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Abstract A classical result in risk measure theory states that every coherent risk measure
has a dual representation as the supremum of certain expected value over a risk envelope. We
study this topic in more detail. The related issues include: (1) Set operations of risk envelopes
and how they change the risk measures, (2) The structure of risk envelopes of popular risk
measures, (3) Aversity of riskmeasures and its impact to risk envelopes, and (4) A connection
between risk measures in stochastic optimization and uncertainty sets in robust optimization.
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1 Introduction

At the core of stochastic optimization is the problem of minimizing EP[ f (x, z̃)], where
x ∈ R

n is the decision vector, z̃ is a random vector, f :Rn ×R
m → (−∞,+∞],E stands for

expectation, and P is the joint probability distribution of z̃. In classical numerical stochastic
optimization it is assumed that the distribution of P is given, which is restrictive since in
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practice only partial information on P is available, say, one only knows P ∈ A, where A is
defined by certain known statistics of z̃. Therefore we are naturally led to a “distributionally
robust” formulation as follows

(DRSO) min sup
P∈A

EP( f (x, z̃)) := R( f (x, z̃)).

Observe that for a fixed x, X := f (x, z̃) is a random variable and the property of mapping
R(X) = supP∈A EP(X) deserves a careful study. In fact, as pointed by Rockafellar (2007),
it is natural to consider the functional R( f (x, z̃)) as a “risk measure” or “surrogate” of
the random cost function f (x, z̃). This paper aims at studying a dual representation of the
function R and its applications in optimization.

Given a probability space (�,�,P0), it is well known that X :� → R is a random
variable if it is �-measurable, that is, {ω : X (ω) ≤ a} ∈ � for any a ∈ R. We call P0 the
base probability measure, which is fixed in our analysis. To simplify our notation, when
the expectation with respect to P0 is concerned, we omit P0 and write EP0(X) as E(X).

As usual, for 1 ≤ p ≤ ∞, we use L p(�,�,P0) (L p for short) to denote the set of all
random variables X satisfying E(|X |p) < +∞. For convenience in engineering applications
, we restrict ourselves to the space of X ∈ L 2 although the main results of this paper could
be extended to a larger space such like L 1. Therefore, in this paper a risk measure R is a
functional fromL 2 to (−∞,+∞]. It may represent “the risk of loss” where X may represent
“the real amount of loss”. Furthermore, if R(X) is finite for any X ∈ L 2, then we call R a
finite risk measure. A risk measureR is coherent in the basic sense (“coherent” for short) if
it satisfies the following five axioms (Artzner et al. 1997, 1999; Rockafellar 2007).

(A1) R(C) = C for all constant C ,
(A2) R((1 − λ)X + λX ′) ≤ (1 − λ)R(X) + λR(X ′) for λ ∈ [0, 1] (“convexity”),
(A3) R(X) ≤ R(X ′) if X ≤ X ′ almost surely (“monotonicity”),
(A4) R(X) ≤ 0 when ‖Xk − X‖2 → 0 with R(Xk) ≤ 0 (“closedness”),
(A5) R(λX) = λR(X) for λ > 0 (“positive homogeneity”).

In early literature on coherency (Artzner et al. 1997, 1999), it was required to have R(X +
C) = R(X)+C . It canbe shown that this follows automatically by (A1) and (A2) (Rockafellar
et al. 2006).

Consider another probability measure P on (�,�),P is said to be absolutely continuous
with respect to P0 (denoted by P � P0) if P0(A) = 0 implies P(A) = 0 for any measurable
set A ∈ �. If P � P0, then by probability theory there is a well-defined Radon–Nikodym
derivative Q = dP

dP0
. Such derivatives make up the set

P := {Q ∈ L 2 : Q ≥ 0, E(Q) = 1
}
. (1.1)

Q is called the “density” of P because the expectation of a random variable X with respect
to P is equal to E(XQ), namely

EP(X) =
∫

�

X (ω)dP(ω) =
∫

�

X (ω)Q(ω)dP0(ω) = E(XQ). (1.2)

Any nonempty closed convex subset Q of P is called a “risk envelope”. According to
the theory of conjugacy in convex analysis, there is a dual representation for coherent risk
measures (Theorem 4(a), Rockafellar 2007), which says that

R is a coherent measure of risk in the basic sense if and only if there is a risk envelope
Q (which will be uniquely determined) such that
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R(X) = sup
Q∈Q

E(XQ). (1.3)

Here and below, we will regard this result as “the dual representation theorem” for short.
It follows from (1.3) that the risk envelope Q can be written explicitly as

Q = {Q ∈ P : E(XQ) ≤ R(X) for all X ∈ L 2}. (1.4)

Note that the requirement Q ≥ 0 in (1.1) is equivalent to Axiom (A3) and the requirement
E(Q) = 1 is equivalent to (A1), as shown in Rockafellar et al. (2006). Furthermore, the
setting of X ∈ L 2 implies Q ∈ L 2. Hence all requirements for Q in (1.1) are natural. It
should be noted that a primary form of the above representation theorem with a finite set �
has existed long before the notion of coherent risk measure, see, e.g., Huber (1981).

Many applications of risk measures are concerned with “averse risk measures”. A risk
measure is averse if it satisfies axioms (A1), (A2), (A4), (A5) and

(A6) R(X) > E(X) for all non-constant X .

It would be interesting both in theory and practice to describe aversity in the context of dual
representation of risk measures. We shall discuss this topic in Sect. 4.

The contributions of this paper can be outlined as follows:

1. We derive formulae of risk measures when the corresponding risk envelopes involve set
operations such as union, intersection, and positive combination (see Proposition 2.1,
Theorems 2.1 and 2.2, respectively).

