝑋 = 𝑥|𝐷 = 1)
𝑃 (𝑇 > 𝐴|𝐷 = 1)

= 𝑓1(𝑥)
∫ 𝜉

0 𝑆(𝑎|𝑥, 𝜸)𝑑𝑎

∫𝑋 ∫ 𝜉

0 𝑆(𝑎|𝑥, 𝜸)𝑑𝑎 𝑓1(𝑥) 𝑑𝑥

= 𝑓0(𝑥) exp
{
𝜈∗ + 𝑥𝛽 + log𝜇(𝑥, 𝜸)

}
, (4)

where 𝜇(𝑥, 𝜸) = ∫ 𝜉

0 𝑆(𝑎|𝑥, 𝜸)𝑑𝑎 and 𝜈∗ = 𝛼∗ −
log{∫𝑋 𝜇(𝑥, 𝜸)𝑓1(𝑥)𝑑𝑥}. The density of the covariates

for the prevalent cases, 𝑓2, can thus also be expressed

in terms of 𝑓0(𝑥) and a parametric tilting term that, in

addition to 𝛽 and an intercept, depends on the survival

distribution 𝑆. Notice that when 𝑆 does not depend on

𝑋, the tilting term in (4) depends on 𝑋 only through

𝑋𝛽, i.e., is the same as for the incident cases, but with a

different intercept. However, if 𝑋 is related to survival,

simply combining prevalent with incident cases and fitting

model (1) to the data will lead to biased estimates of 𝛽.

We use Bayes’ theorem and that 𝐴 is independent of both,

𝑋 and 𝑇 , to obtain the conditional density of 𝐴 in (3) for

𝑎 ∈ [0, 𝜉],

𝑓𝐴(𝐴 = 𝑎|𝑋 = 𝑥,𝐷 = 1, 𝑇 > 𝐴)

= 𝑓 (𝐴 = 𝑎)𝑃 (𝑇 > 𝑎 |𝑋 = 𝑥,𝐷 = 1)
𝑃 (𝑇 > 𝐴 |𝑋 = 𝑥,𝐷 = 1)

= 𝑆(𝑎 | 𝑥, 𝜸)
𝜇(𝑥, 𝜸)

.

(5)

For 𝑎 ∉ [0, 𝜉], 𝑓𝐴(𝐴 = 𝑎|𝑋 = 𝑥,𝐷 = 1, 𝑇 > 𝐴) = 0. In

our computations we let 𝑆(𝑡) = exp{− exp(𝑥𝜁 ) ∫ 𝑡
0 ℎ0(𝑡)𝑑𝑠}

where ℎ0(𝑡) is a constant or Weibull baseline hazard. More

flexible parametric models, e.g. splines, could be used as

well.

3 SEMI-PARAMETRIC
LIKELIHOOD AND INFERENCE

Let (𝑥1,… , 𝑥𝑛0
)′ denote the covariates for the 𝑛0 con-

trols, (𝑥𝑛0+1,… , 𝑥𝑛0+𝑛1
)′ the covariates for the 𝑛1 incident

cases and (𝑥𝑛0+𝑛1+1,… , 𝑥𝑁 )′ and (𝑎𝑛0+𝑛1+1,… , 𝑎𝑁 )′ the

FIGURE 1 Sampling scheme for the IP-case-control study design. For incident cases, disease diagnosis occurs in the case-control sampling

period [𝑇 ∗, 𝑇 ∗ + Δ]. For prevalent cases, disease is diagnosed at time 𝑇𝑑𝑥 before the time 𝑇 ∗ when case-control sampling starts, and information on

the backward time 𝐴, i.e., the time between 𝑇 ∗ and 𝑇𝑑𝑥, is also available.

2 MAZIARZ ET AL.844
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covariates and backward times for the 𝑛2 prevalent cases,

where 𝑁 = 𝑛0 + 𝑛1 + 𝑛2. Using the models (2) and (4), and

the backward time distribution in (5), the likelihood for the

controls and the two case groups is

 =
𝑁∏
𝑖=1

𝑓0(𝑥𝑖)
𝑛0+𝑛1∏
𝑖=𝑛0+1

exp(𝛼∗ + 𝑥𝑖𝛽)

×
𝑁∏

𝑖=𝑛0+𝑛1+1
exp{𝜈∗ + 𝑥𝑖𝛽 + log𝜇(𝑥𝑖, 𝜸)}

𝑆(𝑎𝑖 | 𝑥𝑖, 𝜸)
𝜇(𝑥𝑖, 𝜸)

.

(6)

Similar to Qin (1998), we estimate 𝑝𝑖 = 𝑓0(𝑥𝑖) =
𝑃 (𝑋 = 𝑥𝑖), 𝑖 = 1,… , 𝑁, empirically under the following

constraints that ensure that the 𝑓𝑖 are, in fact, distribu-

tions:
∑𝑁

𝑖=1 𝑝𝑖 = 1, 𝑝𝑖 ≥ 0;
∑𝑁

𝑖=1 𝑝𝑖 exp(𝛼∗ + 𝑥𝑖𝛽) = 1; and∑𝑁
𝑖=1 𝑝𝑖 exp{𝜈∗ + 𝑥𝑖𝛽 + log𝜇(𝑥𝑖, 𝜸)} = 1. After maximiz-

ing the log-likelihood for 𝑝𝑖 subject to constraints that are

accommodated via Lagrange multipliers (see Appendix 1),

and letting 𝛼 = 𝛼∗ + log
(
𝑛1∕𝑛0

)
, 𝜈 = 𝜈∗ + log

(
𝑛2∕𝑛0

)
,

the profile log-likelihood, referred to as the IP-case-control
likelihood, for the remaining parameters 𝜽 = (𝛼, 𝜈, 𝛽, 𝜸)T
is

