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Abstract This paper is concerned with the MAXVAR risk measure on L 2 space. We
present an elementary and direct proof of its coherency and averseness. Based on the
observation that the MAXVAR measure is a continuous convex combination of the CVaR
measure, we provide an explicit formula for the risk envelope of MAXVAR.
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1 Introduction

In Cherny and Madan [2] and Cherny and Orlov [3], a new kind of risk measure—
“MAXVAR”—is proposed, which is useful in the analysis of large portfolios. Given a probability
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space (�,�,P0) and a random variable X ∈ L 2(�,�,P0), where L 2(�,�,P0) is the
square integrable Lebesgue space (L 2 for short), the MAXVAR is defined as

MAXVARn(X) := E(max{X1, . . . , Xn}),

where X1, . . . , Xn are i.i.d. copies of X. We call MAXVARn(·) the “MAXVAR risk
measure.”

Note that MAXVARn(·) is always finite on L 2 since |MAXVARn(X)| ≤ nE(|X|) <

+∞ for any X ∈ L 2.
In [2, 3], the name of “MINVAR risk measure” was used. Since we treat risk measures

as a nondecreasing function, we use “MAXVAR risk measure” instead. Different from the
papers [2, 3], which considered coherency of MINVAR in L ∞ space, this paper deals
with the L 2 space. Our proof of the coherency of MAXVAR risk measure is direct and
independent of [2, 3]. Moreover, we show risk averseness of MAXVAR and give an explicit
formula for its risk envelope.

In Section 2, we present a simple proof for the coherency of MAXVAR. We show its
averseness in Section 3. Section 4 is devoted to the discussion of a continuous representation
of MAXVAR and Section 5 provides an explicit formula for its risk envelope.

2 Coherency of MAXVAR

In this section, we show that MAXVAR is a coherent risk measure in basic sense of
Rockafellar.

Definition 1 (Rockafellar [5]) A functional R : L 2 → (−∞,+∞] is a coherent risk
measure in basic sense if it satisfies

(A1) R(C) = C for all constant C;
(A2) (“convexity”)R(λX + (1− λ)Y ) ≤ λ ·R(X) + (1− λ) ·R(Y ) for any X, Y ∈ L 2

and any fixed 0 ≤ λ ≤ 1;
(A3) (“monotonicity”)R(X) ≤ R(Y ) for any X, Y ∈ L 2 satisfying X ≤ Y ;
(A4) (“closedness”) If ‖Xk − X‖2 → 0 andR(Xk) ≤ 0 for all k ∈ N, thenR(X) ≤ 0;
(A5) (“positive homogeneity”)R(λX) = λR(X) for any λ > 0 and X ∈ L 2.

Theorem 1 MAXVARn(·) is a coherent risk measure in basic sense.

Proof (A1) is obvious by definition. (A5) is also easy to check since if X1, . . . , Xn are i.i.d.
copies of X and λ > 0, then λX1, . . . , λXn are i.i.d. copies of λX.

Proof of (A2) We only need to show the following subadditive property of MAXVAR

MAXVARn(X + Y ) ≤ MAXVARn(X) + MAXVARn(Y ) ∀X, Y. (1)

Then, (1) and (A5) imply (A2). For any X, Y ∈ L 2, take (X1, Y1), . . . , (Xn, Yn) as
i.i.d. copies of the two dimensional random vector (X, Y ). That is, the random vectors
(X1, Y1), . . . , (Xn, Yn) are independent and have the same joint distribution as the random
vector (X, Y ). Then, X1, . . . , Xn are i.i.d. copies of X and Y1, . . . , Yn are i.i.d. copies of Y .
We next show that X1 + Y1, . . . , Xn + Yn are i.i.d. copies of X + Y .
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Since (Xi, Yi) has the same joint distribution as (X, Y ), i = 1, . . . , n, it follows that
Xi + Yi has the same distribution as X + Y . In order to prove that X1 + Y1, . . . , Xn + Yn

are independent, we only need to prove that for any t1, . . . , tn ∈ R,

P0(X1 + Y1 ≤ t1, . . . , Xn + Yn ≤ tn) = P0(X1 + Y1 ≤ t1) · · ·P0(Xn + Yn ≤ tn). (2)

In fact, since the random vectors (X1, Y1), . . . , (Xn, Yn) are independent, we have

P0((X1, Y1) ∈ B1, . . . , (Xn, Yn) ∈ Bn) = P0((X1, Y1) ∈ B1) · · ·P0((Xn, Yn) ∈ Bn) (3)

for any Borel sets B1, . . . , Bn ⊆ R
2. In particular, if we take

Bi = {(x, y) ∈ R
2 : x + y ≤ ti}

for any 1 ≤ i ≤ n in (3), we can get (2). Therefore, X1 + Y1, . . . , Xn + Yn are independent.
Therefore, they are i.i.d. copies of X + Y .