2. We present independent proofs in Sects. 3.1–3.5 for the correspondence between several
popular risk measures and their risk envelopes.

3. We study sufficient and necessary conditions on the risk envelope that guarantee the
aversity of the corresponding risk measure (see Propositions 4.2–4.5).

4. We indicate a connection between the so-called uncertainty sets in robust optimization
and the dual representation of risk measures (See Propositions 5.1–5.2 specify and The-
orem 5.1 for details).

The paper is organized as follows. In Sect. 2, we consider the set operations of risk envelopes.
In Sects. 3 and 4, we discuss risk envelopes for several popular riskmeasures and risk aversity,
respectively. Section5 addresses the relationship between the risk measures defined through
uncertainty sets and the ones defined through risk envelopes. Section6 concludes this paper.

2 Set operations of risk envelopes

SupposeR1,R2, . . . ,Rn is a collection of coherent riskmeasures onL 2 with risk envelopes
Q1,Q2, . . . ,Qn , respectively. SinceL 2 is a Banach lattice (that is, it is a Banach space and
X, Y ∈ L 2 with |X | ≤ |Y | implies ‖X‖2 ≤ ‖Y‖2), ifRi is finite, then it is continuous, sub-
differentiable onL 2, and bounded above in some neighborhood of the origin by Proposition
3.1 of Ruszczynski and Shapiro (2006). It then follows that, by Theorem 10 of Rockafellar
(1974), the corresponding Qi is compact in the weak topology of L 2, that is, Qi is weakly
compact.

The following result dealswith positive combination of the setsQ1,Q2, . . . ,Qn . A similar
result can be found in Rockafellar and Uryasev (2013).

Proposition 2.1 Let λ1, . . . , λn be positive numbers. Then the positive combination

R := λ1R1 + · · · + λnRn
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is a coherent risk measure with risk envelope

Q̄ = cl (λ1Q1 + · · · + λnQn),

where cl means the closure of the set. Moreover, if all but perhaps one of theRi ’s are finite,
then the risk envelope is simply

Q = λ1Q1 + · · · + λnQn .

Proof Since

sup
Q∈Q̄

E(XQ) = sup
Qi∈Qi ,i=1,...,n

E [X (λ1Q1 + · · · + λnQn)] =
n∑

i=1

λiRi (X) = R(X),

the first part of the proposition follows. For the second part, as discussed above, we know
that if Ri is finite, then the corresponding Qi is weakly compact. It is easy to see that Q is
a nonempty and convex subset of P [as defined in (1.1)]. Furthermore, Q is weakly closed
since all but perhaps one of theQi ’s are weakly compact, and the sum of finitelymanyweakly
closed set, if all but perhaps one of which is weakly compact, is a weakly closed set. Then
Q is closed because closedness coincides with weak closedness for convex sets. Therefore,
Q̄ = Q in this case. 
�

Next, define

R̃1(X) := max
1≤i≤n

Ri (X), R̃2(X) := min
1≤i≤n

Ri (X), and

R̃3(X) := cl (R1�R2� · · · �Rn)(X),

where cl means the closure of the function (Rockafellar and Wets 1997) and

(R1�R2� · · · �Rn)(X) := inf{R1(X1) + R2(X2)

+ · · · + Rn(Xn) : X1 + X2 + · · · + Xn = X}
is the so-called inf-convolution of the functionals Ri , i = 1, . . . , n. Let us call R̃1 and
R̃2 the “max” and the “min” of the risk measures R1,R2, . . . ,Rn , respectively. Clearly,
R̃2(X) is not coherent because it may not be convex. We next show that R̃1 and the lower-
convexification of R̃2, namely R̃3, are coherent riskmeasures generated by the risk envelopes
conv

(⋃n
i=1 Qi

)
and

⋂n
i=1 Qi , respectively, where conv(·) stands for the convex hull. We

begin with the following lemma about R̃2 and R̃3.

Lemma 2.1 R̃3 is the “lower-convexification” of R̃2 in the sense that

(1) R̃3(X) ≤ R̃2(X) for all X.
(2) Let R(X) be any coherent risk measure satisfying R(X) ≤ R̃2(X) for all X. Then

R(X) ≤ R̃3(X) for all X.

Proof (1) By the definition of R̃3, we have for any 1 ≤ i ≤ n and for all X ,

R̃3(X) ≤ cl
[R1(0) + · · · + Ri−1(0) + Ri (X) + Ri+1(0) + · · · + Rn(0)

] = Ri (X).

Then R̃3(X) ≤ min
1≤i≤n

Ri (X) = R̃2(X) as desired.
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(2) Since R(X) ≤ R̃2(X) for all X , we have R(X) ≤ Ri (X) for any 1 ≤ i ≤ n and for
all X . Furthermore, by the convexity of R, we have for any X1, X2, . . . , Xn such that
X1 + X2 + · · · + Xn = X ,

R(X) ≤ R(X1) + R(X2) + · · · + R(Xn) ≤ R1(X1) + R2(X2) + · · · + Rn(Xn).

Taking closure of infimum on the right hand side, by the definition of R̃3 together with
the continuity of R1, . . . ,Rn , we get R(X) ≤ R̃3(X) for all X , as desired. 
�

The main results of this section are the following two theorems. A finite-dimensional
version of them appeared in Theorem 3.3.3 of Hiriart-Urruty and Lemaréchal (1993). Here,
we present a proof for the L 2 version.

Theorem 2.1 If R1, . . . ,Rn are finite, then R̃1(·) is a coherent risk measure with risk
envelope Q̃1 = conv

(⋃n
i=1 Qi

)
.

