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Abstract
Since the seminal work of Prentice and Pyke, the prospective logistic likelihood has

become the standard method of analysis for retrospectively collected case-control

data, in particular for testing the association between a single genetic marker and a dis-

ease outcome in genetic case-control studies. In the study of multiple genetic markers

with relatively small effects, especially those with rare variants, various aggregated

approaches based on the same prospective likelihood have been developed to integrate

subtle association evidence among all the markers considered. Many of the commonly

used tests are derived from the prospective likelihood under a common-random-effect

assumption, which assumes a common random effect for all subjects. We develop the

locally most powerful aggregation test based on the retrospective likelihood under

an independent-random-effect assumption, which allows the genetic effect to vary

among subjects. In contrast to the fact that disease prevalence information cannot

be used to improve efficiency for the estimation of odds ratio parameters in logis-

tic regression models, we show that it can be utilized to enhance the testing power

in genetic association studies. Extensive simulations demonstrate the advantages of

the proposed method over the existing ones. A real genome-wide association study is

analyzed for illustration.

K E Y W O R D S

genetic association study, logistic regression model, prospective likelihood, random effect, retrospective

likelihood, score test

1 INTRODUCTION

In genome-wide association studies (GWASs) of relatively

rare disease outcomes, such as rare cancers, the case and con-

trol study is a commonly used design because of its conve-

nience and cost effectiveness. In a case-control design, a fixed

number of cases and controls is used to gather covariate infor-

mation. Given this information, the most popular model for

the disease status is the logistic regression model. Since the

seminal paper by Prentice and Pyke (1979), it has been well

known that one may use the prospective logistic likelihood

to make inference for the underlying odds ratio parameters

even if the data are collected retrospectively. In general, the

disease prevalence cannot be estimated based on case and

control data. Even if available it cannot be used to improve

the estimation of the odds ratio parameters. Many statistical

genetics papers derive testing statistics based on the prospec-

tive logistic likelihood and then apply them without any justi-

fication to case and control data. This strategy usually works

because the maximum likelihood estimators for the odds ratio
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under both likelihoods are the same even though those for

the intercept may differ from each other, as shown by Pren-

tice and Pyke (1979). In this paper, however, we show that in

some applications the score statistic derived from the retro-

spective likelihood has a larger power than that derived from

the prospective likelihood.

An initial step in the GWAS of a disease is to test whether a

specific group of genetic markers have a simultaneous effect

on the disease. Denote the disease status as 𝐷 = 0 (no dis-

ease) or 1 (disease). Let 𝑋 be a 𝑑-variate vector of the clin-

ical covariates and 𝑌 a 𝑞-variate vector representing mea-

sures on the set of genetic markers considered, such as cor-

related markers within a candidate region or a gene. The

goal of this paper is to study the joint association test of 𝑌

with the disease status 𝐷 after adjusting for the nongenetic

covariate 𝑋. The logistic regression model for the disease

status is pr(𝐷 = 1|x, y) = 𝜋(𝛼𝑝 + x⊤𝜷 + y⊤𝜸), where 𝜋(𝑡) =
𝑒𝑡∕(1 + 𝑒𝑡) is the logistic link function. However, the linear

function y⊤𝜸 of y in the model may not be general enough

to capture more realistic scenarios, where different genetic

markers convey nonuniform risk levels (magnitude and/or

direction). A popular approach is to utilize a random-effect

model:

pr(𝐷 = 1|x, y, v) = 𝜋(𝛼𝑝 + x⊤𝜷 + y⊤𝜸 + y⊤v ⋅
√

𝜃), (1)

where 𝜸 and v denote, respectively, the fixed and random-

variant effects. If ℎ(v) denotes the density function of v, we

have a marginal probability pr(𝐷 = 1|x, y) = ∫ 𝜋(𝛼𝑝 + x⊤𝜷 +
y⊤𝜸 + y⊤v ⋅

√
𝜃)ℎ(v)𝑑v, which is no longer a logistic regres-

sion model. If we specify the random-effect density ℎ(v), then

it is possible to derive the likelihood ratio statistic by numeri-

cal integration. However, this integration is a formidable task,

especially when we examine thousands of genes or regions.

The resulting likelihood ratio test would lose power when the

random-effect density is misspecified.

Under Model (1), testing the nonexistence of genetic effects

is equivalent to testing 𝐻0 ∶ 𝜸 = 0&𝜃 = 0. The score test is

popular in the statistical and genetics literature since it is

evaluated at the null hypothesis and can effectively avoid the

need to specify the form of ℎ(v). Many score tests have been

developed under various model assumptions. For example, the

burden and adaptive burden tests are designed under 𝜃 = 0.

Assuming 𝜸 = 0, Wu et al. (2011) proposed a sequence ker-

nel association test (SKAT), which Lee et al. (2012) extended

to SKAT-O by integrating the SKAT and burden tests into

a single test. Without assuming either 𝜃 = 0 or 𝜸 = 0, Sun

et al. (2013) proposed a mixed-effects score test (MiST) by

combining information from the fixed and random-variant

effects.

The SKAT, SKAT-O, and MiST tests are all built on the

assumption that observations from individuals share the same

random-effect v and are independent given v. In other words,

not all the subjects are independent. This assumption is funda-

mentally different from the conventional random-effect model

assumption (called the independent-random-effect assump-

tion hereafter), which treats observations as independent of

each other unless they come from the same individual or clus-

ter (Verbeke and Lesaffre, 1996; Wang, 1998; Ke and Wang,

2001; Jiang, 2007). This motivates us to develop score tests

for the genetic effect based on case-control data under the

independent random-effect model. Specifically, suppose that

{(x𝑖, y𝑖, 𝐷𝑖, v𝑖) ∶ 𝑖 = 1, 2,… , 𝑛} are independent and iden-

tically distributed (iid) from Model (1). We observe not

the random-effects v𝑖 but {(x𝑖, y𝑖, 𝐷𝑖) ∶ 𝑖 = 1, 2,… , 𝑛}. The

observations are independent since the random effect is not

shared among them. For convenience of presentation, we

assume that 𝜸 = 𝛾1 and the components of the v𝑖s are uncor-

related with mean zero and variance 2. This variance affects

only the score function with the random effect by a multi-

plier, and does not affect our resulting standardized score test

statistic.

We will systematically investigate different score test

statistics based on prospectively and retrospectively col-

lected data under the independent random-effect model. In

Section 2, we highlight the connections and differences for

testing the nonexistence of a random effect between the

case-control and prospective designs. Section 3 establishes

the asymptotic normality of the score statistics derived in

Section 2. In Section 4, we construct several synthetic score

tests for the overall genetic effect. Section 5 presents a sim-

ulation study, and Section 6 discusses our real-data analysis.

We provide some discussion in Section 7. Interestingly, we

have found that the independent random-effect model plays a

more important role than the retrospective likelihood in the

efficiency gain of the proposed tests over the existing tests.

In addition, knowledge on the disease prevalence can indeed

enhance power when testing for the existence of a random

effect. For brevity, the technical details and additional sim-

ulation results are given in the Supporting Information.