𝓁𝑝(𝜃) =−
𝑁∑
𝑖=1

log
[
1+exp(𝛼 + 𝑥𝑖𝛽) + exp{𝜈 + 𝑥𝑖𝛽 + log𝜇(𝑥𝑖, 𝜸)}

]
+

𝑛0+𝑛1∑
𝑖=𝑛0+1

(𝛼 + 𝑥𝑖𝛽)

+
𝑁∑

𝑖=𝑛0+𝑛1+1

[
𝜈 + 𝑥𝑖𝛽 + log𝜇(𝑥𝑖, 𝜸) + log

{
𝑆(𝑎𝑖 | 𝑥𝑖, 𝜸)

𝜇(𝑥𝑖, 𝜸)

}]
.

(7)

Theorem 1. Denote the maximum likelihood estimator of 𝜽 =
(𝛼, 𝜈, 𝛽, 𝜸)T in (7) by �̂� = argmax𝜃 𝓁𝑝(𝜽)T, and the true value
by 𝜽0 = (𝛼0, 𝜈0, 𝛽0, 𝜸0)T. Under regularity conditions (C1–
C3) stated in Supporting Information Section 1, and assuming
that the matrix 𝐕 defined in Supporting Information Section
1 is positive definite, as 𝑁 → ∞,

(1) 𝑁1∕2(�̂�−𝜽0)

⟶ 𝑁(0,𝛀) where 𝛀 = 𝐕−1𝚺𝐕−1, with 𝚺

defined in Supporting Information Section 4.

(2) the likelihood ratio 2{sup𝛽,𝜸 𝓁𝑝(𝛽, 𝜸) − 𝓁𝑝(𝛽0, 𝜸0)}

⟶

𝜒2
𝑘0

, where 𝑘0 is the dimension of (𝛽, 𝜸);

(3) the likelihood ratio for any sub-vector 𝝓 of (𝛽, 𝜸)

⟶ 𝜒2

𝑘
,

where 𝑘 is the dimension of 𝝓.

The proof is given in Supporting Information Section 3.

Statement (3) implies that the standard 𝜒2 asympotics also

hold for the likelihood ratio test restricted to the parameter 𝛽,

often of primary interest.

4 SIMULATIONS

We assessed the proposed model and estimation procedure

in samples of realistic size, and characterized efficiency of

estimates of the log odds ratio parameters 𝛽 when prevalent

cases are used in addition to, or instead of, incident cases in a

case-control study.

4.1 Data generation
We generated data directly from the exponential tilting mod-

els (2) and (4). We assess the impact of the data generation in

Section 4.5. For controls, we simulated 𝑛0 covariates 𝐗0 =
(𝑋01, 𝑋02)T ∼ 𝑁(𝟎,𝚺𝑋), where for 𝑖 = 1, 2, Σ𝑋

𝑖𝑖
= 1, and

Σ𝑋
𝑖𝑗

= Σ𝑋
𝑗𝑖

= 𝜌, 𝑖 ≠ 𝑗, with 𝜌 = −0.5, 0 or 0.5. For inci-

dent cases, we generated 𝑛1 values 𝐗1 ∼ 𝑁(𝚺𝑋𝜷,𝚺𝑋), where

𝜷T = (0, 0), (1, 1), (1,−1) or (−1,−1). To simulate 𝐗 for

𝑛2 prevalent cases, we first generated �̃�2 ≫ 𝑛2 values �̃�𝑘

∼ 𝑁(𝟎,𝚺𝑋). For each �̃�𝑘 we computed a weight �̃�2(�̃�𝑘) =
exp{�̃�T

𝑘
𝜷 + log𝜇(�̃�𝑘, 𝜸)}, and then drew a sample of size 𝑛2

with replacement, where each �̃�𝑘 was sampled with probabil-

ity �̃�2(�̃�𝑘)∕
∑

𝑗 �̃�2(�̃�𝑗). The resulting sample has density 𝑓2
as in equation (4).

The survival distribution was 𝑆(𝑡 | 𝑥, 𝜸) =
exp

{
−(𝑡∕𝜅2)𝜅1 exp(𝐱T𝜻)

}
, where 𝜅1 and 𝜅2 are the

shape and scale parameters of a Weibull baseline

hazard ℎ0(𝑡) = (𝜅1∕𝜅2)(𝑡∕𝜅2)(𝜅1−1). The param-

eters associated with 𝐗 were 𝜻T = (𝜁1, 𝜁2) =
(0, 0), (1, 1), (1,−1) or (−1,−1). Then, 𝜇(𝑥, 𝜸) =
Γ(1∕𝜅1)∕(𝜅1𝜓 (1∕𝜅1))

{
Γ−1(1∕𝜅1) ∫

𝜓𝜉𝜅1
0 exp(−𝑢) 𝑢(1∕𝜅1−1) 𝑑𝑢

}
where 𝜓 = 𝜅

−𝜅1
2 exp(𝐱𝑇 𝜻). The expression in the curly

brackets is a cumulative Gamma distribution function

with shape parameter 𝜅−1
1 and scale parameter one,

which can be evaluated using standard statistical soft-

ware. To generate backward times for the prevalent cases,

we let 𝜅1 = 1, generated 𝑈𝑖 ∼ U(0, 1) and computed

𝐴𝑖 = (1∕𝜓)[− log{1 − 𝑈𝑖 𝜓 𝜇(𝑥𝑖, 𝜸)}], 𝑖 = 1,… , 𝑛2.