Proof We first claim that conv
(⋃n

i=1 Qi
)
is closed and convex. The convexity is trivial. For

closedness, sinceQ1, . . . ,Qn are all weakly compact, we have that conv
(⋃n

i=1 Qi
)
is weakly

compact because the union of any finite collection of weakly compact sets is again weakly
compact, and its convex hull is therefore weakly compact. Furthermore, conv

(⋃n
i=1 Qi

)
is

closed because weak compactness implies weak closedness, and weak closedness coincides
with closedness for convex sets. Next, for any X ∈ L 2, we have

R̃1(X) = max
1≤i≤n

Ri (X) = max
1≤i≤n

(

sup
Q∈Qi

E(XQ)

)

= sup

Q∈
n⋃

i=1
Qi

E(XQ) = sup

Q∈conv
(

n⋃

i=1
Qi

)E(XQ).

Hence by the dual representation theorem, R̃1 is a coherent risk measure and its risk envelope
is Q̃1 = conv

(⋃n
i=1 Qi

)
, as desired. 
�

Theorem 2.2 R̃3(·) is a coherent risk measure with risk envelope
⋂n

i=1 Qi if and only if⋂n
i=1 Qi �= ∅.

Proof For the “if” part, we first verify that R̃3(·) is a coherent risk measure. By the closure
of inf-convolution formula of R̃3, the convexity (A2) and closedness (A4) hold. For positive
homogeneity (A5), one has

R̃3(λX) = cl inf
X2,...,Xn

{R1(λX − X2 − · · · − Xn) + R(X2) + · · · + Rn(Xn)}
= cl inf

Y2,...,Yn
{R1(λX − λY2 − · · · − λYn) + R(λY2) + · · · + Rn(λYn)}

= λR̃3(X).

Axiom (A1) is true because

R̃3(C) ≤ R1(C) + R2(0) + · · · + Rn(0) = C and similarly, R̃3(−C) ≤ −C. (2.1)

Then by convexity and positive homogeneity

0 = R̃3(0) ≤ R̃3(C) + R̃3(−C) ≤ R̃3(C) − C ⇐⇒ R̃3(C) ≥ C. (2.2)
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Thus, (A1) follows. Finally, let X ≤ Y almost surely. Then

R̃3(X) = cl inf
X2,...,Xn

{R1(X − X2 − · · · − Xn) + R(X2) + · · · + Rn(Xn)}
≤ cl inf

X2,...,Xn
{R1(Y − X2 − · · · − Xn) + R(X2) + · · · + Rn(Xn)}

= R̃3(Y ),

hence monotonicity (A3) holds. Therefore, R̃3(X) is a coherent risk measure. Let Q̃3 be
its risk envelope. Since R̃3(X) ≤ Ri (X), by (1.4), Q̃3 ⊆ Qi for 1 ≤ i ≤ n. Thus, Q̃3 ⊆⋂n

i=1 Qi . Conversely, suppose R̃ is the risk measure with envelope
⋂n

i=1 Qi . Since R̃ is
convex, positive homogeneous, and R̃(X) ≤ R̃2(X) for all X , by Lemma 2.1 we get R̃(X) ≤
R̃3(X) for all X . Using (1.4) again,we can get

⋂n
i=1 Qi ⊆ Q̃3. Thus,we have Q̃3 =⋂n

i=1 Qi .
We next prove the “only if” part. If R̃3(·) is a coherent riskmeasure, then it has a nonempty

risk envelope Q̃3, which is an implication ofAxiom (A1) and the dual representation theorem.
Using the same argument from the last paragraph, we can get Q̃3 ⊆ ⋂n

i=1 Qi . Therefore,⋂n
i=1 Qi �= ∅. 
�

Note that Theorem 2.2 does not require the Ri s to be finite.
Set operations of risk envelopes may be used to create new risk measures that are more

conservative (say, by union) or more aggressive (say, by intersection) in applications. Chen
et al. (2010) used intersections of five uncertainty sets to create new uncertainty sets in robust
optimization and here we have shown the same principle applies to risk envelopes.

3 Popular risk measures and their risk envelopes

Besides set operations, one can create various different coherent risk measures by adding
additional functional constraints to the risk envelope P in (1.1). In this section we study (1)
risk measure from expectation, (2) risk measure from worst case analysis, (3) risk measure
from subdividing the future, (4) riskmeasures from the conditional value at risk and optimized
certainty equivalence, and (5) risk measure from mean-deviation. Most of the results in this
section have been stated inRockafellar (2007)without proofs. In fact their proofs are scattered
in the literature via different approaches. Here we provide independent proofs based on the
unified view of dual representation of risk measures. Our approach is to directly specify
the risk envelope Q for each of the above cases and to verify the relationship R(X) =
supQ∈Q E(XQ). The coherency of R then follows from the dual representation theorem.

3.1 Risk envelope for expectation

Here Q = {Q ∈ L 2 : Q ≡ 1}. Then E(X) = supQ∈Q E(XQ).

3.2 Risk envelope for the worst case

Here the risk envelope isQ = P and by “the worst case” we mean the “essential supremum”
function of X , that is,

ess-sup(X) := inf{a : P0(X > a) = 0}. (3.1)

Note that supQ∈P E(XQ) ≤ ess-sup(X) for any X ∈ L 2, and therefore P ⊆ Q. Hence
Q = P .
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It is possible that ess-sup(X) = ∞ for some X , which could happen if X does not have a
finite essential supremum. Thus, ess-sup(·) is not a finite risk measure.