2 RETROSPECTIVE AND
PROSPECTIVE SCORE STATISTICS

2.1 Retrospective likelihood

Let 𝝋 = (𝛼𝑝,𝜷, 𝛾, 𝜃)⊤, 𝑓 (x, y) be the joint density function of

(x, y), and

𝑔(x, y,𝝋) = pr(𝐷 = 1|x, y)

= ∫ 𝜋(𝛼𝑝 + x⊤𝜷 + y⊤1𝛾 + y⊤v ⋅
√

𝜃)ℎ(v)𝑑v,

where ℎ(v) is the density function of v. Using Bayes’ formula,

we find that the densities of the covariates in the cases and
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controls are

𝑓1(x, y,𝝋) ∶= pr(x, y|𝐷 = 1)

= 𝑔(x, y,𝝋)𝑓 (x, y)
/
∫ 𝑔(x, y,𝝋)𝑓 (x, y)𝑑x𝑑y,

𝑓0(x, y,𝝋) ∶= pr(x, y|𝐷 = 0)

= {1 − 𝑔(x, y,𝝋)}𝑓 (x, y)
/

× {1 − ∫ 𝑔(x, y,𝝋)𝑓 (x, y)𝑑x𝑑y},

respectively. Without loss of generality, we assume that the

first 𝑛0 of {(x𝑖, y𝑖, 𝐷𝑖) ∶ 𝑖 = 1, 2,… , 𝑛} are controls and the

last 𝑛1 = 𝑛 − 𝑛0 are cases. The retrospective likelihood for

case and control data is

𝐿retr (𝝋) =
𝑛∏

𝑖=1
[{𝑓1(x𝑖, y𝑖,𝝋)}𝐷𝑖{𝑓0(x𝑖, y𝑖,𝝋)}1−𝐷𝑖]. (2)

It is necessary to make a direct comparison of the retro-

spective likelihood in (2) and Lin’s (1997) prospective like-

lihood (defined below), since the former is the foundation of

this paper while the latter is the infrastructure in variance-

component score tests such as SKAT, SKAT-O, and MiST.

In the derivation of (2), we have assumed that the random-

effects v𝑖 for different individuals are independent of each

other. In contrast, Lin’s (1997) likelihood is derived assum-

ing common random effects and prospective data. Under these

assumptions, Lin’s (1997) likelihood function is

𝐿(𝝋) = ∫
𝑛∏

𝑖=1
{𝜋𝑖(v,𝝋)}𝐷𝑖{1 − 𝜋𝑖(v,𝝋)}1−𝐷𝑖ℎ(v)𝑑v, (3)

where 𝜋𝑖(v,𝝋) = 𝜋(𝛼𝑝 + x⊤
𝑖
𝜷 + y⊤

𝑖
1𝛾 + y⊤

𝑖
v ⋅

√
𝜃). In this

model, it seems impossible to find a valid variance esti-

mator for any point estimators since no replicates from the

random-effect v are available. In contrast, under the indepen-

dent random-effect model, the likelihood is

𝐿𝐶 (𝝋) =
𝑛∏

𝑖=1
∫ {𝜋𝑖(v,𝝋)}𝐷𝑖{1 − 𝜋𝑖(v,𝝋)}1−𝐷𝑖ℎ(v)𝑑v.

Compared with 𝐿(𝝋), here the order of integration and prod-

uct is changed.

In summary, 𝐿retr and 𝐿𝐶 are the retrospective and

prospective likelihoods respectively under the independent-

random-effect assumption, and 𝐿 is the prospective likelihood

under the common-random-effect assumption. The retrospec-

tive likelihood under the common-random-effect assumption

is quite complicated and we defer its detailed derivation to the

Supporting Information.

For a test of 𝐻0 ∶ 𝛾 = 0 & 𝜃 = 0, it is widely accepted

that score tests are preferable to likelihood ratio tests because

they avoid using the form of ℎ(v). The score tests derived

from (3) with respect to 𝛾 and 𝜃 are usually correlated. There-

fore, it is not straightforward to combine the two score statis-

tics to achieve satisfactory power under different types of

alternatives. To overcome this obstacle, Sun et al. (2013)

derived a new score statistic with respect to 𝜃 without nec-

essarily requiring 𝛾 = 0. Their approach may have power loss

since their derivations are based on a prospective likelihood

while the available data are retrospectively collected. In this

paper, we find the retrospective-likelihood–based score tests

directly and explore their relationship with Sun et al.’s (2013)

score tests.

2.2 Retrospective score statistic for 𝜽

Differentiating the retrospective log-likelihood 𝓁retr (𝝋) =
log{𝐿retr (𝝋)} with respect to 𝜃, we find that the score is

𝜕𝓁retr
𝜕𝜃

||||𝜃=0 =
𝑛∑

𝑖=1

{
𝐷𝑖 − 𝜋

(
𝛼𝑝 + 𝜷⊤x𝑖 + y⊤

𝑖 1𝛾
)}

×
{
1 − 2𝜋

(
𝛼𝑝 + 𝜷⊤x𝑖 + y⊤

𝑖 1𝛾
)}

y⊤

𝑖 y𝑖

+ 𝑛0 ∫
{
1 − 2𝜋

(
𝛼𝑝 + 𝜷⊤x + y⊤1𝛾

)}
× 𝜋(𝛼𝑝 + 𝜷⊤x + y⊤1𝛾)y⊤y𝑓0(x, y)𝑑x𝑑y

− 𝑛1 ∫
{
1 − 2𝜋

(
𝛼𝑝 + 𝜷⊤x + y⊤1𝛾

)}
×
{
1 − 𝜋

(
𝛼𝑝 + 𝜷⊤x + y⊤1𝛾

)}
y⊤y𝑓1(x, y)𝑑x𝑑y.

To implement the score test statistic, we need to estimate

the unknown parameters (𝛼𝑝,𝜷, 𝛾) under 𝜃 = 0. Note that the

density functions of the cases and controls satisfy the den-

sity ratio model (Anderson, 1979; Qin and Zhang, 1997; Qin,

2017),

𝑓1(x, y,𝝋) = exp(𝛼𝑟 + 𝜷⊤x + y⊤1𝛾)𝑓0(x, y,𝝋),

where 𝛼𝑟 = 𝛼𝑝 + log{(1 − 𝑝)∕𝑝} and 𝑝 = pr(𝐷 = 1) denotes

the prevalence of the disease of interest. To simplify our nota-

tion, we use 𝜷 and 𝛼s, such as 𝛼𝑟 and 𝛼𝑝, to denote both

argument variables and their true values; the meaning is clear

from the context. Even if 𝛼𝑟 is known, the parameter 𝛼𝑝 =
𝛼𝑟 − log{(1 − 𝑝)∕𝑝} is generally unknown because the preva-

lence 𝑝 is unknown. For the time being, we assume that the

prevalence 𝑝 is known, so the estimation of 𝛼𝑝 is equivalent to

the estimation of 𝛼𝑟.

