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The distribution of lumber strength of any grade may evolve, for exam-
ple, due to climate change, forest fire, changes in processing methods, and
other factors. So, in North America the forest products industry monitors the
evolution of their means, percentiles, or other parameters to ensure the wood
products meet the industrial standard. For administrative convenience and in-
formativeness, one may adopt a rotating sampling plan by sampling 36 mills
in the initial occasion and having six of them replaced in each successive
occasion for the next five occasions. The strength data on a specified num-
ber, commonly 10 pieces of lumbers from each sampled mills, are obtained.
Under such rotating plans the observations on pieces from the same mill are
correlated, and the observations on samples from the same mill taken on dif-
ferent occasions are also correlated. Ignoring these correlations may lead to
invalid inference procedures. Yet accommodating a cluster structure in para-
metric models is difficult and entails a high level of misspecification risk. In
this paper we explore symmetry in the clustered data collected via a rotating
sampling plan to develop a permutation scheme for testing various hypothe-
ses of interest. We also introduce a semiparametric density ratio model to link
the distributions of the response variable over time. The combination retains
the validity of the inference methods while extracting maximum informa-
tion from the sampling plan. A simulation study indicates that the proposed
permutation tests firmly control the type I error whether or not the data are
clustered. The use of the density ratio model improves the power of the tests.
We also apply the proposed tests to data from the motivating application. The
proposed permutation tests effectively address many real-world issues with
trust worth inference conclusions.

1. Introduction. The general theory described in this paper was developed to solve an
inferential problem that arises in a long term monitoring program in the forest products in-
dustry of North America. We begin by describing in the next subsection how that problem
arises. We then describe the general theory, whose potential domain of application goes well
beyond that specific domain.

1.1. Monitoring the breaking strength of lumber. The industrialization of lumber man-
ufacturing began more than a century ago with the establishment of standards for lumber.
These were defined primarily by strength, reducing characteristics such as knots. The impact
of each such characteristic was published in what has become ASTM D245 (ASTM (2006)).
Lumber could then be graded largely on the basis of these characteristics and, thanks to the
standards document, their strength metrics predicted. Suitably adjusted metrics become the
grade’s design value DV, a value that would be exceeded with high probability when the
lumber is put into service.

Wood has become an increasingly important natural resource because, unlike other re-
sources, for example, petroleum, its production is sustainable. Numerous products are now
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made from wood including biofuel as well as building materials. Wood’s versatility and sus-
tainability have led to its gradually replacing these other resources, especially in this era
of climate change. In fact, lumber manufacturing has become a major global industry. The
wood used to make lumber comes not only from forests but also from plantations. Trees are
cut down and trimmed to get logs that are transported to mills where they are sawn into lum-
ber in an optimal way. The pieces of lumber are then graded, primarily according to their
strength. Thus, at any given time the population of lumber is subdivided into subpopulations
represented by grades. And these subpopulations will change dynamically over time, as the
lumber is produced and consumed.

These subpopulations may be thought of as samples from an essentially infinite conceptual
super-population, defined by the processes by which the logs are harvested and lumber man-
ufactured. It is these super-populations that are of concern in long-term monitoring programs,
especially because of climate change and its potential impact on trees, for example, through
insect infestations and major forest fire. That concern can be expressed though the probability
distributions of metrics that express that impact on the properties of lumber strength, such as
in pound per square inch psi.

Lumber possesses many types of strength: notably under stretching (ultimate tensile
strength or UTS), compression, or bending (modulus of rupture or MOR). Its stiffness (mod-
ulus of elasticity or MOE), which is related to all these other characteristics, is, unlike MOR,
not measured by destructive testing. That DV is a specified quantile of the strength distri-
bution, commonly a median or the fifth percentile. Thus, the grade of a piece of lumber for
engineering applications depends on its intended use. The top grade is both strong and ex-
pensive. The development of the modern grading system has been a triumph of structural
engineering since it has standardized lumber properties. Thus, wood, a heterogeneous mate-
rial, unlike say aluminum, can be used with the assurance that the lumber made from it has
a low probability of failure when used for its intended purpose, where “probability” would
refer to this super-population.

The importance of lumber has led to the need to monitor those metrics over time. The
first such long-term monitoring program was established in 1994 in the southeastern United
States. Cross-sectional samples were taken annually using a stratified-by-region sampling
plan. The number of mills in each region was determined, and the primary sampling units
(PSUs) within a region were chosen by simple random sampling. One or two bundles, that
is, secondary sampling units (SSUs), of about 300 pieces each were selected. From each, a
“lot” with 10 pieces was chosen in a prescribed way, and their mechanical strengths were
measured.

Canada also established a long-term monitoring program. Planning for a pilot program
began in 2005; a preliminary analysis showed a substantial variation between mills, within
mills, and between lots. The goal at the time was to measure temporal trends in the elasticity
of lumber or formally its modulus of elasticity MOE. Due to its efficiency in estimating
trends, the rotating sampling plan was selected for a specified grade of lumber, with a six-year
rotation. We sample 36 mills initially and replace six of them on each successive occasion.
This plan has the benefit of limiting the mill response burden, makes a consistent random
mill effect over time (six years) plausible, and refreshes the sample to maintain some degree
of cross-sectional validity.

This led to new challenges: the statistical theory needed to assess trends in MOR under
a rotating sampling plan did not exist, although there are many recent and relevant publica-
tions on the rotating sampling plan, such as Karna and Nath (2015), Nijman, Verbeek and
van Soest (1991), Park, Choi and Kim (2007). The Forest Products Stochastic Modelling
Group (FPSMG), based at the University of British Columbia, was, therefore, established. It
was cofunded by FPInnovations, a nonprofit industrial research lab, and the Natural Sciences
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and Engineering Research Council of Canada. The FPSMG, which has involved engineers
and wood scientists at FPInnovations working in collaboration with statistical faculty and
students, is in its eleventh year at the time of writing. It has made numerous contributions to
the theory and practice of strength measurement and monitoring for forest products; see, for
example, Zidek and Lum (2018), Cai, Chen and Zidek (2017), Chen et al. (2021), and Chen
and Liu (2013).

Meanwhile, for reasons beyond the scope of this paper, a separate North American long-
term monitoring program has been specified in a revision of an American Society for Testing
and Materials (ASTM) standards document (D1990). It assumes a cross-sectional sample
once every five years and specifies, among other things, that a Wilcoxon test be used to assess
change in the fifth percentile of the MOR. The document ignores both the PSU and SSU
cluster effects induced by their random effects. In a companion article (Chen et al. (2021)) to
this one, an alternative method has been proposed for use in the new ASTM monitoring plan.
Chen et al. (2021) is based on a cross-sectional clustered data without longitudinal effect and
focuses on parameter estimation rather than hypothesis testing.

1.2. Summary and outline of the paper. This paper targets the hypothesis testing problem
on trends in strength percentiles for rotating sample designs, where samples are taken every
year or every specified period, while it is also applicable to detecting trends in other popu-
lation parameters. Its genesis lies in the need for a method that can handle the cluster effect
across time and space. In Section 2 we describe the rotating sampling plan and its implied
random effects. Some existing and potential data analysis approaches will be given in this
section. Section 3 presents a general foundation for inference, based on permutation tests;
the necessary theorems and their proofs appear here. Applying this methodology requires the
analyst to choose a test statistic with which to apply the permutation strategy, and a number of
possibilities are presented in Section 4. A particularly novel choice is based on the so-called
density ratio model (DRM). Section 5 presents some populations for which the theory can be
applied. Section 6 presents simulation results. We find the type I errors of all permutation tests
are well controlled while their asymptotic versions (if existing) have inflated type I errors if
derived for independent and identically distributed (IID) observations. The use of the DRM
improves the power of the tests and leads to an efficiency gain, in general, with a sensible
choice of the basis function. Finally we devote Section 7 to the real-world application that
leads to the work described in this paper. We describe the sampling plan employed as well as
some summary statistics of the real data. We apply all viable tests to this data set. The results
show our permutation tests effectively prevent many potentially damaging clustering effects.
Our methods lead to trust worth inference conclusions. The paper ends with a discussion in
Section 8 and an Appendix that gives technical details for the numerical strategy employed
in the simulation experiments.

