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Abstract

We study the extinction time τ of the contact process started with full occupancy on finite trees of
bounded degree. We show that, if the infection rate is larger than the critical rate for the contact process
on Z, then, uniformly over all trees of degree bounded by a given number, the expectation of τ grows
exponentially with the number of vertices. Additionally, for any increasing sequence of trees of bounded
degree, τ divided by its expectation converges in distribution to the unitary exponential distribution. These
results also hold if one considers a sequence of graphs having spanning trees with uniformly bounded
degree, and provide the basis for powerful coarse-graining arguments. To demonstrate this, we consider
the contact process on a random graph with vertex degrees following a power law. Improving a result of
Chatterjee and Durrett (2009), we show that, for any non-zero infection rate, the extinction time for the
contact process on this graph grows exponentially with the number of vertices.
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1. Introduction

In this paper, we consider one of the simplest models of epidemics on graphs, the contact
process, and establish general results on the long-term persistence of activity of the epidemics.
This model – which, outside the interacting particle systems literature, is sometimes called the
SIS (susceptible–infected–susceptible) model or at least a particular instance of it – is defined
from a graph G and an infection parameter λ > 0. Since new infections only appear through
transmissions and recoveries occur spontaneously, on finite graphs the activity of the epidemics
eventually stops, that is, at some point in time (known as the extinction time of the infection)
every individual becomes permanently healthy. However, it is known for some choices of G,
such as finite lattices and trees (as we will survey below) that, if λ is sufficiently large and the
system is started from all individuals infected, then the extinction time grows (in expectation)
exponentially with the number of vertices of the graph. This is understood as an instance of
metastability. Here we give a proof of this phenomenon under much higher generality: we only
require λ to be above a universal threshold and the graphs under consideration to be connected
and not to have vertices of arbitrarily large degree. This means that the metastable behavior of
the epidemics is ubiquitous and does not depend on the specific underlying geometry (apart from
our bounded degree assumption).

Let us now introduce notation and recall important facts. Let G = (V, E) be a graph with
undirected edges. The contact process on G with parameter λ > 0 is a continuous-time Markov
process (ξt )t≥0 on the space of subsets of V whose transitions are given by:

for every x ∈ ξt , ξt → ξt \ {x} with rate 1,

for every x ∉ ξt , ξt → ξt ∪ {x} with rate λ |{y ∈ ξt : {x, y} ∈ E}|,
(1.1)

where for a set A, we write |A| to denote its cardinality.
Given A ⊆ V , we write (ξ A

t )t≥0 to denote the contact process started from the initial
configuration equal to A. For x ∈ V , we write (ξ x

t ) rather than (ξ
{x}

t ); also, rather than (ξ V
t ),

we write (ξ
1
t ). When we write (ξt )t≥0, with no superscript, the initial configuration will either

be clear from the context or unimportant. We often abuse notation and associate configurations
ξ ⊆ V with the corresponding indicator functions (that is, elements of {0, 1}

V ).
The contact process can be thought of as a model for the spread of an infection in a population.

Vertices of the graph (sometimes referred to as sites) represent individuals. In a configuration
ξ ∈ {0, 1}

V , individuals in state 1 are said to be infected, and individuals in state 0 are healthy.
Pairs of individuals that are connected by edges in the graph are in proximity to each other in
the population. With this terminology, the dynamics can be described as follows. First, infected
individuals recover with rate 1. Second, an individual that is infected transmits its infection to a
neighboring site with rate λ (assuming no multiple edges).

We begin by presenting some of the properties of the contact process for certain choices of
the graph G, namely: the lattice Zd , regular infinite trees, and the finite counterparts of these
graphs. For proofs of these properties and a detailed treatment of the topic, we refer the reader to
[17,18].

On Zd (equipped with its usual nearest-neighbor graph structure), there exists a number
λc = λc(Zd) such that the following holds. If λ ≤ λc, then the contact process dies out, meaning
that for any finite initial configuration, the empty configuration 0 is almost surely eventually
reached. On the other hand, if λ > λc, then the contact process survives strongly: for any non-
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empty initial configuration, the event {ξt ≠ 0 for all t} has positive probability and, conditioned
on this event, almost surely any vertex of Zd becomes infected infinitely many times.

The interest in the contact process on trees was prompted when it was discovered that death
and strong survival are not the only possibilities in this case [24]. For d ≥ 2, let Td denote the
infinite (d + 1)-regular tree with a distinguished vertex o called the root. The different phases
of the process are captured by two constants 0 < λ1(Td) < λ2(Td) < +∞. If λ ≤ λ1, then the
contact process dies out, while if λ > λ2, then it survives strongly. If λ ∈ (λ1, λ2], then the
process survives weakly. That is, if started with a non-empty finite initial configuration, then the
infection has positive probability of always being present on the graph, yet each individual site
eventually becomes permanently healthy.

If G is a finite graph, then the contact process on G dies out. This does not however rule out
qualitative changes of the behavior of the contact process as λ varies, as we now describe. For
A ⊆ V , let us write τA

G = inf{t : ξ A
t = 0} for the extinction time of the process started from

occupancy in A. We may omit the subscript G when the context is clear enough, and simply
write τ when the contact process is started from full occupancy, that is, τ = τ1. Consider the
graph {0, . . . , n}

d (viewed as a subgraph of Zd ) and the distribution of τ for this graph, as n
goes to infinity. If λ < λc(Zd), then τ/ log n converges in probability to a constant [12,8]; see
also Theorem 3.3 in [18]. If λ > λc, then log E[τ]/nd converges to a positive constant, and
τ/E[τ] converges in distribution to the unit exponential distribution [13,20,21]. In particular,
when λ > λc, the order of magnitude of the extinction time is exponential in the number of
vertices of the graph; the process is said to exhibit metastability, meaning that it persists for a long
time in a state that resembles an equilibrium and then quickly moves to its true equilibrium (0 in
this case). Metastability for the contact process in this setting was also studied in [6,25]. Finally,
if d = 1, it is also known that, if λ = λc, then τ/n → ∞ and τ/n4

→ 0 in probability [14].
For the case of finite trees, the available results concerning the extinction time are contained

in [10], which improves on earlier results of [26]. Fix d ≥ 2, let T h
d be the finite subgraph of

Td defined by considering up to h generations from the root and again take the contact process
started from full occupancy on this graph, with associated extinction time τ. If λ < λ2, then
there exists a constant c > 0 such that τ/h converges to c in probability as h → ∞. If λ > λ2,
then there exists c > 0 such that the logarithm of the expectation of τ divided by the number of
vertices of the tree converges to c as h → ∞.

As far as we know, no rigorous results are available concerning more general classes of graphs.
For n ∈ N and d > 0, let Λ(n, d) be the set of all (connected) trees with n vertices and degree

bounded by d, and let G(n, d) be the set of graphs having a spanning tree in Λ(n, d). In this
paper, we prove the following results.

Theorem 1.1. For any d ≥ 2 and λ > λc(Z), there exists c > 0 such that

lim
n→∞

inf
T ∈Λ(n,d)

P

τT ≥ ecn

= 1. (1.2)

In particular,

lim inf
n→∞

inf
T ∈Λ(n,d)

log E[τT ]

n
≥ c. (1.3)

Theorem 1.2. Let d ≥ 2, λ > λc(Z), and (Gn)n∈N be a sequence of graphs with Gn ∈ G(n, d).
The distribution of τGn /E[τGn ] converges to the unitary exponential distribution as n tends to
infinity.
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Theorem 1.2 is a (weak) way of exposing the metastability of the contact process (see part (3)
of Proposition 3.2 for a finer statement; note also that from this statement, it is easy to extend
the above theorems to more general initial configurations than full occupancy, with appropriate
modifications). In Theorem 1.1, one can replace Λ(n, d) by the set of all graphs having a
subgraph in Λ(n, d), and in particular, one can replace Λ(n, d) by G(n, d). For instance, the
above results cover the case of any sequence of increasingly large connected subsets of Zd .
At the cost of requiring λ > λc(Z), we thus recover and extend previously mentioned results,
without any strong assumption on the regularity of the graph.

This is however not quite the way in which we think our results are most useful. Rather, they
are the basic ingredient of a general strategy to prove that the extinction time of the contact
process is exponentially large in the number of vertices as soon as the infection parameter is
above the natural critical value of the particular graphs we consider (instead of λc(Z)). We now
expose this strategy on certain random graphs whose degree distribution follows a power law.

We consider random graphs given by the configuration model with degree distribution equal
to a power law. Let us explain what this means. For any n ∈ N, we construct a graph Gn on n
vertices. The vertex set is simply {1, . . . , n}. The random set of edges will be constructed from a
probability p on {3, 4, . . .} with the property that, for some a > 2,

0 < lim inf
m→∞

ma p(m) ≤ lim sup
m→∞

ma p(m) < ∞.

(We assume that p is supported on integers larger than 2 because in [27, Theorem 10.14], it
is shown that under this assumption, it follows that Gn is a connected graph with probability
tending to 1 as n → ∞.) We then let d1, . . . , dn be independent random variables distributed
according to p. We want

n
i=1 di to be even, so if it is not, we simply add 1 to one of the di

chosen uniformly at random. Next, from each vertex i ∈ {1, . . . , n} we place di half-edges;
when two half-edges are connected, an edge is formed. We pair up the d1 + · · · + dn half-edges
in a random way that is uniformly chosen among all possibilities. (We observe that this can
produce multiple edges between two vertices and also loops (edges that start and finish at the
same vertex)). We then take the contact process with parameter λ > 0 on this random graph. In
order to accommodate for the multiple edges and loops, one has to slightly modify the rules of
the dynamics given in (1.1); see (6.2) in Section 6.

Let us write P to denote a probability measure under which both the random graph and the
contact process on this graph are defined. In [7], it is shown that, for any λ > 0 and any δ > 0, we
have P[τGn ≥ en1−δ

] → 1 as n → ∞. In particular, in the limit when the number of vertices tends
to infinity, the critical infection parameter for these graphs is 0. We strengthen this observation
by showing:

Theorem 1.3. For any λ > 0, there exists c > 0 such that

P

τGn ≥ ecn

→ 1 as n → ∞.

Although it would be simple to deduce Theorem 1.3 from Theorem 1.1 assuming λ > λc(Z),
we stress again that Theorem 1.3 covers any non-zero infection parameter. We think that
Theorem 1.3 is true for all a > 1, but we only give the proof for a > 2, which is the harder
case (when we increase a, the degrees of the vertices become stochastically smaller, so the graph
becomes less connected).

For finite boxes of Zd , the proof that the extinction time is exponential in the number of
vertices relies on a coarse-graining argument. This coarse-graining enables to map the initial
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contact process into a coarse-grained (discrete-time) contact process with an increasingly large
infection parameter. The remarkable feature of Zd is its scale invariance, which ensures that the
coarse-grained graph is still Zd (or rather, a finite box of Zd ). Now, simple percolation arguments
show that on finite boxes of Zd , the time of survival is exponential in the number of vertices if
the infection parameter is sufficiently large, say larger than λtarget. To sum up, the proof for
finite boxes of Zd consists in defining a coarse-graining scheme, and then in fixing a finite
length of coarse-graining such that the coarse-grained system has infection parameter larger than
λtarget.

For Gn given by the configuration model, coarse-grained blocks will consist of certain stars,
that is, vertices with a given large number of neighbors. The difficulty in trying to adapt the
strategy to these graphs (or to finite homogeneous trees) is that there is no easy scale invariance
as on Zd . It then becomes a very delicate matter to control the geometry of the coarse-grained
graph, and thus to define a suitable equivalent of λtarget. However, Theorem 1.1 roughly tells us
that we do not need to control this geometry, and that we can choose λtarget = λc(Z).

The approach in [7] is also based on a coarse-graining procedure. There, the question of
controlling the coarse-grained geometry was bypassed by choosing the coarse-grained scale so
large as to ensure that the coarse-grained graph was a complete graph. Since the diameter of
the graphs Gn goes to infinity, this cannot be ensured unless the length scale of the coarse-
graining diverges. In other words, in this approach, stars should have more and more vertices
as n increases, and the number of points in the coarse-grained scale must thus be o(n). With
our approach, we can choose instead a large but fixed size for the relevant stars in the graph, so
that the coarse-grained graph still contains of order n sites, and Theorem 1.3 follows from this
construction.

We close this introduction by pointing to other related works and questions. To the best of
our knowledge, the rigorous study of the behavior of the contact process on random graphs
with a power-law degree distribution began with [2]. The graph studied there is obtained by a
generalization of the preferential attachment mechanism introduced in [1,5]. Vertices are added
one by one. When a new vertex is added, it is connected to m of the older vertices. These
are chosen independently as follows: with probability α, the vertex is chosen uniformly; with
probability 1 − α, it is chosen with a probability proportional to its degree. That the degree
distribution of these graphs follows a power law was proved in [9]. The structure of these graphs
is more difficult to analyze than that of the configuration model, and [2] could only show that
the extinction time is at least exp(nβ) for some β < 1 depending on α (where n is the number
of vertices). It would be interesting to investigate whether the results presented here (possibly in
combination with the recent [3]) enable to show that the extinction time is actually of the order
of exp(cn) for some constant c. In another direction, [28] computes very precise asymptotics for
the extinction time of the contact process on the complete graph.