Following Qin and Zhang (1997), we estimate (𝛼𝑟,𝜷, 𝛾) by

the maximizer (�̃�𝑟,𝜷, �̃�) of

𝓁𝑒,1(𝛼𝑟,𝜷, 𝛾) =
𝑛∑

𝑖=1
𝐷𝑖

(
𝛼𝑟 + 𝜷⊤x𝑖 + y⊤

𝑖 1𝛾
)
−

𝑛∑
𝑖=1

log

×
{
1 + (𝑛1∕𝑛0) exp

(
𝛼𝑟 + 𝜷⊤x𝑖 + y⊤

𝑖 1𝛾
)}

.
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Let 𝐹0(x, y) and 𝐹1(x, y) be the true distribution functions

corresponding to 𝑓0(x, y,𝝋) and 𝑓1(x, y,𝝋), respectively.

Under 𝜃 = 0, the maximum empirical likelihood estimators

of 𝐹0(x, y) and 𝐹1(x, y) are

𝐹0(x, y) = 1
𝑛0

𝑛∑
𝑖=1

{
1 − 𝜋

(
�̃� + 𝜷

⊤
x𝑖 + y⊤

𝑖 1�̃�
)}

𝐼(x𝑖 ≤ x, y𝑖 ≤ y)

and

𝐹1(x, y) = 𝑛−11

𝑛∑
𝑖=1

𝜋
(
�̃� + 𝜷

⊤
x𝑖 + y⊤

𝑖 1�̃�
)
𝐼(x𝑖 ≤ x, y𝑖 ≤ y),

where �̃� = �̃�𝑟 + log(𝑛1∕𝑛0), 𝐼(⋅) is the indicator function, and

the inequality x𝑖 ≤ x holds elementwise.

Putting these estimators into 𝜕𝓁retr∕𝜕𝜃|𝜃=0 leads to

𝑈1(𝛼𝑝) =
𝑛∑

𝑖=1

{
𝐷𝑖 − 𝜋

(
�̃� + 𝜷

⊤
x𝑖 + y⊤

𝑖 1�̃�
)}

×
{
1 − 2𝜋

(
𝛼𝑝 + 𝜷

⊤
x𝑖 + y⊤

𝑖 1�̃�
)}

y⊤

𝑖 y𝑖, (4)

which is the retrospective score statistic with respect to 𝜃 if 𝛼𝑝

is known. We will discuss later the case where 𝛼𝑝 is unknown.

2.3 Retrospective score statistic for 𝜸

Since 𝜕𝑔(x, y,𝝋)∕𝜕𝛾|𝜃=0,𝛾=0 = 𝜋(𝛼𝑝 + x⊤𝜷){1 − 𝜋(𝛼𝑝 +
x⊤𝜷)}y⊤1, a similar derivation to that for the score statistic

with respect to 𝜃 gives the retrospective score with respect

to 𝛾:

𝜕𝓁retr
𝜕𝛾

||||𝜃=0,𝛾=0 =
𝑛∑

𝑖=1

{
𝐷𝑖 − 𝜋

(
𝛼𝑝 + x⊤

𝑖 𝜷
)}

y⊤

𝑖 1

+ 𝑛0 ∫ 𝜋(𝛼𝑝 + x⊤𝜷)y⊤1𝑓1(x, y)𝑑x𝑑y − 𝑛1

× ∫
{
1 − 𝜋(𝛼𝑝 + x⊤𝜷)}y⊤1𝑓0(x, y)𝑑x𝑑y.

To estimate the unknown parameters (𝛼𝑝,𝜷) under 𝐻0, recall

that the density functions of the cases and controls are linked

by 𝑓1(x, y,𝝋) = exp(𝛼𝑟 + 𝜷⊤x)𝑓0(x, y,𝝋). Following Qin and

Zhang (1997), we estimate (𝛼𝑟, 𝜷) by the maximizer (�̂�𝑟,𝜷) of

𝓁1(𝛼𝑟,𝜷) =
𝑛∑

𝑖=1
𝐷𝑖(𝛼𝑟 + 𝜷⊤x𝑖)

−
𝑛∑

𝑖=1
log{1 + (𝑛1∕𝑛0) exp(𝛼𝑟 + 𝜷⊤x𝑖)}.

Under 𝐻0, the maximum empirical likelihood estimators of

𝐹0(x, y) and 𝐹1(x, y) are

𝐹0(x, y) = 𝑛−10

𝑛∑
𝑖=1

{1 − 𝜋(�̂� + 𝜷
⊤
x𝑖)}𝐼(x𝑖 ≤ x, y𝑖 ≤ y)

and

𝐹1(x, y) = 𝑛−11

𝑛∑
𝑖=1

𝜋(�̂� + 𝜷
⊤
x𝑖)𝐼(x𝑖 ≤ x, y𝑖 ≤ y),

where �̂� = �̂�𝑟 + log(𝑛1∕𝑛0).
Putting �̂�, 𝜷, 𝐹0(x, y), and 𝐹1(x, y) into 𝜕𝓁retr∕𝜕𝛾|𝜃=0,𝛾=0,

we have the retrospective score statistic with respect to 𝛾:

𝑈2 =
𝑛∑

𝑖=1
{𝐷𝑖 − 𝜋(�̂� + 𝜷

⊤
x𝑖)}y⊤

𝑖 1, (5)

which is independent of 𝛼𝑝.

2.4 Prospective score statistic with 𝜽

If we treat the case-control data as if they were collected

prospectively, i.e., {(𝐷𝑖, x𝑖, y𝑖) ∶ 𝑖 = 1, 2,… , 𝑛} are iid ran-

dom elements, the resulting prospective log-likelihood is

𝓁pros =
𝑛∑

𝑖=1
[𝐷𝑖 log{𝑔(x𝑖, y𝑖,𝝋)} + (1 − 𝐷𝑖)

× log{1 − 𝑔(x𝑖, y𝑖,𝝋)}] +
𝑛∑

𝑖=1
log{𝑓 (x𝑖, y𝑖)}.

The prospective score with respect to 𝜃 without restricting

𝛾 to 0 is

𝜕𝓁pros
𝜕𝜃

|||||𝜃=0 =
𝑛∑

𝑖=1

{
𝐷𝑖 − 𝜋

(
𝛼𝑝 + 𝜷⊤x𝑖 + y⊤

𝑖 1𝛾
)
}

×
{
1 − 2𝜋

(
𝛼𝑝 + 𝜷⊤x𝑖 + y⊤

𝑖 1𝛾
)}

y⊤

𝑖 y𝑖. (6)

The unknown parameters 𝛼𝑝, 𝜷, and 𝛾 are estimated by the

maximum prospective likelihood estimator under 𝜃 = 0. The

prospective likelihood 𝓁pros under 𝜃 = 0 reduces to (up to a

quantity independent of the parameters)

𝓁𝑒,2(𝛼𝑝,𝜷, 𝛾) =
𝑛∑

𝑖=1
𝐷𝑖

(
𝛼𝑝 + 𝜷⊤x𝑖 + y⊤

𝑖 1𝛾
)

−
𝑛∑

𝑖=1
log

{
1 + exp

(
𝛼𝑝 + 𝜷⊤x𝑖 + y⊤

𝑖 1𝛾
)}

.