2. Rotating sampling plan, random effects, and assumptions. Consider a grand pop-
ulation made of a finite number of PSUs, and the composition of the PSUs remains stable
over time. Each PSU is made of a practically infinite number of SSUs. The SSUs may be
thought of as samples from a conceptual super-population that evolves over time and space.
We are interested in monitoring the trends in the distribution of metrics on SSUs formed by
the sample from the super-population at different times. In the motivating application the
PSUs are lumber producing mills, and SSUs are pieces of lumber. A rotational sampling plan
draws a number of PSUs initially and replaces a subset on each successive occasion. For in-
stance, one may sample 36 mills initially and have six of them replaced on each successive
occasion. One further samples 10 pieces of lumber from each sampled mills and obtains the
strength data. We monitor the trend in the distribution of metrics on SSUs over time.
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2.1. Literature review and assumptions. While rotating sampling plans are administra-
tively convenient and informative, they lead to challenges in developing inferential tools, due
to their induced cluster effects across both time and space. Moreover, ignoring the cluster
structure leads to inflated type I errors of some established tests (Datta and Satten (2008),
Verrill, Kretschmann and Evans (2015)). In fact, as far as we know, no exact methods exist
for monitoring the change of population quantiles, based on rotating sampling plans for this
application. As suggested by a referee, some approaches might be adopted for this purpose
(Berg, Cecere and Ghosh (2014), Francisco and Fuller (1991)).

This paper suggests that permutation tests are well suited to meet these challenges. The
permutation is a general approach that plays an active role in modern statistical practice
(Hemerik and Goeman (2018), Pesarin and Salmaso (2010), Hemerik, Solari and Goeman
(2019)). To enhance statistical efficiency, we further recommend the semiparametric density
ratio model or DRM (Anderson (1979), Qin and Zhang (1997)) to link the multiple distribu-
tions of the response variable at different time points derived from a rotating sampling plan.
We use the empirical likelihood (Owen (2001), EL) to construct test statistics.

We now go over some specifics and assumptions. Let n = mN be the number of PSUs
sampled from the population initially in a rotating sampling plan. Here, m is the number of
PSUs replaced on each occasion, and N is the number of occasions in the rotating sampling
plan. When n = 36 and m = 6, six PSUs are replaced in each of the next N −1 = 5 occasions.
Let r be the number of SSUs drawn from each sampled PSU.

For ease of presentation, the number of SSUs sampled in each selected PSU is assumed
to be the same, although our approach works more generally. The super-population nature
of the targeted application makes it natural to regard the sampling of PSUs be done with
replacement. This assumption facilitates methodological developments, though it may lead
to harmless conservative inference procedures. Hence, it is widely accepted in the survey
context (Rao and Shao (1992)). We denote the data obtained on SSUs, sampled from a
PSU, as yk,i = (yk,i,1, . . . , yk,i,r )

τ . To simplify the notation, we let yk = {yk,i : i ∈ sk} with
k = 0,1,2, . . . ,K and sk being the set of PSUs in the sample on occasion k. We assume that
vector yk,i , for i ∈ sk , have the same multivariate distribution, denoted by Fk(y), for data
in occasion k. Namely, this data set is representative of the super-population at occasion k.
This simplification assumption may not be suitable when the rotating sampling plan contains
some complex features. For instance, the inclusion probability of a PSU may depend on some
covariates or on the response values of its SSUs, making the plan informative (Pfeffermann
and Sverchkov (2009)). Ignoring these factors may yield to large biases and erroneous in-
ference. Tackling these issues must be guided by the real-world application. We are getting
better understanding of such issues and hope to tailor the proposed method to these plans in
the future.

The observations within each yk,i (for fixed k, i) are dependent because they are SSU val-
ues from the same PSU and obtained on the same occasion. This leads to within-population
cluster/random effects. Data in yk1,i and yk2,i , with k1 �= k2 and fixed i, are collected from the
same PSU on two occasions. Their connection through shared PSU likely leads to longitudi-
nal cluster/random effects. In summary, the data collected by a rotating sampling plan have
both longitudinal and cross-sectional clustering structures.

2.2. Properties of the population and sampling plan. Let sk be the indices of the PSUs
included in the kth sample (k = 0,1, . . .). To fix ideas, we highlight the following properties
of the population and data from rotating sampling plans:

1. Multiple samples are collected on several occasions from the same grand population
via a rotating sampling plan, and the response values for the same unit may evolve.
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2. Each cluster i forms a vector-valued time series of responses yk,i over k = 0,1, . . . ,K .
The time series formed by different clusters are mutually independent.

3. The joint distribution Fk of yk,i , which is common for all i, is exchangeable with
marginal distribution Gk .

4. The marginal distributions of any single response Gk , k = 0,1, . . . ,K , satisfy the DRM
to be specified in equation (5) with a known basis function q(·). For expository simplicity the
specific features of the DRM will be given later.

5. When Gk = Gk+1, the joint distributions of {yt,i , t = 0,1, . . . , k − 1, k, k + 1, . . . ,K}
and {yt,i , t = 0,1, . . . , k − 1, k + 1, k, . . . ,K} are identical for any i.

The properties above, except No. 4, are not too technical and are plausible in the targeted
applications. The DRM assumption in No. 4 is also reasonable: its validity mostly relies on
the nonradical evolution of the population characteristics. Using this model leads to improved
efficiency when it is approximately satisfied. The efficiency gain remains when this assump-
tion is mildly violated, as we will show in the simulation section.

We note that Gk is the distribution of the response value of a single SSU randomly se-
lected from the kth population. In this paper we propose a permutation test for hypotheses
concerning functionals of Gk , based on multiple samples collected via the rotating sampling
plan described above.

3. Permutation tests. Let F be the data-generating distribution and R a test statistic
designed to test a null hypothesis against a specific alternative hypothesis: H0 and Ha . We
assume that a larger R supports F ∈ Ha . To construct a test of size α ∈ (0,1), we look for a
constant cα such that

sup
{
P(R > cα|F) : F ∈ H0

} = α.

Let the observed value of R be Robs. The test rejects H0 if Robs > cα . One may equivalently
compute a p-value

p = sup
{
P(R > Robs|F) : F ∈ H0

}
and reject H0, when p ≤ α, for that will imply Robs > cα and hence rejection by the
Neymann-Pearson hypothesis-testing criterion.

Given the above, the ultimate task of developing a valid test is to find an effective statistic R

and a way to compute the resulting p-value while bypassing the need to specify cα explicitly.
In the context of tests based on multiple samples from a rotating sampling plan, let

Rn = Rn(y0,y1, . . . ,yK)

be the test statistic of choice, with the subindex added to highlight its dependence on the
sample size. Suppose the population distribution does not change from occasion 0 to occasion
1: namely, G0 = G1. Then, (y0i ,y1i ) and (y1i ,y0i ) have the same distribution for all i ∈
s0 ∩ s1. Taking advantage of this symmetry, we design a permutation procedure as follows:

Step I. For each j ∈ s0 ∩ s1, generate a random permutation (a, b) of (0,1), independent
of all other random variables, such that

(1) P
{
(a, b) = (0,1)

} = P
{
(a, b) = (1,0)

} = 0.5,

and let (y∗
0,j ,y∗

1,j ) = (ya,j ,yb,j ). Let y∗
0,j = y0,j and y∗

1,j = y1,j for j ∈ s0 − s1 and j ∈
s1 − s0, respectively.

Step I+. Let |s0 − s1| be the number of units in (s0 − s1). Draw |s0 − s1| units from
(s0 − s1) ∪ (s1 − s0), using simple random sampling without replacement. Denote the re-
sulting clustered observations by y∗

0i (i = 1,2, . . . , |s0 − s1|) and the remaining clustered
observations by y∗

1i (i = 1,2, . . . , |s1 − s0|).
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Step II. Form a permuted multiple-sample {y∗
0,j , j ∈ s0}, {y∗

1,j , j ∈ s1}, and y∗
ik = yik for

i ∈ sk for k = 2, . . . ,K .

We now present the proposed permutation test.

PERMUTATION TEST. For each permuted multiple-sample, compute the value of the test
statistic

R∗
n = Rn

(
y∗

0,y∗
1, . . . ,y∗

K

)
.

Generate permutation samples repeatedly and independently, say M = 10,001 times. Com-
pute the permutation test p-value

p∗ = Proportion of
{
R∗

n > Robs
}
.

Reject the null hypothesis if p∗ < α where α is the nominal level of the test.

In applications the practitioner conducts the test on a single data set, whereas in research
projects analyses may be done with thousands of simulated data sets. Hence, it is computa-
tionally affordable to choose a large M in applications. The margin of error of p∗ with the
currently recommended M is about (0.95 × 0.05)0.5 × 1.96/M0.5 ≤ 0.005. Allowing M to
be an odd number helps to avoid minor operational issues. In our simulation study we use a
much smaller M to allow for a large number of simulation repetitions. Our reliance on the
average performance of the tests, rather than on accurate approximations in each repetition,
validates our choice of a smaller M .