Parameter estimates (Est), empirical standard deviations

(SDemp) and standard deviations (SDasy = �̂�
1∕2

) were based

on 𝐾 = 1000 replications for each setting. We estimated 𝛀
in Theorem 1 by �̂� =

∑𝐾
𝑖=1(�̂�

−1�̂��̂�−1)∕𝐾 , where �̂� is the

numerical estimate of the Hessian, and �̂� the sum of the empir-

ical covariance matrices of the scores for controls, incident

and prevalent cases.

4.2 Adding an increasing number of
prevalent cases
We first examined the efficiency of parameter estimates when

𝑛2 = 500 or 1000 prevalent cases were added to a study with

𝑛0 = 500 controls and 𝑛1 = 500 incident cases.

For 𝜷 = (0, 0) and (1,−1), both with 𝜻 = (1,−1), 𝜌 = 0.5
and 𝜉 = 25, all parameter estimates were unbiased, and
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the asymptotic and empirical standard deviation estimates

agreed well (Table 1). Efficiency results in terms of the

ratio of the variance of 𝜷 estimated using the original 500
incident cases and controls, compared to the variance of 𝜷

when 𝑛2 prevalent cases were added, for all combinations

of 𝜷, 𝜻 and 𝜌 are shown in Figure 2. As the number 𝑛2 of

prevalent cases increased from 0 to 1000, efficiency gains for

𝜷 = (0, 0) were modest and did not depend on the values of

𝜻 or 𝜌 (Figure 2a); the standard deviations (SDemp) for 𝜷’s

decreased slightly as 𝑛2 increased (Table 1a). Efficiency gains

were somewhat more noticeable for 𝜷 = (1,−1) (Table 1b).

E.g., for 𝜷 = (1,−1), 𝜻 = (1,−1), and 𝜌 = −0.5, the ratio of

the variance of 𝜷 based on 500 incident cases and controls

alone was almost three times larger than the variance after

adding 1000 prevalent cases (Figure 2b, Supporting Infor-

mation Table S2). Additional results are given in Supporting

Information Tables S1–S6.

4.3 Increasing the proportion of prevalent
cases
Figure 3 shows the efficiency of estimates 𝜷 when the total

number of cases was fixed at 𝑛1 +𝑛2 = 500, but the proportion

of prevalent cases increased, 𝑛2∕(𝑛1 + 𝑛2) = 0, 0.2, 0.5, 0.8

or 1.0. The number of controls was 𝑛0 = 500. Replacing

incident with prevalent cases generally led to an appreciable

loss of efficiency of 𝛽. This was especially apparent when

𝛽 = 0, where all the ratios var(𝛽𝑐𝑐)/var(𝛽𝐼𝑃−𝑐𝑐) were below

one. However, similar to the results in Section 4.2, for some

parameter settings there was some gain in efficiency of 𝜷

when prevalent, instead of incident, cases were used. E.g.,

for 𝜷 = (1,−1) and 𝜻 = (1,−1) with 𝜌 = −0.5, the SDemp

for 𝜷’s decreased from 0.107 to 0.091 as the proportion of

prevalent cases increased from 0 to 100% (Supporting Infor-

mation Table S9, Figure 3, and Supporting Information Tables

S7–S13).

4.4 Efficiency of 𝜷 for added prevalent versus
incident cases
When designing a study, an investigator may have the choice

of including additional incident or additional prevalent cases,

possibly associated with different costs. We thus investigated

differences in efficiency of 𝜷 when adding either incident

or prevalent cases to a study comprised of a “base sam-

ple” of 500 controls and 500 incident cases. We first added

from 20 to 1000 incident cases in increments of 20 to

TABLE 1 Estimation of the log odds ratios (𝛽1, 𝛽2) and survival parameters (𝜅1, 𝜅2, 𝜁1, 𝜁2) when the sample size of the prevalent cases

varies: 𝑛2 = 0, 500, 1000, with 𝑛0 = 𝑛1 = 500. The true log odds ratios were 𝛽 = (0, 0) for (a) and 𝛽 = (1,−1) for (b). For both (a) and (b),

data were generated with 𝜌 = 0.5 and 𝜉 = 25. Estimates (Est), empirical standard deviations (SDemp), and standard deviation estimates based

on the asymptotic covariance matrix (SDasy) are based on 1000 replications of the simulation.