3.3 The risk measure from subdividing the future

In Rockafellar (2007) the following risk measure is discussed. Let � be partitioned into
subsets�1, . . . , �r , r ≥ 2, having positive probability P0(�k) = λk with λ1+· · ·+λr = 1.
For k = 1, . . . , r , let

Rk(X) := ess-sup
ω∈�k

X (ω)

:= inf{a : P0({X > a} ∩ �k) = 0}.
Then

R := λ1R1 + · · · + λrRr (3.2)

is a coherent risk measure, called the risk measure from subdividing the future, whose risk
envelope is

Q := λ1Q1 + · · · + λrQr with Qk := {Q ∈ P : E(Q1�k ) = 1}. (3.3)

To prove this by Proposition 2.1, we only need to prove that Q is closed. Suppose Qn ∈
λ1Q1 + · · · + λrQr for n = 1, 2, . . . and ‖Qn − Q‖2 → 0 as n → ∞. Then by (3.3), for
n = 1, 2, . . . we have E(Qn1�k ) = λk for k = 1, 2, . . . , r . Note that for k = 1, 2, . . . , r ,

|E(Qn1�k ) − E(Q1�k )| ≤ ‖Qn − Q‖2 · [P0(�k)] 1
2 → 0

as n → ∞. Thus,E(Q1�k ) = λk for k = 1, 2, . . . , r , and therefore Q ∈ λ1Q1+· · ·+λrQr .
This implies λ1Q1 + · · · + λrQr is closed in L 2. 
�
3.4 The conditional value at risk (CVaR) and the optimized certainty equivalence

(OCE)

An important coherent risk measure is the conditional value at risk, popularized by
Rockafellar and Uryasev (2000), with the formula

CVaRα(X) = min
β∈R

{
β + 1

1 − α
E(X − β)+

}
, (3.4)

where (t)+ = max(t, 0). We next prove that the risk envelope of CVaR is

Qα :=
{
Q ∈ L 2 : E(Q) = 1, 0 ≤ Q ≤ 1

1 − α

}
.

For any Q ∈ Qα and β ∈ R, we have

E(XQ) = E [(X − β)Q] + βE(Q)

≤ β + E[Q(X − β)+] ≤ β + 1

1 − α
E(X − β)+.

Taking supremum on the left hand side over Q ∈ Qα and infimum on the right hand side
over all β ∈ R, we get

sup
Q∈Qα

E(XQ) ≤ min
β

{
β + 1

1 − α
E(X − β)+

}
. (3.5)
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On the other hand, noting that the “value-at-risk” (VaR) is defined as

VaRα(X) := inf {ν ∈ R : P(X > ν) < 1 − α} ,

we have

P0(X > VaRα(X)) ≤ 1 − α ≤ P0(X ≥ VaRα(X)).

Thus, there exists λ ∈ [0, 1] such that

1 − α = λ · P0(X > VaRα(X)) + (1 − λ) · P0(X ≥ VaRα(X)).

Set

Q0 = 1

1 − α
· [λ · 1{X>VaRα(X)} + (1 − λ) · 1{X≥VaRα(X)}].

Note that 0 ≤ Q0 ≤ 1
1−α

and E(Q0) = 1. Thus Q0 ∈ Qα and

sup
Q∈Qα

E(XQ) ≥ E(XQ0)

= E[(X − VaRα(X)) · Q0] + VaRα(X) · E(Q0)

= VaRα(X) + 1

1 − α
· E(X − VaRα(X))+

≥ min
β∈R

{
β + 1

1 − α
E(X − β)+

}
.

Combine (3.5) and the above we obtain that

CVaRα(X) = sup
Q∈Qα

E(XQ).

As a by-product of the proof, we see that the minimum in (3.4) is attained at β = VaRα(X),
that is,

CVaRα(X) = VaRα(X) + 1

1 − α
· E (X − VaRα(X))+ .

Ben-Tal and Teboulle (2007) proved that the negative of their OCE function

OCEu(X) = sup
η

{η + E[u(X − η)]},

where u is a piecewise linear utility function, is a coherent risk measure that includes CVaR
as a special case. Since X is a risk rather than an income in our context and we are considering
risk rather than utility, we define

Sr (X) := −OCEu(−X)

= inf
η

{−η + E[−u(−X − η)]}
= inf

β
{β + E[r(X − β)]}, (3.6)

where r(X) = −u(−X) and we can similarly show that if

r(X) = γ1[X ]+ − γ2[−X ]+ with 0 ≤ γ2 < 1 < γ1,
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then Sr (X) is a coherent risk measure with risk envelope γ2 ≤ Q ≤ γ1. i.e.,

Sr (X) = sup
Q∈Qγ1,γ2

E(XQ), where

Qγ1,γ2 := {Q ∈ P : γ2 ≤ Q ≤ γ1} . (3.7)

It is interesting to observe that OCE can be representable by CVaR, namely

Sr (X) = γ2E(X) + CVaRα(X), where α = 1 − (γ1 − γ2)
−1.

This formula can be obtained by using Proposition 2.1 and the fact

Qγ1,γ2 = γ2{1} + Qα.

3.5 The mean-deviation

Fix 0 ≤ λ ≤ 1. Define the mean-deviation risk measure as

R(X) = EX + λ · ‖(X − EX)+‖2
for all X ∈ L 2, where ‖ · ‖2 denotes the L 2-norm, that is, ‖X‖2 := [E(X2)

] 1
2 .

Similar to (3.1), we define

ess-inf(X) := sup{a : P0(X < a) = 0}. (3.8)

We claim that the risk envelope of R is

Q = {0 ≤ Q ∈ L 2 : E(Q) = 1, ‖Q − ess-infQ‖2 ≤ λ
}
.

