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We review the results in Chen and Yao [5], [6] which concerns the contact
process in a static random environment on the half space Z

d × Z
+ and

make some additions to them. Furthermore, we explain why our methods
cannot apply to the whole space case and compare our results with some
related works.

1. Introduction

1.1. Basic definitions of the contact process

The basic contact process, which will be denoted by “contact process” in the

following, was introduced in Harris [12]. It is a model to describe the spread

of diseases. The process is defined as follows. Given a graph G = (V,E),

where V denotes the vertex set of G, and E denotes the edge set of G, the

contact process (ξt : t ≥ 0) is a continuous-time Markov process, whose

state space is {A : A ⊆ V }. At each t, each vertex is either healthy or

infected. Denote by ξt the collection of infected vertices at time t. The

transition rates are as follows:
{
ξt → ξt \ {x} for x ∈ ξt at rate 1,

ξt → ξt ∪ {x} for x /∈ ξt at rate λ · |{y ∈ ξt : x ∼ y}|,
(1.1)

where λ > 0 is a positive constant, | · | denotes the cardinality of a set,

and “x ∼ y” denotes that the vertices x and y are neighbors. The intuitive

interpretation of the above transition rates is that an infected vertex be-

comes healthy at fixed rate 1, while a healthy vertex becomes infected at

341

 G
en

ea
lo

gi
es

 o
f 

In
te

ra
ct

in
g 

Pa
rt

ic
le

 S
ys

te
m

s 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 1

20
.2

04
.2

49
.1

86
 o

n 
04

/0
1/

20
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



November 15, 2019 Lecture Note Series, IMS, NUS — Review Vol. 9in x 6in 10 page 342

342 Q. Yao

rate proportional to the number of its infected neighbors. The proportional

coefficient λ is the parameter of the contact process. Readers can refer to

the standard references Liggett [14] and Durrett [7] for how the above rates

determine a Markov process in a rigorous way. Often we use the notation

(ξAt : t ≥ 0) to denote the contact process with initial state A, that is,

at time 0 all vertices in A are infected, while all vertices outside of A are

healthy. There is another viewpoint for the contact process which treats

infected vertex as “1” while treats healthy vertex as “0”. Under this view-

point, the contact process is a Markov process with state space {0, 1}V .

Therefore, the contact process is a special example of “spin system” (see

Liggett [14] for rigorous definition).

The main problem in studying the contact process is its asymptotic

behavior. For the process ξOt with a single infected vertex O ∈ V at time 0,

we say that the process survives if P(ξOt 6= ∅ for any t ≥ 0) > 0, otherwise

we say that the process dies out. Furthermore, we say that the process

survives strongly if P(∀T ≥ 0, ∃t > T, such that O ∈ ξOt ) > 0. And we say

that the process survives weakly if it survives but not survives strongly. By

the monotonicity (or attractiveness) of the contact process (which implies

that the process is inclined to survive with larger infection parameter λ),

we can define two critical values as follows:
{
λ1 := inf{λ : ξOt survives},

λ2 := inf{λ : ξOt survives strongly}.

If G is a connected graph, then the value of λ1 and λ2 do not depend on

the choice of the vertex O. Since strong survival implies survival, it can be

easily seen that λ1 ≤ λ2.

1.2. Known results for the contact process on Z
d

The contact process was firstly studied on the straight line Z
1. Liggett

[14] and Durrett [7] contain the main results for the one-dimensional case.

The seminal work of Bezuidenhout & Grimmett [2] used different geometric

constructions to get the results for the high dimensional case, including:

(a) λ1 = λ2 (denote by λc the common value);

(b) the process with parameter λc dies out;

(c) the complete convergence theorem holds for all λ > 0, that is, for

any A ⊆ Z
d,

ξAt ⇒ ν ·P(ξAt 6= ∅ for any t ≥ 0) + δ∅ ·P(ξAt = ∅ for some t ≥ 0)
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as t tends to infinity, where ν denotes the upper invariant mea-

sure (that is, the weak limit of the distribution of ξZ
d

t as t → ∞),

δ∅ denotes the measure putting mass one on the empty set, and

“⇒” stands for weak convergence;

(d) the shape theorem holds, that is, there exists a convex subset U ⊆

R
d, such that for any ε > 0,

(1− ε)U ⊆

1

t
H0

t ⊆ (1 + ε)U eventually

almost surely on the event that ξ0t 6= ∅ for any t ≥ 0, where 0 de-

notes the origin of Zd, and H0
t =

⋃

0≤s≤t

ξ0s denotes the set of vertices

that have ever been infected before time t.