The question of whether or not the critical infection parameter is zero for a given sequence
of graphs still lacks a unified mathematical treatment. Results such as [11,23] point towards
the conjecture that the epidemic threshold of a sequence of random graphs is given by the
lower critical infection parameter of the local graph limit of the sequence (see [23] for a more
detailed discussion on this). The local limit of a sequence of random graphs given by the
configuration model are Galton–Watson trees. However, we do not know of a good criterion
for deciding whether the lower critical infection parameter of a given Galton–Watson tree is 0. It
is suggested in [4] that this threshold is zero as soon as the degree distribution decays slower than
exponentially. Beyond this, physicists have investigated finite-size corrections to the asymptotic
behavior discussed here, see for instance [15].
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Organization of the paper. Section 2 is a brief reminder on some properties of the contact
process that will be useful for our purposes. In Section 3, we show a weaker version of
Theorem 1.1, which states that the expectation of the extinction time is larger than ecnα

for
some α > 0. In order to do this, we consider two cases: either the tree contains a large segment,
or it contains a large number of disjoint smaller segments. In the first case, the result follows
from the known behavior of the extinction time on finite intervals of Z. In the second case, we
adapt an argument of [7] and show that, even if the segments are not too large, the time scale
of extinction in individual segments is large enough for the infection to spread to other, possibly
inactive, segments, so that the segments can jointly sustain activity for the desired amount of
time. At this point, using a general metastability argument from [20], we prove Theorem 1.2 (for
completeness, we include a version of the argument of [20] in an Appendix).

Given a tree T ∈ Λ(n, d), we decompose it into two subtrees T1, T2 by removing an edge;
we argue that this can be done so that T1 and T2 both contain a non-vanishing proportion of the
vertices of T . In Section 4, we compare the contact process (ξt )t≥0 on T to a pair of processes
(ζT1,t )t≥0 on T1 and (ζT2,t )t≥0 on T2. The process ζT1 evolves as a contact process on T1 until
extinction. Once extinct, the process stays extinct for some time, and then rises from the ashes
(we call it a Phoenix contact process). This rebirth of the process reflects the fact that, as long as
the true process ξ has not died out, the tree T1 constantly receives new infections that can restore
its activity. The process ζT2 evolves independently, following the same rules. We show that the
true process ξ dominates ζT1 ∪ ζT2 up to the extinction of ξ , with probability close to 1. With this
comparison at hand, we argue that, modulo a factor that is polynomial in the number of vertices,
the expected extinction time for T is larger than the product of the expected extinction times for
T1 and T2. The polynomially growing error term can be washed away using the lower bound ecnα

mentioned in the previous paragraph. We thus obtain part (1.3) of Theorem 1.1, from which we
deduce part (1.2) using attractiveness.

In Section 5, we re-state some of the results explained above for a discrete-time version of the
contact process. Finally, we prove Theorem 1.3 in Section 6.

Notations. For x ∈ R, we write ⌊x⌋ for the integer part of x . When talking about the size of a
graph, we always mean its number of vertices.

2. A reminder on the contact process

Graphical construction. We start this section by presenting the graphical construction of the
contact process. Fix a graph G = (V, E) and λ > 0. We take the following family of independent
Poisson point processes on [0, ∞):

(Rx ) : x ∈ V with rate 1;

(N e) : e ∈ E with rate λ.

Let H denote a realization of all these processes. Given x, y ∈ V, s ≤ t , we say that x and
y are connected by an infection path in H (and write (x, s) ↔ (y, t) in H ) if there exist times
t0 = s < t1 < · · · < tk = t and vertices x0 = x, x1, . . . , xk−1 = y such that

• Rxi ∩ (ti , ti+1) = ∅ for i = 0, . . . , k − 1;
• {xi , xi+1} ∈ E for i = 0, . . . , k − 2;
• ti ∈ N {xi−1,xi } for i = 1, . . . , k − 1.

Points of the processes (Rx ) are called recovery marks and points of (N e) are links; infection
paths are thus paths that traverse links and do not touch recovery marks. H is called a Harris
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system; we often omit dependence on H . For A, B ⊆ V , we write A × {s} ↔ B × {t} if
(x, s) ↔ (y, t) for some x ∈ A, y ∈ B. We also write A × {s} ↔ (y, t) and (x, s) ↔ B × {t}.
Finally, given another set C ⊆ V , we write A × {s} ↔ B × {t} inside C if there is an infection
path from a point in A×{s} to a point in B×{t} and the vertices of this path are entirely contained
in C .

Given A ⊆ V , put

ξ A
t (x) = 1{A×{0}↔(x,t)} for x ∈ V, t ≥ 0 (2.1)

(here and in the rest of the paper, 1 denotes the indicator function). It is well-known that the
process (ξ A

t )t≥0 = (ξ A
t (H))t≥0 thus obtained has the same distribution as that defined by the

infinitesimal generator (1.1). The advantage of (2.1) is that it allows us to construct in the same
probability space versions of the contact processes with all possible initial distributions.

From now on, we always assume that the contact process is constructed from a Harris system,
and will write PG,λ to refer to a probability measure under which such a system (on graph G and
with rate λ) is defined; we usually omit G, λ.

Time-shifted process. Given s ≥ 0, B ⊆ V and a Harris system H , define (ξ
B,s
t )t≥s by

ξ
B,s
t (x) = 1{B×{s}↔(x,t)} for x ∈ V, t ≥ s. (2.2)

It can then be readily checked that

for all A ⊆ V and 0 ≤ s ≤ t, ξ A
t = ξ

ξ A
s ,s

t . (2.3)

From this it follows that

for all A, B ⊆ V and 0 ≤ s ≤ t, if ξ A
s = ξ B

s , then ξ A
t = ξ B

t . (2.4)

Attractiveness. An immediate consequence of (2.1) is that for all A ⊆ V and t ≥ 0, we have
ξ A

t = ∪x∈A ξ x
t . From this we obtain the attractiveness property of the contact process:

for all A ⊆ B ⊆ V and t ≥ 0, ξ A
t ⊆ ξ B

t . (2.5)

Using (2.4) and (2.5), we see that, if for some x ∈ V and s ≥ 0 we have ξ x
s = ξ

1
s , then for any

A ⊆ V that contains x and t ≥ s, we must have ξ A
t = ξ

1
t . Together with a union bound, this

yields

P

ξ A

t ≠ 0, ξ A
t ≠ ξ

1
t


≤


x∈A

P

ξ x

t ≠ 0, ξ x
t ≠ ξ

1
t


. (2.6)

Duality. Fix A ⊆ V, t > 0 and a Harris system H . Let us define the dual process (ξ̂
A,t
s )0≤s≤t

by

ξ̂ A,t
s (y) = 1{(y,t−s)↔A×{t} in H}.

If A = {x}, we write (ξ̂
x,t
s ). This process satisfies two important properties. First, its distribution

(from time 0 to t) is the same as that of a contact process with same initial configuration. Second,
it satisfies the duality equation

ξ A
t ∩ B ≠ ∅ if and only if A ∩ ξ̂

B,t
t ≠ ∅. (2.7)
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In particular, ξ
1
t (x) = 1 if and only if ξ̂

x,t
t ≠ 0. We will also need the fact that

if ξ A
t = ξ

1
t and ξ̂

B,t
t ≠ 0, then ξ A

t ∩ B ≠ ∅. (2.8)

Contact process on an interval. We now gather some classical results about the contact process
on the graph with vertex set {0, . . . , N } (where N ∈ Z+) and nearest-neighbor edges. We start
defining, for x, y ∈ {0, . . . , N } and the contact process on {0, . . . , N },

σ N
x→y = inf{t : ξ x

t (y) = 1}.

Proposition 2.1. For any λ > λc(Z), there exist c1 > 0 such that the following holds. For any
N and any x ∈ {0, . . . , N },

P


max


σ N

x→0, σ N
x→N


<

N

c1


> c1 (2.9)

and

P


max


σ N

x→0, σ N
x→N


≥

N

c1
, ξ x

N/c1
≠ 0


≤ e−N . (2.10)

Additionally, for any N and any t ≥ 0,

P

τ

1
{0,...,N }

≤ t


≤ te−c1 N . (2.11)

This follows from the classical renormalization argument that compares the contact process
with supercritical oriented percolation, see for instance the proof of [17, Corollary VI.3.22].

Remark 2.2. A crucial aspect of the contact process on an interval is the observation that for
every starting point x ∈ {0, . . . , N }, we have ξ x

t = ξ
1
t for every t ≥ max


σ N

x→0, σ N
x→n


. In other

words, when the contact process started from x has reached the extremal points of the interval,
it is coupled with the contact process that was started from the fully occupied configuration. To
see this, assume that there exists an infection path γ1 from (x, 0) to (0, σ N

x→0) and an infection
path γ2 from (x, 0) to (N , σ N

x→N ) (i.e. assume that the random times are finite). For any two sites
y and z and t ≥ max(σ N

x→0, σ
N
x→N ), let γ ′ be an infection path from (y, 0) to (z, t). Since the

graph is an interval, the infection path γ ′ is forced to intersect γ1 or γ2, and in both cases, this
implies the existence of an infection path from (x, 0) to (z, t).

Corollary 2.3. Assume λ > λc(Z). Then, for any N, any t ≥ N/c1 and any non-empty A ⊆

{0, . . . , N },

P{0,...,N },λ


ξ A

t = ξ
1
t


≥ c1, P{0,...,N },λ


ξ A

t = ξ
1
t ≠ 0


≥ c1 − te−c1 N . (2.12)

Additionally, for any A ⊆ {0, . . . , N } and any t ≥ N/c1,

P{0,...,N },λ


ξ A

t ≠ 0, ξ A
t ≠ ξ

1
t


≤ |A|e−N . (2.13)

Proof. (2.12) follows from fixing x ∈ A and applying the comment that follows (2.5), Re-
mark 2.2, (2.9) and (2.11). (2.13) follows from Remark 2.2, (2.6) and (2.10). �
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In the course of the proof, we will need a slightly more technical result on contact processes on
intervals. For the sake of clarity, we prefer to derive it now, although its motivation will become
clear only later.

For λ > 0, G = (V, E), A ⊆ V and t > 0, define

p(A, t) = pG(A, t) = PG,λ


ξ A

t = ξ
1
t ≠ 0


.

Obviously,

p(V, t) = P [τG > t] . (2.14)

Also, as a consequence of (2.8), for any A, B ⊆ V and t > 0,

P

ξ A

t ∩ B ≠ ∅


≥ P

ξ A

t = ξ
1
t


− P


ξ̂ B

t = 0


≥ p(A, t) + p(B, t) − 1. (2.15)

Lemma 2.4. For any λ > λc(Z), N ∈ Z+ and t0 ≥ N/c1, the following holds.

(i) For any A ⊆ {0, . . . , N } satisfying p(A, t0) ≥ 1 − ϵ and any κ > 0,

P{0,...,N },λ


p(ξ A

t0 , t0) > 1 − κ


≥ 1 − ϵ −
1
κ


2t0e−c̄1 N

+ Ne−N


.

(ii) For any non-empty A ⊆ {0, . . . , N } and any κ > 0,

P{0,...,N },λ


p(ξ A

t0 , t0) > 1 − κ


≥ c1 −
1
κ


2t0e−c̄1 N

+ Ne−N


.

Proof. Recalling the definition of the time-shifted process (2.2), we observe that

P


p(ξ
1
t0 , t0) ≤ 1 − κ


= P


1 − p(ξ

1
t0 , t0) > κ


≤

1
κ

E

1 − p(ξ

1
t0 , t0)


=

1
κ


B

P

ξ

1
t0 = B


· (1 − p(B, t0))

=
1
κ


B

P[ξ
1
t0 = B] · P


ξ

B,t0
2t0

= 0 or ξ
B,t0
2t0

≠ ξ
1,t0
2t0


=

1
κ


B

P[ξ
1
t0 = B] ·


P

ξ

B,t0
2t0

= 0


+ P

ξ

B,t0
2t0

≠ 0, ξ
B,t0
2t0

≠ ξ
1,t0
2t0


≤

1
κ


P

ξ

1
2t0

= 0


+


B

P

ξ

1
t0 = B


P

ξ

B,t0
2t0

≠ 0, ξ
B,t0
2t0

≠ ξ
1,t0
2t0


,

where we have used the Markov inequality in the first inequality and (2.3) in the last inequality.
By (2.11) and (2.13) respectively,

P

ξ

1
2t0

= 0


≤ 2t0e−c̄1 N and P

ξ

B,t0
2t0

≠ 0, ξ
B,t0
2t0

≠ ξ
1,t0
2t0


≤ Ne−N ,

so we get

P


p(ξ
1
t0 , t0) ≤ 1 − κ


≤

1
κ


2t0e−c̄1 N

+ Ne−N


.

Parts (i) and (ii) now follow respectively from the definition of p and (2.12). �
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3. Metastability

In this section, we show that for λ > λc(Z), the extinction time of the contact process is at
least ecnα

for some α > 0, uniformly over T ∈ Λ(n, d). This is clear by Proposition 2.1 if the tree
has diameter at least nα . Else, we rely on a recursive decomposition of the tree into many subtrees
each of which has size at least

√
n. We then pick long intervals (of logarithmic size) inside each of

these trees, and study how these can sustain the infection. For a suitable choice of the parameters,
the time it takes for such an interval, isolated from the rest of the graph, to turn extinct, is much
larger than the time it takes for the infection to travel from one interval to another, since the
diameter of the whole graph is assumed small. Over time, the number of infected intervals can be
compared to a random walk on the integers with a drift to the right. Analyzing this walk gives the
desired result. Using this construction, we also show metastability of the contact process, in the
sense that after time n2, either the contact process is extinct, or it is equal to the contact process
that was started from full occupancy (and thus the initial configuration is forgotten). Since n2 is
much smaller than the extinction time, this is a quantitative way of presenting the metastability
of the contact process, and indeed we will conclude the section by proving Theorem 1.2.

We begin with the following basic graph-theoretic observation, on which our recursive
decomposition of the tree is based.

Lemma 3.1. For a tree T ∈ Λ(n, d), there exists an edge whose removal separates T into two
subtrees T1 and T2 both of size at least ⌊n/d⌋.

Proof. Associate to each edge the value of the smallest cardinality of the two subtrees resulting
from the edge’s removal. Let {x, y} be an edge having maximal value. We suppose that the
subgraph Ty containing vertex y is the smaller and that the value of its subtree is no more than
⌊n/d⌋ − 1. Let the remaining edges of vertex x be {x, x1}, {x, x2}, . . . {x, xr }, where r ≤ d − 1.
Let T j be the subtree containing x j obtained by removing the edge {x, x j }, and let n j be its
cardinality. By maximality, all the n j must be no more than ⌊n/d⌋ − 1, but we also have

|Ty | = |T \ ({x} ∪ T1 ∪ · · · ∪ Tr )| = n − (1 + n1 + n2 + · · · + nr ) ≤ ⌊n/d⌋ − 1.