(a) 𝛼∗ 𝜈∗ 𝛽1 = 0 𝛽2 = 0 𝜅1 = 1 𝜅2 = 1 𝜁1 = 1 𝜁2 = −1
𝑛0 = 500, 𝑛1 = 500, 𝑛2 = 0

Est 0.000 0.001 −0.002

SDasy 0.004 0.073 0.074

SDemp 0.003 0.073 0.073

𝑛0 = 500, 𝑛1 = 500, 𝑛2 = 500
Est 0.001 −0.473 0.002 0.001 1.017 1.011 1.021 −1.019

SDasy 0.004 0.105 0.068 0.068 0.093 0.141 0.100 0.100

SDemp 0.002 0.101 0.066 0.068 0.094 0.138 0.105 0.103

𝑛0 = 500, 𝑛1 = 500, 𝑛2 = 1000
Est 0.001 0.223 0.000 −0.000 1.007 1.003 1.007 −1.008

SDasy 0.003 0.077 0.066 0.066 0.065 0.101 0.071 0.071

SDemp 0.002 0.076 0.069 0.065 0.065 0.100 0.070 0.072

(b) 𝛼∗ 𝜈∗ 𝛽1 = 1 𝛽2 = −1 𝜅1 = 1 𝜅2 = 1 𝜁1 = 1 𝜁2 = −1
𝑛0 = 500, 𝑛1 = 500, 𝑛2 = 0

Est −0.504 1.006 −1.010

SDasy 0.051 0.089 0.089

SDemp 0.049 0.089 0.087

𝑛0 = 500, 𝑛1 = 500, 𝑛2 = 500
Est −0.501 −0.000 1.004 −1.001 1.017 1.014 1.020 −1.019

SDasy 0.038 0.095 0.071 0.071 0.087 0.127 0.097 0.097

SDemp 0.037 0.094 0.070 0.073 0.090 0.127 0.100 0.099

𝑛0 = 500, 𝑛1 = 500, 𝑛2 = 1000
Est −0.500 0.697 1.002 −1.002 1.007 1.004 1.008 −1.007

SDasy 0.032 0.067 0.066 0.066 0.060 0.090 0.068 0.068

SDemp 0.032 0.066 0.067 0.065 0.061 0.089 0.070 0.071
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FIGURE 2 Efficiency of 𝛽𝐼𝑃−𝑐𝑐 when 𝑛2 = 250, 500 or 1000 prevalent cases (shown on the x-axis) are added to 𝑛0 = 500 con-

trols and 𝑛1 = 500 incident cases (denoted by 𝛽𝐼𝑃−𝑐𝑐), compared to those estimated from controls and incident cases only (denoted

by 𝛽𝑐𝑐). Asymptotic variances are used for both estimates. The ratios of the variance estimates are based on 1000 replications of the

simulation.

FIGURE 3 Efficiency of 𝛽𝐼𝑃−𝑐𝑐 compared to an estimate based on controls and incident cases only (𝛽𝑐𝑐) as the proportion of preva-

lent cases out of the total number of cases, 𝑛2∕(𝑛1 + 𝑛2) (on the x-axis) increases, for fixed 𝑛1 + 𝑛2 = 500, and 𝑛0 = 500 con-

trols. Asymptotic variances are used for both estimates. The ratios of the variance estimates are based on 1000 replications of the

simulation.
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the base sample, and estimated varasy(𝛽𝑐𝑐). Then, for each

value of varasy(𝛽𝑐𝑐), we found the number 𝑛2 of prevalent

cases (increasing in increments of 20) that, if added to the

𝑛0 = 500 controls and 𝑛1 = 500 incident cases, resulted in

varasy(𝛽𝐼𝑃−𝑐𝑐)∕varasy(𝛽𝑐𝑐) ≈ 1.

For most settings, using prevalent cases led to less efficient

estimates of 𝜷, indicated by lines above the 45◦ (gray dot-

dashed) line in Figure 4, that corresponds to equal variance

for the same number of added incident or prevalent cases. This

loss of efficiency was particularly apparent when 𝜷 = (0, 0),
where even for 𝜻 = (0, 0), approximately 𝑛2 = 400 prevalent

cases yielded the same variance of 𝜷 as 200 additional inci-

dent cases. For some settings a prevalent case provided more

information than an additional incident case, as indicated by

the lines below the 45◦ line. For example, for 𝜷 = (−1,−1)
and 𝜻 = (−1,−1), using 𝑛2 = 200 prevalent cases resulted in

the same variance of 𝛽 as adding 400 incident cases to the

base study sample.

4.5 Robustness studies
We assessed the impact of various violations of assumptions

and different sampling schemes on our method.

Misspecification of 𝑆: As our method requires specifying

a parametric survival distribution 𝑆 to model the backward

time, we examined its robustness to misspecification of 𝑆.

First, we generated backward times based on 𝑆 that had a

proportional hazards form with a Weibull baseline and was

a function of three covariates 𝑋1, 𝑋2, 𝑋3, but we omitted

𝑋3 in fitting the model. When 𝑋3 was uncorrelated with 𝑋1
and 𝑋2, 𝜷 and 𝜻 were unbiased and there was no loss of

efficiency (data not shown). When 𝑋3 = 0.5𝑋1 + 0.5𝑋2 +
𝜖, 𝜖 ∼ 𝑁(0, 0.25), parameter estimates of 𝑆 were biased, but

𝜷 was not, and we saw no loss of efficiency. E.g., when

𝜷 = (1,−1) and 𝑛2 = 1000 prevalent cases were added to

500 incident cases and 500 controls, 𝜷 = (1.003,−1.002),
but 𝜻 = (0.373,−1.117) instead of 𝜻 = (1,−1) (Supporting

Information Table S14).