THEOREM 3.1. Let (y∗
1,y∗

2, . . . ,y∗
K) be a permutation multiple-sample obtained via

Steps I and II above. Assume that the null hypothesis G0 = G1 is true, and the model as-
sumptions specified in the summary subsection hold. Then, we have the following results:

(a) R∗
n = Rn(y∗

0,y∗
1, . . . ,y∗

K) has the same distribution as Rn(y0,y1, . . . ,yK).
(b) Given {y0,y1, . . . ,yK}, R∗

n has a discrete uniform distribution over all possible values
in the range of Rn(y∗

0,y∗
1, . . . ,y∗

K).

PROOF. (a) When the null hypothesis holds, the joint distribution of (y0,i ,y1,i ,y2,i , . . . ,

yK,i) is the same as that of (y1,i ,y0,i ,y2,i , . . . ,yK,i) for all i, including all i ∈ (s0 −s1)∪(s1 −
s0). At the same time, y0,i ,y1,i ,y2,i , . . . ,yK,i with different i’s are mutually independent.
Therefore, the permutation Step I results in a new data set whose joint distribution remains
the same as that of {yk,i , i ∈ sk, k = 0,1, . . . ,K}. Therefore, R∗

n = Rn(y∗
0,y∗

1, . . . ,y∗
K) has

the same distribution as Rn(y0,y1, . . . ,yK).
(b) The permutation prescribed in equation (1) ensures that every permutation outcome

has an equal probability. Hence, R∗
n has a uniform distribution on these possible values. This

argument ignores rare but possible ties among these values. In such cases we interpret the
uniform distribution as a distribution with probabilities proportional to the cardinality of each
distinct permutation outcome. �

REMARK 1. The observed value Robs of Rn may be regarded as one random outcome of
R∗

n . The conclusions in the above theorem hence ensure that the type I error of the permutation
test equals the nominal level, excluding the round-off error.

REMARK 2. The alternative hypothesis does not appear relevant in the proof or theorem
statement, but it matters for the actual test. It determines the choice of the test statistic Rn.
We choose the Rn that is the most sensitive to the departure of the distribution in the direction
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of Ha , rather than arbitrary departures from the null hypothesis. For this reason the stochastic
size of Rn should increase when the data-generating distribution F is conceptually deep in
Ha and far from H0. In our target application, for example, if Ha states that the population
mean of G1 is larger than that of G0, then an effective choice of Rn is the difference in the
two sample means (namely ȳ1 − ȳ0). A larger difference in the population means leads to a
stochastically larger difference in the sample means. If one chooses Rn to be the difference in
the two sample variances, the resulting test may also suggest that H0 (unequal mean) should
be rejected, but for a wrong reason.

REMARK 3. Step I+ permutes the units in (s0 − s1) ∪ (s1 − s0). The conclusion in The-
orem 3.1 breaks down when Step I+ is included: namely, R∗ may have a slightly different
distribution from Rn under H0. However, under the null hypothesis the difference introduced
by this extra step is minor. At the same time the units in (s0 − s1) ∪ (s1 − s0) contain crucial
information when Ha is true. Hence, we recommend that Step I+ be included. Our simulation
study shows that the type I errors are not affected.

REMARK 4. In applications, things may not go as planned. A few PSUs may drop out
from the rotating sampling plan. New mills may open, and dormant mills may resume pro-
duction. Some modification is needed: permute only units sampled on both occasions, and
use Step I+ to handle the unmatched mills.

4. Statistics of choice in permutation tests. In this section we propose some promising
statistics Rn for the permutation test. The choice of Rn affects the statistical efficiency but
not the validity of the test.

4.1. Straightforward choices of test statistics. Let the null hypothesis be H0 : G0 = G1
and the alternative be Ha : ξ(G0) > ξ(G1) with ξ(G) being the mean, the quantiles of G, or
another population parameter.

Two immediate choices are the classical t and Wilcoxon rank-sum statistics with the clus-
ter structure in the data ignored. The first one is

(2) T = ȳ0 − ȳ1√
(1/n0 + 1/n1)s2

.

Here, n0 and n1 are the numbers of SSUs sampled in occasions 0 and 1, ȳ1 and ȳ0 are the
sample means, and s2 is the pooled sample variance ignoring the cluster structure. The second
one is

(3) W = ∑
i∈s1

∑
j∈s0

∑
1≤u,v≤r

1(y0,i,u > y1,j,v),

where 1(·) is the indicator function and the summation is over all observations on occasions 0
and 1. The Wilcoxon statistic is usually normalized in order to use the central limit theorem,
but this is unnecessary when the permutation approach is applied.

These two tests were originally designed to handle IID data. The t-test further requires that
the data are from a normal distribution, and it detects the difference in the population means.
The Wilcoxon rank-sum test is nonparametric and primarily used to detect a location shift in
two distributions, although, in theory, it works only on the size of P(X < Y). Such limitations
are often overlooked in applications, yet the tests serve general purposes surprisingly well.
However, this is not true for clustered data. For such data the tests have inflated sizes (higher
type I errors) if the clustering and temporal dependence are ignored. The generalization of
the Wilcoxon test to independent clusters can be found in Datta and Satten (2005, 2008),
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and Rosner, Glynn and Lee (2006). Their results are not applicable to clustered data with
longitudinal random effects.

Let Ĝ0 and Ĝ1 be the distributions fitted by any reasonable method. We may use a straight-
forward statistic for the permutation test,

(4) Rn(y0,y1, . . . ,yK) = ξ(Ĝ0) − ξ(Ĝ1).

Obvious choices for Ĝ0 and Ĝ1 are the empirical distributions ignoring the cluster structure,
based on samples from G0 and G1. Another possibility will be given in the next section. We
are most interested in this type of statistic for population percentiles.

4.2. DRM-assisted choices. Under rotating sampling plans the multiple-samples are col-
lected from closely related distributions. They naturally share some intrinsic latent structure.
Accounting for this structure leads to more efficient estimates of G0 and G1 and, therefore,
more powerful permutation tests. We recommend the DRM introduced by Anderson (1979);
we believe that it fits a broad range of situations. The DRM has been successfully used by
many researchers, including Qin and Zhang (1997), Qin (1998), and Keziou and Leoni-Aubin
(2008).

The DRM links the population distributions Gk , k = 0,1,2, . . . ,K , by

(5) dGk(y) = exp
{
θ�

k q(y)
}
dG0(y)

for some prespecified basis function q(y) and parameter θk . Note that θ0 = 0 when G0 is
chosen as the base distribution. We require the first component of q(y) to be 1 to make
the first component of θ a normalization parameter. We use the EL of Owen (2001) as the
platform for the inference. In the spirit of the EL, we require G0 to have the form G0(y) =∑

k,i,u pk,i,u1(yk,i,u ≤ y). We construct the composite log likelihood function

�C
n (G0, . . . ,GK) = ∑

k,i,u

logpk,i,u + ∑
k,i,u

θ τ
kq(yk,i,u)

with the summation over all possible indices (k, i, u). The DRM assumption implies the
constraints ∫

exp
{
θkq(y)

}
dG0(y) = ∑

k,i,u

pk,i,u exp
{
θ τ

kq(yk,i,u)
} = 1

for all k = 0,1, . . . ,K . The log-likelihood is “composite” because the observations involved
are dependent; see Lindsay (1988) and Varin, Reid and Firth (2011) for an introduction to
and a general discussion of the composite likelihood.

Given θ1, . . . , θK , maximizing �n(G0, . . . ,GK), with respect to G0, leads to the profile
log empirical likelihood function (in the same notation),

(6)

�C
n (θ) = �C

n (θ1, . . . , θK)

= sup
{
�C
n (G0, . . . ,GK) : ∑

k,i,u

pk,i,u exp
{
θ τ

j q(yk,i,u)
} = 1; j = 0,1, . . . ,K

}
.

Suppose θ̂1, θ̂2, . . . , θ̂K are maximum EL estimators under DRM. The corresponding fit-
ted distribution functions are

(7) Ǧj (y) = ∑
k,i,u

p̂k,i,u exp
(
θ̂

τ

j q(yk,i,u)
)
1(yk,i,u ≤ y).

They can then be used in (4) to form statistics for the permutation tests. We give some specific
statistics next.
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Detecting changes in quantiles under DRM. Let ξα(G) be the (100α)th percentile of G with
H0 and Ha being ξα(G0) = ξα(G1) and ξα(G0) > ξα(G1), respectively. The solution for the
two-sided alternative follows the same principle.