That is, n ≤ (d − 1)(⌊n/d⌋ − 1) + ⌊n/d⌋ ≤ n − (d − 1), a contradiction (the case d = 1 being
trivial). �

Proposition 3.2. For any d > 0 and λ > λc(Z), there exists α > 0 and c2 > 0 such that the
following holds.
(1) For any n large enough, any T ∈ Λ(n, d), any non-empty A ⊆ T , one has

P

τ

A
≥ enα


≥ c2.

In particular, E[τA
] ≥ c2enα

.
(2) Moreover,

P

τ ≥ enα


≥ 1 − e−nα

,

where we recall that we write τ as a shorthand for τ1.
(3) For n large enough, any G = (V, E) ∈ G(n, d) and any A ⊆ V ,

PG,λ


ξ A

n2 ≠ 0, ξ A
n2 ≠ ξ

1
n2


≤ e−nα/2

.

From now on, d is fixed and we consider a tree T of maximal degree d and size n → ∞.
Let β > 0 to be determined later, not depending on n. Applying Lemma 3.1 repeatedly β log n
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times, we obtain Ln = 2β log n disjoint subtrees each of size at least n
(2d)β log n ≥

√
n, provided

β ≤ 1/(2 log(2d)) (for clarity, we simply assume that Ln is an integer, without writing that the
integer part should be taken). We write T1, . . . , TLn for the trees thus obtained.

Since the tree T has maximal degree bounded by d, so do the subtrees (T j ). Now, the size of
a tree with maximal degree d is at most

1 + d + · · · + ddiam
=

ddiam+1
− 1

d − 1
,

where diam denotes its diameter. As a consequence, for n large enough, each T j must have a
diameter at least log n

4 log d , and thus contain a path of log n
4 log d distinct vertices. We write I j to denote

such a path, which we identify with an interval of length log n
4 log d .

In what follows, we will distinguish between the two possibilities:

(A) the diameter of T is at least nβ ,
(B) the diameter of T is less than nβ ,

Proof of parts (1–2) of Proposition 3.2. Assume that the tree T satisfies (A). For part (1), by
attractiveness, it suffices to consider initial configurations with a single occupied site x ; we now
fix x . Condition (A) ensures that one can find an interval of length k ≥ nβ on T ; we write [y, z]
to denote such an interval, with y and z its endpoints. We also write [x, y] to denote the shortest
path (in graph distance) starting at x and ending at y. Let σ = inf{t : ξ x

t (y) = 1}. Then,

P

ξ x

exp(c1nβ/2)
≠ 0


≥ P


σ < ∞, ξ

y,σ

σ+exp(c1nβ/2)
≠ 0


. (3.1)

Using (2.9) on the contact process on [x, y], we have P [σ < ∞] > c1. Using (2.12) on the
contact process on [y, z], we have

P

ξ

y,σ

σ+exp(c1nβ/2)
≠ 0

 σ < ∞


≥ c1 − ec1nβ/2

· e−c1k .

Thus the right-hand side of (3.1) is larger than c2
1/2 when n is large enough, proving part (1).

Part (2) follows from applying (2.11) to the restriction of the contact process on [y, z].
We now assume that the graph satisfies (B), and adapt an approach due to [7]. For any B ⊆ Ii ,

we write (ξ B
i,t )t≥0 for the contact process on Ii with initial configuration B, that is,

ξ B
i,t (x) = 1{B×{0}↔(x,t) inside Ii }, x ∈ Ii , t ≥ 0.

When we write (ξt ) (or (ξ
1
t ), or (ξ A

t ) with A ⊆ T ) with only the subscript corresponding to time,
we mean the contact process on the whole graph T . Obviously, for any A ⊆ T ,

ξ A
t ⊃ ∪i ξ

A∩Ii
i,t and (ξ

A∩Ii
i,t )t≥0 for i = 1, . . . , Ln are independent. (3.2)

In accordance with the previous section, we write

pIi (B, t) = P

ξ B

i,t = ξ
1
i,t ≠ 0


, B ⊆ Ii , t > 0.

For 1 ≤ i ≤ Ln , we say interval Ii is good at time t if pIi (ξt ∩ Ii , 2nβ/c1) > 1 − n−2β .
We interpret this as meaning that the set of infected sites ξt ∩ Ii is “large enough”. Here “large
enough” means that, if this set is taken as the initial configuration for a contact process on Ii ,
then it gives probability higher than 1 − n−2β to the event that the infection is sustained for
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time 2nβ/c1 and couples with the comparison process which evolves in Ii starting from full
occupancy.

We put tk = (2nβ/c1)k and define Yi,k as the indicator function that interval Ii is good at time
tk . We finally define Xk =

Ln
i=1 Yi,k as the number of good intervals at time tk .

Lemma 3.3. Assume β <
c1

20 log d . Then, if n is large enough, the following holds.

(i) on {ξtk ⊃ Ii }, Yi,k = 1;
(ii) for any x ≥ 0, P


Xk+1 ≤ Xk − x | ξtk


≤ P


Bin(Ln, 2n−2β) ≥ x


, where Bin(m, q)

denotes a Binomial random variable with parameters m and q;
(iii) on {ξtk ≠ 0, Xk < Ln}, P


Xk+1 ≥ Xk + 1 | ξtk


≥ c2

1/2.

Proof. For (i), from (2.11) we get that, on {ξtk ⊃ Ii },

pIi (Ii , 2nβ/c1) > 1 −
2nβ

c1
· e−c1

log n
4 log d > 1 − n−2β

when β <
c1

20 log d and n is large, so that Yi,k = 1.
(ii) will follow from (3.2) and the fact, which we now prove, that on {Yi,k = 1}, P[Yi,k+1 =

1 | ξtk ] > 1 − 2n−2β . This is a consequence of attractiveness and applying Lemma 2.4(i) with
the choice of variables:

A = ξtk ∩ Ii , N = |Ii | =
log n

4 log d
, t0 =

2nβ

c1
, ϵ = κ = n−2β .

The first requirement that t0 > N
c1

is satisfied since 2nβ

c1
>

log n
4c1 log d when n is large. The second

requirement that pIi (A, t0) ≥ 1 − ϵ holds since we restrict our attention to the event {Yi,k = 1}.
The conclusion of the lemma then reads

P

Yi,k+1 = 0 | ξtk


≤ n−2β

+ n2β


4nβ

c1
· e−c1

log n
4 log d +

log n

4 log d
· e−

log n
4 log d


and the right-hand side is smaller than 2n−2β if β <

c1
20 log d and n is large enough. (ii) is now

proved.
Let us prove (iii). On the event {ξtk ≠ 0, Xk < Ln}, we can find x and i such that ξtk (x) = 1

and Yi,k = 0. Fix y ∈ Ii and let σ = inf{t > tk : ξ
x,tk
t (y) = 1}. Note that, since it is

assumed that the diameter of the graph is less than nβ , we can use Proposition 2.1(i) to get
P[σ < tk + nβ/c1] > c1. Then,

P

Yi,k+1 = 1 | ξtk


≥ c1 · P


pIi


ξ

y,σ
i,tk+1

,
2nβ

c1


> 1 − n−2β

 ξtk , σ < tk +
nβ

c1


.

Now, if σ < tk+nβ/c1, then 2nβ/c1 > tk+1−σ > nβ/c1 > |Ii |/c1, so we can use Lemma 2.4(ii)
to conclude that the right-hand side is larger than

c1 ·


c1 − n2β


4nβ

c1
e−c1

log n
4 log d +

log n

4 log d
e−

log n
4 log d


>

3
4

c2
1

when n is large enough. We can now end the proof as follows:

P

Xk+1 > Xk | ξtk


≥ P


Yi,k+1 = 1 | ξtk


− P


∃ j : Y j,k = 1 and Y j,k+1 = 0 | ξtk


≥ c2

1/2
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since, by part (ii) and a union bound,

P[∃ j : Y j,k = 1 and Y j,k+1 = 0 | ξtk ] ≤ Ln · 2n−2β
= nβ log 2

· 2n−2β n→∞
−−−→ 0. �

The conclusion will now follow from the above lemma by a comparison with a random walk
on Z ∩ (−∞, Ln] with a drift to the right. The necessary information on this drifted walk is
contained in the following lemma.

Lemma 3.4. Let (Zl)l∈N be the random walk on Z ∩ (−∞, Ln] with transition probabilities

P[Zl+1 = x + k | Zl = x < Ln] =


0 if k > 1,

c2
1/2 if k = 1,

e−n−β

n−|k|β/|k|! if k ≤ −1

and

P[Zl+1 = x + k | Zl = Ln] =

0 if k ≥ 1,

e−n−β

n−|k|β/|k|! if k ≤ −1.

Let also H0 be the hitting time of Z− = Z ∩ (−∞, 0], and HL be the hitting time of Ln . For any
n large enough and any x ≤ Ln , we have

P [H0 < HL | Z0 = x] ≤ n−xβ/2.

Let us postpone the proof of this lemma, and see how it enables us to conclude. From
Lemma 3.3(iii), we learn that whatever the initial non-empty configuration, we have X1 ≥ 1
with probability bounded away from 0. On this event, we want to couple (Xk) with the random
walk of Lemma 3.4 started at X1, so that Xk+1 ≥ Zk for every 0 ≤ k ≤ H0. In the r.h.s. of
the inequality in Lemma 3.3(ii), a Binomial random variable appears, while jumps to the left
for (Zl) follow a Poisson random variable. Since a Bernoulli random variable of parameter p is
stochastically dominated by a Poisson random variable of parameter − log(1− p), it follows that
Bin(Ln, 2n−2β) is stochastically dominated by a Poisson random variable of parameter

−Ln log(1 − 2n−2β) = −nβ log 2 log(1 − 2n−2β) ≤ n−β .

This and Lemma 3.3(iii) guarantee the existence of the coupling. With probability at least
1 − n−β/2

≥ 1/2, the random walk hits Ln before entering Z−.
Let α =

log 2
4 β. The proof of part (1) will be complete if we can argue that starting from Ln ,

with probability close to 1, the walk needs to hit and exit Ln at least enα
times before reaching

Z−. Let us consider a sequence of enα
excursions from Ln , and show that with high probability,

none of them visits Z−. Each jump out of Ln is distributed according to a Poisson random
variable of parameter n−β . By the exponential Chebyshev inequality, for n large enough we have
P

Poi(n−β) > x


< 2e−x for any x > 0. Thus, with probability tending to 1, the maximum

over enα
such random variables does not exceed n2α

≤ Ln/4. In view of Lemma 3.4, given an
excursion whose first step has size smaller than Ln/4, the excursion will visit Z− with probability
smaller than n−3Lnβ/8

≤ e−2nα
, and this finishes the proof of part (1).

As for part (2), the argument is similar, except that in this case X0 = Ln , and we couple
with the random walk of Lemma 3.4 started from Z0 = X0 = Ln . Consider enα

excursions
from Ln . None of these excursions has first jump larger than n3α

≤ Ln/4 with probability
at least 1 − enα

· 2e−n3α
> 1 −

1
2 e−nα

. As noted above, given an excursion from Ln whose
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first step has size smaller than Ln/4, the excursion will visit Z− with probability smaller than
n−3Lnβ/8

≤
1
2 e−2nα

, thus finishing the proof of part (2). �

Proof of Lemma 3.4. Let h(x) = P [H0 < HL | Z0 = x], h̃(x) = n−xβ/2, and let L be the
generator of the random walk:

L f (x) =
c2

1

2
( f (x + 1) − f (x)) + e−n−β

+∞
k=1

n−kβ

k!
( f (x − k) − f (x)) (x < Ln).

For x ∈ Z ∩ (0, Ln), we have Lh(x) = 0. On the other hand, for such x , we have

Lh̃(x) =
c2

1

2


n−β/2

− 1


h̃(x) + e−n−β
+∞
k=1

n−kβ

k!
(nkβ/2

− 1)h̃(x)

≤
c2

1

2


n−β/2

− 1


h̃(x) +

+∞
k=1

n−kβ

k!
nkβ/2h̃(x)

≤


c2

1

2


n−β/2

− 1


+ en−β/2
− 1


h̃(x),

so Lh̃(x) ≤ 0 as soon as n is large enough. As a consequence, L(h − h̃) ≥ 0 on Z ∩ (0, Ln). By
the maximum principle,

max
Z∩(0,Ln)

(h − h̃) ≤ max
Z−∪{Ln}

(h − h̃) = 0,

and the lemma is proved. �

Proof of part (3) of Proposition 3.2. We continue with case (B), but considering that T is the
spanning tree of some graph G = (V, E). For an arbitrary non-empty A ⊆ V , we wish to bound

P

ξ A

n2 ≠ ξ
1
n2 , ξ A

n2 ≠ 0

.

The probability above is equal to P[∃y : ξ A
n2(y) ≠ ξ

1
n2(y), ξ A

n2 ≠ 0]. For any fixed y, we will
thus bound

P

ξ A

n2(y) ≠ ξ
1
n2(y), ξ A

n2 ≠ 0

. (3.3)

Letting (ξ̂
y,n2

t )0≤t≤n2 be the dual contact process for time n2 started with configuration {y}, we
can rewrite this probability as

P

ξ A

n2(y) = 0, ξ̂
y,n2

n2 ≠ 0, ξ A
n2 ≠ 0


.

As in the proof of part (1), we consider Xk the number of good intervals at time tk = (2nβ/c1)k.
By attractiveness, if an interval is good for the contact process on T , then it must be good for the
contact process on G. Note that, for HL as in Lemma 3.4, a classical large deviation estimate on
sums of i.i.d. random variables with an exponential moment gives us that

P [HL > m] ≤ e−
√

m,

and as a consequence,

P


Ln ∉ {Xk, k ≤ m}, ξ A
tm ≠ 0


≤ e−

√
m . (3.4)



1988 T. Mountford et al. / Stochastic Processes and their Applications 126 (2016) 1974–2013

Let E3/4 be the event that starting from A occupied, a proportion at least 3/4 of all the
intervals (Ii )i≤Ln are good in ξ A

n2/2
(for simplicity, n2/2 is assumed to be a multiple of 2nβ/c1).