Since the definition ofMAXVARdoes not depend on the choice of the i.i.d. copies, we have

MAXVARn(X) = E(max{X1, . . . , Xn}),
MAXVARn(Y ) = E(max{Y1, . . . , Yn}),

MAXVARn(X + Y ) = E(max{X1 + Y1, . . . , Xn + Yn}).
Furthermore, since

max{X1 + Y1, . . . , Xn + Yn} ≤ max{X1, . . . , Xn} + max{Y1, . . . , Yn},
we get

MAXVARn(X + Y ) = E(max{X1 + Y1, . . . , Xn + Yn})
≤ E(max{X1, . . . , Xn}) + E(max{Y1, . . . , Yn})
= MAXVARn(X) + MAXVARn(Y ).

Proof of (A3) For any X, Y ∈ L 2 satisfying X ≤ Y , suppose X1, . . . , Xn are i.i.d. copies
of X and Y1, . . . , Yn are i.i.d. copies of Y . We can see that P0(X ≤ t) ≥ P0(Y ≤ t) for any
t ∈ R since X ≤ Y . Then, we have

MAXVARn(X)=
∫ 0

−∞
[P0(max{X1, . . . , Xn}>t)−1] dt+

∫ +∞

0
P0(max{X1, . . . , Xn}>t)dt

=−
∫ 0

−∞
(P0(X ≤ t))ndt +

∫ +∞

0

[
1 − (P0(X ≤ t))n

]
dt

≤−
∫ 0

−∞
(P0(Y ≤ t))ndt +

∫ +∞

0

[
1 − (P0(Y ≤ t))n

]
dt

=
∫ 0

−∞
[P0(max{Y1, . . . , Yn} > t) − 1] dt +

∫ +∞

0
P0(max{Y1, . . . , Yn} > t)dt

=MAXVARn(Y ).

The detail of the first equality is as follows. Denote by

F(t) = P0(max{X1, . . . , Xn} ≤ t)
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the cumulative distribution function of max{X1, . . . , Xn}. Then,

E(max{X1, . . . , Xn}) =
∫ +∞

−∞
xdF(x)

= −
∫ 0

−∞

[∫ 0

x

dt

]
dF(x) +

∫ +∞

0

[∫ x

0
dt

]
dF(x)

(by Fubini’s theorem) = −
∫ 0

−∞

[∫ t

−∞
dF(x)

]
dt +

∫ +∞

0

[∫ +∞

t

dF (x)

]
dt

= −
∫ 0

−∞
F(t)dt +

∫ +∞

0
[1 − F(t)]dt. (4)

And the second equality comes from the fact that F(t) = (P0(X ≤ t))n.

Proof of (A4) Suppose Xk (k = 1, 2, . . . ), X ∈ L 2 and ‖Xk − X‖2 → 0 as k tends
to infinity. Then, Xk → X in distribution. Denote by Fk(t) the distribution function of
Xk (k = 1, 2, . . . ) and by F(t) the distribution of X. Then, limk→∞ Fk(t) = F(t) for
all continuous points of F(·). It implies that limk→∞[Fk(t)]n = [F(t)]n for all continu-
ous points of [F(·)]n. Note that [Fk(t)]n is the distribution function of max{Xk

1, . . . , X
k
n}

and [F(t)]n is the distribution function of max{X1, . . . , Xn}, where Xk
1, . . . , X

k
n are i.i.d.

copies of Xk (k = 1, 2, . . . ) and X1, . . . , Xn are i.i.d. copies of X. Therefore, we have
max{Xk

1, . . . , X
k
n} → max{X1, . . . , Xn} in distribution, and

MAXVARn(X
k) = E(max{Xk

1, . . . , X
k
n})

→ E(max{X1, . . . , Xn}) = MAXVARn(X)

as k tends to infinity. Thus, if MAXVARn(X
k) ≤ 0 for all k = 1, 2, . . . , then

MAXVARn(X) ≤ 0. The proof of the theorem is complete.

3 Risk-Averseness of MAXVAR

Suppose R is a functional from L 2 to (−∞,+∞]. Recall that an averse risk measure is
defined by axioms (A1), (A2), (A4), (A5) and

(A6) R(X) > E(X) for all nonconstant X.

We then have the next theorem.

Theorem 2 If n ≥ 2, then MAXVARn(·) is averse.