Hence, the maximum likelihood estimator of (𝛼𝑝,𝜷, 𝛾) is

(�̌�𝑝, �̌�, �̌�) = argmax𝛼𝑝,𝜷,𝛾 𝓁𝑒,2(𝛼𝑝,𝜷, 𝛾).
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Denoting 𝛼 = 𝛼𝑟 + log(𝑛1∕𝑛0) = 𝛼𝑝 + log{(1 − 𝑝)∕𝑝} +
log(𝑛1∕𝑛0), we have 𝓁𝑒,1(𝛼𝑟,𝜷, 𝛾) = 𝓁𝑒,2(𝛼,𝜷, 𝛾) −
𝑛1 log(𝑛1∕𝑛0). Since �̃� = �̃�𝑟 + log(𝑛1∕𝑛0), it follows that

(�̃�,𝜷, �̃�) = argmax
𝛼,𝜷,𝛾

𝓁𝑒,2(𝛼, 𝜷, 𝛾)

= arg max
𝛼𝑝,𝜷,𝛾

𝓁𝑒,2(𝛼𝑝, 𝜷, 𝛾) = (�̌�𝑝, �̌�, �̌�).

Replacing (𝛼𝑝,𝜷, 𝛾) by (�̌�𝑝, �̌�, �̌�) = (�̃�,𝜷, �̃�) in (6), we obtain

the prospective score statistic with respect to 𝜃:

𝑛∑
𝑖=1

{
𝐷𝑖 − 𝜋

(
�̃� + 𝜷

⊤
x𝑖 + y⊤

𝑖 1�̃�
)}

×
{
1 − 2𝜋

(
�̃� + 𝜷

⊤
x𝑖 + y⊤

𝑖 1�̃�
)}

y⊤

𝑖 y𝑖 = 𝑈1(�̃�), (7)

where 𝑈1(⋅) is defined in (4). That is, the only difference

between the prospective score statistic and the retrospective

score statistic with respect to 𝜃 is the use of different 𝛼 val-

ues in {1 − 2𝜋(𝛼 + 𝜷
⊤
x𝑖 + y⊤

𝑖
1�̃�)}y⊤

𝑖
y𝑖. We will show that this

difference can lead to a severe power loss in the hypothesis

testing for a genetic effect.

2.5 Prospective score statistic with respect
to 𝜸

By direct calculations, we have the prospective score with

respect to 𝛾:

𝜕𝓁pros
𝜕𝛾

|||||𝜃=0,𝛾=0 =
𝑛∑

𝑖=1
{𝐷𝑖 − 𝜋(𝛼𝑝 + 𝜷⊤x𝑖)}y⊤

𝑖 1. (8)

We estimate the unknown parameters 𝛼𝑝 and 𝜷 by maximizing

the prospective likelihood estimator under 𝐻0, which up to a

quantity independent of the parameters is

𝓁2(𝛼𝑝,𝜷) =
𝑛∑

𝑖=1
𝐷𝑖(𝛼𝑝 + 𝜷⊤x𝑖) −

𝑛∑
𝑖=1

log{1 + exp(𝛼𝑝 + 𝜷⊤x𝑖)}.

(9)

Hence, the maximum likelihood of (𝛼𝑝, 𝜷) is given by

(�̆�𝑝, �̆�) = argmax𝛼𝑝,𝜷 𝓁2(𝛼𝑝,𝜷).
Note that 𝓁1(𝛼𝑟,𝜷) = 𝓁2(𝛼,𝜷) − 𝑛1 log(𝑛1∕𝑛0) because

𝛼 = 𝛼𝑟 + log(𝑛1∕𝑛0). Since �̂� = �̂�𝑟 + log(𝑛1∕𝑛0), it follows

that (�̂�,𝜷) = argmax𝛼,𝜷 𝓁2(𝛼,𝜷) = argmax𝛼𝑝,𝜷 𝓁2(𝛼𝑝,𝜷) =
(�̆�𝑝, �̆�), where �̂�, �̂�𝑟, and 𝜷 are defined in Section 2.3.

Replacing (𝛼𝑝,𝜷) by (�̆�𝑝, �̆�) = (�̂�, 𝜷) in (8), we find that the

prospective score statistic with respect to 𝛾 is exactly equal to

𝑈2, which is the retrospective score statistic with respect to 𝛾 .

3 ASYMPTOTICS

This section studies the limiting distributions of the retrospec-

tive and prospective score statistics in (4), (5), and (7) for both

retrospectively and prospectively collected data.

3.1 Asymptotic normality

For convenience we assume that 𝑛0∕𝑛 is a constant as 𝑛 →
∞, where 𝑛 = 𝑛0 + 𝑛1. Let 𝝃⊤

0 = (𝛼⊤,𝜷⊤) and 𝝃⊤

0 = (𝛼⊤
𝑝 ,𝜷⊤),

respectively, be the true parameter values for retrospective and

prospective data. Denote 𝝃∗ = (𝛼∗,𝜷⊤)⊤, z𝑖 = (1, x⊤
𝑖
)⊤, z𝑒,𝑖 =

(1, x⊤
𝑖
, y⊤

𝑖
1)⊤, z = (1, x⊤)⊤, and z𝑒 = (1, x⊤, y⊤1)⊤. Define

𝐶2(x, y) = y⊤1 − S⊤

𝑥𝑦S−1
𝑥 z and

𝐶1(x, y, 𝛼∗) =
{
1 − 2𝜋

(
𝝃⊤

∗z𝑖

)}
y⊤y − H(𝛼∗)S−1

𝑒,𝑥z𝑒,

where

S𝑥 = 𝑛−1𝔼

[
𝑛∑

𝑖=1
𝜋
(
𝝃⊤

0z𝑖

){
1 − 𝜋

(
𝝃⊤

0z𝑖

)}
z𝑖z⊤

𝑖

]
,

S𝑒,𝑥 = 𝑛−1𝔼

[
𝑛∑

𝑖=1
𝜋
(
𝝃⊤

0z𝑖

){
1 − 𝜋

(
𝝃⊤

0z𝑖

)}
z𝑒,𝑖z⊤

𝑒,𝑖

]
,

S𝑥𝑦 = 𝑛−1𝔼

[
𝑛∑

𝑖=1
𝜋
(
𝝃⊤

0z𝑖

){
1 − 𝜋

(
𝝃⊤

0z𝑖

)}
y⊤

𝑖 1z𝑖

]
,

and H(𝛼∗) = 𝑛−1𝔼[
∑𝑛

𝑖=1{1 − 𝜋(𝝃⊤

0z𝑖)}𝜋(𝝃⊤

0z𝑖){1 − 2𝜋(𝝃⊤
∗

z𝑖)}y⊤
𝑖
y𝑖z⊤

𝑒,𝑖
]. We remark that all four quantities are inde-

pendent of 𝑛, and the expectation operator 𝔼 has different

meanings for retrospective and prospective data.