Arguing as in part (2), we see that once Xk has reached Ln , the probability that it reaches a point
below 3Ln/4 before time n2/2 is smaller than e−nα

. Combining this with (3.4), we obtain

P

ξ A

n2 ≠ 0, E c
3/4


≤ 2e−nα

,

where E c
3/4 denotes the complement of E3/4. Similarly, if we let Ê3/4 denote the event that for the

dual process ξ̂ y,n2
, a proportion at least 3/4 of the intervals are good at time n2/2−2nα/c1, then

P

ξ̂

y,n2

n2 ≠ 0, Ê c
3/4


≤ 2e−nα

.

Consider the event Ẽi defined by:

Ẽi =


ξ A

n2/2 × {n2/2} ↔ ξ̂
y,n2

n2/2−2nβ/c1
× {n2/2 + 2nβ/c1} inside Ii


.

(see Fig. 1).
Let also I be the set of indices i such that Ii is good both for the contact process at time n2/2,

and for its dual ξ̂ y,n2
at time n2/2 − 2nβ/c1. We have

P


i≤Ln

(Ẽi )
c, E3/4, Ê3/4


≤ P


i∈I

(Ẽi )
c, E3/4, Ê3/4


.

Given that E3/4 and Ê3/4 both happen, at least 1/2 of the intervals are good both for the contact
process and its dual, or in other words, |I| ≥ Ln/2. Moreover, the events E3/4 and Ê3/4, and the
set I , are independent of the state of the Harris system in the time layer [n2/2, n2/2 + 2nβ/c1].
By the definition of being good and (2.15), we have P[(Ẽi )

c
| i ∈ I] ≤ 2n−2β . Note also that

the events (Ẽi ) are independent. Hence

P


i≤Ln

(Ẽi )
c, E3/4, Ê3/4


≤ (2n−2β)Ln/2.

Finally, note that when one of the Ẽi happens, it must be that A × {0} ↔ (y, n2), that is,
ξ A

n2(y) = 1. We have thus proved that

P

ξ A

n2(y) = 0, ξ̂
y,n2

n2 ≠ 0, ξ A
n2 ≠ 0


≤ P


ξ A

n2(y) = 0, E3/4, Ê3/4


+ 4e−nα

≤


2n−2β

Ln/2
+ 4e−nα

≤ 5e−nα

.

Recalling that the probability on the l.h.s. above is that appearing in (3.3), we have thus shown
that

P

ξ A

n2 ≠ ξ
1
n2 , ξ A

n2 ≠ 0


≤ 5ne−nα

.

For case (A), the reasoning is similar, only simpler, so we will just outline the steps involved
in the proof. Let I be an interval of length nβ contained in T . We will say that I is good at time
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Fig. 1. Event Ẽi .

t if

pI


ξt ∩ I,

2n

c1


> 1 − e−nβ/2

.

Define sk = (2n/c1)k and let Xk be the indicator function of the event that I is good at time sk .
Similarly to Lemma 3.3, we can then prove that

• on {ξsk ≠ 0}, P

Xk+1 = 1 | ξsk


≥ c2

1/2;

• on {Xk = 1}, P

Xk+1 = 1 | ξsk


≥ 1 − 2e−nβ/2

.

Using these facts, we can show that, for α small, non-empty A and y,

P

ξ A

n2 ≠ 0, I is not good for ξ A
n2/2


≤ e−nα

,

P

ξ̂

y,n2

n2 ≠ 0, I is not good for ξ̂
y,n2

n2/2−2n/c1


≤ e−nα

and, conditioned on I being good for both ξ A
n2/2

and ξ̂
y,n2

n2/2−2n/c1
, the probability of

ξ A
n2/2 × {n2/2} ↔ ξ̂

y,n2

n2/2−2n/c1
× {n2/2 + 2n/c1} inside I


is larger than 1 − 2e−nβ/2

. The proof is then completed by summing over y. �

Proof of Theorem 1.2. The result follows from Lemma A.1 in the Appendix, using parts (2) and
(3) of Proposition 3.2. �

4. Comparison with Phoenix contact processes

Throughout this section, we fix λ > λc(Z). Our aim in this section is to prove Theorem 1.1. To
this end, we manufacture a “Phoenix contact process”. This process evolves as a contact process
up to extinction, but has then the ability to recover activity. Separating a tree T into T1 and T2
as in Lemma 3.1, we show that with high probability, the true contact process ξ dominates the
union of two Phoenix contact processes running independently on T1 and T2, as long as these
two Phoenix contact processes are not simultaneously in the empty configuration. From this,
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we derive a recursive relation between E[τT ] and the product E[τT1 ]E[τT2 ], which enables us to
conclude.

Let T ∈ Λ(n, d). We say that the Harris system is trustworthy on the time interval [0, n4
] if

for any (x, s) ∈ T × [0, n4/2], the following two conditions hold:

(C1) if ξ x,s survives up to time n4, then ξ
x,s
n4 = ξ

1
n4 ,

(C2) if ξ x,s survives up to time s + 2n2, then it survives up to time n4.

We say that the Harris system H is trustworthy on the time interval [t, t + n4
] if Θt H is

trustworthy on the time interval [0, n4
], where Θt H is the Harris system obtained by a time

translation of t (i.e. (x, u) ↔ (y, v) in Θt H if and only if (x, t + u) ↔ (y, t + v) in H ).
For a given Harris system and for (Yt )t∈R+

a family of independent auxiliary random variables
following a Bernoulli distribution of parameter 1/2, independent of the Harris system, we define
the Phoenix contact process (ζT,t )t≥0 = (ζt )t≥0 on {0, 1}

T as follows.

Step 0. Set ζ0 = 1, and go to Step 1.

Step 1. Evolve as a contact process according to the Harris system, up to reaching the state 0, and
go to Step 2.

Step 2. Let t be the time when Step 2 is reached. Stay at 0 up to time t + n4 and

• if the Harris system is trustworthy on [t, t + n4
] and Yt = 1, then set ζt+n4 = ξ

1,t
t+n4 (where

ξ1,t is the contact process started with full occupancy at time t and governed by the Harris
system), and go to Step 1;

• else, go to Step 2.

We say that the process is active when it is running Step 1; is quiescent when it is running
Step 2. Note that after initialization, the process alternates between active and quiescent phases.
If it happens that during Step 2, the Harris system is trustworthy on [t, t + n4

] and Yt = 1, but
ξ

1,t
t+n4 = 0, we consider that the process is active at time t + n4, and becomes inactive again

immediately afterwards.

Remark 4.1. Note that since the time the process spends on state 0 is not exponentially
distributed, (ζt ) is not Markovian. It would however be easy to make the process Markovian,
by enlarging its state space into


{0, 1}

T
\ {0}


∪

{0} × [0, n4)


, so that when arriving in Step 2,

the process is in the state (0, 0), and subsequently the second coordinate increases at unit speed.

Remark 4.2. The auxiliary randomization of ζ provided by the family (Yt ) is a technical
convenience, which guarantees that if ζt is quiescent at some time t , then with probability at
least 1/2 it remains so at least up to time t + n4.

Remark 4.3. Each time the process becomes active again, its distribution at this time is that of
ξ

1
n4 conditioned on the event that the Harris system is trustworthy on the time interval [0, n4

]. We
write ν to denote this distribution.

Our first goal is to ensure that the Phoenix contact process is quiescent at a given time t
with small probability, of order 1/E[τ], with some polynomial multiplicative correction. This
is achieved in Lemma 4.6. Two intermediate results are written as lemmas for later reference.
Roughly speaking, Lemma 4.6 implies that the probability for two independent Phoenix contact
processes running respectively on T1 and T2 to be both quiescent at a given time is bounded by
(E[τT1 ]E[τT2 ])

−1.
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Lemma 4.4. Let T ∈ Λ(n, d). For any n large enough and any t, the probability that the Harris
system on T is trustworthy on [t, t + n4

] is larger than 1/2.

Proof. It suffices to show the lemma for t = 0. We first consider condition (C1). By part (3) of
Proposition 3.2, the probability that

∀z ∈ T, ξ
z,n4/2
n4 ≠ 0 ⇒ ξ

z,n4/2
n4 = ξ

1,n4/2
n4 (4.1)

goes to 1 as n tends to infinity. Let (x, s) ∈ T × [0, n4/2], and assume that ξ x,s survives up to
time n4, that is,

(x, s) ↔ T × {n4
}.

Then there must exist z ∈ T such that

(x, s) ↔ (z, n4/2) ↔ T × {n4
}.

On the event (4.1), we thus have ξ
x,s
n4 ≥ ξ

1,n4/2
n4 . The converse comparison being clearly

satisfied, we have in fact ξ
x,s
n4 = ξ

1,n4/2
n4 . In order to show that condition (C1) is satisfied for

any (x, s) ∈ T × [0, n4/2] with probability tending to 1, it thus suffices to show that

P

ξ

1
n4 = ξ

1,n4/2
n4


→ 1 as n → ∞. (4.2)

In view of part (2) of Proposition 3.2, with probability tending to one, we have ξ
1
n4 ≠ 0. On

this event, by part (3) of Proposition 3.2, we also have ξ
1,n4/2
n4 = ξ

1
n4 with probability tending to

1, and thus (4.2) is proved.
We now turn to condition (C2). Note that the event ξ

x,s
s+2n2 ≠ 0 can be rewritten as

(x, s) ↔ T × {s + 2n2
},

and under such a circumstance, there must exist z ∈ T such that

(x, s) ↔ (z, ⌈s/n2
⌉n2) ↔ T × {s + 2n2

}.

It is thus sufficient to show that

P

∃z ∈ T, k ∈ {0, . . . , ⌈n2/2⌉} : ξ

z,kn2

(k+1)n2 ≠ 0 but ξ
z,kn2

n4 = 0


→ 0 as n → ∞. (4.3)

For a fixed z ∈ T and integer k, we have by part (3) of Proposition 3.2 that

P

ξ

z,kn2

(k+1)n2 ≠ 0but ξ
z,kn2

(k+1)n2 ≠ ξ
1,kn2

(k+1)n2


≤ e−nα/2

,

so the probability of the event

∀z ∈ T, k ∈ {0, . . . , ⌈n2/2⌉} : ξ
z,kn2

(k+1)n2 = 0 or ξ
z,kn2

(k+1)n2 = ξ
1,kn2

(k+1)n2 (4.4)

tends to 1 as n tends to infinity. On the other hand, with probability tending to 1, ξ1 survives up

to time n4, and ξ
1
n4 is clearly dominated by ξ

1,kn2

n4 , for any k ≤ ⌈n2/2⌉. On the conjunction of
this event and the one described in (4.4), we thus have

∀z ∈ T, k ∈ {0, . . . , ⌈n2/2⌉}, either ξ
z,kn2

(k+1)n2 = 0 or ξ
z,kn2

n4 ≥ ξ
1
n4 ≠ 0,

and this proves (4.3). �
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For the next lemma, recall that τ is the extinction time of the contact process started with full
occupancy.

Lemma 4.5. For any s > 0, one has

P [τ ≤ s] ≤
s

E[τ]
,

Moreover, there exists a constant C (depending on λ and d but not on n) such that for any
T ∈ Λ(n, d), E[τ] ≤ eCn .

Proof. Attractiveness of the contact process implies that for any r ∈ N,

P [τ ≥ rs] ≤ (P [τ ≥ s])r . (4.5)

Since

E[τ] ≤ s
+∞
r=0

P [τ ≥ rs] ≤
s

1 − P [τ ≥ s]
, (4.6)

it comes that

P [τ ≥ s] ≥ 1 −
s

E[τ]
,

which proves the first part. For the second part, note that one can find C (depending on λ, d but
not on n) such that

P [τ ≥ 1] ≤ 1 − e−Cn (4.7)

uniformly over T ∈ Λ(n, d). The conclusion thus follows from (4.6). �

Lemma 4.6. For any n large enough, any T ∈ Λ(n, d) and any t ≥ 0, one has

P

ζt = 0


≤

6n6

E[τ]
. (4.8)

Proof. Using Lemma 4.5 with s = n6, it is clear that (4.8) holds for any n and any t ≤ n6.
Note moreover that, writing τν for the extinction time of the contact process started from the
distribution ν defined in Remark 4.3, we have

P

τ
ν

≤ n6
− n4


= P


τ ≤ n6

| Harris sys. trustworthy on [0, n4
]


≤

2n6

E[τ]
, (4.9)

where we used Lemma 4.4 in the last step.
Suppose now that t > n6, and consider the event E defined by

∃s ∈ (t − n6/2, t − n6/4] such that ζs = 0.

We write τ̃ for the first s ≥ t − n6/2 such that ζs = 0. On the event E , we have τ̃ ≤ t − n6/4.
The event E ′ defined by

∀k ∈ N, k < ⌊n2/4⌋,

Harris sys. not trustworthy on [τ̃+ kn4, τ̃+ (k + 1)n4
] or Yτ̃+kn4 ≠ 1
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has probability smaller than (3/4)⌊n2/4⌋ by Lemma 4.4. When E and (E ′)c both hold, the process
ζ becomes active at some time tA ∈ [t − n6/2, t], and is distributed according to ν at this time.
Hence,

P

ζt = 0, E


≤ P


ζt = 0, E , (E ′)c

+ P


E ′


≤ P

τ
ν

≤ n6/2


+ P


E ′

.

Since P[E ′
] ≪ 1/E[τ] and in view of (4.9), we have indeed

P

ζt = 0, E


≤

3n6

E[τ]
(4.10)

for any large enough n. It thus remains to bound

P

ζt = 0, E c . (4.11)

Let k be the first positive integer such that Yt−n6/2+kn4 = 1 and the Harris system is trustworthy
on

[ak, bk]
(def)
= [t − n6/2 + kn4, t − n6/2 + (k + 1)n4

].