Remark. (1) In the following, we use (a), (b), (c) and (d) to denote the

above four results for short.

(2) In Bezuidenhout and Grimmett [2], the notations of the two critical

values λ1 and λ2 have not been mentioned (they first appeared in Pemantle

[19]). But Theorem 3 in [2] implies this conclusion.

(3) Bezuidenhout and Grimmett [2] contains the proof of (a) and (b).

They didn’t give the formal proof of (c) and (d). The detailed proof of

these results are provided in Liggett [17].

1.3. Contact processes in random environments

Liggett [15] gives a general setting for the contact process in random envi-

ronment. That is, the transition rates in (1.1) are modified by




ξt → ξt \ {x} for x ∈ ξt at rate δx,

ξt → ξt ∪ {x} for x /∈ ξt at rate
∑

y∈ξt, y∼x

λ(y,x), (1.2)

where {δx : x ∈ V } and {λe : e ∈ E} are random variables chosen in a

stationary ergodic manner. That means, the recovery rates and infection

rates become random.

The contact process in random environment was first studied on Z
1 (see

Bramson, Durrett & Schonmann [3], Liggett [15], [16], Klein [13], Newman

& Volchan [18], etc), focusing on the conditions for survival (extinction).

The high-dimensional case is more challenging. Chen & Yao [5], [6] settled

(c) in the half space case when δx ≡ 1 and λe’s are independent and
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identically distributed. Garet & Marchand [8], [10] settled (d) when δx ≡ 1

and λe’s are stationary, ergodic and properly bounded.

All the above models belong to contact processes in static random en-

vironments, that is, the environment does not change as time goes. There

are some models concerning contact processes in dynamic random envi-

ronments; see, for example, Broman [4], Remenik [20], Steif & Warfheimer

[21], etc. The main difficulty in studying the processes in static random

environments is that the process is not Markovian under the annealed (or

averaged) law.

1.4. Organization of this article

In Section 2, we will consider (a), (b) and (c) in the half space case. (c)

has been proved in Chen & Yao [6], so we only state the proof sketch

heuristically. (a) and (b) must be posed in a “parameterized version”,

and will be proved using the idea of Grimmett and Mastrand [11] (they

considered the percolation model). A special case is an addition to Chen

& Yao [5], since we did not prove that the critical process dies out for the

half space percolation cluster case there. In Section 3, we will compare our

results with some related works and explain why our methods cannot apply

to the whole space case.

2. Contact Process in a Random Environment on Z
d
× Z

+

The graph we are considering is (H,E), where H = Z
d
× Z

+ (d ≥ 1), with

Z = {0,±1,±2, . . .} and Z
+ = {0, 1, 2, . . .}; and E = {(x, y) : x, y ∈

H, ‖x − y‖ = 1}, with ‖ · ‖ denoting the Euclidean norm. The graph is

treated as unoriented; that is, (x, y) and (y, x) denote the same edge for all

x, y ∈ H satisfying ‖x− y‖ = 1. The environment is defined via (1.2) with

δx ≡ 1 and λe’s being i.i.d.∼ µ, where µ([0,+∞)) = 1.

2.1. The complete convergence theorem (c)

The complete convergence theorem (c) was proved in Chen & Yao [5] for

the half space percolation cluster case (where µ follows the Bernoulli distri-

bution), and was proved later in Chen & Yao [6] for the general half space

case. In [5] and [6] we only proved the half plane case (when d = 1). The

higher dimensional case (when d ≥ 2) can be settled with no substantial

difficulty.
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Step 1: The block conditions

The “building block” of the proof procedure is the setup of the “block

conditions” (denoted by (BC) in the following) for the survival of the

process (Proposition 3.2 in Chen & Yao [6]). Intuitively, suppose the process

survives, then for any ε > 0 sufficiently small, we can construct two kinds

of boxes whose sizes depend on ε but with almost fixed shape, such that

with probability greater than 1− ε, a horizontal seed (i.e. an interval with

all infected vertices) on the bottom of each box can give birth to another

vertical seed with the same length on the right side of the box, with infection

path being entirely contained in the interior of the box. The two kinds of

boxes are called by “S-box” and “L-box” respectively, where “S” stands for

“short” and “L” stands for “long”. See Figure 1 for illustration. Note that

when d ≥ 2, only one kind of boxes are needed by using the skew lines.