We also assessed the robustness to misspecification of the

baseline hazard of 𝑆. We simulated the backward time for

prevalent cases with a Weibull baseline hazard with shape

𝜅1 = 3 and scale 𝜅2 = 25 or a piecewise-constant baseline

hazard (details on the simulations are given in Supporting

Information Section 8.1.3), and fit the IP-case-control likeli-

hood (7) using either a Weibull or piecewise-constant baseline

hazard. We generated the data with 𝜷 = (0, 0) or (1,−1)
and 𝜻 = (0, 0) or (1,−1) with sample sizes 𝑛0 = 𝑛1 = 𝑛2 =

FIGURE 4 Number 𝑛2 of prevalent cases on the y-axis, that when added to 𝑛0 = 500 controls and 𝑛1 = 500 incident cases yields the same

efficiency of 𝛽𝐼𝑃−𝑐𝑐 as 𝛽𝑐𝑐 when �̃�1 additional incident cases (on the x-axis) are added to 𝑛0 = 500 controls and 𝑛1 = 500 incident cases. Efficiency

= varasy(𝛽𝐼𝑃−𝑐𝑐)∕varasy(𝛽𝑐𝑐). The variance estimates are based on 500 replications of the simulation.
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500. Estimates of 𝜷 were unbiased, as were estimates of 𝜻

(Supporting Information Table S15).

Violation of the uniform assumption for the backward
time distribution: To assess the impact of the violation of

the assumption that a homogeneous Poisson process gives

rise to the disease onset times, we generated 𝐴 from a trun-

cated exponential distribution on [0, 𝜉 = 25], with density

𝑓 (𝑎) = 𝜆 exp(−𝑎𝜆)∕{1− exp(−𝜉𝜆)}, but fit the model assum-

ing that 𝐴 arose from a uniform distribution. The truncated

exponential distribution reduces to the uniform distribution

when 𝜆 = 0. When 𝜆 was small, 𝜆 = 0.05 or 0.1, there was

a less than 5% bias in estimates of 𝜷 (Supporting Informa-

tion Table S16). For 𝜆 = 0.5, corresponding to 𝐸(𝐴) = 1.98
instead of 𝐸(𝐴) = 12.3 for a uniform 𝐴, the bias was up to

15%.

Nested case-control sampling: Here we generated the

data from a prospective cohort. We first drew covariates

𝐗𝑖 = (𝑋𝑖1, 𝑋𝑖2) ∼ 𝑁(𝟎,Σ𝑋) for 𝑖 = 1,… , 800, 000, cohort

members and then generated ages of disease onset from an

exponential model where parameters were chosen to yield

a 2% disease incidence rate in the age interval [0, 70]. We

allowed for competing mortality and independent censoring

(details in Supporting Information Section 8.1.3). We sampled

𝑛1 incident cases and 𝑛0 = 𝑛1 controls, individually matched

to cases on age, and in some settings, on an additional binary

covariate. The prevalent cases were sampled from incident

cases not selected into the case-control study, for whom a

randomly generated uniform backward time 𝐴 was less than

a randomly generated survival time 𝑇 . Estimated log odds

ratio were unbiased for the hazard ratio parameters, both for

𝜷 = (0, 0) and (1, 1) (Supporting Information Table S17).

5 DATA EXAMPLE

We now analyze data from a case-control study conducted

within the USRTS to assess associations of SNPs in candi-

date genes with breast cancer risk (Bhatti et al., 2008). This

study used information from the first two surveys, conducted

between 1984–1989, 1993–1998. Incident cases were women

who answered both surveys and were diagnosed with a pri-

mary breast cancer between the two surveys. Controls were

frequency matched to incident cases by 5-year categories of

year of birth. Prevalent cases were women who answered only

one of the surveys and who reported a prior breast cancer

diagnosis. Their backward time was defined as the difference

between the year of the survey and year of diagnosis. All

cancer diagnoses were confirmed using pathology or medical

records.

The covariates used in our analysis were: age at diagno-

sis (cases) or selection (controls) (in categories: ≤22, (22,

40], (45, 50], (50, 55], >55); the year when the woman

started working as a radiation technologist (1 if ≤1955, 0 if >

1955); smoking status (1 if former/current, 0 if never); history

of breast cancer among first degree relatives (yes/no); BMI

(kg/m2) during their 20s (in categories: ≤ 20, (20–25], >25);

age-BMI interaction (coded as BMI during 20s for women

diagnosed at ≥ 50, and 0 otherwise, to capture the age depen-

dent effect of BMI on breast cancer risk); history of heart

disease (yes/no); alcohol consumption (1 if ≥ 7 drinks/week,

0 otherwise); and genotype for three SNPs: rs2981582 (1

if TC/TT, 0 if CC); rs889312 (1 if CA/CC, 0 if AA); and

rs13281615 (1 if GG/GA, 0 if AA). We used data from 663

controls, 345 incident cases, and 213 prevalent cases with

complete covariate information, however, multiple imputation

could have been used to handle missing data. The prevalent

cases were older than incident cases and controls, more likely

to have started work as a radiation technologist before 1955,

to be current smokers, and to have a first-degree relative with

breast cancer (Supporting Information Table S18).