In fact, on one hand, for any X ∈ L 2 and Q ∈ Q, we have

E(XQ) = E[(X − EX)(Q − ess-infQ)] + EX ≤ EX

+E[(X − EX)+(Q − ess-infQ)]
≤ EX + ‖(X − EX)+‖2 · ‖Q − ess-infQ‖2
≤ EX + λ · ‖(X − EX)+‖2

by Cauchy–Schwartz inequality. Hence we get

sup
Q∈Q

E(XQ) ≤ EX + λ · ‖(X − EX)+‖2 (3.9)

for any X ∈ L 2. On the other hand, set

Q0 := 1 + λ · [(X − EX)+ − E(X − EX)+
]

‖(X − EX)+‖2 .

Since 0 ≤ λ ≤ 1, we have

ess-infQ0 = 1 − λ · E(X − EX)+
‖(X − EX)+‖2 ≥ 1 − E(X − EX)+

‖(X − EX)+‖2 ≥ 0.

Thus, 0 ≤ Q0 ∈ L 2,EQ0 = 1 and

‖Q0 − ess-infQ0‖2 = ‖λ · (X − EX)+‖2
‖(X − EX)+‖2 = λ,
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that is, Q0 ∈ Q. Then for any X ∈ L 2,

sup
Q∈Q

E(XQ) ≥ E(XQ0)

= EX + λ · E [(X − EX)+ · (X − EX)
]

‖(X − EX)+‖2
= EX + λ · ‖(X − EX)+‖22

‖(X − EX)+‖2
= EX + λ · ‖(X − EX)+‖2. (3.10)

(3.9) and (3.10) together imply

sup
Q∈Q

E(XQ) = EX + λ · ‖(X − EX)+‖2.

We can check thatQ is nonempty, convex and closed inL 2. Therefore, it is the risk envelope
for the mean-deviation risk measure.

It should be noted that λ ≤ 1 is necessary for coherency as shown by the following
example. Consider

R(X) = EX + λ · ‖(X − EX)+‖2,
where X is a discrete random variable with distribution

P(X = −1) = p, P(X = 0) = 1 − p,

where 0 < p < 1. Then EX = −p, so

P((X − EX)+ = 0) = p, P((X − EX)+ = p) = 1 − p,

and therefore, R(X) = −p + λp
√
1 − p = p(λ

√
1 − p − 1). If λ > 1, we can take p > 0

sufficiently small to get R(X) > 0. However, since we have X ≤ 0 almost surely, this
contradicts monotonicity.

4 Discussion on aversity

In this section, we study the effect of aversity on risk measures. Suppose R is a functional
fromL 2 to (−∞,+∞]. Recall that an averse risk measure is defined by axioms (A1), (A2),
(A4), (A5) and

(A6) R(X) > E(X) for all non-constant X .

We are interested in the risk measures which are both coherent and averse. Next we develop
the conditions of risk envelopes under which a coherent risk measure is averse. We use the
notion “A ⊂ B” to denote that A is a proper subset of B, that is, A ⊆ B but A �= B. The
following necessary condition is trivial.

Proposition 4.1 SupposeR is a coherent risk measure onL 2 with risk envelope Q. IfR is
averse, then {1} ⊂ Q.

On the other hand, a sufficient condition is stated in the following proposition.

Proposition 4.2 SupposeR is a coherent risk measure with risk envelopeQ. If 1 is a relative
interior point of Q (relative to P), then R is averse.
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Proof Since 1 is a relative interior point ofQ (relative to P), there exists δ ∈ (0, 1) such that

{Q ∈ P : ‖Q − 1‖2 < δ} ⊆ Q. (4.1)

If X is not a constant almost surely, then there exists b ∈ R such that

P0(X ≥ b) = p ∈ (0, 1), P0(X < b) = 1 − p ∈ (0, 1).

Set

Q0 :=
{
1 + (1 − p)δ if X ≥ b,
1 − pδ if X < b.

Then we have

Q0 ≥ 0, E(Q0) = 1, ‖Q0 − 1‖2 < δ.

By (4.1), we can get that Q0 ∈ Q. Thus,

E(XQ0) ≤ sup
Q∈Q

E(XQ) = R(X). (4.2)

Furthermore, we have

E(XQ0) − E(X) = (1 − p)δ · E(X1{X≥b}) − pδ · E(X1{X<b})
> (1 − p)δb · P0(X ≥ b) − pδb · P0(X < b) = 0. (4.3)

(4.2) and (4.3) together imply that R(X) > E(X) for all non-constant X . Therefore, R is
averse. 
�
From Propositions 4.1 and 4.2, we can get the following:

1 is a relative interior point of Q (relative to P) �⇒ R is averse �⇒ {1} ⊂ Q. (4.4)

Generally, the converse of (4.4) may not be true, which can be seen from the following two
examples.

Example 4.1 Suppose � = [0, 1], � is the Borel sigma algebra on [0, 1], and P0 is the
Lebesgue measure. In this case

{1} := {Q̃1(ω) ≡ 1}.
Consider R = CVaR0.5. By Rockafellar (2007), R is a coherent and averse risk measure
with risk envelope Q = {Q ∈ L 2 : 0 ≤ Q ≤ 2, E(Q) = 1}. However, 1 is not a interior
point of Q. In fact, for any δ ∈ (0, 1), the random variable Q̃δ defined as

Q̃δ(ω) =
⎧
⎨

⎩
3 ω ∈

[
0, δ2

16+δ2

]
,

1 − δ2

8 ω ∈ ( δ2

16+δ2
, 1]

is arbitrarily close to Q̃1(ω), but Q̃δ /∈ Q. Therefore, 1 is not a relative interior point of Q.
Hence the converse of the first “�⇒”in (4.4) may not be true.