Fig. 1. Construction of blocks

The proof of Proposition 3.2 in Chen & Yao [6] (which is the main con-

tribution of that paper) was divided into three cases (with three totally

different proofs), one of which covers the proof of Lemma 3.4 in Chen &

Yao [5] as a special case. Note that there is a similar disjunction in Garet

& Marchand [9].

Step 2: The dynamic renormalization construction

Then we will use the S-boxes and L-boxes to construct a route, such

that with probability greater than 1 − ε, a seed in a fixed square is joined

through this route to some seeds in the other two fixed squares depending
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on ε and having the same size (one above, the other on the right). See

Figure 2 for illustration.

Fig. 2. Producing new seeds in the north square and the east square

Next, we fix ε > 0 sufficiently small and iterate the above procedure

several times in both directions (to the “east” and to the “north”), then

treat the graph in a larger scale (called the “dynamic renormalization”

procedure). Figure 3 gives an illustration for the case that the “large scale

length” of the “large scale square” is 3. Furthermore, denote by T (n, ε)

the time span that the seed in the “southwest” generate the seed in the

“northeast” in the “large scale square” with “large scale length” n.

The next proposition is Proposition 4.1 in Chen & Yao [6], which is the

main result for the dynamic renormalization. It tells us that as n tends to

infinity, T (n, ε) follows the “almost linear growth” property asymptotically.

The detailed proof can be found in Appendix 2 of Chen & Yao [5].

Proposition 2.1: Suppose that (BC) holds. Then there exists W > 0,

such that

lim
ε→0+

lim inf
n→∞

P

(
7W

6
n < T (n, ε) <

11W

6
n

)
= 1.
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Fig. 3. Dynamic renormalization

Step 3: Checking the equivalent conditions for (c)

Having made the above preparations, we can prove (c) by checking the

following two assertions (Theorem 1.12 of Liggett [17]):

(c1) P

(
x ∈ lim sup

t→∞
ξAt

)
= P(ξAt 6= ∅ for any t ≥ 0) for all x ∈ H and

A ⊂ H.

(c2) lim
M→∞

lim inf
t→∞

P(ξ
Bx(M)
t ∩ Bx(M) 6= ∅) = 1 for all x ∈ H, where

Bx(M) is defined to be the “ball” centered at x and with radius

M (but restricted on H).

The rigorous proof of (c1) and (c2) can be found in Subsections 5.1 and

5.2 of Chen & Yao [6], respectively. The intuitive idea of (c1) is to iterate

the construction posed in Proposition 2.1 four times, as shown in Figure

4 intuitively. (c2) can be obtained by the above observation together with

some extra tricks to prove the assertion that every remote site cannot be

infected in a short time.
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Fig. 4. Description of (c1)

2.2. (a) and (b) in the parameterized version

In order to consider (a) and (b), we need to parameterize the model by

changing the infection rate λe by λ · λe, where the λe’s are still i.i.d. ∼ µ,

and λ > 0 is a free parameter. By monotonicity, we can still define λ1 and

λ2, which are almost surely constants by translation invariance.

Therefore, there is no difference between quenched law and annealed law

when considering (a) and (b). For simplicity, we use P for the measure,

and use Pλ if we want to stress that the parameter is λ.

It is easy to see that (c) also holds for the parameterized version. There-

fore, (a) holds trivially by (c1). So we can denote by λc the common value

of λ1 and λ2.

Remark. Whether λc ∈ (0,+∞) or not depends on the distribution µ.

When there exists M ∈ (0,+∞) such that µ([0,M ]) = 1, then λc > 0. And

 G
en

ea
lo

gi
es

 o
f 

In
te

ra
ct

in
g 

Pa
rt

ic
le

 S
ys

te
m

s 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 1

20
.2

04
.2

49
.1

86
 o

n 
04

/0
1/

20
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



November 15, 2019 Lecture Note Series, IMS, NUS — Review Vol. 9in x 6in 10 page 349

Phase Transition for Contact Process in Random Environment on Z
d × Z

+ 349

when there exists b ∈ (0,+∞) such that µ([b,+∞)) = 1, then λc < +∞. It

will be interesting to consider the case when the support of µ is (0,+∞).

To prove (b), that is, the critical process dies out in the parameterized

version (which includes the half space percolation cluster case in Chen &

Yao [5]), we need the following lemma. The idea comes from Grimmett &

Mastrand [11], where they considered the percolation model.