We compared log odds ratio estimates (𝛽s) from the fol-

lowing models: (A) Incident model: standard logistic regres-

sion model fit to incident cases only and controls; (B) Naïve
model: standard logistic regression fit to controls and inci-

dent plus prevalent cases combined without accounting for

survival bias in the prevalent cases; (C) IP-case-control: IP-

case-control likelihood (7) fit to incident cases, controls, and

prevalent cases accounting for survival bias.

The covariates in the logistic models were the 3 SNPs,

age at diagnosis or selection (fit with a trend), year first

worked, family history, BMI in 20s (fit with a trend), BMI

in 20s (50+), and alcohol consumption. The survival sub-

model in (C) was a Weibull model, with the same covariates

as in the logistic sub-model plus smoking status and his-

tory of heart disease. The support of the backward time

was 0 to 𝜉 = 40, where 𝜉 was chosen to be larger than the

largest observed backward time (35 years). We used jackknife

standard errors (SEs) to compute 95% confidence intervals

(CIs), assuming normality of 𝛽 or log hazard ratio (log(HR))

estimates.

For model (A), the covariates significantly associated

with breast cancer incidence were (95% CIs in parentheses;

Table 2): SNP rs13281615, 𝛽 = 0.40(0.12, 0.69), year first

worked, 𝛽 = −0.84(−1.23,−0.45), family history of breast

cancer, 𝛽 = 0.54(0.25, 0.83), and BMI in ones 20s, 𝛽 =
−0.34(−0.60,−0.08). For model (B), the significant covari-

ates were (Table 2): SNP rs13281615, 𝛽 = 0.34(0.10, 0.58),
family history of breast cancer, 𝛽 = 0.57(0.32, 0.83), and BMI

in ones 20s, 𝛽 = −0.37(−0.59,−0.14). Model B estimates

were attenuated compared to those from model A.

For model (C), the covariates associated with breast can-

cer incidence were: SNP rs13281615, 𝛽 = 0.32(0.05, 0.58),
year first worked, 𝛽 = −0.34(−0.65,−0.03), family history of

breast cancer, 𝛽 = 0.53(0.27, 0.79), and BMI in ones 20s, 𝛽 =
−0.34(−0.57,−0.11). The 𝛽 estimates in the IP-case-control

model for rs981782, rs889312 and BMI in 20s were close to
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TABLE 2 Estimated log odds ratios (𝛽s) and log hazard ratios (HRs) and jackknife standard errors (SEs) for the association of rs2981582,

rs889312, and rs13281615 adjusted for other potential risk factors from three models: Incident model: incident cases and controls, estimates

from a logistic model; Naïve model: incident and prevalent cases combined and controls, estimates from a logistic model; IP-case-control
model: incident cases, prevalent cases and controls, estimates accounting for survival bias based on the likelihood equation (7). 𝜅1 and 𝜅2 are

Weibull baseline hazard shape and scale parameters, respectively.

Incident (A) Naïve (B) IP-case-control (C)
𝑛𝐼∕𝑛𝐶 = 345∕663 𝑛𝐼+𝑃 ∕𝑛𝐶 = 558∕663 𝑛𝐼∕𝑛𝑃 ∕𝑛𝐶 = 345∕213∕663
𝛽 (SE) 𝛽 (SE) 𝛽 (SE)

rs2981582 0.17 (0.14) 0.12 (0.12) 0.14 (0.13)

rs889312 0.23 (0.14) 0.19 (0.12) 0.24 (0.13)

rs13281615 0.40 (0.15) 0.34 (0.12) 0.32 (0.13)

Age at diagnosis/selection 0.13 (0.07) −0.06 (0.06) 0.06 (0.06)

Year first worked −0.84 (0.20) 0.02 (0.15) −0.34 (0.16)

Family history 0.54 (0.15) 0.57 (0.13) 0.53 (0.13)

BMI in 20s −0.34 (0.13) −0.37 (0.11) −0.34 (0.12)

Age-BMI interaction 0.23 (0.21) 0.22 (0.18) 0.16 (0.20)

7+ alcoholic drinks/week 0.13 (0.20) 0.11 (0.17) −0.004 (0.20)

log(HR) (SE)

rs2981582 0.05 (0.23)

rs889312 0.21 (0.19)

rs13281615 −0.12 (0.22)

Age at diagnosis/selection 0.48 (0.10)

Year first worked −1.48 (0.28)

Ever smoker −0.14 (0.17)

Family history −0.19 (0.15)

BMI in 20s 0.09 (0.16)

Age-BMI interaction −0.24 (0.31)

History of heart disease 0.02 (0.41)

7+ alcoholic drinks/week −0.42 (0.35)

𝜅1, 𝜅2, Est (SE) 1.58 (0.32), 11.15 (2.13)

those estimated from the incident model, with smaller stan-

dard errors. The 𝛽 for age at diagnosis and year first worked

were somewhat lower than the estimates of model (A) (Table

2). Age at diagnosis and year first worked were significantly

associated with the backward time, with log(HR) = 0.48

(0.28, 0.68) and log(HR) = −1.48(−2.03,−0.93), respec-

tively. Not surprisingly, the baseline hazard increased with

increasing backward time.

Based on a likelihood ratio test with an asymptotic 𝜒2
6 cut-

off value, the IP-case control model with the three SNPs in the

logistic and the survival models fit the data significantly better

than a model without the SNPs (𝑝 = 0.033).