For the same reason as above, we may assume that [ak, bk] ⊆ [t − n6/2, t − n6/4]. Since on the
event E c, the process ζ remains active on the time interval [ak, bk], and considering the definition
of trustworthiness and of the Phoenix process, we know that ζbk = ξ

1,ak
bk

, and moreover, the latter
random variable is distributed according to ν. Hence, up to a negligible event, the probability in
(4.11) is bounded by

P

τ
ν

≤ n6/2

,

and thus, using (4.9) again,

P

ζt = 0, E c

≤
3n6

E[τ]
. (4.12)

The conclusion now follows, combining (4.10) and (4.12). �

In order to justify that with high probability, the true contact process on T dominates the
union of two independent Phoenix contact processes on the subtrees T1 and T2 until extinction,
we need to make sure that if the contact process is alive in T1 but not in T2, it will try to infect T2
many times in a short time interval (so that with high probability, a large-scale infection happens
in T2 before the Phoenix contact process in T2 becomes active again). The next lemma ensures
that any given vertex x ∈ T1 is infected many times if the contact process remains alive for some
short amount of time (we think of x as being the site bordering the cut of T into two pieces, so
that having x infected gives the immediate opportunity to start an infection in T2).

Lemma 4.7. Let T be a tree with size at most n and maximal degree at most d, and let x ∈ T .
Define recursively γ0 = 0 and, for any i ∈ N,

γi+1 = inf{t ≥ γi + 2n2
: ξt (x) = 1} (+∞ if empty).

For n large enough, we have

P

γn2/8 > n4/2 | ξn4/2 ≠ 0


≤ e−n2

.
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Proof. In view of part (1) of Proposition 2.1, for any non-empty A ⊆ T , we have

P


∃s ≤

n

c1
: ξ A

s (x) = 1


≥ c1.

Let Fi be the σ -field generated by {ξt , t ≤ γi }. By induction and the Markov property, we can
thus show that for any k ∈ N,

P


γi+1 − (γi + 2n2) ≥

kn

c1
, ξγi +2n2+(k−1)n/c1

≠ 0 | Fi


≤ (1 − c1)

k .

Hence,

P

γn2/8 > n4/2, ξn4/2 ≠ 0


= P

n2/8−1
i=0

γi+1 − (γi + 2n2) > n4/4, ξn4/2 ≠ 0


≤ P

n2/8−1
i=0

Bi n/c1 > n4/4

 ,

where (Bi ) are independent geometric random variables of parameter 1 − c1. For λ > 0 small
enough, we have

eφ(λ) (def)
= E[eλBi ] < +∞,

and we thus obtain

P

n2/8−1
i=0

Bi > c1n3/4

 ≤ exp

φ(λ)n2/8 − λc1n3/4


,

which, together with part (1) of Proposition 3.2, proves the claim. �

We are now ready to prove our coupling result.

Proposition 4.8. For n large enough, let T ∈ Λ(n, d) be split into two subtrees T1, T2 as
described by Lemma 3.1. Define the process (ζ̃t )t≥0 by

ζ̃t = ζT1,t ∪ ζT2,t (t ≥ 0),

where ζT1 and ζT2 are Phoenix processes defined on T1 and T2 respectively, using the Harris
system on T together with two independent families of auxiliary random variables, independent
of the Harris system. One has

P

∀t ≤ τ, ξt ≥ ζ̃t


≥ 1 − e−n3/2

.

Proof. Let (σi )i≥1 be the sequence of (stopping) times when the process ζT1 becomes quiescent.
We start by showing that, for any i ,

P

ξσi +n4 < ζT1,σi +n4 , ξσi +n4 ≠ 0


≤ e−n7/4

. (4.13)

For some arbitrary x ∈ T1, consider the stopping times introduced in Lemma 4.7, but started
with γ0 = σi , and let N be the largest index satisfying γN ≤ σi +n4/2. By Lemma 4.7, we have

P


N < n2/8, ξσi +n4 ≠ 0


≤ e−n2
. (4.14)
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Moreover, part (1) of Proposition 3.2 ensures that, for any j ,

P

ξ

x,γ j
T1

survives up to time γ j + 2n2
| γ j < +∞


≥ c2, (4.15)

where ξ
x,γ j
T1

denotes the contact process restricted to T1 started with x occupied at time γ j . We
introduce the stopping times γ̃ j to deal with the fact that γ j may be infinite. We let γ̃ j = γ j if
j ≤ N , γ̃N+1 = σi + n4/2 + 2n2, and then recursively, γ̃ j+1 − γ̃ j = 2n2. We have

P

∀ j ≤ N , ξ

x,γ j

T1,γ j +2n2 = 0, ξσi +n4 ≠ 0


≤ P


N < n2/8, ξσi +n4 ≠ 0


+ P

∀ j ≤ n2/8, ξ

x,γ̃ j

T1,γ̃ j +2n2 = 0

. (4.16)

Since for any j , we have γ̃ j+1 ≥ γ̃ j + 2n2, the events indexed by j appearing in the second
probability on the r.h.s. of (4.16) are independent. Using also (4.14) and (4.15) (with γ j replaced
by γ̃ j ), we thus arrive at

P

∀ j ≤ N , ξ

x,γ j

T1,γ j +2n2 = 0, ξσi +n4 ≠ 0


≤ e−n2
+ (1 − c2)

n2/8. (4.17)

We now show that

∃ j ≤ N , ξ
x,γ j

T1,γ j +2n2 ≠ 0 ⇒ ξσi +n4 ≥ ζT1,σi +n4 . (4.18)

Indeed, in order for ζT1,σi +n4 to be non 0, it must be that the Harris system restricted to T1 is
trustworthy on [σi , σi +n4

]. In this case, by the definition of trustworthiness, if there exists some
j ≤ N such that ξ

x,γ j

T1,γ j +2n2 ≠ 0, then it must be that

ξ
x,γ j

T1,σi +n4 = ξ
1,σi

T1,σi +n4 ≥ ζT1,σi +n4

(the last two being equal when Yσi = 1, otherwise ζT1,σi +n4 = 0). Since ξγ j (x) = 1, it is clear

that ξσi +n4 ≥ ξ
x,γ j

T1,σi +n4 , thus justifying (4.18). This and (4.17) prove (4.13).
In order to conclude, we first show that τ cannot be too large. It comes from (4.5) and (4.7)

that

P

τ ≥ n4eCn


≤ e−n2

, (4.19)

where C can be chosen uniformly over T ∈ Λ(n, d) (and does not depend on n). If ζT1 is active
at time t and ξ dominates ζT1 at this time, then the domination is preserved during the whole
phase of activity, since ζT1 is driven by a subset of the Harris system driving the evolution of ξ .
When ζT1 becomes quiescent, the domination is obviously preserved. As a consequence, if the
domination of ζT1 by ξ is broken at some time, it must be when ζT1 turns from quiescent to active.
We thus have

P

∃t ≤ τ, ξt < ζT1,t


= P


∃i : ξσi +n4 < ζT1,σi +n4 and ξσi +n4 ≠ 0


.

Since σi+1 − σi ≥ n4, on the event τ ≤ n4eCn , there are at most eCn times when ζT1 turns from
quiescent to active. Using (4.13), we thus obtain

P

∃t ≤ τ, ξt < ζT1,t


≤ P[τ ≥ n4eCn

] + eCne−n7/4
.

The proposition is now proved, using (4.19) together with the fact that

P

∃t ≤ τ, ξt < ζ̃t


≤ P


∃t ≤ τ, ξt < ζT1,t


+ P


∃t ≤ τ, ξt < ζT2,t


. �
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Corollary 4.9. For n large enough, let T ∈ Λ(n, d) be split into two subtrees T1, T2 as described
by Lemma 3.1. We have

E[τT ] ≥ n−9 E

τT1


E

τT2


.

Proof. Let σ̃ be the first time when ζT1 and ζT2 are simultaneously quiescent. By Proposition 4.8,
for any t ≥ 0, we have

P[τ ≤ t] ≤ P[σ̃ ≤ t] + e−n3/2
. (4.20)

In view of Remark 4.2, at time σ̃ , both ζT1 and ζT2 remain quiescent for a time n4 with probability
at least 1/2 (one of them just becomes quiescent at time σ̃ , while the other stays quiescent for a
time n4 with probability at least 1/2). Hence, writing, for any t ≥ 0,

n4
· 1{σ̃≤t} · 1

{ζ̃s=0 ∀s∈[σ̃ ,σ̃+n4]} ≤

 t+n4

0
1

{ζ̃s=0}
ds,

then taking expectations and rearranging, we get

P

σ̃ ≤ t


≤

2

n4

 t+n4

0
P

ζ̃s = 0


ds.

Since ζT1 and ζT2 are independent, and using Lemma 4.6, we thus obtain

P[σ̃ ≤ t] ≤
2

n4 (t + n4)
(6n6)2

E[τT1 ]E[τT2 ]
=

72n8(t + n4)

E[τT1 ]E[τT2 ]
. (4.21)

Let us now fix

t̃ = 2
E[τT1 ]E[τT2 ]

n9 .

Since we know from part (1) of Proposition 3.2 that t̃ grows faster than any power of n, (4.21)
gives us that for n large enough,

P

σ̃ ≤ t̃


≤ 1/4.

In view of (4.20), we thus obtain

P

τ ≤ t̃


≤ 1/4 + e−n3/2

≤ 1/2,

which implies that E[τ] ≥ t̃/2, and thus the corollary. �

Proof of Theorem 1.1. Let ρ = 1 + 1/d , and consider, for any r ∈ N, the quantity

Vr = inf
n∈(ρr−1/d,ρr ]

inf
T ∈Λ(n,d)

log E[τ(T )]

|T |
.

Statement (1.3) of Theorem 1.1 will be proved if we can show that lim infr→∞ Vr > 0.
Let r be a positive integer, and T be a tree of degree bounded by d and whose size lies in

ρr , ρr+1

.

Since 1 − ρ−1
= 1/(d + 1) < 1/d and in view of Lemma 3.1, for r large enough, we can

split up T into two subtrees T1, T2 such that

|T1|, |T2| ≥ |T |(1 − ρ−1).
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As a consequence,

|T1|, |T2| ≥ ρr−1/d,

and also

|T1| ≤ |T | − |T2| ≤ |T |


1 − (1 − ρ−1)


≤ ρr ,

with the same inequality for T2. Corollary 4.9 tells us that for r large enough,

E[τ(T )] ≥
1

|T |9
E[τ(T1)] E[τ(T2)],

that is to say,

log E[τ(T )] ≥ log E[τ(T1)] + log E[τ(T2)] − log |T |
9.

Observing that

log E[τ(T1)] + log E[τ(T2)] ≥ Vr (|T1| + |T2|) = Vr |T |,

we arrive at

log E[τ(T )]

|T |
≥ Vr −

log |T |
9

|T |
. (4.22)

Part (1) of Proposition 3.2 ensures that for r large enough, one has

Vr ≥
c

ρr(1−α)
(4.23)

for some constant c > 0. Recalling that |T | ≤ ρr+1, we thus have

log |T |
9

|T |
≤

Vr

ρrα/2 ,

and (4.22) turns into

log E[τ(T )]

|T |
≥ Vr


1 −

1

ρrα/2


,

for any large enough r and any tree whose size lies in (ρr , ρr+1
]. If the size of the tree lies in

(ρr/d, ρr
], then the inequality

log E[τ(T )]

|T |
≥ Vr

is obvious, so we arrive at

Vr+1 ≥ Vr


1 −

1

ρrα/2


.

Since Vr > 0 for any r large enough by (4.23), and
r


1 −

1

ρrα/2


> 0,

we have shown that lim infr→∞ Vr = c > 0. This proves (1.3).
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In order to prove (1.2), it suffices to note that, by Lemma 4.5,

sup
T ∈Λ(n,d)

P

τ ≤ ecn/2


≤

ecn/2

inf
T ∈Λ(n,d)

E[τ]
≤ e−cn/4

for n large enough. �

5. Discrete time growth process

For comparison purposes, it is useful to consider a discrete-time analogue of the contact
process; we will need to consider such a process in the next section. Though many different
definitions may be proposed, we have decided on the following, which is the same as bond
percolation on the oriented graph L⃗2

alt defined in [16].
Fix p ∈ (0, 1) and let {I r

(x,y) : r ∈ {0, 1, . . .}, x, y ∈ Z, |x − y| ≤ 1} be a family of

independent Bernoulli(p) random variables. Fix η0 ∈ {0, 1}
Z and, for r ≥ 0, let

ηr+1(x) = 1{∃y: |y−x |≤1, ηr (y)=1, I r
(y,x)

=1}. (5.1)

The following is standard.

Proposition 5.1. The above process is attractive and there exists p(1)
c < 1 such that for p > p(1)

c
the process survives in the sense that, for any η0 ≠ 0,

P

ηr ≠ 0 ∀r


> 0

and, if η0 = 1, then ηr decreases stochastically to a non-zero limit.

This process generalizes to any locally finite graph G = (V, E) just as does the contact
process: we take independent Bernoulli(p) random variables

{I r
(x,y) : x, y ∈ V, dist(x, y) ≤ 1}

(where dist denotes graph distance) and, given η0 ∈ {0, 1}
V , let

ηr+1(x) = 1{∃y:dist(x,y)≤1, ηr (y)=1, I r
(y,x)

=1}, r ≥ 0, x ∈ V . (5.2)

In particular, {ηr }r≥0 has the self-duality property, and we can follow through the arguments of
the preceding sections to arrive at:

Proposition 5.2. Let d ≥ 2 and p > p(1)
c . There exists c > 0 such that

inf
T ∈Λ(n,d)

P

τT ≥ ecn

−→ 1 as n → ∞.

(Here, τT is the extinction time for the discrete-time process on T started from full occupancy).