Under the DRM assumption we give two choices. The first choice is to let

Rn = ξα(Ǧ0) − ξα(Ǧ1),

where Ǧ0 and Ǧ1 are the fitted distribution functions given in (7). Note that Ǧ1(y) is a
discrete distribution assigning probability p̂k,i,u exp(θ̂

τ

1q(yk,i,u) to yk,i,u. Once θ̂1 is obtained,
the rest of the calculation is very simple. How to compute θ̂ j will be explained later.

The second choice is the empirical likelihood ratio statistic with a computationally friendly
alternative. We first pool the samples from G0 and G1 to obtain the (100α)th sample per-
centile: ξ̂α . We then compute the profile constrained composite empirical likelihood

(8)

�CC
n (θ) = sup

{∑
k,i,u

logpk,i,u + ∑
k,i,u

θ τ
kq(yk,i,u) :

∑
k,i,u

pk,i,u exp
{
θ τ

s q(yk,i,u)

} = 1 for s = 0,1, . . . ,K;

∑
k,i,u

pk,i,u exp
{
θ τ

s q(yk,i,u)

}{
1(yk,i,u ≤ ξ̂α) − α

} = 0 for s = 0,1
}
.

The recommended statistic for a permutation test is then

(9) Rn,ξ = sup�C
n (θ) − sup�CC

n (θ).

Against two-sided alternative (ξα(G0) �= ξα(G1)) as in many applications, we directly use
Rn,ξ in the permutation test. In our targeted application the alternative is one-sided. We use
sgn(ξα(G0) − ξα(G1))Rn,ξ in the permutation test.

We use an R-function, called multiroot, from the R package rootSolve to solve the op-
timization problem. It solves equations formed by the Lagrange multiplier method for con-
strained maximization. With the corresponding derivative functions provided, this R-function
works well. The details are given in the Appendix.

Detecting changes in the mean under DRM. Suppose we wish to test for μ0 = μ1. Once
the fitted Ǧj (y) is obtained, as given in (7), we can compute their means and construct a
test statistic based on their differences. However, when q(y) = (1, y, . . .), the mean of Ǧk(y)

equals the sample mean of the data from Gk . Hence, this test reduces to t-test in spirit, except
for normalization constant. We, therefore, do not consider this test.

At the same time the DRM based likelihood ratio test is viable. To reduce computational
burden, we modify the statistic slightly. We first pool the samples from G0 and G1 to obtain
the pooled sample mean μ̂01. We then compute the profile constrained composite empirical
likelihood

�CC
n (θ) = sup

{∑
k,i,u

logpk,i,u + ∑
k,i,u

θ τ
kq(yk,i,u) :

∑
k,i,u

pk,i,u exp
{
θ τ

s q(yk,i,u)

} = 1 for s = 0,1, . . . ,K;

∑
k,i,u

pk,i,u exp
{
θ τ

s q(yk,i,u)

}{yk,i,u − μ̂01} = 0 for s = 0,1
}
.

The recommended statistic for a permutation test is then

(10) Rn,μ = sup�C
n (θ) − sup�CC

n (θ)

with �C
n (θ) given in (6). We use its signed version when the alternative is one-sided.
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5. Populations satisfying model assumptions. To support the proposed permutation
test under the DRM with clustered data and as preparation for a meaningful simulation study
and real data case study, we set up several examples.

EXAMPLE (Normal data). Let εk,i,u, for k = 0,1, . . .; i = 1,2, . . .; u = 1,2, . . . be IID
standard normal random variables. Let ηi , i = 1,2, . . . be IID standard normal random vari-
ables and ηk,i , k = 0,1, . . .K , i = 1,2, . . . another set of IID standard normal random vari-
ables, where these are mutually independent of εk,i,u. Let

yk,i,u = μk + σk,1ηi + σk,2ηk,i + σk,3εk,i,u

for some nonrandom constants μk and σk,j , j = 1,2,3.
Based on this construction, the random variables yk,i,u, u = 1,2, . . . with fixed k, i are not

independent but are identically and normally distributed. Their joint distribution is exchange-
able within the cluster indexed by (k, i). Furthermore, observations on the units in the same
cluster taken on different occasions, for example, yk1,i,u1 and yk2,i,u2 , k1 �= k2, are correlated
through the shared random effect ηi . Given k, the random variables yk,i,u over i = 1,2, . . .

and u = 1, . . . , r have identical marginal distributions. We denote this distribution by Gk . It
is easy to verify that G0(y),G1(y), . . . ,GK(y) satisfy the DRM conditions with the basis
function q(y) = (1, y, y2)τ .

In this model, μk is the nonrandom effect specific to the population on occasion k. The
random effect ηi is specific to the ith cluster and shared over different occasions through the
moderator σk,1. The random effect ηk,i is specific to cluster i and independent over different
occasions. The response value of the uth unit in the ith cluster on occasion k is given by
yk,i,u.

EXAMPLE (Gamma data). A one-parameter Gamma distribution has a degree of freedom
parameter γ with density function

g∗(y;γ ) = yγ−1 exp{−y}1(y ≥ 0)/
(γ ),

where 
(γ ) is the well-known Gamma function.
Let x be a vector and a and b two real numbers. We denote the vector comprised of axi +b

as ax+b. With this convention we create a complex cluster structure through the operation for
k = 0,1, . . . ,K and j = 1,2, . . .: yk,j = λk(εj + εk,j + xk,j ). The elements of the stochastic
models for yk,j are specified as follows:

1. The εj are independent with distribution g∗(y;γ1). Given cluster j , its value remains
the same for all k, so this term leads to a longitudinal random effect.

2. The εk,j are independent with distribution g∗(y;γ2). It is shared by the entries in cluster
j on occasion k, and this design leads to the cross-sectional random effect.

3. xk,j is a vector of independent random variables with distribution g∗(y;ηk) where ηk is
the degrees of freedom of occasion k. They contribute most of the variations in the response
vector y. The difference in ηk leads to changes in the marginal distribution.

4. λk introduces additional scale fluctuations over the occasions.

The marginal distributions of yk,i,u are k-specific and denoted by Gk . Because of the inde-
pendence between xk,j,u, εk,i , and εj , and the property of the Gamma distribution, Gk is also
a Gamma distribution with rate parameter λk and degrees of freedom γ1 + γ2 + ηk . Gamma
distributions satisfy the DRM specified in (5) with q(y) = (1, y, log(y))τ .

In summary, by generating multiple samples from this model we obtain {yk,i , i ∈ sk}Kk=0
with both longitudinal and cross-sectional random effects, as described in Section 2.
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EXAMPLE (General data). Consider a population made of a large number of realized val-
ues of a random sample from a super-population F . Denote these as xk,i,u with (k, i, u) carry-
ing no structural information at the moment. Let yk,i = ϕ(xk,i,1, . . . , xk,i,r; εk,i, εi), where:

1. ϕ(·; εk,i, εi) is an r-dimensional vector-valued function, symmetric in xk,i,1, . . . , xk,i,r ;
2. εi : i = 1,2, . . . are IID;
3. εk,i are independent for different (k, i), and they are identically distributed given k.

In this general setting the multiple samples {yk,i , i ∈ sk}Kk=0 have the cross-sectional and
longitudinal random effects described in Section 2. In addition, when Gk = Gk+1 for some
k, exchanging yk,i and yk+1,i for any subset of i in sk ∩ sk+1 does not change the joint
distribution of the multiple sample. At the same time the population distributions clearly
share some general properties. A DRM with an appropriately rich basis function q(y), such
as q(y) = (1, y, y2, logy) when y takes positive values, will be a good approximation for the
population distributions G0,G1, . . . ,GK .

6. Simulation experiments. In this section we present simulation results to illustrate
the effectiveness and necessity of the proposed permutation test. We consider the problem of
testing for changes in the mean and for changes in quantiles.

6.1. Data with normal distributions. We generate data from the normal model, as de-
scribed in the last section. The specific model parameters are chosen as follows:

1. The number of occasions/populations is K + 1 = 5.
2. The number of units per cluster is either r = 5 or r = 10.
3. The standard deviations are either (σ1, σ2, σ3) = (1,1,2) or (1,2,3).
4. The population means vector is one of: (8,8, . . .), (8,7.6, . . .), and (8,7.2, . . .) with

unspecified means randomly generated on each repetition as 8 + 0.5N(0,1).
5. The number of clusters (primary units) in each sample is either n = 36 or n = 48. The

rotating sampling plan replaces m = 6, or m = 8 clusters on each occasion.