6 DISCUSSION

The distribution of exposures among prevalent cases, i.e.,

individuals with a prior disease diagnosis who are alive at

the time of sampling for a case-control study, typically dif-

fers from that among incident cases. Thus naïvely combining

prevalent and incident cases in the analysis of case-control

data leads to biased estimates of log odds ratios for associ-

ation. We propose a semi-parametric model to incorporate

covariates and the observed backward time from prevalent

cases, to obtain unbiased estimates of exposure-disease asso-

ciation. We extend the exponential tilting model to accom-

modate two case groups and one control group, that we

assume is an appropriate comparison group for the incident

cases. We provide a semi-parametric method for estima-

tion based on empirical likelihood (Qin and Lawless, 1994;

Qin, 1998).

Many authors dealt with the issue of length-bias when

estimating survival parameters based on a prevalent cohort

(e.g. Cook and Bergeron, 2011; Huang and Qin, 2012; Zhu,

2017). However, few publications use prevalent cases when

samples are ascertained cross-sectionally. Without using any

information on follow-up, Chan (2013) estimated the impact

of a covariate on the survival distribution in a log-linear model

by showing that the covariate sampling distribution of preva-

lent cases compared to incident cases could be expressed

using an exponential tilting model. To our knowledge only

Begg and Gray (1987) addressed adjusting for survival bias

when comparing prevalent cases to controls to estimate inci-

dence odds ratios, again, not using any follow-up information.

They modeled the backward time distribution based on an

accelerated failure time model for survival and estimated the

parameters using quasi-likelihood techniques. Incidence log

odds ratios were then estimated by subtracting a bias term
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from the log odds ratios from a standard logistic model fit to

controls and prevalent cases.

In contrast to the approach by Begg and Gray (1987), our

semi-parametric likelihood yields root 𝑁 consistent and fully

efficient estimates of the incident log odds ratios. We show

that the corresponding likelihood ratio statistic has a standard

asymptotic 𝜒2 distribution, which makes the test practically

useful. Based on simulations, the efficiency gains or losses

when prevalent cases are added to, or used instead of, incident

cases depend on the ratio of the incident to prevalent cases,

and the correlation among the covariates in the incidence and

survival sub-models. Surprisingly, in some settings, preva-

lent cases were more informative than incident cases, which

warrants further investigation.

A limitation of our approach is that the model for the

backward time is fully parametric. However, based on simula-

tions, the estimates of the log odds ratios were not affected by

reasonable misspecification of this distribution. Our method

is thus very appealing in settings where recall bias for the

main exposure is unlikely and the number of available incident

cases is limited.
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Appendix 1: Derivation of the profile
log-likelihood (7)

Letting 𝑤1(𝑥) = exp(𝛼∗ + 𝑥𝛽) and 𝑤2(𝑥) = exp{𝜈∗ + 𝑥𝛽 +
log𝜇(𝑥, 𝜸)} where 𝛼∗ and 𝜈∗ are defined as in equations (2)

and (4), respectively, we rewrite the likelihood in (6) as

 =
𝑁∏
𝑖=1

𝑓0(𝑥𝑖)
𝑛0+𝑛1∏
𝑖=𝑛0+1

𝑤1(𝑥𝑖)
𝑁∏

𝑖=𝑛0+𝑛1+1

{
𝑤2(𝑥𝑖)𝑆(𝑎𝑖 | 𝑥𝑖, 𝜸)∕𝜇(𝑥𝑖, 𝜸)

}
.

Following Qin (1998), we estimate 𝑝𝑖 = 𝑓0(𝑥𝑖) = 𝑃 (𝑋 = 𝑥𝑖),
𝑖 = 1,… , 𝑁 , empirically, accommodating the constraints:∑𝑁

𝑖=1 𝑝𝑖 = 1, 𝑝𝑖 ≥ 0;
∑𝑁

𝑖=1 𝑝𝑖𝑤1(𝑥𝑖) = 1, and
∑𝑁

𝑖=1 𝑝𝑖𝑤2(𝑥𝑖) =
1, in the log-likelihood using Lagrange multipliers, 𝜆𝑖, 𝑖 =
0, 1, 2, resulting in

𝓁𝑐 =
𝑁∑
𝑖=1

log 𝑝𝑖 +
𝑛0+𝑛1∑
𝑖=𝑛0+1

log𝑤1(𝑥𝑖)

+
𝑁∑

𝑖=𝑛0+𝑛1+1
log𝑤2(𝑥𝑖)

{
𝑆(𝑎𝑖 | 𝑥𝑖, 𝜸)∕𝜇(𝑥𝑖, 𝜸)

}
+ 𝜆0(1 −

𝑁∑
𝑖=1

𝑝𝑖)

+𝑁𝜆1

{
1 −

𝑁∑
𝑖=1

𝑝𝑖𝑤1(𝑥𝑖)

}
+𝑁𝜆2

{
1 −

𝑁∑
𝑖=1

𝑝𝑖𝑤2(𝑥𝑖)