6. Extinction time for the configuration model

Let us briefly recall the definition of the random graph Gn = (Vn, En). We take Vn =

{1, 2, . . . , n} and suppose given a probability p(·) on the positive integers greater than or equal
to 3 with the property that there exist a > 2 and 0 < c0 < C0 such that, if m is large enough,

c0 < ma
· p(m) < C0. (6.1)
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To generate Gn , we first choose the degrees for the n vertices d1, d2, . . . , dn , according to i.i.d.
random variables of law p(·) (and add 1 to one of the di , if necessary, to make


di even).

Given this realization, we choose the edges by first giving each vertex x dx half-edges and
then matching up the half-edges uniformly among all possible matchings, so that, say, a half-
edge for vertex x matched with a half-edge of vertex y becomes an edge between x and y. In
[27, Theorem 10.14], it is shown that from the assumption that p is supported on integers larger
than 2, it follows that Gn is a connected graph with probability tending to 1 as n → ∞.

We consider the contact process with parameter λ > 0 on Gn . In order to do so, we need
to slightly modify the generator given in (1.1) to accommodate the fact that the random graph
obtained from the above distribution may have loops and parallel edges. We put

for every x ∈ ξt , ξt → ξt \ {x} with rate 1,

for every x ∉ ξt , ξt → ξt ∪ {x} with rate λ


y:y∈ξt

|{e ∈ En : x, y ∈ e}|. (6.2)

By x, y ∈ e we mean simply that the extremities of e are x and y (this may now be true for more
than one edge e). With this definition, loops have no effect on the dynamics and parallel edges are
seen as independent channels for the transmission of the infection. The graphical construction
defined in the beginning of Section 2 is compatible with (6.2) and requires no modification.

We will prove Theorem 1.3 under the assumption that a > 2, as mentioned in the Introduction.
We will also assume that λ is small; this is not problematic to us because clearly it is sufficient
to prove Theorem 1.3 for λ small enough.

We rely on the idea that the contact process is sustained for a long time in the vicinity of
vertices of high degree (“stars”). Our approach is to exhibit a subgraph G ′

n of Gn that has
sufficiently many stars arranged so that none of them is very far from others, and to argue that
G ′

n provides a very fertile environment for the persistence of the infection.
Let us be a bit more specific in sketching the proof. Depending on λ, we fix a degree threshold

S – stars will be vertices with degree above S/2 –, a distance threshold D and a time scale κ .
Our subgraph G ′

n is a (connected) tree composed essentially of O(n) stars and line segments
connecting these stars (to be exact, G ′

n will end up containing some other vertices which neither
are stars nor belong to line segments connecting stars, but let us ignore that for the moment). Each
star is directly connected by segments to at most 3 other stars, and the lengths of the segments
are all below D. We then define a tree G ′′

n as a renormalized version of G ′
n in a very natural

way: stars of G ′
n correspond to vertices of G ′′

n and segments of G ′
n correspond to edges of G ′′

n .
In particular, the degrees in G ′′

n are bounded by 3. The contact process on G ′
n then induces a

discrete-time growth process (ηr ) on G ′′
n ; roughly speaking, for a vertex x of G ′′

n we say that
ηr (x) = 1 if the star of G ′

n that corresponds to x has many infected vertices (or is infested, as we
will write) at time κ · r . The parameters S, D and κ can be chosen so that, if a star is infested at
time κr , then with high probability it keeps being infested until time κ(r + 1), and this in turn
is long enough that, with high probability, the infection reaches nearby stars, which also become
infested. For the growth process (ηr ), this translates into saying that the closure parameter p is
very close to 1. We then apply Proposition 5.2 to (ηr ), thus concluding that it stays active for an
amount of time that is exponential in the number of vertices of G ′′

n , which as mentioned is O(n).
The desired conclusion for the contact process on Gn is then immediate.

This section is organized as follows. We will first list the formal properties that we want for
the subgraph G ′

n = (V ′
n, E ′

n) endowed with a set of distinguished vertices J ′
n ⊆ V ′

n . We state in
Proposition 6.1 that with high probability, large enough G ′

n, J ′
n satisfying these properties indeed
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exist. Next, we will show how this proposition implies Theorem 1.3. Finally, we will prove the
proposition, showing how G ′

n, J ′
n can be constructed.

The first property on our list is

Property 1: G ′
n is a (connected) tree (with no loops or multiple edges).

Before listing the other properties, we need some notation. Let deg′ denote the degree of a
vertex in G ′

n , that is, deg′(x) = |{y ∈ V ′
n : {x, y} ∈ E ′

n}|, and dist′ denote the graph distance
in G ′

n , that is, dist′(x, y) is the length of the unique self-avoiding path from x to y contained in

G ′
n . For x, y ∈ J ′

n , write x
∗
∼ y if the self-avoiding path contained in G ′

n from x to y contains no
vertices of J ′

n other than x and y. Let S be a large constant to be chosen later and D = λ4S.

Property 2: deg′(x) ≥
S
2 for all x ∈ J ′

n .

Property 3: dist′(x, y) ≤ D for all x, y ∈ J ′
n with x

∗
∼ y.

Property 4: The graph G ′′
n = (V ′′

n , E ′′
n ) given by

V ′′
n = J ′

n; E ′′
n = {{x, y} : x, y ∈ J ′

n, x
∗
∼ y}

is a (connected) tree with degree bounded by 3.

Proposition 6.1. For small enough λ > 0, if S is large enough (depending on λ), there exists
δ > 0 such that, with probability tending to 1 as n → ∞, Gn has a subgraph G ′

n with a set of
vertices J ′

n ⊆ V ′
n such that Properties 1–4 are satisfied and |J ′

n| > δn.

Proof of Theorem 1.3. Assume G ′
n, J ′

n are as in the above proposition and G ′′
n is as in

Property 4. G ′′
n is thus a tree with more than δn vertices and degree bounded by 3. We will couple

the contact process (ξ ′
t )t≥0 on G ′

n (starting from full occupancy) and a discrete time growth
process (ηr )r≥0 on G ′′

n (again starting from full occupancy); this comes down to a coupling
between the Harris system on G ′

n and the Bernoulli random variables used to define the growth

process. (ηr ) is to be thought of as a coarse-grained version of (ξ ′
t ). We define κ = eλ3 S ; one

time unit for (ηr ) will correspond to a period of length κ for (ξt ). Our choice of parameters
and Proposition 5.2 will guarantee that the extinction time for (ηr ) is exponential in n, and the
corresponding fact for (ξ ′

t ) will be immediate.
Given a vertex x ∈ V ′′

n , we define the neighborhoods

N ′(x) = {y ∈ V ′
n : dist′(x, y) ≤ 1},

N ′′(x) = {x} ∪ {y ∈ V ′′
n : x

∗
∼ y}.

For x, y ∈ V ′′
n with x

∗
∼ y, let b(x, y) be the set of vertices of G ′

n in the unique self-avoiding
path from x to y (note that this path has length less than D). Define

3(x) = N ′(x) ∪

 
y∈N ′′(x), y≠x

N ′(y) ∪ b(x, y)

 .

Assume given a Harris system H for the contact process (ξ ′
t ). For fixed x ∈ V ′′

n and
r ∈ {0, 1, . . .}, we will now define an auxiliary process (0[x, r ]t : rκ ≤ t ≤ (r + 1)κ) on
{0, 1}

3(x). For rκ ≤ t ≤ (r + 1)κ and y ∈ 3(x), we put

0[x, r ]t (y) = 1

∃z ∈ N ′(x) : ξ ′

rκ(z) = 1, (z, κr) ↔ (y, t) inside 3(x) in H

.
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In particular, note that 0[x, r ]κr ≡ ξ ′
κr on N ′(x) and 0[x, r ]κr ≡ 0 on 3(x) \ N ′(x) and

(0[x, r ]t : rκ ≤ t ≤ (r + 1)κ) evolves as the contact process on 3(x).
Given a set of vertices U and ω ∈ {0, 1}

U , we will say that U is infested in ω if |{x ∈ U :

ω(x) = 1}| ≥
λ
50 |U |.

Lemma 6.2. If λ > 0 is small enough, the following holds. For any σ > 0, there exists S0 such
that, if S > S0,

P


∀y ∈ N ′′(x), N ′(y) is
infested in 0[x, r ](r+1)κ

 N ′(x) is infested in 0[x, r ]rκ


> 1 − σ.

Proof. Lemma 3.1(ii) and Lemma 3.2 in [22] respectively imply

∃c > 0 : if S is large enough, then

N ′(x) infested in ξ0 =⇒ P


N ′(x) infested in ξκ


> 1 − e−cλ2 S

; (6.3)

∃c > 0 : if S is large enough,

N ′(x) infested in ξ0 =⇒ P


N ′(y) infested in ξκ


> 1 − e−cλ2 S (6.4)

(in fact, (6.3) and (6.4) are slightly different from the mentioned results in [22], but are readily
seen to follow from their proof. We spare the reader the details.) (6.3), (6.4) and a union bound
then give the desired result. �

We now define the Bernoulli random variables

{I r
(x,y) : x, y ∈ V ′′

n , y ∈ N ′′(x), r = 0, 1, . . .}

from which the growth process will be defined. They will not be independent, but we will be
able to argue that the parameter S may be chosen so that they stochastically dominate a family
of independent Bernoulli variables. Set I r

(x,y) = 1 if one of the following condition holds:

(C1) N ′(x) is infested in ξ ′
rκ and N ′(y) is infested in 0[x, r ](r+1)κ ;

(C2) N ′(x) is not infested in ξ ′
rκ .

Set I r
x = 0 otherwise. (Condition (C2) is only present to guarantee that the parameters of the

Bernoulli random variables are all close to 1).

Lemma 6.3. For any p ∈ (0, 1), if S is large enough the following holds. For any r ∈ {0, 1, . . .}

and A ⊆ {0, 1}
V ′

n , conditioned on {ξ ′
κr = A}, the law of

I r
(x,y) : x, y ∈ V ′′

n , y ∈ N ′′(x)


stochastically dominates independent Bernoulli(p) random variables
Ĩ(x,y) : x, y ∈ V ′′

n , y ∈ N ′′(x)


.

Proof. The result is a simple application of the last statement of Theorem 1.3 in Liggett,
Schonmann and Stacey [19]; let us explain how the application goes. Define the auxiliary graph
G̃ = (Ṽ , Ẽ) with vertex and edge sets given by

Ṽ = {(x, y) : x, y ∈ V ′′
n , y ∈ N ′′(x)},

Ẽ = {{(x, y), (z, w)} : (x, y), (z, w) ∈ Ṽ are distinct and 3(x) ∩ 3(z) ≠ ∅}.
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Using the fact the G ′′
n is a tree with degree bounded by 3, it can be shown that G̃ has degree

bounded by some ∆ < 40. We now claim that, for any σ > 0, if S is large enough we have

P


I r
(x,y) = 1 | ξ ′

κr = A, {I r
(z,w) : {(x, y), (z, w)} ∉ Ẽ}


> 1 − σ (6.5)

for any (x, y) ∈ Ṽ , r ∈ {0, 1, . . .} and A ⊆ {0, 1}
V ′

n . Indeed, if N ′(x) is not infested in A the
inequality follows trivially from condition (C2) above, and otherwise it follows from Lemma 6.2
(note that the conditioning on {I r

(z,w) : {(x, y), (z, w)} ∉ Ẽ} only involves the Harris system in
parts of G ′

n that are disjoint from 3(x)). The result now follows from the mentioned result in [19]
with the following correspondence between our equations and variables and theirs: (6.5) for us
corresponds to Eq. (1.0) for them and σ , 1 −σ , △, p for us correspond respectively to q, p, △, ρ

for them (in particular, their condition q ≤ (△ − 1)△−1/ △
△ is satisfied here for S large enough,

as σ can be taken as small as desired). �

Now define (ηr ) starting from η0 ≡ 1 and as prescribed in (5.2). Assume that ηr (x) = 1. Then,
there exist a sequence x0, x1, . . . , xr−1, xr = x of vertices of V ′′

n such that xi+1 ∈ N ′′(xi )

and I i
(xi ,xi+1)

= 1 for each i . Since ξ ′

0 ≡ 1, N ′(x0) is infested in ξ ′

0, so I 0
(x0,x1)

= 1 can only hold
if condition (C1) holds, and thus N ′(x1) is necessarily infested in ξ ′

κ . Arguing recursively, this
implies that N ′(xi ) is infested in ξ ′

κi for each i and, in particular, N ′(x) is infested in ξ ′
κr . This

shows that, if ηr ≠ 0, then ξ ′
κr ≠ 0.

As a consequence of Lemma 6.3 we have

Corollary 6.4. For any p > pc(1), if S is large enough, then {ηr } dominates a growth process
on G ′′

n defined from i.i.d. Bernoulli(p) random variables.

This, the fact that |V ′′
n | ≥ δn and Proposition 5.2 give Theorem 1.3. �

The rest of the section is devoted to the proof of Proposition 6.1. We start with some
remarks concerning the random degree sequence d1, . . . , dn . Recall that S is the constant in
the construction of G ′

n ; we will assume that S is large enough in the sense of Corollary 6.4, and
will often need to increase its value. Define

Jn = {x ∈ Vn : deg(x) ≥ S}.

Let µ =


∞

m=1 m · p(m). Let us remark that, if the degrees are given by d1, . . . , dn and we
choose a half-edge uniformly at random, then the probability that the corresponding vertex has
degree m is

m · |x : dx = m|
x

dx
→

m · p(m)

µ
as n → ∞.

The probability q(m) = m · p(m)/µ is called the size biased distribution. Recall that c0 and C0
are the constants of (6.1); by reducing c0 and increasing C0 if necessary, a comparison with an
integral gives us, for m large enough,

c0 < ma−1
· p([m, ∞)) < C0, (6.6)

c0 < ma−2
· q([m, ∞)) < C0. (6.7)

We will also need the following facts.
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Lemma 6.5. For large enough S, there exists ϵ > 0 such that, with probability tending to 1 as
n → ∞,
(i) |{x ∈ Vn : dx > S}| > ϵn
and, for any A ⊆ Vn with |A| ≤ ϵn,

(ii)


x∈A dx
x∈Vn∩Ac dx

< S−a
; (iii)


x∈Jn∩Ac dx

x∈Vn dx
> 1

2 c0S−(a−2).