Föllmer and Schied [4] proved that if R is a coherent, law-invariant risk measure in
L ∞ (not L 2) other than E(·), then R is averse, where “law-invariant” stands for that
R(X) = R(Y ) whenever X and Y have the same distribution under P0. Since we are now
considering the L 2 case, we cannot use the result in Föllmer and Schied [4] directly. We
next give a separate proof.

Proof of Theorem 2 On one hand, for any X ∈ L 2, let X1, . . . , Xn be i.i.d. copies of X.
Then, we have

MAXVARn(X) = E(max{X1, . . . , Xn}) ≥ E(X1) = E(X).
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On the other hand, if MAXVARn(X) = E(X) = E(X1) (n ≥ 2), then max{X1, . . . , Xn} =
X1 almost surely. Similarly, max{X1, . . . , Xn} = X2 almost surely. Therefore, X1 = X2
almost surely. Since X1 and X2 are independent, we must have X1 equals to a constant
almost surely, which is equivalent to say X equals a constant almost surely. Therefore,
MAXVARn(X) > E(X) for nonconstant X, which implies that MAXVARn(·) is averse
when n ≥ 2.

Remark 1 In fact, Theorems 1 and 2 can be obtained as corollaries of Theorem 3 in the next
section. See the remark after the proof of Theorem 3 for details. However, we think it is of
interest to provide an elementary proof only based on the definition of MAXVAR.

4 MAXVAR as a Continuous Convex Combination of CVaR

An important coherent risk measure in basic sense is the conditional value at risk (CVaR)
popularized by Rockafellar and Uryasev [6]. Among several equivalent definitions of CVaR,
the most familiar one is probably the following.

CVaRα(X) = min
β∈R

{
β + 1

1 − α
E(X − β)+

}
, (5)

where (t)+ = max(t, 0) and α ∈ [0, 1). The minimum is attained at β∗ = VaRα(X), and
the VaR ( “Value-at-Risk”) is defined as

VaRα(X) := inf{ν ∈ R : P0(X > ν) < 1 − α}. (6)

In this section, we show that MAXVARn(·) is certain “continuous convex combination”
of the CVaR measure in the sense that

MAXVARn(·) =
∫ 1

0
CVaRα(·)wn(α)dα,

where wn(α) (α ∈ [0, 1]) is the “weight function” which satisfies wn(α) ≥ 0 on [0, 1] and∫ 1
0 wn(α)dα = 1. Specifically, we have the next theorem.

Theorem 3 For any X ∈ L 2, we have

MAXVARn(X) =
∫ 1

0
CVaRα(X)wn(α)dα,

where

wn(α) := n(n − 1)(1 − α)αn−2, α ∈ [0, 1]
is the weight function.

Remark 2 It can be easily checked that wn(α) ≥ 0 on [0, 1], and
∫ 1

0
wn(α)dα = n(n − 1)

∫ 1

0
(αn−2 − αn−1)dα = n(n − 1)

[
1

n − 1
− 1

n

]
= 1.

Therefore, wn(α) is indeed a weight function.
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Theorem 3 was mentioned in Cherny and Orlov [3] without details. We now give a
detailed proof by using the so-called Choquet integral. First, we need a lemma. For any
α ∈ [0, 1), define fα(·) : � → [0, 1] in the following way,

fα(A) : =
{ 1

1−α
P0(A) if P0(A) ≤ 1 − α,

1 otherwise

= gα[P0(A)],
where

gα(x) :=
{ 1

1−α
x if x ∈ [0, 1 − α),

1 if x ∈ [1 − α, 1]. (7)

We then have the following lemma, which implies that the CVaR measure can be written
as the “Choquet integral” with respect to fα(·).

Lemma 1 For any X ∈ L 2 and α ∈ [0, 1), we have

CVaRα(X) =
∫ 0

−∞
[fα(X > t) − 1] dt +

∫ +∞

0
fα(X > t)dt.

Proof If VaRα(X) ≤ 0, then
∫ 0

−∞
[fα(X > t) − 1]dt +

∫ +∞

0
fα(X > t)dt =

∫ 0

VaRα(X)

[
1

1 − α
P0(X > t) − 1

]
dt

+
∫ +∞

0

1

1 − α
P0(X > t)dt

= VaRα(X) + 1

1 − α
×

∫ +∞

VaRα(X)

P0(X > t)dt

= VaRα(X) + 1

1 − α
× E[(X − VaRα(X))+]

= CVaRα(X).