If the (𝐷𝑖, x𝑖, y𝑖)s are case-control or retrospective data, we

define

𝜎11(𝛼1, 𝛼2)

= (𝑛0∕𝑛)𝔼0
[{

𝜋
(
𝝃⊤

0z𝑖

)}2
𝐶1(x𝑖, y𝑖, 𝛼1)𝐶1(x𝑖, y𝑖, 𝛼2)

]
+ (𝑛1∕𝑛)𝔼1

[{
1 − 𝜋

(
𝝃⊤

0z𝑖

)}2
× 𝐶1(x𝑖, y𝑖, 𝛼1)𝐶1(x𝑖, y𝑖, 𝛼2)

]
and 𝜎22 = (𝑛0∕𝑛)𝔼0[{𝜋(𝝃⊤

0z𝑖)}2𝐶2
2 (x𝑖, y𝑖)] + (𝑛1∕𝑛)𝔼1[{1 −

𝜋(𝝃⊤

0z𝑖)}2𝐶2
2 (x𝑖, y𝑖)], where 𝔼0 (𝔼1) denotes the expectation

operator with respect to 𝑓0(x, y,𝝋) (𝑓1(x, y,𝝋)) with 𝝋

taking its true value. If the (𝐷𝑖, x𝑖, y𝑖)s are prospective data,

we define

𝜎11(𝛼1, 𝛼2)

= 𝔼
[
𝜋(𝝃⊤

0z𝑖)
{
1 − 𝜋

(
𝝃⊤

0z𝑖

)}
𝐶1(x𝑖, y𝑖, 𝛼1)𝐶1(x𝑖, y𝑖, 𝛼2)

]
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and 𝜎22 = 𝔼[𝜋(𝝃⊤

0z𝑖){1 − 𝜋(𝝃⊤

0z𝑖)}𝐶2
2 (x𝑖, y𝑖)], where 𝔼

denotes the expectation operator with respect to 𝑓 (x, y).

Theorem 1. Assume that 𝔼(‖X‖2) + 𝔼(‖Y‖3) < ∞
and that 𝑛1∕𝑛 is a constant as 𝑛 goes to infinity.
For any 𝑚 constants 𝛼∗1,… , 𝛼∗𝑚, if �̂�∗1,… , �̂�∗𝑚 are
their consistent estimators, then as 𝑛 goes to infinity,
𝑛−1∕2(𝑈1(�̂�∗1),… , 𝑈1(�̂�∗𝑚), 𝑈2)⊤ converges in distribu-
tion to 𝑁(0(𝑚+1)×1, diag(𝚺(𝛼∗1,… , 𝛼∗𝑚), 𝜎22)), where
𝚺(𝛼∗1,… , 𝛼∗𝑚) = (𝜎11(𝛼∗𝑖, 𝛼∗𝑗))1≤𝑖,𝑗≤𝑚.

The proof of Theorem 1 is provided in the Supporting

Information. The retrospective and prospective score statis-

tics with respect to 𝜃 are 𝑈1(𝛼𝑝) and 𝑈1(�̃�), respectively,

where 𝛼𝑝 is assumed to be known and �̃� = 𝛼 + 𝑜𝑝(1) with 𝛼 =
𝛼𝑝 + log{(1 − 𝑝)𝑛1∕(𝑝𝑛0)}. Theorem 1 indicates that 𝑈1(�̂�∗)
is asymptotically independent of 𝑈2 for any 𝛼∗ if �̂�∗ = 𝛼∗ +
𝑜𝑝(1). It also implies that both

√
𝑛𝑈1(𝛼𝑝) and

√
𝑛𝑈1(�̃�) con-

verge in distribution to normal distributions with mean zero,

but in general their asymptotic variances 𝜎11(𝛼𝑝, 𝛼𝑝) and

𝜎11(𝛼, 𝛼) are different. If the proportion 𝑛1∕𝑛 of the cases in

the case-control data is equal to the prevalence 𝑝, then 𝛼 = 𝛼𝑝

and the retrospective and prospective score tests and their lim-

iting distributions coincide.

3.2 Estimation of variance matrix

To apply the retrospective or prospective tests we need con-

sistent estimators of the corresponding asymptotic variances.

Since �̃� is a root-𝑛 consistent estimator of 𝝃0 whether the data

are retrospective or prospective, natural root-𝑛 consistent esti-

mators of S𝑥, S𝑒,𝑥, S𝑥𝑦, and H(𝛼∗) are

S̃𝑥 = 𝑛−1
𝑛∑

𝑖=1
𝜋(�̃�

⊤
z𝑖){1 − 𝜋(�̃�

⊤
z𝑖)}z𝑖z⊤

𝑖 ,

S̃𝑒,𝑥 = 𝑛−1
𝑛∑

𝑖=1
𝜋(�̃�

⊤
z𝑖){1 − 𝜋(�̃�

⊤
z𝑖)}z𝑒,𝑖z⊤

𝑒,𝑖,

S̃𝑥𝑦 = 𝑛−1
𝑛∑

𝑖=1
𝜋(�̃�

⊤
z𝑖){1 − 𝜋(�̃�

⊤
z𝑖)}y⊤

𝑖 1z𝑖,

and H̃(𝛼∗) = 𝑛−1
∑𝑛

𝑖=1{1 − 𝜋(�̃�
⊤
z𝑖)}𝜋(�̃�

⊤
z𝑖){1 − 2𝜋(�̃�

⊤

∗z𝑖)}
y⊤

𝑖
y𝑖z⊤

𝑒,𝑖
, where �̃�∗ = (𝛼∗,𝜷). Further, define

�̂�11(𝛼∗1, 𝛼∗2) = 𝑛−1
𝑛∑

𝑖=1
𝜋(�̃�

⊤
z𝑖){1 − 𝜋(�̃�

⊤
z𝑖)}

× �̃�1(x𝑖, y𝑖, 𝛼∗1)�̃�1(x𝑖, y𝑖, 𝛼∗2)

and �̂�22 = 𝑛−1
∑𝑛

𝑖=1 𝜋(�̃�
⊤
z𝑖){1 − 𝜋(�̃�

⊤
z𝑖)}{�̃�⊤

2 (x𝑖, y𝑖)}2,

where

�̃�1(x, y, 𝛼∗) = {1 − 2𝜋(�̃�
⊤

∗z)}y⊤y − H̃(𝛼∗)S̃
−1
𝑒,𝑥z𝑒

and �̃�2(x, y) = y⊤1 − S̃
⊤

𝑥𝑦S̃
−1
𝑥 z. We can straightforwardly ver-

ify that for any two constants 𝛼∗1 and 𝛼∗2 with consistent esti-

mators �̂�∗1 and �̂�∗2, we have that �̂�11(�̂�∗1, �̂�∗2) and �̂�22 are

consistent estimators of 𝜎11(𝛼∗1, 𝛼∗2) and 𝜎22 whether the data

are retrospective or prospective.