Proof. Assume that S is large enough that

S−a <
c0µ

8
S−(a−2), C0µ S−2a <

S−a

2
, (6.8)

where c0, C0 are as in (6.1). Let K = S
2a

a−2 and ϵ < 1
2 p([K , ∞)). Define the events

B1 = {|{x ∈ Vn : dx ≥ K }| > ϵn} ; B2 =


µ

2
n <


x∈Vn

dx <
3µ

2
n


;

B3 =


x∈Jn

dx >
7c0µ

8
nS−(a−2)


; B4 =

 
x :dx ≥K

dx < nS−a


.

Since, for all x ∈ {1, . . . , n},

E(dx ) = µ, P(dx ≥ K ) = p([K , ∞)),

E

dx · 1{dx ≥K }


= µq([K , ∞)) < µC0 K −(a−2)

= µC0 S−2a <
S−a

2
,

E

dx · 1{dx ≥S}


= µq([S, ∞)) > µc0 S−(a−2),

we have P(B1 ∩ B2 ∩ B3 ∩ B4) → 1 as n → ∞. If B1 occurs, since S < K , the event of (i) is
satisfied. If B1 and B4 occur, we have

x∈A

dx <


x :dx ≥K

dx < nS−a . (6.9)

Now, if B1, B2 and B4 occur, we have
x∈A

dx
x∈Vn∩Ac

dx
=


x∈A

dx
x∈Vn

dx −

x∈A

dx

(6.9),B2
<

S−an
1
2 µn − S−an

< S−a,

since µ ≥ 3 and S−a
≪ 1/2. If B1, B2, B3 and B4 occur, we also have

x∈Jn∩Ac
dx

x∈Vn

dx

(6.9),B2,B3
>

7
8 c0µnS−(a−2)

− nS−a

3
2µn

(6.8)
>

3
4 c0µnS−(a−2)

3
2µn

=
1
2

c0S−(a−2). �

In what follows, ϵ is taken corresponding to S as in the lemma. Let us say that a degree
sequence d = (d1, . . . , dn) is robust if it satisfies (i), (ii) and (iii). We will henceforth fix a robust
sequence d. We will write Pd to denote a probability measure under which the random graph Gn
is constructed as follows: the degrees of the n vertices are deterministic, given by d, and the half-
edges are then matched in a manner that is chosen uniformly at random among all possibilities,
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as prescribed in the definition of the configuration model. Finally, we will need the following
values:

N = Sa−1, ϵ′
=

ϵ

2N
, δ =

ϵ

4N
. (6.10)

We now describe an alternative matching procedure that produces the same random graph.
This procedure consists of matching the half-edges sequentially, pair by pair, so that, in each step,
we are free to choose one of the half-edges involved in the matching, and the other is chosen at
random. To be more precise, let us introduce some terminology. A semi-graph g = (Vn, H, E ) is
a triple consisting of the set of vertices Vn , a set of half-edges H and a set of edges E (of course,
if H = ∅, then g is a graph). The degree of a vertex in a semi-graph is the number of its half-
edges plus the number of edges that are incident to it. Given two half-edges h, h′

∈ H, we will
denote by h + h′ a new edge produced by “attaching” h and h′. We will now show how to define
a finite sequence of semi-graphs g0, g1, . . . , gk so that gk is a graph with the desired distribution.
g0 = (Vn, H0, E0) is defined with E0 = ∅ and such that each vertex x has dx half-edges. Assume
gi = (Vn, Hi , Ei ) is defined and has half-edges. Fix an arbitrary half-edge h ∈ Hi (call this an
elected half-edge) and randomly choose another half-edge h′ uniformly in Hi \ {h}. Then put
gi+1 = (Vn, Hi+1, Ei+1), where Hi+1 = Hi \ {h, h′

} and Ei+1 = Ei ∪ {h + h′
}. When no half-

edges are left, we are done, and the graph thus obtained is distributed as Gn . Often, instead of
updating the sets each time, say from Hi , Ei to Hi+1, Ei+1 as above, we will hold the notation
g = (Vn, H, E ) and say (for example) that h, h′ are deleted from H and h + h′ is added to E .

In each step of the above construction, we are free to indicate the elected half-edge. A full
description of how to elect a half-edge given all previous steps in the construction (and thus the
present state of the semi-graph) is an algorithm to construct the graph (or a subgraph of it, if
we stop before exhausting all half-edges—this will be the case for us, since our objective is to
construct the subgraph G ′

n). We will present an algorithm that will help us find G ′
n with high

probability. The robustness property will come into play because we will have to deal with the
set of half-edges after some matchings have been made.

Other than doing matchings, our algorithm writes labels on edges and vertices. Labels will
serve both to guide the order of the matchings and to define G ′

n once the algorithm stops running.
This labeling satisfies the following properties:

• in the semi-graph g0, from which the algorithm starts, there are no edges (as mentioned above)
and vertices have no labels

• whenever a matching is made and an edge is thus constructed, the edge is given one of the two
labels: included or excluded. After being constructed and labeled, the edge cannot become
unlabeled (but its label can change)

• vertices can either have no label at all or one of the labels: included, excluded or queued. At
any time, any unlabeled vertex has all its original half-edges intact (in other words, unlabeled
vertices have not been involved in any matching). After being labeled, a vertex cannot become
unlabeled (but its label can change)

• the label queued will only be associated to vertices of Jn

• included edges are only incident to included or queued vertices (never to excluded or
unlabeled vertices)

• at any time, the subgraph of Gn obtained by taking all included edges and all included and
queued vertices is a (connected) tree. All queued vertices are leaves of this tree

• at the time the algorithm stops, the tree described in the previous item will constitute G ′
n .
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A labeled semi-graph g = (Vn, H, E , {ℓx }, {ℓe}, ≺) is a semi-graph with labels ℓx attached to
some of the vertices x , labels ℓe associated to the edges e and a total order ≺ on the set of queued
vertices. It is worth remarking that since the algorithm only does matchings and labelings, it does
not change the degree of any vertex. In particular, the definition of the set Jn does not change.

The algorithm is initiated by choosing an arbitrary vertex of Jn and labeling it queued; it then
repeatedly follows a subroutine called a pass, which is just a sequence of matchings of half-edges
and labelings. We will soon give the formal definition of the pass (and of the whole algorithm),
but for the moment let us give an heuristic explanation of what a pass does.

The input of the pass is a labeled semi-graph containing at least one queued vertex (which,
as we observed earlier, is necessarily a vertex of Jn). The first action of the pass is to take the
queued vertex of highest order (with respect to ≺) and change its label to included—call this
vertex x̄ . The pass then typically explores, by doing matchings, the graph around x̄ (starting with
first neighbors, then proceeding to second neighbors etc.) until some termination condition is met.
When it terminates, the pass returns a “status”, which is a description of how it ended. Possible
statuses are G (which we think of as the “successful” outcome) and B1, B2, B3 (unsuccessful
outcomes). We proceed to explain these.

• Status G: this corresponds to the situation where: (1) in fewer than N matchings, at least S/2
neighbors of x̄ and two new vertices of Jn were found; (2) none of the matchings performed
during this exploration revealed a vertex that had been previously “seen” by the algorithm (or
in other words, that already had a label at the time it was chosen for the matching). This last
condition is present to guarantee that, once the algorithm is complete, G ′

n is a tree. The two
vertices of Jn that were found receive the label queued—they will potentially be the starting
points of future passes. All the other vertices that were revealed and all the edges that were
constructed during this pass receive the label included—at this time, these vertices and edges
constitute a tree rooted at x̄ .

• Status B3: this is the case where more than N matchings were performed and the necessary
conditions for status G were not reached. In this case, labels of edges and vertices involved in
this pass (except for that of x̄ , which is included) are set to excluded.

• Status B2: this means that the pass has been interrupted because, before the necessary
conditions for status G were reached, the randomly chosen half-edge of one of the matchings
belonged to a vertex (call it v′) that already had a label at the time. If this occurs, the vertices
and edges involved in the pass are labeled as follows. The label of x̄ is kept unchanged
(included). If the previously existing label of v′ had been assigned by this same pass, its
label is changed to excluded; if, on the other hand, its label had been given by an earlier pass,
it is kept unchanged. The labels of all other vertices and edges involved in the pass are set to
excluded.

• Status B1: this is the case where, at the moment the pass starts, x̄ has less than S/2 half-edges
available. (The reason this can happen is a bit subtle. Naturally, at the time x̄ is first discovered
by the algorithm and labeled queued, it necessarily has more than S/2 half-edges available,
since it is a member of Jn . However, between this moment and the pass which is supposed to
explore the neighborhood of x̄ , x̄ remains in the queue; many passes may have occurred, and
many of them may have failed due to matchings with half-edges of x̄ , so that the number of
half-edges of x̄ is significantly lowered in the process). In this pathological situation, the pass
does no matchings or labelings at all (other than the standard initial change of label of x̄ from
queued to included).
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We now formally define the pass, and later define the full algorithm.

The pass
Input: g = (Vn, H, E , {ℓx }, {ℓe}, ≺) with at least one queued vertex.

(P1)
Let x̄ be the queued vertex of highest order. Change the label of x̄ to included.
IF x̄ has less than S

2 half-edges remaining:
The pass is stopped in status B1.

ELSE :

Define the sets V ∗, E ∗ and H∗ as the sets of relevant vertices, edges and half-
edges of the pass, respectively. Set V ∗

= E ∗
= ∅ and H∗

= {half-edges
attached to x̄}. Endow H∗ with a total order ≺

∗ chosen arbitrarily. Proceed to (P2).

(P2)
Let h be the half-edge of highest order in H∗. Choose another half-edge h′ uniformly at random
in H\{h} and let v′ be the vertex of h′. Delete h, h′ from all sets that contain them (h from H
and H∗, h′ from H and possibly H∗) and add h + h′ to E ∗ and E .
IF v′ has been placed in V ∗ earlier in this pass:

Give the label excluded to all vertices contained in V ∗ (this of course includes v′)
and all edges contained in E ∗. The pass is stopped in status B2.

ELSEIF v′ has been given a label by some earlier pass:
Give the label excluded to all vertices contained in V ∗ (this does not include v′;
the label of v′ is left unchanged) and all edges contained in E ∗. The pass is stopped
in status B2.

ELSE :

Add v′ to V ∗.
IF v′ is not in Jn :

Add the half-edges of v′ to H∗ (note that at this point h′ is no longer a
half-edge of v′) so that, in the order ≺

∗, they have arbitrary order among
themselves but lower order than all half-edges previously in H∗.

Proceed to (P3).

(P3)
IF |V ∗

| ≥ N :
Give the label excluded to all vertices of V ∗ and all edges of E ∗. Stop the pass in
status B3.

ELSE IF V ∗ contains more than S/2 neighbors of x̄ and |V ∗
∩ Jn| ≥ 2:

Give the label queued to the two vertices of Jn that were first included in V ∗; in
the order ≺, assign them lower order than all previously existing queued vertices
and arbitrary order among themselves. Give the label included to all other vertices
of V ∗ and all edges of E ∗. Stop the pass in status G.

ELSE :

Repeat (P2).

Output: updated labeled semi-graph.
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We now turn to the full algorithm. We again start with some heuristic observations. As already
explained, in the very beginning, the algorithm takes an arbitrary vertex of Jn , labels it queued
and starts repeatedly running passes. Any pass removes a vertex from the queue; a pass that ends
in status G then add two vertices to the queue, whereas a pass that ends in status B1, B2 or B3
adds no vertex to the queue. Hence it may well happen that the queue becomes empty; we cannot
run further passes at this point, since a pass depends on the existence of a queued vertex. In this
situation, the algorithm will “abandon” everything that has been constructed so far (all currently
labeled vertices and edges have their labels changed to excluded), and then choose an arbitrary
unlabeled vertex of Jn , label it queued, and start again running passes. This operation is called
a clearing.

Let us give the formal definition of the full algorithm.

Algorithm to find G ′
n

Input: g0 = (Vn, H0, E0), the initial semi-graph with n vertices, no edges, no labels and robust
degree sequence d = (d1, . . . , dn).

(A1)
IF there are no queued vertices:

Replace the label of all vertices that have been labeled so far and all edges that have
been constructed so far by the algorithm with the label excluded (this re-labeling
will be called a clearing).
Choose an arbitrary unlabeled vertex of Jn and label it queued.

Proceed to (A2).

(A2)
Run the pass. Proceed to (A3).

(A3)
IF there are more than δn + 2 queued vertices:

The algorithm succeeds and stops.
ELSE IF the pass has been run more than ϵ′n times:

The algorithm fails and stops.
ELSE :

Proceed to (A1).

We remark that, in step (A1), if the algorithm requires the choice of an unlabeled vertex of Jn , it is
always possible to find one such vertex. This follows from the fact that each pass labels at most
N vertices and the algorithm runs at most ϵ′n =

ϵ
2N n passes; by the definition of robustness,

N ·
ϵ

2N n =
ϵ
2 n < |Jn|.

Let us introduce some more notation. Let i∞ be the total number of passes the algorithm runs.
For 1 ≤ i ≤ i∞, let x̄(i) be the vertex of Jn whose label is changed from queued to included
in pass i . If pass i ends in status G, then it gives the label queued to two new vertices y1, y2; we
then write D(x̄(i)) = {y1, y2}; if the pass ends in any other status, we write D(x̄(i)) = ∅. Also
define

QG = {x̄(i) : Pass i ends in status G}.
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Let W0 = 0 and, for i ≥ 1,

Wi = Number of queued vertices at the time pass i is complete,

X i =


1 if pass i ends in status G;

−1 otherwise.