Lemma 2.2: If Pλ(∀t > 0, ξ0t 6= ∅) > 0, then there exists δ > 0, such that

Pλ−δ(∀t > 0, ξ0t 6= ∅) > 0.

Proof. Since Pλ(∀t > 0, ξ0t 6= ∅) > 0, the block conditions (BC) hold. Fix

ε > 0 sufficiently small as well as the variables (including the sizes of the two

kinds of boxes, the length of the seeds, and the time span) which guarantee

(BC) to hold. Since all these variables have upper bounds depending only

on the above ε, it follows from the continuity of the finite-time process in

the parameter λ that there exists 0 < δ < λ, such that (BC) also hold with

parameter λ− δ under the same ε and the above variables. By Proposition

2.1, we have

lim
ε→0+

lim inf
n→∞

Pλ−δ(T (n, ε) < ∞) = 1,

where T (n, ε) is defined in Subsection 2.1. So we can choose ε′ > 0 suffi-

ciently small, such that

lim inf
n→∞

Pλ−δ(T (n, ε
′) < ∞) >

1

2
.

Therefore, we have

Pλ−δ(T (n, ε
′) < ∞ i.o.) ≥ lim inf

n→∞
Pλ−δ(T (n, ε

′) < ∞) >
1

2
.

Furthermore, since T (n, ε′) < ∞ i.o. implies that ξ[−r,r] can infect infinitely

many sites, and therefore, the infection will persist forever. Here r = r(ε′)

denotes half of the length of the initial seed in (BC) corresponding to the

above ε′. See Figure 4 for intuition. This implies

Pλ−δ(∀t > 0, ξ
[−r,r]
t 6= ∅) >

1

2
.

Together with the trivial fact Pλ−δ(ξ
0
1 = [−r, r]) > 0, we obtain

Pλ−δ(∀t > 0, ξ0t 6= ∅) > 0,

as desired. �
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Proof of (b). Suppose Pλc
(∀t > 0, ξ0t 6= ∅) > 0. Then by Lemma 2.2,

there exists 0 < δ < λc, such that Pλc−δ(∀t > 0, ξ0t 6= ∅) > 0, contradicting

with the definition of λc. �

3. Concluding Remarks and Discussions

The main idea of the proof procedure of (c) (then (a) and (b) in the pa-

rameterized version) is enlightened by Bezuidenhout & Grimmett [2], that

is, using the “dynamic renormalization” argument. The argument first ap-

peared in Grimmett & Mastrand [11] and Barsky, Grimmett & Newman [1],

where the authors considered the percolation model. But there are some big

differences in our model. The “block conditions” in Bezuidenhout & Grim-

mett [2] contain their Lemma 7 (which deals with “space” by using the fact

that events depending on disjoint subgraphs are relatively independent)

and Lemma 18 (which deals with “time” by using the Markov property

of the process). However, In order to make good use of some symmetric

properties, we need to consider the annealed law first (Step 1 and Step 2 in

the proof procedure), then go back to the quenched law to get the desired

result (Step 3 in the proof procedure). Under the annealed law, the fact

that events depending on disjoint subgraphs are relatively independent still

holds, but the Markov property does not hold any more. In consequence,

if we consider the whole space case, we can only get a result similar to

Lemma 7 in [2] and cannot get the result similar to Lemma 18 in [2]. And

furthermore, we cannot get the desired result in the whole space case. On

the other hand, the “space block” in Z
d
× Z

+ constructed by Proposition

3.2 in Chen & Yao [6] has similar function as the “space–time block” in

Z
d
× R

+ constructed by Lemmas 7 and 18 in Bezuidenhout & Grimmett

[2]. That is why we can get the results in the half space case.

We believe that the results are true for the whole space case. There may

be some possible ways to prove the whole space case. The first possible idea

is to prove directly. It is not easy. Even in the percolation cluster case, it

is of the same difficulty as the long-existing problem that whether there is

percolation at the critical point in the whole space case, which is clear in

the half space case. The second possible idea is to prove that the critical

value in the whole space case is the same as it in the half space case, which

is clear for the percolation case as well as the contact process case, but it is

not known for the contact process on the percolation cluster case. We will

think about it in future research.
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We mention at the end of this article that Garet & Marchand [8], [10]

deal with the shape theorem (d) in the whole space case under the as-

sumption that δx ≡ 1 and λe’s are stationary, ergodic, and take value in

[λmin, λmax], where λmin > λc(Z
d), and λmax < +∞. Getting rid of the

boundedness assumption of λe’s may be a similar challenge as our model.
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