The above choices lead to 2 × 2 × 4 × 2 = 32 distinct settings. Compounded with the
permutations, this leads to a computation heavy analysis. We must reduce the computational
burden. Since the overall sample size increases either with more clusters or with larger cluster
sizes, in the simulation we avoid the option of increasing both sample size and cluster size.
These settings cover a broad range of qualitatively different situations:

• With different values of (σ2, σ3), we learn the performance of these tests for both relatively
weak and strong cross-sectional cluster effects.

• We learn if DRM-based methods benefit from their ability to borrow strength, compared
with methods that use only information in the samples from the populations of interest.

• With different cluster sizes or numbers of clusters, we learn about the consistency of these
tests. That is, the power increases to 1 when the sample size goes to infinity.

We consider the problem of testing whether the strength distribution has a smaller
mean/percentile in the second occasion. When the means vector is set to (8,8, . . .), the first
two distributions are identical. The rejection rate of a test in this case reflects its size. The re-
jection rate of any effective test should be higher when the population means vector changes
to (8,7.6, . . .) or (8,7.2, . . .), where the alternative hypothesis holds.

In the simulations we set the nominal level to 5%, the number of repetitions to 1000, and
the number of permutations to 501. We recommend a much larger number of permutations
in applications. In the simulations the rejection rates are averages of 1000 repetitions. The
precision of the individual p-values has little impact on evaluating the overall performance
of the permutation test.
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TABLE 1
Rejection rate of tests for equal means with clustered normal data. Notice that the asymptotic tests, unlike the

permutation tests, have inflated type I errors; see the line corresponding to a means vector of (8.0,8.0)

(σ1, σ2, σ3) = (1,1,2) (σ1, σ2, σ3) = (1,2,3)

Asymptotic Permutation Asymptotic Permutation

(μ0,μ1) T W T W Rμ T W T W Rμ

K + 1 = 5, r = 5, n = 36

(8.0,8.0) 9.6 8.8 4.3 4.0 4.2 13.1 12.5 5.6 5.6 5.7
(8.0,7.6) 48.6 46.1 32.0 30.9 32.0 32.4 32.1 15.7 14.8 15.6
(8.0,7.2) 86.5 85.4 74.9 74.1 74.9 61.8 60.4 37.9 36.3 37.4

K + 1 = 5, r = 10, n = 36

(8.0,8.0) 14.7 13.9 4.4 4.3 4.4 21.1 21.1 4.6 4.3 4.7
(8.0,7.6) 60.5 59.7 36.5 35.8 36.4 45.3 45.0 19.3 19.9 19.3
(8.0,7.2) 95.0 94.3 82.1 81.9 82.0 72.9 71.9 42.2 40.9 42.2

K + 1 = 5, r = 5, n = 48

(8.0,8.0) 8.8 8.2 4.1 4.8 4.0 12.2 12.2 4.9 4.9 4.9
(8.0,7.6) 54.8 54.4 37.7 38.0 37.6 39.7 39.0 21.3 20.8 21.2
(8.0,7.2) 93.2 92.0 86.3 85.3 86.3 67.0 65.9 48.6 47.4 48.5

6.1.1. Population mean. We include three asymptotic tests: tests based on T and W , as
in (2) and (3), with rejection decisions made based on their limiting distributions ignoring
cluster structure. We also include three permutation tests, based on T , W , and Rμ, defined in
(10) with rejection decisions made based on the p-value evaluated by the proposed permuta-
tion approach. For convenience, we refer to the former as asymptotic tests and the latter as
permutation tests. Here, H0 claims that the first two populations have equal means and the
test is one-sided, so Ha claims that the second mean is smaller. Table 1 gives the simulation
results; the rejection rates are in the Asymptotic and Permutation columns.

The setting with (μ0,μ1) = (8.0,8.0) lies on the boundary of the null hypothesis. When
r = 5 and n = 36, two asymptotic tests have much higher than the nominal level rejection
rates. The lowest one is 8.2%, and the highest is 21.1% at 5% level. The inflated type I errors
of asymptotic tests, based on T and W , are due to ignoring the clustering structure. These
rates are much closer to the nominal 5% for the permutation tests. The worst case is a null
rejection rate of 5.7%, which is still in the range of the simulation error, given the 1000
repetitions. The comments on type I errors remain whether the cluster size is increased to
r = 10 or the number of clusters is increased to n = 48.

In each of the block of r = 5 and n = 36, block of r = 10 and n = 36, or block of r = 5 and
n = 48, the rejection rates increase when (μ0,μ1) change from (8.0,8.0) to (8.0,7.6) and
to (8.0,7.2). These additional results are as expected and give general support to the validity
of our simulation experiments. We also observe that their permutation tests have compara-
ble powers in all cases. This observation extends to the next two simulation experiments.
Considering the W test is nonparametric, this is rather surprising.

The general message is that ignoring the cluster structure leads to inflated type I errors
for asymptotic tests. Our permutation procedure is an effective way to handle the cluster-
ing induced by the rotating sampling plan. The differences between three test statistics are
negligible. As this remains the same in other simulation experiments, we recommend the
permutation t-test for its computational advantage.
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6.1.2. Percentiles. Percentiles are of particular interest in many applications, but neither
the t-test nor the w-test are designed to detect their changes. In this section we examine
permutation tests based on the following statistics introduced earlier:

REM = ξα(Ĝ0) − ξα(Ĝ1),

REL = ξα(Ǧ0) − ξα(Ǧ1),

and Rn,ξ defined in (9).
Note that REM is based on the empirical distributions Ĝ0 and Ĝ1, REL is based on the fit-

ted distributions Ǧ1 and Ǧ0 under the DRM with the basis function vector q(x) = (1, x, x2)τ

since we know that the marginal distributions are normal. No corresponding asymptotic the-
ory is available for these statistics, but the permutation-based methods do not rely on asymp-
totic theory. We denote these tests by REM, REL, and Rn,ξ in Table 2.

We consider two null hypotheses: the first two distributions have the same fifth percentile
or the same 50th percentile. The alternative hypotheses claim that the second distribution has
lower percentiles. The rejection rates of these tests are presented in Table 2.

Based on Table 2, we notice that all permutation tests have well-controlled type I errors.
The DRM based permutation test has superior power. One will notice that this observation
remains true in the next two simulation experiments. Due to computational simplicity with
similar power properties, we recommend REL in applications.

A comparison of the results in the left and right halves of the table shows that the sizes of
the permutation tests are not affected by the strength of the random effects. When the random
effects are strong, the data contain less information. Hence, the powers on the right half of the
table are generally lower. The powers increase when the cluster size increases or the number
of clusters increases.

Finally, it is clear that change in a lower percentile is harder to detect than change in the
median under a nonparametric model assumption. This explains the power differences for
testing the changes in the fifth and 50th percentiles. The simulation results are consistent

TABLE 2
Rejection rate of tests for equal percentiles with clustered normal data. Notice that all tests have accurate type I

errors; see the line corresponding to a means vector of (8.0,8.0)

(σ1, σ2, σ3) = (1,1,2) (σ1, σ2, σ3) = (1,2,3)

5th percentile 50th percentile 5th percentile 50th percentile

(μ0,μ1) REM REL Rn,ξ REM REL Rn,ξ REM REL Rn,ξ REM REL Rn,ξ

K + 1 = 5, r = 5, n = 36

(8.0,8.0) 5.9 4.0 4.4 4.1 4.3 4.3 4.4 4.1 4.2 5.0 5.6 5.6
(8.0,7.6) 16.9 21.3 20.8 28.5 32.2 31.9 10.3 10.7 11.1 13.9 15.7 15.3
(8.0,7.2) 39.7 49.0 47.6 65.3 75.2 74.5 20.3 21.4 21.0 31.2 38.2 37.6

K + 1 = 5, r = 10, n = 36

(8.0,8.0) 4.8 5.3 5.0 4.5 4.5 4.5 4.6 4.8 4.7 5.0 4.6 4.7
(8.0,7.6) 19.9 23.6 23.7 29.9 36.3 35.9 15.6 15.1 15.0 19.2 19.6 19.9
(8.0,7.2) 48.6 57.2 56.7 77.4 81.7 81.7 27.5 30.9 29.9 38.0 42.4 42.3

K + 1 = 5, r = 5, n = 48

(8.0,8.0) 4.3 4.2 4.4 4.9 4.1 3.9 5.7 6.2 6.0 4.4 4.7 4.7
(8.0,7.6) 21.6 25.5 25.0 33.8 37.9 38.0 11.7 13.9 13.7 19.5 20.8 20.4
(8.0,7.2) 51.8 60.6 59.6 76.9 86.4 86.3 26.8 30.7 30.0 41.3 48.7 48.1
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with this intuition, and they also serve as sanity check. One may also conclude from the
results in Tables 1 and 2 that detecting changes in the median (50th percentile) is harder than
detecting changes in the mean.