}
.
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Taking derivatives with respect to the 𝑝𝑖’s we explicitly

compute 𝜆0 and 𝑝𝑖. As

𝜕𝓁𝑐

𝜕𝑝𝑖

= 1
𝑝𝑖

− 𝜆0 − 𝑁𝜆1𝑤1(𝑥𝑖) − 𝑁𝜆2𝑤2(𝑥𝑖) = 0 (A.1)

and thus
∑𝑁

𝑖=1 𝑝𝑖
𝜕𝓁𝑐

𝜕𝑝𝑖
= 𝑁 − 𝜆0 − 𝑁𝜆1 − 𝑁𝜆2 = 0, and �̂�0 =

𝑁(1 − 𝜆1 − 𝜆2). Plugging �̂�0 into equation (A.1) yields

𝑝𝑖 =
(
𝑁

[
1 + 𝜆1{𝑤1(𝑥𝑖) − 1} + 𝜆2{𝑤2(𝑥𝑖) − 1}

])−1
(A.2)

and the profile log-likelihood for the remaining parameters

𝓁𝑝(𝜆1, 𝜆2, 𝛼∗, 𝜈∗, 𝛽, 𝜸), is

𝓁𝑝(𝜆1, 𝜆2, 𝛼∗, 𝜈∗, 𝛽, 𝜸) =

−
𝑁∑
𝑖=1

log
[
1 + 𝜆1{𝑤1(𝑥𝑖) − 1} + 𝜆2{𝑤2(𝑥𝑖) − 1}

]
+

𝑛0+𝑛1∑
𝑖=𝑛0+1

log𝑤1(𝑥𝑖) +
𝑁∑

𝑖=𝑛0+𝑛1+1
log𝑤2(𝑥𝑖)

×
{
𝑆(𝑎𝑖 | 𝑥𝑖, 𝜸)∕𝜇(𝑥𝑖, 𝜸)

}
−𝑁 log(𝑁). (A.3)

Differentiation of 𝓁𝑝(𝜆1, 𝜆2, 𝛼∗, 𝜈∗, 𝛽, 𝜸) yields

𝜕𝓁𝑝

𝜕𝜆𝑘

=
𝑁∑
𝑖=1

𝑤𝑘(𝑥𝑖)−1
1 + 𝜆1{𝑤1(𝑥𝑖) − 1}+𝜆2{𝑤2(𝑥𝑖)−1}

=0, 𝑘=1, 2.

(A.4)

and

𝜕𝓁𝑝

𝜕𝛼∗
=−

𝑁∑
𝑖=1

𝜆1𝑤1(𝑥𝑖)
1+𝜆1{𝑤1(𝑥𝑖)−1}+𝜆2{𝑤2(𝑥𝑖)−1}

+𝑛1 =0

(A.5)

𝜕𝓁𝑝

𝜕𝜈∗
=−

𝑁∑
𝑖=1

𝜆2𝑤2(𝑥𝑖)
1+𝜆1{𝑤1(𝑥𝑖)−1}+𝜆2{𝑤2(𝑥𝑖)−1}

+𝑛2 =0

(A.6)

𝜕𝓁𝑝

𝜕𝛽
= −

𝑁∑
𝑖=1

𝜆1𝑥𝑖𝑤1(𝑥𝑖) + 𝜆2𝑥𝑖𝑤2(𝑥𝑖)
1 + 𝜆1{𝑤1(𝑥𝑖) − 1} + 𝜆2{𝑤2(𝑥𝑖) − 1}

+
𝑛0+𝑛1∑
𝑖=𝑛0+1

𝑥𝑖 +
𝑁∑

𝑖=𝑛0+𝑛1+1
𝑥𝑖 = 0

𝜕𝓁𝑝

𝜕𝜸
= −

𝑁∑
𝑖=1

𝜆2𝑤1(𝑥𝑖)
𝜕

𝜕𝜸
𝜇(𝑥𝑖, 𝜸)

1 + 𝜆1{𝑤1(𝑥𝑖) − 1} + 𝜆2{𝑤2(𝑥𝑖) − 1}

+
𝑁∑

𝑖=𝑛0+𝑛1+1

𝜕

𝜕𝜸
log𝑆(𝑎𝑖 | 𝑥𝑖, 𝜸) = 0.

Next, we solve for 𝜆1 and 𝜆2. Using equation (A.2) and that∑𝑁
𝑖=1 𝑝𝑖 = 1, it follows that

𝑁∑
𝑖=1

1∕[1 + 𝜆1{𝑤1(𝑥𝑖) − 1} + 𝜆2{𝑤2(𝑥𝑖) − 1}] = 𝑁

(A.7)

From equations (A.4) and (A.7) we have

𝑁∑
𝑖=1

𝑤𝑘(𝑥𝑖)∕[1 + 𝜆1{𝑤1(𝑥𝑖) − 1} + 𝜆2{𝑤2(𝑥𝑖) − 1}] = 𝑁,

𝑘 = 1, 2. (A.8)

Then, using (A.5) and (A.8)

𝜕𝓁𝑝

𝜕𝛼∗
= 0 ⇒

𝑁∑
𝑖=1

𝜆1𝑤1(𝑥𝑖)
1 + 𝜆1{𝑤1(𝑥𝑖) − 1} + 𝜆2{𝑤2(𝑥𝑖) − 1}

= 𝑛1 ⇒ 𝜆1 =
𝑛1
𝑁

and similarly, from (A.6) and (A.8) for 𝜈∗ we get that 𝜆2 =
𝑛2∕𝑁 . Plugging the estimates 𝜆1 and 𝜆2 into equation (A.3)

yields the profile likelihood in (7).

2 MAZIARZ ET AL.852