4 PROPOSED SCORE TESTS

Let the standardized score tests for random and fixed

effects be 𝑈1𝑠(𝛼∗) = 𝑛−1∕2𝑈1(𝛼∗)∕
√

�̂�11(𝛼∗, 𝛼∗) and 𝑈2𝑠 =
𝑛−1∕2𝑈2∕

√
�̂�22. Theorem 1 and the consistency of the vari-

ance estimators imply that 𝑈1𝑠(𝛼∗) (for fixed 𝛼∗) and 𝑈2𝑠 are

asymptotically independent and have an asymptotically stan-

dard normal distribution. In this section, all limits are taken

under 𝐻0 ∶ 𝜃 = 0 & 𝛾 = 0.

Since the hypothesis with respect to 𝛾 is two-sided, we

reject 𝛾 = 0 if FS = 𝑈2
2𝑠 is large enough. The hypothesis for

𝜃 is one-sided (𝜃 ≥ 0) and a larger 𝑈1𝑠(𝛼∗) supports 𝜃 > 0,

so we reject 𝜃 = 0 for large values of RS(𝛼∗) = {𝑈+
1𝑠(𝛼∗)}

2,

where 𝑈+
1𝑠(𝛼∗) = max{𝑈1𝑠(𝛼∗), 0}. To capture the nonnull

hypothesis in both fixed and random effects, we take both

scores into account and define

SS(𝛼∗) = {𝑈+
1𝑠(𝛼∗)}

2 + 𝑈2
2𝑠. (10)

It is worth pointing out that the tests SS(�̂�) and RS(�̂�) corre-

spond to prospective score tests whereas SS(𝛼𝑝) and RS(𝛼𝑝)
correspond to retrospective score tests. As 𝑛 goes to infin-

ity, the limiting distributions of FS, RS(𝛼∗), and SS(𝛼∗) are

𝜒2
1 , 0.5𝜒2

0 + 0.5𝜒2
1 , and 0.5𝜒2

1 + 0.5𝜒2
2 , respectively. More-

over, our combination of score statistics differs from the con-

ventional linear combination of score tests with normally

distributed limiting distributions.

The parameter 𝛼𝑝 is generally unknown in practice and the

case-control data contain no information about 𝑝 or 𝛼𝑝. If we

have a guess for 𝛼𝑝, such as 𝛼∗𝑖 (𝑖 = 1,… , 𝑚), we can define

another two tests: RS(𝛼∗1,… , 𝛼∗𝑚) = max1≤𝑖≤𝑚 RS(𝛼∗𝑖) and

SS(𝛼∗1,… , 𝛼∗𝑚) = max
1≤𝑖≤𝑚

SS(𝛼∗𝑖). (11)

By Theorem 1, we have that RS(𝛼∗1,… , 𝛼∗𝑚) converges in

distribution to max1≤𝑖≤𝑚(𝑍+
𝑖
)2, where (𝑍1, 𝑍2,… , 𝑍𝑚) fol-

lows an 𝑚-variate normal distribution with mean zero and

variance

𝚺𝑠(𝛼∗1,… , 𝛼∗𝑚)

=
(
𝜎11(𝛼∗𝑖, 𝛼∗𝑗)

/√
𝜎11(𝛼∗𝑖, 𝛼∗𝑖)𝜎11(𝛼∗𝑗 , 𝛼∗𝑗)

)
1≤𝑖,𝑗≤𝑚

.
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If we let 𝐹 ((𝑡1,… , 𝑡𝑚),𝚺) be the distribution function of the

𝑚-dimensional normal distribution with mean zero and vari-

ance 𝚺, it follows that as 𝑛 → ∞,

lim
𝑛→∞

𝑃 (RS(𝛼∗1,… , 𝛼∗𝑚) ≤ 𝑡) = 𝐹
(√

𝑡1,𝚺𝑠(𝛼∗1,… , 𝛼∗𝑚)
)
.

The distribution 𝐹 ((𝑡1,… , 𝑡𝑚),𝚺) can be calculated by

the pmvnorm function of the R package mvtnorm. Sim-

ilarly, SS(𝛼∗1,… , 𝛼∗𝑚) converges in distribution to 𝑍2
0 +

max1≤𝑖≤𝑚(𝑍+
𝑖
)2, where 𝑍0 denotes a random variable follow-

ing the standard normal distribution that is independent of

𝑍𝑖 (1 ≤ 𝑖 ≤ 𝑘). Straightforward calculus gives

lim
𝑛→∞

𝑃 (SS(𝛼∗1,… , 𝛼∗𝑚) ≤ 𝑡)

= 2∫
√

𝑡

0
𝐹
(√

𝑡 − 𝑣21,𝚺𝑠(𝛼∗1,… , 𝛼∗𝑚)
)
𝜙(𝑣)𝑑𝑣.

In practice, we may make an interval guess about the

prevalence 𝑝 by experience or prior information. In cancer

studies, 𝑝 can be retrieved from the SEER Program (2019),

an authoritative source for cancer statistics in the United

States. Let [𝑏1, 𝑏2] be an interval guess for log{𝑝∕(1 − 𝑝)}
and let �̂� be the maximum empirical likelihood estimator

of 𝛼, which together with 𝜷 maximizes (9). Given 𝑚 >

1, we set 𝛼∗𝑖 = �̂� − log(𝑛1∕𝑛0) + (𝑖 − 1) × (𝑏2 − 𝑏1)∕(𝑚 − 1)
and define RS([𝑏1, 𝑏2], 𝑚) = RS(𝛼∗1,… , 𝛼∗𝑚) and

SS([𝑏1, 𝑏2], 𝑚) = SS(𝛼∗1,… , 𝛼∗𝑚), (12)

where SS(𝛼∗1,… , 𝛼∗𝑚) is defined in Equation (11). In our

simulation study, we set 𝑚 = 4 and [𝑏1, 𝑏2] = [−10,−0.5],
which corresponds to the case where the disease prevalence

𝑝 falls in the interval [4.54 × 10−5, 0.38].

5 SIMULATION

5.1 Simulation settings

We conduct simulations to investigate the finite-sample per-

formance (including the type I error and power) of the pro-

posed tests. We simulated case-control data with an equal

number 𝑛0 = 𝑛1 = 2000 of cases and controls from Model (1).

The covariate is x = (𝑥1, 𝑥2)⊤, where 𝑥1 and 𝑥2 are indepen-

dently generated from a Bernoulli distribution with success

probability 0.5 and 𝑁(1, 1), respectively. The components of

the random-effect v are iid 𝑁(0, 1) random variables. The

genotype values were simulated under the Hardy-Weinberg

equilibrium and linkage equilibrium. In the simulation stud-

ies below, the minor allele frequency (MAF) is considered in

all possible ranges, from common to rare. The MAF refers to

the frequency at which the second most common allele occurs

in a given population.