The last step above is due to (5) and (6).
If VaRα(X) > 0, then∫ 0

−∞
[fα(X > t) − 1]dt +

∫ +∞

0
fα(X > t)dt =

∫ VaRα(X)

0
dt +

∫ +∞

VaRα(X)

1

1 − α
P0(X > t)dt

= VaRα(X) + 1

1 − α
×

∫ +∞

VaRα(X)

P0(X > t)dt

= VaRα(X) + 1

1 − α
× E[(X − VaRα(X))+]

= CVaRα(X),

which completes the proof.

Proof of Theorem 3 Define

h(x) := 1 − (1 − x)n, x ∈ [0, 1].
It is not difficult to check that

h(x) =
∫ 1

0
gα(x)wn(α)dα, x ∈ [0, 1], (8)
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where gα(x) is as defined in (7). By (4), for any X ∈ L 2 we have

MAXVARn(X) =
∫ 0

−∞
[h(P0(X > t)) − 1]dt +

∫ +∞

0
h(P0(X > t))dt. (9)

So by (8), (9), and Lemma 1, together with Fubini’s theorem and the fact that
∫ 1
0 wn(α)dα =

1, we get

MAXVARn(X) =
∫ 0

−∞

∫ 1

0
[fα(X > t) − 1]wn(α)dαdt

+
∫ +∞

0

∫ 1

0
fα(X > t)wn(α)dαdt

=
∫ 1

0

[∫ 0

−∞
[fα(X > t) − 1]dt +

∫ +∞

0
fα(X > t)dt

]
wn(α)dα

=
∫ 1

0
CVaRα(X)wn(α)dα

for any X ∈ L 2, as desired.

Remark 3 Theorem 3 says that MAXVARn(·) is a continuous convex combination of the
CVaR measure, its coherency in basic sense follows from Proposition 2.1 of Ang et al. [1],
and its averseness follows from the averseness of the CVaR (Proposition 4.4 of Ang et al.
[1]) together with the basic property of integral. Therefore, Theorem 3 can actually provide
an alternative proof of the coherency and averseness of MAXVARn(·).

5 The Risk Envelope of MAXVAR

Since

MAXVARn(·) =
∫ 1

0
CVaRα(·)wn(α)dα

is a coherent risk measure on L 2, by the dual representation theorem (Rockafellar [5]),
there exists a unique, nonempty, convex, and closed setQn ⊆ L 2, called “the risk envelope
of MAXVARn(·)” such that

MAXVARn(X) = sup
Q∈Qn

E(XQ)

for any X ∈ L 2.
In this section, we aim at characterizing the risk envelope of MAXVARn(·). First, recall

the following well-known result for the discrete convex combination of the CVaR measure,
which can be found in Rockafellar [5] and whose proof can be found in Ang et al. [1].

Proposition 1 LetR(·) = ∑n
i=1λiCVaRαi

(·) with positive weights λi adding up to 1. Then,
R is a coherent risk measure in the basic sense and its risk envelope is{

n∑
i=1

λiQi : 0 ≤ Qi ≤ 1

1 − αi

, E(Qi) = 1 ∀i = 1, 2, . . . , n

}
.

A continuous version of Proposition 1 gives the risk envelope of MAXVAR as follows.
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Theorem 4 The risk envelope of MAXVAR is

Qn := cl

{∫ 1

0
Qαwn(α)dα, 0 ≤ Qα ≤ 1

1 − α
, E(Qα) = 1 ∀α ∈ [0, 1)

}
, (10)

where
wn(α) := n(n − 1)(1 − α)αn−2, α ∈ [0, 1]

is the weight function (00 is defined as 1), and “cl” stands for the closure in L 2.

Proof Note that the integration “
∫ 1
0 Qαwn(α)dα” in (10) is defined pointwise. That is, Y =∫ 1

0 Qαwn(α)dα means Y (ω) = ∫ 1
0 Qα(ω)wn(α)dα for any ω ∈ �. Since 0 ≤ Qα ≤ 1

1−α

for any α ∈ [0, 1), we have

0≤
∫ 1

0
Qα(ω)wn(α)dα ≤

∫ 1

0
n(n − 1)αn−2dα = n

for any ω ∈ �. Therefore,Qn ⊆ L ∞ ⊆ L 2. In addition, we can check that

MAXVARn(X) =
∫ 1

0
CVaRα(X)wn(α)dα

= sup

{
E

(
X

∫ 1

0
Qαwn(α)dα

)
:

∫ 1

0
Qαwn(α)dα ∈ Qn

}
(11)

for any X ∈ L 2. Furthermore, it is easy to check the convexity of Qn. Since Qn is closed
in L 2, it follows from the dual representation theorem that Formula (11) implies that (10)
is the risk envelope of MAXVARn(·).
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