Example 4.2 Suppose � = {ω1, ω2, ω3} and P0({ω1}) = P0({ω2}) = P0({ω3}) = 1/3. Let

Q0 : Q0(ω1) = 3

4
, Q0(ω2) = 3

2
, Q0(ω3) = 3

4
.
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Then Q0 ∈ P and in this case

1 := Q1 : Q1(ω1) = 1, Q1(ω2) = 1, Q1(ω3) = 1.

Take Q := conv{Q1, Q0}, then {1} ⊂ Q. However, for the non-constant random variable

X : X (ω1) = −1, X (ω2) = 0, X (ω3) = 1,

one has

R(X) = sup
Q∈Q

E(XQ) = max{E(XQ1),E(XQ0)} = 0 = E(X).

Therefore, R is not averse.

From Example 4.2 we can see that the converse of the second “�⇒” in (4.4) may not
hold even when � is finite. However, the converse of the first “�⇒” always holds when �

is finite, see the following proposition.

Proposition 4.3 If � is finite and R is a coherent risk measure with risk envelope Q, then
R is averse if and only if 1 is a relative interior point of Q.

Proof By Proposition 4.2, we only need to prove one direction, that is, aversity implies
that 1 is a relative interior point. Suppose � = {ω1, . . . , ωn} and P0({ωi }) = pi > 0 for
i = 1, 2, . . . , n. In this case,

P =
{

(q1, . . . , qn) : q1, . . . , qn ≥ 0,
n∑

i=1

qi pi = 1

}

,

and the risk envelope of R is a certain nonempty closed convex set Q ⊆ P , that is,

R(X) = max
(q1,...,qn)∈Q

{x1q1 p1 + · · · + xnqn pn}

for X = (x1, . . . , xn) ∈ R
n . Here, xi = X (ωi ) for i = 1, 2, . . . , n. Moreover, since R is

averse, we have

max
(q1,...,qn)∈Q

{x1q1 p1 + · · · + xnqn pn} > x1 p1 + · · · + xn pn (4.5)

whenever X (ωi ) is not a constant. Note that the affine hull of P is a hyperplane of dimension
n−1with a normal vector (p1, . . . , pn). Let the apostrophe of a vector represent its transpose.
Therefore, to prove that (1, . . . , 1) is an interior point of Q relative to P , we only need to
prove that

max
(q1,...,qn)∈Q

(y1, . . . , yn)[(q1, . . . , qn) − (1, . . . , 1)]′ > 0 (4.6)

for any (y1, . . . , yn) that is not a normal vector of the affine hull of P . In other words, we
show that (4.6) holds for any (y1, . . . , yn) that is not a multiple of (p1, . . . , pn).

To prove (4.6), noting that if y1
p1

, . . . ,
yn
pn

are not the same, then setting xi = yi
pi

in (4.5),
we have

max
(q1,...,qn)∈Q

{y1q1 + · · · + ynqn} = max
(q1,...,qn)∈Q

{
y1
p1

· q1 p1 + · · · + yn
pn

· qn pn
}

= max
(q1,...,qn)∈Q

{x1q1 p1 + · · · + xnqn pn}
> x1 p1 + · · · + xn pn

= y1 + · · · + yn .
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Therefore (4.6) is true, implying that (1, 1, . . . , 1) is an interior point of Q relative to P. 
�
We next analyze the examples in Sect. 3. Obviously, the expectation measure E(·) in

Sect. 3.1 is not averse. We call a risk measureR “law-invariant” ifR(X) = R(Y ) whenever
X and Y have the same distribution under P0. Föllmer and Schied (2002) proved that if R
is a coherent, law-invariant risk measure in L ∞ (not L 2) other than E(·), then R is averse.
Therefore, the examples in Sects. 3.2, 3.4 and 3.5 are all averse. However, since we are
considering theL 2 case, we cannot use the result in Föllmer and Schied (2002) directly. We
also note that the result inL 2 space has appeared in Rockafellar and Uryasev (2013) without
proof. For completeness, we give a direct proof in the next proposition.

Proposition 4.4 The worst-case, CVaR, OCE and mean-deviation, as risk measures, are all
averse.

Proof The proof is trivial for ess-sup(·), since the expectation of any random variable is no
larger than its essential supremum, and they are equal if and only if the random variable is a
constant almost surely.

For the mean deviation measure, obviously, we have EX + λ · ‖(X − EX)+‖2 ≥ EX
for any X ∈ L 2, in which the equality holds if and only if X ≤ EX almost surely, which
implies X = EX (i.e., X is a constant) almost surely. Therefore, the mean deviation measure
is averse.

For the OCEmeasure, since 1 ∈ Qγ1,γ2 , we have Sr (X) ≥ E(X) by Proposition 4.2. Next,
if

E(X) = Sr (X) = min
β∈R

{
β + E[γ1(X − β)+ − γ2(β − X)+]},

then there exists a constant β0 ∈ R such that

β0 + E
[
γ1(X − β0)+ − γ2(β0 − X)+

] = E(X) = β0 + E
[
(X − β0)+ − (β0 − X)+

]
,

that is,

(γ1 − 1)E[(X − β0)+] + (1 − γ2)E[(β0 − X)+] = 0.

Since 0 ≤ γ2 < 1 < γ1, we can get E[(X − β0)+] = E[(β0 − X)+] = 0, and therefore,
X = β0 almost surely. Hence the OCE measure is averse.

Finally, setting γ1 = (1 − α)−1 and γ2 = 0 in (3.6), we obtain CVaR. Thus, CVaR is
averse. 
�
On the contrary, we next show that the risk measure from dividing the future is not averse.

Proposition 4.5 The risk measure defined in (3.2) is not averse if r ≥ 2.