6.2. Data with Gamma distributions. In this section we generate data from the Gamma
model with the parameters chosen as follows:

1. The degrees of freedom vector (η0, η1, . . .) = (8.0,8.0, . . .), (8.0,7.6, . . .), or (8.0,7.2,

. . .) with unspecified entries randomly generated in each repetition from 8 + 0.5N(0,1).
2. The degrees of freedom vector is (γ1, γ2) = (2.0,1.5) or (2.0,3.0).
3. The scale parameter is (1.0,1.0, . . .) with unspecified entries randomly generated in

each repetition as 1 + 0.2U , U being a uniform [0, 1] random variable.

Similar considerations apply to this case. The above settings enable us to examine the
performance of these tests in a broad range of situations. We use q(x) = (1, logx, x) under
the DRM assumption. The other specifications are the same as those in the section on normal
data.

6.2.1. Population means. We now mimic the simulation conducted with the normal data.
The null hypothesis is that the first two populations have the same mean, and the alternative
is that the second population has a smaller mean. The qualitative findings from the results
in Table 3 generally mirror those in Table 1. We again see the inflated type I errors of the
asymptotic tests and well-controlled type I errors for the permutation tests. The powers of the
permutation tests increase with increased cluster size or increased number of clusters. The
powers of the permutation test in the left half are higher than the powers in the right half of
the table. It hints the data are more informative when γ values are smaller. We observe that
the DRM based permutation tests have comparable powers. Our point is on the success of
permutation tests in various situations, and this point remains clear in this simulation.

TABLE 3
Rejection rate of tests for equal means clustered Gamma data. Notice that the asymptotic tests, unlike the
permutation tests, have inflated type I errors; see the line corresponding to a means vector of (8.0,8.0)

(γ1, γ2) = (2,1.5) (γ1, γ2) = (2,3.0)

Asymptotic Permutation Asymptotic Permutation

(η0, η1) T W T W Rμ T W T W Rμ

K + 1 = 5, r = 5, n = 36

(8.0,8.0) 8.9 8.5 4.4 4.4 4.5 16.1 15.1 4.5 4.5 4.5
(8.0,7.6) 34.5 33.2 22.8 22.3 22.7 46.1 45.9 19.4 21.4 19.3
(8.0,7.2) 68.8 68.4 53.7 56.2 53.6 77.9 78.3 49.7 49.7 49.4

K + 1 = 5, r = 10, n = 36

(8.0,8.0) 12.6 13.4 4.3 5.0 4.2 19.1 19.3 5.6 5.7 5.6
(8.0,7.6) 51.9 50.3 29.4 29.6 29.5 46.9 46.7 19.2 20.4 19.2
(8.0,7.2) 86.1 85.9 68.0 67.6 67.9 76.5 76.7 46.2 47.1 46.2

K + 1 = 5, r = 5, n = 48

(8.0,8.0) 14.1 13.2 5.2 5.8 5.3 11.3 11.7 5.3 4.7 5.3
(8.0,7.6) 53.6 53.9 31.5 31.6 31.6 38.0 39.0 21.5 22.4 21.4
(8.0,7.2) 92.0 92.3 76.8 77.6 76.6 71.1 71.0 53.4 53.9 53.4
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TABLE 4
Rejection rate of tests for equal percentiles with clustered Gamma data. Notice that all tests have accurate type I

errors; see the line corresponding to a means vector of (8.0,8.0)

(d2, d3) = (2,1.5) (d2, d3) = (2,3.0)

5th percentile 50th percentile 5th percentile 50th percentile

(η0, η1) REM REL Rn,ξ REM REL Rn,ξ REM REL Rn,ξ REM REL Rn,ξ

K + 1 = 5, r = 5, n = 36

(8.0,8.0) 5.6 4.1 4.1 5.1 4.1 4.1 4.7 4.0 3.8 4.5 4.4 4.2
(8.0,7.6) 14.4 16.5 16.4 20.2 22.2 22.3 14.4 15.7 15.3 18.0 21.5 21.4
(8.0,7.2) 30.6 37.2 36.1 47.0 56.8 56.4 31.6 35.9 35.4 46.3 50.9 51.0

K + 1 = 5, r = 10, n = 36

(8.0,8.0) 4.3 5.0 5.2 4.4 4.7 4.6 5.2 5.9 6.0 4.8 5.7 5.6
(8.0,7.6) 22.1 18.6 20.0 27.6 27.1 30.3 17.0 12.9 15.1 17.8 19.5 19.6
(8.0,7.2) 44.8 51.6 51.3 61.7 68.6 68.8 30.2 32.9 32.4 44.0 47.5 47.6

K + 1 = 5, r = 5, n = 48

(8.0,8.0) 6.6 4.6 4.5 5.6 5.2 5.2 5.0 5.3 4.8 4.7 5.2 5.2
(8.0,7.6) 20.9 24.7 24.1 27.4 33.0 32.9 14.1 17.2 16.9 20.5 21.9 21.7
(8.0,7.2) 50.0 59.8 59.7 70.1 78.8 78.9 29.7 36.6 35.8 47.7 54.2 54.4

6.2.2. Percentiles. We now move to testing hypotheses specifying equal fifth and 50th
percentiles for the first two populations in the multiple samples. The alternative hypotheses
are one-sided: ξ(G0) > ξ(G1). The simulation results are in Table 4. The type I errors of the
permutation tests are well controlled.

In all cases the powers of these tests increase when either the cluster size or the number of
clusters increases. The differences between the left and right halves do not give much more
information, and both support the general claims in this paper. We observe that the DRM-
based permutation tests have superior powers. The support to the permutation tests and the
use of DRM remain strong.

6.3. Data from no-name distributions. In many applications, historical data sets of the
same nature are available. This paper recommends DRM to extract latent information from
multiple samples to enhance efficiency. When applying the DRM, we must choose a basis
function. In simulations we usually generate data from classical distributions, and so an ap-
propriate basis function is readily available. In a parallel research project on a data-adaptive
choice of the basis function, we have found that the performance is enhanced under the DRM
assumption with q(y) = (1, log |y|, y, y2). We demonstrate this point in this section: the per-
mutation tests still have well-controlled type I errors, and there can be efficiency gains under
the DRM assumption.

We generate clustered data with all the features under a rotational sampling plan. We en-
sure that the population distributions share some latent features, but simple basis functions
are not available. Nevertheless, we complete the simulation, as in the last two sections, for
EM, EL, and ELR with q(y) = (1, log |y|, y, y2) when the DRM is assumed. Specifically, the
data are generated as follows:

1. Form a finite population P = {x1, x2, . . .} having a considerable size, based on data
from a real-world application.

2. Randomly generate εj , εk,j from the standard uniform distribution. Let bk,j (x) =
exp{σ1εj + σk,2εk,j logx} for some positive constants σ1 and σk,2.
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Sample r values, (λk,j,1, . . . , λk,j,r ), from a Gamma distribution with 20 degrees of free-
dom and scale parameter 0.05. Randomly draw r values x from P with probability propor-
tional to bk,j (x) to form a cluster yk,j = (λk,j,1xk,j,1, . . . , λk,j,rxk,j,r ).

3. Form multiple samples from a rotational sampling plan as

{y0,j : 1 ≤ j ≤ mN}; {y1,j : 1 + m ≤ j ≤ mN + m}; · · · · · · .

Here are some explanations. Step 1 creates a grand population, and Step 2 uses a bi-
ased sample technique to mimic the evolution of the strength distribution over occasions
k = 0,1, . . . ,K . The random numbers εj and εk,j induce longitudinal and cross-sectional
random effects; we use σ1 and σk,2 to adjust the strength of these effects. The λ values are
introduced to avoid identical observed values in multiple samples. Since these values have
mean 1 and small variance, this does not change the expected value from the case where
λ = 1 and is not random.

We simulated data with both σ1 = 2 and σ1 = 4 to examine the influence of the strength
of the longitudinal random effects. We successively set (σ0,2, σ1,2, . . .) = (6.0,6.0, . . .),
(6.0,4.5, . . .), and (6.0,3.0, . . .) with unspecified entries generated in each repetition from
3 + 2U , where U is a uniform [0, 1] random variable.