T A B L E 1 Type I errors (%) of the tests for Example 1 at

significance levels 5%, 1%, and 0.1%

Example 1
Level 5 1 0.1
SS–MAX 5.01 1.00 0.11

SS(𝛼𝑝) 4.89 1.17 0.13

SS(𝛼) 5.05 1.10 0.11

Burden 5.03 1.11 0.16

SKAT 5.27 1.11 0.16

SKAT-O 5.29 1.34 0.24

MiST 5.02 0.97 0.12

Our simulation settings mimic those of Sun et al. (2013) but

with two differences. One is that they considered the contin-

uous covariate case, but our data-generating model involves

both binary and continuous covariates; this difference is not

essential. The other is that their simulated subjects share the

same random effect if it exists, but our random effects are

iid across the individuals. Unless stated otherwise, all the

results in this section are based on data generated under the

independent-random-effect assumption.

5.2 Test for overall genetic effect

The primary objective of a genetic association study is to

determine the existence of an overall genetic effect, not sim-

ply a fixed or random effect. Hence, we focus on testing the

overall genetic effect, for which the SS test is designed. We

study the finite-sample performance of the proposed SS test

by comparing the following tests: (a) the burden test (Bur-

den for short) calculated by the R package SKAT; (b) SKAT

(Wu et al., 2011); (c) SKAT-O (Lee et al., 2012); (d) MiST

(Sun et al., 2013); (e) SS(𝛼𝑝), where SS(⋅) is defined in Equa-

tion (10); (f) SS(�̂�); (g) SS–MAX: SS([−10,−0.5], 4), where

SS([𝑏1, 𝑏2], 𝑚) is defined in Equation (12). The data are gen-

erated from Example 1.

Example 1. When generating the genotype vector y, we

set the MAFs of the genotypes to MAF𝑗 = 𝑗∕(3𝑞 + 1) (𝑗 =
1, 2,… , 𝑞). We set the dimension of v and y to 𝑞 = 10, and set

𝛼𝑝 = −1 and 𝜷 = (0.5,−1)⊤. We consider four scenarios: (C1)√
𝜃 = 0, 𝜸 = (−0.02𝑘) × 1𝑞; (C2)

√
𝜃 = 0.5, 𝜸 = (−0.02𝑘) ×

1𝑞; (C3)
√

𝜃 = 0.15𝑘, 𝜸 = 0 × 𝟏; (C4)
√

𝜃 = 0, 𝜸 = (0.05𝑘) ×
𝜸0, where 𝜸0 = (1⊤

𝑞∕2,−1⊤

𝑞∕2)
⊤ and 𝑘 = 0, 1,… , 5. The disease

prevalence is between 0.15 and 0.25.

We first compare the tests in terms of the type I errors.

Table 1 gives the simulated type I errors of the seven tests

(as percentages) at the nominal levels 5%, 1%, and 0.1%. The

results are obtained from 10,000 replications. We can see that

the proposed SS tests as well as the other four tests have well-
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T A B L E 2 Rejection rates (%) of the seven tests for overall genetic effect in Scenarios (C1)–(C4) of Example 1 (𝜸0 = (1⊤

𝑞∕2,−1⊤

𝑞∕2)
⊤)

(C1)
√
𝜽 = 𝟎, 𝜸 = (−𝟎.𝟎𝟐𝒌) × 1𝒒

𝒌 = 𝟏 𝒌 = 𝟐 𝒌 = 𝟑 𝒌 = 𝟒 𝒌 = 𝟓
SS-MAX 12.00 36.10 69.60 92.80 99.20

SS(𝛼𝑝) 12.40 39.45 74.10 94.45 99.35

SS(𝛼) 12.55 39.35 73.70 94.35 99.35

Burden 5.85 10.75 16.55 27.30 40.65

SKAT 4.60 7.00 7.70 11.20 15.50

SKAT-O 5.90 9.65 14.25 22.95 35.45

MiST 11.40 36.45 69.30 91.75 98.85

(C2)
√

𝜃 = 0.5, 𝜸 = (−0.02𝑘) × 1𝑞

SS-MAX 83.05 70.40 56.70 51.65 56.35

SS(𝛼𝑝) 85.15 72.55 60.40 54.80 59.30

SS(𝛼) 78.80 61.30 44.35 37.30 41.10

Burden 8.65 6.60 5.30 5.55 7.70

SKAT 5.70 5.25 5.30 5.65 5.55

SKAT-O 8.15 6.25 5.50 5.65 7.35

MiST 53.05 23.75 11.95 5.60 7.95

(C3)
√

𝜃 = 0.15𝑘, 𝜸 = 0 × 1𝑞

SS-MAX 8.00 35.10 85.15 99.25 100.00

SS(𝛼𝑝) 8.15 38.20 86.40 99.35 100.00

SS(𝛼) 8.10 33.85 82.00 98.60 100.00

Burden 4.85 6.40 11.70 19.20 25.40

SKAT 4.45 4.95 6.85 7.60 10.35

SKAT-O 4.85 6.10 10.85 16.40 21.60

MiST 6.70 20.55 64.90 90.60 98.05

(C4)
√

𝜃 = 0, 𝜸 = (0.05𝑘) × 𝜸0

SS-MAX 8.45 24.75 53.20 80.85 92.90

SS(𝛼𝑝) 9.45 29.60 58.15 84.60 94.80

SS(𝛼) 11.70 32.75 61.65 86.65 95.70

Burden 11.95 35.35 63.60 85.95 95.95

SKAT 6.60 15.35 31.70 53.50 78.35

SKAT-O 10.65 30.20 58.35 82.35 94.80

MiST 23.35 87.55 99.85 100.00 100.00

controlled type I errors even when the nominal level is just

0.1%.

We next compare the tests in terms of power. Table 2 gives

the simulated powers of the seven tests at the 5% level under

four scenarios. Model (1) is correct in the first three scenarios

but violated in the last scenario. The results are based on 2000

replications. In Scenario (C1), SS(𝛼𝑝), SS(�̂�), SS–MAX, and

MiST have almost the same power and are clearly much more

powerful than the other tests. In Scenarios (C2) and (C3),

the independent random-effect model assumption is satisfied.

The three SS tests outperform the other tests: in most cases,

the power differences are quite significant. In Scenario (C4),

Model (1) is violated and there is a fixed effect but no random

effect. In this setting, MiST has the largest power, while the

SS tests are comparable with Burden and SKAT-O and more

powerful than SKAT.

Since SKAT, SKAT-O, and MiST are all built on the

common-random-effects assumption, it is interesting to exam-

ine how the tests perform when this assumption is satisfied.

We have repeated the simulations for Scenarios (C2) and (C3)

of Example 1, except that the data were generated under the

common-random-effects assumption. The results are reported

in the Supporting Information. The SS tests are still more

powerful than the Burden test. It is not surprising that they

tend to be less powerful than SKAT, SKAT-O, and MiST,

which are designed under this assumption.