Proof If P0(�k) �= λk for some k = 1, 2, . . . , r , then by (3.3), 1 /∈ Q. Thus, by Proposi-
tion 4.1, R is not averse.

If P0(�k) = λk for all k = 1, 2, . . . , r , then set X = ∑r
k=1 k1�k . Obviously X is

nonconstant. Since

R(X) =
r∑

k=1

λk · k =
r∑

k=1

kP0(�k) = E(X),

which implies that R is not averse. 
�
Although the risk measure from subdividing the future is not averse, this risk measure can

be used in composition with other averse measures (say, CVaR) to create new risk measures
that make practical sense. We leave this topic for future research.
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5 Coherent risk measures on subspaces: risk envelopes and uncertainty
sets

Recently, coherent riskmeasures have been studied in the literature of robust optimization. For
instance, several coherent risk measures were constructed by using the so-called uncertainty
sets inNatarajan et al. (2009), while Bertsimas andBrown (2009) examined the question from
a different perspective: If risk preferences are specified by a coherent riskmeasure, howwould
the uncertainty set be constructed? In general, from the viewpoint of robust optimization, a
risk measure is applied to a random variable of a special structure (say, a linear combination
of basic random variables) and is defined by uncertainty sets without involving the exact
details of the probability structure of the random variables. In particular, the mean-standard
deviation measure, the discrete CVaR, and the distortion risk measure are defined through
cone-representable uncertainty sets. If the same risk measure can be constructed by both risk
envelope and uncertainty set, then there must be certain relation between the two subjects.
It is therefore of interest to explore the connection between risk envelopes and uncertainty
sets. This would help to have a deeper understanding on robust optimization.

Let us consider a rather general case in robust optimization,where all uncertain data are lin-
ear functions of a finite number of randomvariables, X1, . . . , Xn,where Xi ∈ L 2(�,�,P0)

for 1 ≤ i ≤ n. Denote

V :=
{

X =
n∑

i=1

ai Xi : a1, . . . , an ∈ R

}

.

Then V is the subspace generated by X1, . . . , Xn . Let R be a coherent risk measure on
L 2(�,�,P0). We define a risk envelope by

QV := {Q ∈ P : E(XQ) ≤ R(X) for all X ∈ V} . (5.1)

It is easy to check that QV ⊆ P and is nonempty, convex and closed, so it is a risk envelope
with an induced risk measure

RV (X) = sup
Q∈QV

E(XQ). (5.2)

Note that the risk envelope QV , together with RV , relies on the choice of the subspace V
as well as the original risk measure R. Since V and R are fixed in the analysis below, for
notational convenience, we henceforth use Q̄ and R̄ for QV and RV , respectively. We will
also call R̄ the risk measure on V to specify its dependence on V and R.

We next show that the uncertainty set used in robust optimization for constructing a
coherent risk measure on V is the (weak) closure of “expected image” of the risk envelope.
We need introduce some notations. For any risk envelope Q, we denote

UQ := cl

⎧
⎪⎨

⎪⎩

⎛

⎜
⎝

E(X1Q)
...

E(XnQ)

⎞

⎟
⎠ : Q ∈ Q

⎫
⎪⎬

⎪⎭
. (5.3)

In particular, we denote

UP := cl

⎧
⎪⎨

⎪⎩

⎛

⎜
⎝

E(X1Q)
...

E(XnQ)

⎞

⎟
⎠ : Q ∈ P

⎫
⎪⎬

⎪⎭
.

123



Ann Oper Res (2018) 262:29–46 43

Then UQ is a nonempty and convex subset of UP . Given a nonempty, convex and closed
uncertainty set U ⊆ UP , let

QU := cl

⎧
⎪⎨

⎪⎩
Q ∈ P :

⎛

⎜
⎝

E(X1Q)
...

E(XnQ)

⎞

⎟
⎠ ∈ U

⎫
⎪⎬

⎪⎭
. (5.4)

Then QU is a nonempty, closed and convex subset of P . The following lemma is basic.

Lemma 5.1 The following relations hold:

(1) QUP = P;
(2) UQU = U;
(3) Q ⊆ QUQ ;
(4) If Q1 ⊆ Q2, then UQ1 ⊆ UQ2 ;
(5) U1 ⊆ U2 if and only if QU1 ⊆ QU2 .

Proof (1) Trivial.
(2) On one hand, we have

UQU = cl
{[E(X1Q), . . . ,E(XnQ)]′ : Q ∈ QU

} ⊆ U,

where the apostrophe stands for the transpose. On the other hand, for any (z1, . . . , zn)′ ∈
U ⊆ UP , there exists Q ∈ P such that zi = E(Xi Q) for any 1 ≤ i ≤ n. Since
[E(X1Q), . . . ,E(XnQ)]′ ∈ U , by definition we have Q ∈ QU . Therefore,

(z1, . . . , zn)
′ = [E(X1Q), . . . ,E(XnQ)]′ ∈ UQU .

Hence U ⊆ UQU , and then UQU = U .
(3) For anyQ ∈ Q,wehave [E(X1Q), . . . ,E(XnQ)]′ ∈ UQ. Thenbydefinition,Q ∈ QUQ .

Therefore, Q ⊆ QUQ .
(4) Trivial.
(5) The “only if” part is trivial. For the “if” part, by (4) and (2), QU1 ⊆ QU2 implies

UQU1
⊆ UQU2

, that is, U1 ⊆ U2.

�

Remark The converse of (3) may not be true. For example, ifQ is a singleton {1}, then UQ =
[E(X1), . . . ,E(Xn)]′. Here QUQ contains all Q ∈ P such that [E(X1Q), . . . ,E(XnQ)]′ =
[E(X1), . . . ,E(Xn)]′, which may not necessarily be constant 1.