The base case has K + 1 = 5, cluster size r = 5, and number of clusters n = 36. We
then repeated the simulation with an increased cluster size r = 10 in one setting and with an
increased number of clusters n = 48 in another setting.

The finite population P in this simulation is formed from data collected by students run-
ning experiments in a lab located at FPInnovations, Vancouver (Cai et al. (2016)). It is made
up of 825 observed values of the MOR of a specific type of wood product. The sample mean
of this data set is 6.57 (1000 psi), and the sample variance is 2.82. The rest of the simulation
settings are the same as before. Simulation results are given in Tables 5 and 6.

The results mostly resemble the results in two other simulations. We do notice the type I
errors of the permutation tests when σ1 = 2, r = 10 and n = 36 are inflated. We take comfort
that they are still within margin of error for the simulation (1.96 × √

0.05 × 0.95/1000).

TABLE 5
Rejection rate of tests for equal means with clustered no-name data. Notice that the asymptotic tests, unlike the

permutation tests, have inflated type I errors; see the line corresponding to a means vector of (6.0,6.0)

σ1 = 2 σ1 = 4

Asymptotic Permutation Asymptotic Permutation

(σ0,2, σ1,2) T W T W Rμ T W T W Rμ

K + 1 = 5, r = 5, n = 36

(6.0,6.0) 17.5 17.6 5.2 5.1 5.4 17.5 17.9 4.3 5.0 4.4
(6.0,4.5) 34.5 32.9 12.3 12.5 12.2 32.7 31.7 11.0 10.2 10.3
(6.0,3.0) 54.7 55.2 25.8 26.4 25.6 52.0 51.1 23.7 23.7 23.6

K + 1 = 5, r = 10, n = 36

(6.0,6.0) 26.0 26.1 6.7 7.0 6.7 26.0 25.8 4.4 4.9 3.9
(6.0,4.5) 45.4 45.1 12.7 12.5 12.3 42.5 42.5 12.9 12.9 12.6
(6.0,3.0) 65.1 63.7 26.1 25.1 26.1 61.4 60.6 24.3 23.2 24.2

K + 1 = 5, r = 5, n = 48

(6.0,6.0) 19.9 19.2 5.1 4.7 5.0 19.6 20.7 4.8 5.3 4.8
(6.0,4.5) 40.8 40.2 16.6 15.6 16.5 35.1 34.7 13.2 12.9 13.0
(6.0,3.0) 62.1 62.1 33.2 32.7 33.1 56.6 56.3 31.0 29.7 30.9
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TABLE 6
Rejection rate of tests for equal percentiles with clustered no-name data. Notice that all tests have accurate type

I errors; see the line corresponding to a means vector of (6.0,6.0)

σ1 = 2 σ1 = 4

5th percentile 50th percentile 5th percentile 50th percentile

(σ0,2, σ1,2) REM REL Rn,ξ REM REL Rn,ξ REM REL Rn,ξ REM REL Rn,ξ

K + 1 = 5, r = 5, n = 36

(6.0,6.0) 5.2 4.8 4.9 5.1 5.3 5.3 4.6 5.4 5.4 4.8 4.9 4.5
(6.0,4.5) 10.1 10.0 9.6 12.2 12.4 12.3 9.3 8.7 8.3 10.3 10.8 10.8
(6.0,3.0) 18.8 19.5 19.6 25.0 26.3 26.3 17.3 16.8 16.8 22.3 21.1 21.6

K + 1 = 5, r = 10, n = 36

(6.0,6.0) 6.3 5.4 5.5 7.0 6.5 6.5 5.7 5.3 5.1 4.4 5.1 5.0
(6.0,4.5) 10.4 9.9 9.5 12.5 12.6 12.5 11.1 10.2 10.3 11.8 11.9 11.6
(6.0,3.0) 19.3 21.9 21.1 24.7 24.5 24.5 20.3 19.4 19.3 22.6 23.5 23.5

K + 1 = 5, r = 5, n = 48

(6.0,6.0) 5.6 5.8 5.4 4.2 4.6 4.5 5.2 4.5 4.6 5.8 5.6 5.7
(6.0,4.5) 11.6 11.8 11.6 14.2 14.5 14.5 11.8 11.6 11.6 11.9 13.3 13.1
(6.0,3.0) 20.1 22.1 21.5 30.6 31.2 30.9 18.9 20.8 20.2 25.9 28.7 28.4

There could be some other causes. We believe that this is not so important an issue and do
not investigate further here. In all other cases, for mean or for percentiles, the type I errors of
permutation tests fluctuates around the nominal level in a small range.

The powers of all the tests increase with the cluster size and with the number of clusters,
though not as markedly. Moreover, even when the data are from distributions that do not fully
conform to the DRM specifications, the inferences made under the DRM assumptions remain
valid; the power comparison to EM remains favorable, although not decisively so. Thus, we
recommend the use of the DRM without reservation.

6.4. The histogram of typical generated data in simulations. The simulation examples
were created based on our experience with the forestry data, though not from a rotating sam-
pling plan. We include a plot of histograms of two typical samples of size 1800 from the
normal and Gamma distributions, employed in the simulation, and the histogram of the MOR
data set of size 825; see Figure 1. A larger sample size than these in the simulation experiment

FIG. 1. Histograms of the simulated and historical data sets. The first two plots are simulated data, as in
Sections 6.1 and 6.2. The third plot are data used in Section 6.3.
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is chosen to depict the distributions more precisely. We notice that three data sets have differ-
ent scales but similar shapes. Hence, the conclusions derived from the simulation experiments
are useful references for real-world applications.

7. A real-world application. The National Lumber Grading Association of Canada
(http://nlga.org/en/) carries out a rotating sampling plan for monitoring the quality of lumber
for several different species groups. The samples are selected from across Canada to represent
the global lumber population. Initially, there were three sampling periods per year with the
year starting and ending in the fall. The goal was, in particular, to look for seasonal patterns
as well as trends over time. Data were collected on the mechanical strength of two lots of
five pieces each from each mill to capture possible effects due to time-of-day. The samples
provided came from 16 different sampling occasions over eight years that started in the fall
of 2010 and ended in the winter of 2018. There were three sampling periods (F, W and S
representing Fall, Winter and Summer, respectively) from 24 mills per year for the first four
years. Since no seasonal effects were found, there was one sampling period from 30 mills
per year for the last four years (2015–2018). Each year four mills were removed, and four
new ones were added. The result was a less costly plan, compared to taking cross sectional
samples that test 360 pieces per year from 36 mills.

The histograms of the modulus of rupture (MOR) from the Ramp-up (Ru) and years 2 and
3 of regular monitoring are given in Figure 2. The sample means, the fifth and 50th percentiles
are in Table 7 for the nine period samples within the three years.

To illustrate the application of proposed tests, we analyze the data collected on nine occa-
sions during the Ramp-up and years 2 and 3 of regular monitoring. We test whether there is a
significant change between each pair of years in the mean and in the fifth and 50th percentiles.
We carried out M = 10001 permutations of the matching mills between the years. The margin
of error, due to random permutation, is below 0.4% if the true type I error is around 5%. We
included asymptotic T, W tests, permutation Rμ tests for population means, and REM, REL
and Rξ for the fifth and 50th percentiles in this analysis. We used q(y) = (1, log |y|, y, y2) in
the EL-DRM approaches. The p-values of these tests for the three comparisons are given in
Table 8.

The results in Table 8 indicate that the Ramp-up (Ru) strength distribution is significantly
higher than those of years 2 and 3 in all three respects. The difference between years 2 and
3 is on the boundary of the significance. We believe there is some start-up effect, though this
issue is beyond the scope of this paper.

Regarding the change in population means, the mean strength of the Ru population is
clearly higher. Yet the extremely low p-values of the asymptotic T and W tests seem to

FIG. 2. MOR for the Ramp-up (Ru), years 2 and 3 monitoring samples in psi. Data were derived from data
collected in a rotating sampling plan by the National Lumber Grading Association of Canada.

http://nlga.org/en/
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TABLE 7
Period sample summary statistics for MOR in psi collected in a rotating
sampling plan by the National Lumber Grading Association of Canada

Period mean variance 5th percentile 50th percentile

Ru_F 7.07 3.59 4.15 6.99
Ru_S 7.38 4.21 4.14 7.42
Ru_W 7.32 4.20 3.62 7.49
yr2_F 6.73 3.97 3.86 6.49
yr2_S 6.59 4.14 3.40 6.43
yr2_W 6.98 3.77 3.93 6.98
yr3_F 6.59 3.34 3.82 6.50
yr3_S 6.68 3.85 3.47 6.69
yr3_W 6.31 3.48 3.32 6.28

have exaggerated the significance. The proposed permutation Rμ test also rejects the equal
mean hypothesis decisively yet with a much more sensible level of significance. The mean
difference between years 2 and 3 is noticeable but mild, calling a p-value of around 5%. The
proposed permutation REM has a matching p-value.