Assume that, at the time pass i − 1 ends, there are no queued vertices (so that Wi−1 = 0).
The algorithm then goes to step (A3). Assume that the pass has been run for less than ϵ′n times;
then the algorithm proceeds to (A1). At this point, the algorithm performs a clearing, gives the
label queued to an arbitrary vertex x̄ of Jn and starts performing pass i ; this pass first re-labels
x̄ as included, then performs its matchings and either ends in status G (in which case two new
vertices are labeled queued, so that Wi = 2) or status B1, B2 or B3 (in which case no new
queued vertices are created and Wi = 0). Thus, when Wi−1 = 0, Wi = 1 + X i .

Now assume that, at the time pass i − 1 ends, Wi−1 > 0 and assume once more that the
algorithm does not terminate in (A3), so that (A1) is reached. Then pass i is immediately started,
the queued vertex of highest order is re-labeled as included and again, either zero or two new
queued vertices appear. Thus, when Wi−1 > 0, Wi = Wi−1 + X i .

These considerations show that, for 1 ≤ i ≤ i∞, Wi ≥
i

j=1 X j .
We define our subgraph G ′

n only on the event that the algorithm is successful. Define V ′
n as

the set of vertices that have the labels included or queued at the moment the algorithm stops
running. Define E ′

n as the set of edges that have the label included at the moment the algorithm
stops running. Also define

J ′
n = V ′

n ∩ QG.

We are now ready to prove

Lemma 6.6. G ′
n satisfies properties 1, 2, 3 and 4 and |J ′

n| > δn.

Proof. Let i0 = 1 + max{i : Wi = 0}. Note that V ′
n and E ′

n are the sets of vertices and edges
that are labeled as included in passes i0, i0 + 1, . . . , i∞, since no clearing occurs between these
passes.
• Property 1: Fix x ∈ V ′

n and let i be the pass in which x was labeled. We can then find vertices
y1, . . . , yk ∈ J ′

n such that y1 ∈ D(x̄(i0)), y2 ∈ D(y1), . . . , yk ∈ D(yk−1) and x̄(i) ∈ D(yk).
Then, there is a path of included edges connecting x̄(i0) to y1, y1 to y2, . . ., yk−1 to yk , yk to x̄(i)
and finally, x̄(i) to x . This shows that G ′

n is connected. The fact that it is a tree is guaranteed by
the IF statement in (P2) in the definition of the pass: any edge that would produce a loop forces
the pass to stop and is labeled excluded.
• Property 2: Fix z ∈ J ′

n . There exists i ≥ i0 such that z = x̄(i) and pass i ends in status G. This
implies that at least S/2 neighbors of z are in V ′

n , that is, deg′(z) ≥ S/2.

• Property 3: If y, z ∈ J ′
n and y

∗
∼ z, we must either have z ∈ D(y) or y ∈ D(z); assume the

former is the case and fix i such that y = x̄(i). Then, pass i ends in status G, so that at most N
edges are constructed in this pass and they form no cycles. Since each vertex has degree larger
than 2, we have

dist′(y, z) ≤ ⌈log2 N⌉ = ⌈(a − 1) log2 S⌉ < λ4S = D

when S is large enough.
• Property 4: This follows immediately from the fact that G ′

n is a tree and each pass labels either
zero or two vertices as queued.
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• |J ′
n| > δn. By the definition of i0, pass i0 ends in status G, Wi0 = 2 and Wi > 0 for all

i ∈ {i0, . . . , i∞}. Since the algorithm ends successfully, Wi∞ > δn + 2, so there must be more
than δn +2−2 = δn values of i in {i0 +1, . . . , i∞} such that X i = 1, and hence, x̄(i) ∈ J ′

n . �

In order to complete the proof of Proposition 6.1, we now need to prove that the probability
that the algorithm ends successfully tends to 1 as n → ∞. To this end, let us first treat individual
passes.

Lemma 6.7. For S large enough and n large enough (depending on S), the following holds.
Assume that, when the pass defines x̄ , this vertex has more than S

2 half-edges. Then, the pass
ends in status G with probability larger than 9

10 .

Proof. Let L be the set of labeled vertices at the moment the pass starts. Since the whole algo-
rithm runs at most ϵ′n passes and each pass labels at most N vertices, we have |L| < ϵ′n · N =

ϵn/2. Assume the current pass has already made k matchings, with 0 ≤ k < N , and has not yet
terminated, and consider the set V ∗ of vertices the pass has found in its exploration. We have
|L ∪ V ∗

| < ϵn/2 + N and this is much smaller than ϵn when n is large. We take the set A in the
definition of robustness as L ∪ V ∗.

The half-edge chosen for the (k + 1)-th matching then has probability:

(1) smaller than


x∈A dx
x∈Vn∩Ac dx

< S−a of belonging to a vertex of A;

(2) larger than


x∈Jn∩Ac dx
x∈Vn dx

> 1
2 c0 S−(a−2) of belonging to a vertex of Jn ∩ Ac.

Using (1), the probability that the pass ends in status B2 is less than N · S−a
= S−1, which is

less than 1/20 when S is large. Using (2), the probability that the pass ends in status B3 is less than

P


Bin


N ,

1
2

c0 S−(a−2)


< 2


,

which is also less than 1/20 when S is large, since the expectation of the Binomial is 1
2 c0 S. �

Now define Yi = 1{Pass i ends in status B1}. If Yi = 1, then X i = −1. By the previous lemma, for
any x1, . . . , xi−1, y1, . . . , yi−1 we have

Pd


X i = 1 | {X j }

i−1
j=1 = {x j }

i−1
j=1, {Y j }

i−1
j=1 = {y j }

i−1
j=1, Yi = 0


> 9/10. (6.11)

Let us now exclude the possibility that many passes end in status B1.

Lemma 6.8. For S large enough, Pd

⌊ϵ′n⌋

i=1 Yi > 1
10⌊ϵ′n⌋


n→∞
−−−→ 0.

Proof. We start remarking that, for {Yi = 1} to occur, there must exist a vertex x ∈ Jn such that
• the first time a half-edge of x is chosen for a matching occurs before pass i ;
• from this time to the beginning of pass i , more than S/2 half-edges of x are chosen for
matchings;
• x is the queued vertex of highest order when pass i starts.

Let h1, . . . , hL be the sequence of half-edges chosen at random by the algorithm since the
beginning of the first pass. We have L ≤ ϵn. By (ii) of Lemma 6.5, at the moment h j is chosen,
the probability that it belongs to a vertex that has previously been “seen” by the algorithm (that
is, a vertex that either has been labeled by an earlier pass or is in the set V ∗ of the current pass)
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is less than S−a . If this occurs, call it a wasted matching. For {


Yi > (1/10)⌊ϵ′n⌋} to occur,
more than 1

10⌊ϵ′n⌋
S
2 wasted matchings must occur. The probability of this is less than

P


Bin


⌊ϵn⌋, S−a >

1
10

⌊ϵ′n⌋
S

2


.

If S is large, this probability vanishes as n → ∞ since ϵ S−a

1
10 ϵ′ S

2
= 20 ϵ

ϵ′

1
Sa+1 = 40 1

S2 . �

Proposition 6.9. Pd

W⌊ϵ′n⌋ > δn

 n→∞
−−−→ 1.

Proof. We start constructing auxiliary random variables X ′

1, . . . , X ′

⌊ϵ′n⌋
, Y ′

1, . . . , Y ′

⌊ϵ′n⌋
whose

joint distribution is the same as that of X1, . . . , X⌊ϵ′n⌋, Y1, . . . , Y⌊ϵ′n⌋. Given sequences {x j }
i−1
j=1,

{y j }
i
j=1 and s ∈ (0, 1), let

φ


s, {x j }

i−1
j=1, {y j }

i
j=1


=

−1 if s ≤ Pd


X i = −1 | {X j }

i−1
j=1 = {x j }

i−1
j=1, {Y j }

i
j=1 = {y j }

i
j=1


1 otherwise.

Likewise, let

ψ


s, {x j }

i−1
j=1, {y j }

i−1
j=1


=

0 if s ≤ Pd


Yi = 0 | {X j }

i−1
j=1 = {x j }

i−1
j=1, {Y j }

i−1
j=1 = {y j }

i−1
j=1


1 otherwise.

(when we write only φ(s),ψ(s), we mean the functions above for X1 and Y1, with no condition-
ing in the probabilities that define them). Let U1, U2, . . . , V1, V2, . . . be independent random
variables with the uniform distribution on (0, 1). Set X ′

1 = φ(U1), Y ′

1 = ψ(V1) and recursively
define, for 1 < i < ϵ′n,

Y ′

i+1 = ψ


Vi+1, {X ′

j }
i
j=1, {Y

′

j }
i
j=1


, X ′

i+1 = φ


Ui+1, {X ′

j }
i
j=1, {Y

′

j }
i+1
j=1


.

Now, clearly {X ′

i , Y ′

i }
⌊ϵ′n⌋

i=1 has the same distribution as {X i , Yi }
⌊ϵ′n⌋

i=1 . By (6.11), we have {Y ′

i =

0, X ′

i ≠ 1} ⊆ {Ui ≤
1
10 }. We can now estimate

Pd


W⌊ϵ′n⌋ <

ϵ′

2
n


≤ Pd


i

Yi >
1

10
ϵ′n


+ P


|{i : Yi = 0, X i ≠ 1}| >

1
5
ϵ′n



≤ Pd


i

Yi >
1

10
ϵ′n


+ P

i ≤ ϵ′n : Ui ≤
1

10

 >
1
5
ϵ′n


.

The first of these probabilities vanishes by Lemma 6.8, and the second by the Law of Large
Numbers. �
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Appendix. Metastability and limit exponential distributions

Here we state and prove a result that is required for the proof of Theorem 1.2. The contents of
this appendix are very similar to Proposition 1.2 in [20]; we have simply adapted that proposition
to our setting and notation.

Lemma A.1. Let (Gn) = ((Vn, En)) be a sequence of graphs and assume that, in each graph
of the sequence, a graphical construction for the contact process with parameter λ is defined.
Assume that there exist sequences of positive numbers (an), (bn) satisfying

(1) limn→∞ an = limn→∞ bn = ∞, limn→∞
an
bn

= 0;

(2) limn→∞ supA⊆Gn
PGn ,λ


ξ A

an
≠ 0, ξ A

an
≠ ξ

1
an


= 0;

(3) limn→∞ PGn ,λ


τGn < bn


= 0.

Then, τGn /E[τGn ] converges in distribution, as n → ∞, to the exponential distribution of
parameter 1.

Proof. Fix ϵ > 0. For each n, there exists a unique number wn such that P[τGn ≤ wn] = ϵ.
This follows from the fact that the distribution function of τGn is continuous, which in turn is
a consequence of the fact that τGn is the hitting time of state 0 for the continuous-time Markov
chain (ξ

Vn
t ). Note that, by (3), we have

wn ≥ bn for n large enough. (A.1)

We will now establish upper and lower bounds for E[τGn ]. Let us start with the upper bound,
which is easier. Since for any m,

P

τGn > m · wn


≤ (1 − ϵ)m, (A.2)

we have

E[τGn ] ≤ wn ·

∞
m=0

P[τGn > m · wn] ≤ wn ·

∞
m=0

(1 − ϵ)m
≤

wn

ϵ
. (A.3)

For the lower bound, for each n, m ≥ 1, define

rn,m = (m − 1)(wn − an), sn,m = (m − 1)(wn − an) + wn,

Jn,m = [rn,m, sn,m],

so that |Jn,m | = wn and |Jn,m ∩ Jn,m+1| = an . For the contact process on Gn and A ⊆ Gn , recall
the notation

ξ
A,s
t = {x : A × {s} ↔ (x, t)} , ξ

1,s
t = {x ∈ Vn : Vn × {s} ↔ (x, t)} s ≤ t.
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Define the events

En,m =


ξ

1,rn,m
sn,m ≠ 0


,

Fn,m =


ξ

1,rn,m
sn,m = ξ

1,rn,m+1
sn,m


.

By the definition of wn , we have P[En,m] = 1 − ϵ. Also, (2) implies that the probability
P[En,m ∩ (Fn,m)c

] (which does not depend on m) tends to 0 as n → ∞.
Now also fix δ < 1. By (1) and (A.1), if n is large enough we have an/wn < δ and P[En,m ∩

(Fn,m)c
] < δ for any m. Then,

P[τGn > m(1 − δ) · wn] ≥ P[τGn > m(wn − an)]

≥ P[τGn > sn,m]

≥ P

∩

m
i=1(En,i ∩ Fn,i )


≥ P


∩

m
i=1 En,i


−

m
i=1

P

En,i ∩ (Fn,i )

c .
The first probability on the right-hand side is larger than (1 − ϵ)m by the FKG inequality (the
events (En,i )i≥1 are increasing). We thus get

P[τGn > m(1 − δ) · wn] ≥ (1 − ϵ)m
− δm. (A.4)

Then, for any integer K > 0,

E[τGn ] ≥ (1 − δ)wn ·

∞
m=1

P[τGn > m(1 − δ) · wn]

≥ (1 − δ)wn ·

K
m=1

P[τGn > m(1 − δ) · wn]

≥ (1 − δ)wn ·

K
m=1

[(1 − ϵ)m
− δm].

Now, if K is large enough and δ is small enough (depending on the earlier choice of ϵ), the above
finally gives our lower bound

E[τGn ] ≥ (1 − 2ϵ)
wn

ϵ
. (A.5)

We are now ready to conclude. Fix t > 0. On the one hand, (A.5) and (A.2) give

P[τGn > t · E[τGn ]] ≤ P


τGn >


t (1 − 2ϵ)

ϵ


· wn


≤ (1 − ϵ)


t (1−2ϵ)

ϵ


. (A.6)

On the other hand, (A.3) and (A.4) give

P[τGn > t · E[τGn ]] ≥ P


τGn >


t

ϵ(1 − δ)


(1 − δ) · wn


≥ (1 − ϵ)


t

ϵ(1−δ)


− δ ·


t

ϵ(1 − δ)


. (A.7)

With proper choices of ϵ and δ, both the right-hand sides of (A.6) and (A.7) can be made
arbitrarily close to e−t . This completes the proof. �
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