It is worth mentioning that in Scenario (C2), SS(𝛼𝑝), the

SS test with the true prevalence, is much more powerful than
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T A B L E 3 Test results for the top six genes, in which at least one of the SS-MAX, SS(𝛼), Burden, SKAT, SKAT-O, and MiST tests produces a

𝑃 -value less than10−4; the smallest p-value of each test over the top six genes is marked in bold

Gene name IRX2 CAMK2N1 QPCTL BCAR1 CTNNA2 ZDHHC11B
No. of SNPs 107 32 18 20 9 13
SS-MAX 𝟕.𝟎𝟎 × 𝟏𝟎−𝟔 3.30 × 10−3 4.88 × 10−2 4.94 × 10−2 0.19 0.99

SS(𝛼) 1.06 × 10−4 𝟏.𝟖𝟓 × 𝟏𝟎−𝟓 3.55 × 10−2 3.68 × 10−2 0.76 0.82

Burden 7.5 × 10−2 0.38 5.00 × 10−5 2.20 × 10−3 𝟖.𝟕𝟎 × 𝟏𝟎−𝟔 0.72

SKAT 0.46 0.67 8.83 × 10−5 1.50 × 10−4 𝟖.𝟕𝟎 × 𝟏𝟎−𝟔 0.73

SKAT-O 0.13 0.54 4.43 × 10−5 2.32 × 10−4 𝟖.𝟕𝟎 × 𝟏𝟎−𝟔 0.74

MiST 3.64 × 10−5 0.29 3.51 × 10−2 𝟏.𝟓𝟎 × 𝟏𝟎−𝟔 4.52 × 10−5 2.49 × 10−5

SS(�̂�), which is based on the score tests from the prospective

likelihood. The only difference between the two tests is that

they use different values of 𝛼∗ in SS(𝛼∗). Note that �̂� = 𝛼𝑝 +
log{(1 − 𝑝)∕𝑝} − log{(1 − 𝑛1∕𝑛)∕(𝑛1∕𝑛)} + 𝑜𝑝(1) is noncon-

sistent for and different from 𝛼𝑝 unless 𝑛1∕𝑛 = 𝑝 + 𝑜𝑝(1). The

substantially different performance of SS(𝛼𝑝) and SS(�̂�) there-

fore arises because the disease prevalence 𝑝 (between 0.15 and

0.25) is not close to 𝑛1∕𝑛 = 0.5. Since 𝛼𝑝 can be estimated

from case-control data if the prevalence is known, the larger

power of SS(𝛼𝑝) indicates that knowledge of the disease preva-

lence can indeed be used to enhance the overall power.

We also conducted simulations in scenarios with low preva-

lence and/or rare variants, and the findings were similar. More

details can be found in the Supporting Information. Overall,

our score tests have desirable type I errors and are generally

more powerful than existing tests when Model (1) is correct.

The comparison of SS(𝛼𝑝) and SS(�̂�) implies that prevalence

information can indeed help to increase the power. The SS-

MAX test is always as powerful as the ideal SS test SS(𝛼𝑝),
which uses the true prevalence information. We recommend

SS-MAX since it may have a power gain over SS(�̂�) when

the proportion of cases in the data is far from the prevalence.

SS(𝛼) is also a possibility since it is usually as powerful as

SS-MAX and its computational time is much lower.

6 APPLICATION TO GWAS OF
PANCREATIC CANCER

We demonstrate the performance of our method by apply-

ing it to two GWASs for pancreatic cancer. The first

GWAS (PanScan I) genotyped about 550,000 SNPs

from 1896 individuals with pancreatic cancer and 1939

controls drawn from 12 prospective cohorts and one hospital-

based case-control study (Amundadottir et al., 2009). The

second GWAS (PanScan II) genotyped about 620,000 SNPs

in 1679 cases and 1725 controls from seven case-control

studies (Petersen et al., 2010). We focused on people of

predominantly European ancestry, that is, with a European

admixture coefficient above 0.85 as estimated by STRUC-

TURE (Pritchard et al., 2000). This gave 3275 cases and

3376 controls for our analysis.

We conducted gene-based multiple locus analysis on the

combined data from the two GWASs. We focused on genes

in the PredictDB Data Repository that were defined by

eQTL SNPs identified by prediction models trained on gene

expression on pancreatic tissues using GTEx Version 7 data

(Gamazon et al., 2015). There were 4573 genes in the data

repository. We considered only the eQTL SNPs identified in

the prediction model for a given gene because these SNPs

have cis effects on the expression of the corresponding gene

and thus are more likely to be functional.

We adjusted the logistic regression model for study, age,

sex, and the 10 principal components (five from each GWAS)

for the adjustment of population stratification. We focused on

results from the following six tests: SS-MAX, SS(𝛼), Bur-

den, SKAT, SKAT-O, and MiST. Table 3 gives the results for

genes for which at least one of the six tests generates a P-

value below 10−4. We highlight P-values below 1.1 × 10−5,

which is the Bonferroni threshold for controlling the family-

wise error at the level of 0.05 for a given test. Each test was

able to identify one, but not necessarily the same, globally sig-

nificant gene, and the P-values for a given gene can be quite

different. SS-MAX detects the gene IRX2 with a P-value of

7 × 10−6, which is much smaller than the P-value from MiST,

3.64×10−5, which also provides evidence for the significance

of this gene. SS(𝛼) identifies the gene CAMK2N1 with a P-

value of 1.85 × 10−5. MiST detects the gene BCAR1, while

Burden, SKAT, and SKAT-O all detect the gene CTNNA2.

Figure 1 shows qq-plots for the tests. Assuming that most

of the genes are not associated with the outcome, we would

expect the qq-plot based on the P-values for the 4573 genes

under each test to align well with the diagonal line. Figure 1

shows that SS-MAX and SS(𝛼) have the expected patterns in

their qq-plots, but it is less clear for Burden, SKAT, SKAT-O,

and MiST. In addition, the points at the upper right corner of

each qq-plot correspond to the genes that are most likely to

be significant. For example, the outlier point in this corner of

the SS-MAX plot corresponds to the gene IRX2 reported in

Table 3.
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F I G U R E 1 qq-plots of minus logarithm of P-values

7 DISCUSSION

In this paper, we have systematically derived score-based tests

for prospectively and retrospectively collected data and stud-

ied their large-sample behavior. We discussed the differences

between the two likelihoods. Instead of Lin’s (1997) model

in which the individuals share a common random effect, we

used a conventional random-effect model where the observa-

tions are independent unless they come from the same indi-

vidual. Lin’s (1997) common-random-effect assumption is

essentially equivalent to the fixed-effect assumption, and the

random effect here reflects only different data sets. We then

considered data sets collected from medical centers. If we

believe that the individuals in the same center share a com-

mon random effect and that different centers may have dif-

ferent effects generated from the same distribution, we obtain

a common-random-effect assumption. On the other hand, the

conventional random-effect model assumes that individuals in

the same center have different effects generated from the same

distribution. The conventional approach is preferable if one

believes that the randomness comes from individuals rather

than from centers.

In our method, the genetic information 𝑌 is linked to the

disease status 𝐷 only through a linear combination 𝛾𝟏⊤𝑌

and only the parameter 𝛾 is unknown. The linear combina-

tion 𝛾𝟏⊤𝑌 may be replaced by any combination 𝛾𝐜⊤𝑌 with

a user-specified direction 𝐜. Therefore, the dimension of 𝑌

is not an issue, and our method can be directly applied to

data of any dimension. To improve the power, one could

consider a number of candidate directions and take the

maximum of the corresponding score test as the final test

statistic.
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