We can use the uncertainty sets to define coherent risk measures. For uncertainty set U , the
mapping

n∑

i=1

ai Xi �−→ sup
(z1,...,zn)′∈U

(
n∑

i=1

ai zi

)

defines a risk measure on the subspace V , which is called the risk measure on V with uncer-
tainty set U .

The next two propositions describe some relationships between risk envelopes and uncer-
tainty sets. A common criticism to robust optimization is the arbitrariness of the uncertainty
set and its lack of theoretical foundation. Our result here may shed some light on the rationale
of uncertainty set and build up a proper theoretical foundation of it. Theorem 5.1 below serves
for the same purpose.
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Proposition 5.1 R̄ is a coherent risk measure on V with risk envelope Q̄ if and only if it is
a coherent risk measure on V with uncertainty set UQ̄.

Proof By direct calculation, we can get

sup
Q∈Q̄

E

[(
n∑

i=1

ai Xi

)

Q

]

= sup
Q∈Q̄

(
n∑

i=1
aiE(Xi Q)

)

= sup
(z1,...,zn)′ ∈UQ̄

(
n∑

i=1
ai zi

)

for any
∑n

i=1 ai Xi ∈ V . 
�
Proposition 5.2 For any uncertainty set U ⊆ UP , R̄ is a coherent risk measure on V with
uncertainty set U if and only if it is a coherent risk measure on V with risk envelope QU .

Proof By Proposition 5.1, R̄ is a coherent risk measure on V with risk envelope QU if and
only if it is a coherent risk measure on V with uncertainty set UQU . Then by Lemma 5.1 (2),
UQU = U , so the proposition is proved. 
�
The following is amain theorem inNatarajan et al. (2009), where the authors discussed how to
construct coherent risk measures in general. However, since uncertainty sets are constructed
independent of probability distributions, it is not completely clear how the uncertainty sets
are related to the random variables appeared in the problem. We now present a new proof of
the theorem, which discloses the connection between the uncertainty set and the risk measure
on V.

Theorem 5.1 R̄ is a coherent risk measure on V if and only if there exists a nonempty and
convex subset U ⊆ UP such that

R̄
(

n∑

i=1

ai Xi

)

= sup
z=(z1,...,zn)′∈U

(
n∑

i=1

ai zi

)

(5.5)

for any a1, . . . , an ∈ R. We call U the “uncertainty set” of the risk measure R̄ on V. It can
be written explicitly as

U =
{

z ∈ UP : max
a1,...,an∈R

{
n∑

i=1

ai zi : R
(

n∑

i=1

ai Xi

)

≤ 1

}

≤ 1

}

,

where R is the original risk measure that induces R̄.

Proof Formula (5.5) follows from Propositions 5.1 and 5.2. Next, by Proposition 5.1, R̄ is
a coherent risk measure on V with risk envelope

Q̄ =
{

Q ∈ P : E

[(
n∑

i=1

ai Xi

)

Q

]

≤ R
(

n∑

i=1

ai Xi

)

for all a1, . . . , an ∈ R

}

if and only if it is a coherent risk measure on V with uncertainty set

UQ̄ =

⎧
⎪⎨

⎪⎩

⎛

⎜
⎝

E(X1Q)
...

E(XnQ)

⎞

⎟
⎠ : Q ∈ P, E

[(
n∑

i=1

ai Xi

)

Q

]

≤ R
(

n∑

i=1

ai Xi

)

for all a1, . . . , an ∈ R

}

.
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Therefore, to complete the proof of Theorem 5.1, we only need to prove
⎧
⎪⎨

⎪⎩

⎛

⎜
⎝

E(X1Q)
...

E(XnQ)

⎞

⎟
⎠ : Q ∈ P, E

[(
n∑

i=1
ai Xi

)
Q

]
≤ R

(
n∑

i=1
ai Xi

)
for all a1, . . . , an ∈ R

⎫
⎪⎬

⎪⎭

=

⎧
⎪⎨

⎪⎩

⎛

⎜
⎝

z1
...

zn

⎞

⎟
⎠ ∈ UP : max

a1,...,an∈R

{
n∑

i=1
ai zi : R

(
n∑

i=1
ai Xi

)
≤ 1

}
≤ 1

⎫
⎪⎬

⎪⎭
. (5.6)

In fact, since Q ∈ P ⇐⇒ [E(X1Q), . . . ,E(XnQ)]′ ∈ UP , and for any Q ∈ P ,

E

[(
n∑

i=1

ai Xi

)

Q

]

≤ R
(

n∑

i=1

ai Xi

)

for all a1, . . . , an ∈ R

⇐⇒
n∑

i=1

aiE(Xi Q) ≤ R
(

n∑

i=1

ai Xi

)

for all a1, . . . , an ∈ R

⇐⇒ max

{
n∑

i=1

aiE(Xi Q) : a1, . . . , an ∈ R, R
(

n∑

i=1

ai Xi

)

≤ 1

}

≤ 1,

then (5.6) holds. The proof of Theorem 5.1 is completed. 
�

6 Concluding remarks

Artzner et al. (1997, 1999) introduced the fundamental notion of coherent risk measures.
Rockafellar et al. (2006) considered a dual representation theorem inL 2 space. In this paper,
we considered risk measures in L 2 under set operations and discussed the dual representa-
tions and aversity for various popular riskmeasures.We also studied the relationship between
the risk measure defined by risk envelopes and that defined by uncertainty sets in the case
for the risk measures on subspaces. These results may provide certain tools for stochastic
optimizationwith riskmeasures aswell as improve our understanding on robust optimization.
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