Regarding the change in the fifth and 50th percentiles between Ru and the other two pop-
ulations, all three permutation tests reject the equality assumption. The results for testing the
differences between year 2 and year 3 are interesting. The p-values of the fully nonparametric
permutation test REM are 0.31 and 0.16. It fails to build a case against the null hypotheses.
Neither REL nor Rn,ξ have a strong enough case at 5% nominal level. However, a closer
examination leads to some interesting details. Both REL and Rn,ξ tests build on a semipara-
metric DRM assumption. They are known to be more powerful when the DRM is suitable,
especially for Rn,ξ which is of likelihood ratio type. Evidently, both p-values of Rn,ξ tests
are close to the 5% nominal level for both fifth and 50th percentiles, and the p-value of REL
for the 50th percentile is close to 5%.

In conclusion, the results in Table 8 are in complete agreement with our theory: the asymp-
totic tests are to be avoided because they likely produce unrealistic small p-values, the pro-
posed permutation tests are reliable, and the DRM can enhance the power of the permutation
tests.

8. Summary and discussion. This paper develops novel permutation tests for compar-
ing/monitoring changes in mean, percentiles, or other parameters of an evolving population
based on data from a rotating sampling plan. The simulation and theoretical analyses pre-
sented in this paper show that the methods proposed in this paper are valid and effective.
The approaches ignoring cluster effects often fail to control the type I error. The use of DRM
improves the power of the tests.

TABLE 8
The p-values of the tests for all three comparisons between Ramp-up (Ru), years 2 and 3 of the National Lumber

Grading Association of Canada data

Parameter Mean 5th percentile 50th percentile

Test T W Rμ REM REL Rn,ξ REM REL Rn,ξ

Ru vs yr2 2.8e−06 1.1e−06 0.0015 0.038 0.010 0.010 0.0006 0.0015 0.0015
Ru vs yr3 3.7e−12 4.0e−12 0.0006 0.021 0.021 0.020 0.0005 0.0007 0.0008
yr2 vs yr3 1.1e−02 2.2e−02 0.0460 0.310 0.340 0.055 0.1600 0.0550 0.0560
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The rotating sampling plan could be implemented so that mills are sampled with the in-
clusion probability proportional to the volume of their produce. Some mills may drop out
and new mills may enter the population. The cluster sizes may fluctuate slightly between oc-
casions. Real world applications are more complex than we depicted. The permutation tests
investigated in this paper provide a starting point in these applications. We anticipate the
proposed approaches can be adapted in many applications nevertheless. Our results can be
tailored to real-world applications that do not fully fit into the current frame.

An anonymous referee drew our attention to some approaches in the literature that we
can amend to handle the cluster data from rotating sampling plan. We studied a modified t-
statistic, following the idea in Berg, Cecere and Ghosh (2014), and the linearization approach
of Francisco and Fuller (1991) for quantiles. Both statistics are asymptotically normal, there-
fore, permitting tests based on their limiting distributions. However, in our simulation studies
their asymptotic tests were repeatedly found to have inflated type I errors. We do not go after
the cause as it is not the focus of this paper, but this line of thinking holds some potential.

APPENDIX: COMPUTATIONAL ISSUES

The numerical implementation of most of our proposed permutation tests is straightfor-
ward. The implementation of the ELR is conceptually simple but involves some tedious steps.
To compute Rn defined following (8), we must solve the optimization problem supθ �CC

n (θ).
The constraints in the definition of �CC

n (θ) can be rewritten as∑
k,i,u

pk,i,u

[
exp

{
θ τ

s q(yk,i,u)
} − 1

] = 0, s = 0, . . . ,K;
∑
k,i,u

pk,i,u

[
exp

{
θ τ

s q(yk,i,u)
}
1(yk,i,u ≤ ξ̂α) − α

] = 0, s = 0,1.

Given θ , there always exists a p, the vector formed by {pk,i,u}, that solves the above equation
system, provided vector 0 is an interior point of the convex hull of{([

exp
{
θ τ

s q(yk,i,u)
} − 1

]K
s=0,

[
exp

{
θ τ

s q(yk,i,u)
}
1(yk,i,u ≤ ξ̂α) − α

]1
s=0

) :
k = 0, . . . ,K, i = 1, . . . , n;u = 1,2, . . . , r

}
.

The convex hull condition is universal and well known in the literature of empirical likeli-
hood (Owen (2001)). If this convex hull does not contain 0, the adjusted empirical likelihood
approach of Chen, Variyath and Abraham (2008) or the selfconcordance empirical likelihood
of Owen (2013) may be used. In the current application we can show that, as long as ξ̂α

does not fall outside either interval (mini,u ys,i,u,maxi,u ys,i,u) for s = 0,1, there always ex-
ist some θ values such that the convex hull condition is satisfied. In applications, if the joint
sample percentile ξ̂α has a nonextreme α value outside of one of these intervals, it is a strong
indication that the population has significantly changed in some direction. It is not urgent to
look into such rare possibilities.

Once the existence of a solution is ensured, the optimization problem can be solved via
the Lagrange multiplier method. Because of the nice properties of the DRM, we can find
a simpler set of equations that can be solved by the function multiroot in the R-package
rootSolve (Soetaert (2009), Soetaert and Herman (2009)). The details are as follows.

We first define a Lagrangian function,

g(t,λ, θ,p) = ∑
k,i,u

pk,i,u + ∑
k,i,u

θ τ
kq(yk,i,u)

−
K∑

s=0

ts

[∑
k,i,u

pk,i,u exp
{
θ τ

s q(yk,i,u)

} − 1
]



956 CHEN, LIU, TAYLOR AND ZIDEK

−
1∑

s=0

λs

∑
k,i,u

pk,i,u

[
exp

{
θ τ

s q(yk,i,u)

}
1(yk,i,u ≤ ξ̂α) − α

]

with t and λ of length K + 1 and two vectors of Lagrange multipliers.
The maximum of �CC

n (θ) is attained at the θ value that solves

g(t,λ, θ,p)

∂t
= 0; g(t,λ, θ,p)

∂λ
= 0; g(t,λ, θ,p)

∂θ
= 0; g(t,λ, θ,p)

∂p
= 0

together with some values of t, λ, and p.
Some algebra shows that the solution in t is given by ts = nr , where nr is the total number

of observations in each population in the rotating sampling plan, s = 0,1, . . . ,K , and the
elements of p satisfy

pk,i,u(λ, θ) =
{
(nr)

K∑
s=0

exp
{
θ τ

s q(yk,i,u)
}

+ nr(K + 1)

1∑
s=0

λs

[
exp

{
θ τ

s q(yk,i,u)

}
1(yk,i,u ≤ ξ̂α) − α

]}−1

.

Substituting the above expression into the Lagrangian equations, we obtain three sets of vec-
tor equations for θ and λ, ∑

k,i,u

pk,i,u(λ, θ) exp
{
θ τ

s q(yk,i,u)
} = 1;

∑
k,i,u

pk,i,u(λ, θ) exp
{
θ τ

s q(yk,i,u)
}{

1(yk,i,u ≤ ξ̂α) − α
} = 0;

∑
k,i,u

pk,i,u(λ, θ)q(yk,i,u) exp
{
θ τ

s q(yk,i,u)
}[

1 + λs

{
1(yk,i,u ≤ ξ̂α) − α

}] = (nr)−1
∑
i,u

q(yk,i,u),

with s = 0,1, . . . ,K for the first equation, s = 0,1 for the second equation, and s =
0,1, . . . ,K again for the third equation. Note that the third equation takes vector values be-
cause q(·) is vector-valued.

Furthermore, the derivatives of the above equations (more precisely, the related functions)
with respect to θ and λ can be found without technical difficulties. With this information
provided to multiroot, solving for θ in the simulation experiment was quite smooth. Of 1000
repetitions, the R-function failed to find the solution about 10 times when hypothesis testing
for the fifth percentile in the third example, and it succeeded in all the other cases. Because
this is a low failure rate, we did not try to determine the exact cause and instead dropped
these cases from the final tally. We did, however, increase the number of repetitions in the
simulation so that the number of successful repetitions in every setting was at least 1000.
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