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In this paper, we consider the N–urn Ehrenfest model. By utilizing an auxiliary
continuous-time Markov chain, we obtain the explicit formula for the Laplace transform
of the hitting time from a single state to a set A of states where A satisfies some
symmetric properties. After obtaining the Laplace transform, we are able to compute
the high-order moments (especially, variance) for the hitting time.
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1. Introduction

We consider the N–urn Ehrenfest model, where N ≥ 2. In this model, there are N urns which are denoted by Urn
1, . . . ,Urn N . In the beginning, we place M balls in the N urns in an arbitrary way. Then at each step, we choose a ball
randomly and put it into another urn with equal probability. Formally, if we use x = (x1, . . . , xM ) to denote a state of
the model, where xi ∈ {1, . . . ,N} denotes the position of the ith ball, then the N–urn Ehrenfest model can be seen as a
time-homogeneous Markov chain {Xn : n = 0, 1, 2, . . .} on E = {1, . . . ,N}

M . For x = (x1, . . . , xM ), y = (y1, . . . , yM ) ∈ E,
denote by s(x, y) the number of corresponding coordinates that are the same in x and y, that is,

s(x, y) := |{1 ≤ i ≤ M : xi = yi}| ,

where |·| denotes the cardinality of a set. Then the transition probability of the N-urn Ehrenfest model becomes

pxy =

{
1

M(N−1) , if s(x, y) = M − 1,
0, otherwise.

(1.1)

For nonempty A ⊆ E, denote the hitting time

TA := inf{n ≥ 0 : Xn ∈ A},

and use Tx as an abbreviation for T{x}, where x ∈ E. We follow the standard notation for the Markov chain to use Px

to denote the probability when the initial state is x, then use Ex and Varx to denote the corresponding expectation and
variance, respectively.
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We are interested in the distribution of TA for some special A ⊆ E. Denote by A the set containing all subsets
A = {y1, y2, . . . , yk} ⊆ E such that for each y ∈ A, the sequence s(y, y1), s(y, y2), . . . , s(y, yk) is the same after being
sorted by a monotonic increasing order. It is not difficult to see that the following special Ai (i = 1, 2, 3, 4, 5) all belong
to A .

A1 = {y}, where y ∈ E;

A2 = {y, z}, where y, z ∈ E;

A3 = {(1, . . . , 1), (2, . . . , 2), . . . , (N, . . . ,N)};
A4 = {x ∈ E : s(x, (2, . . . , 2)) = h}, where 0 ≤ h ≤ M;

A5 = {x = (x1, . . . , xM ) ∈ E : x1, . . . , xM are all different}, where M ≤ N.

Consider M permutation functions τ1, . . . , τM from {1, . . . ,N} to {1, . . . ,N}. For any x = (x1, . . . , xM ), set τ (x) =

(τ1(x1), . . . , τM (xM )). Then τ is a one-to-one mapping from E to E. Obviously, s(τ (x), τ (y)) = s(x, y) and hence pτ (x)τ (y) = pxy
for all x, y ∈ E. It follows that Eτ (x)(e−λTτ (A) ) = Ex(e−λTA ) for all x ∈ E, A ⊆ E and λ ≥ 0. Clearly, A ∈ A if and only if
τ (A) ∈ A .

Our main result is as follows. It gives the Laplace transform and then illustrates the distribution of the hitting time TA
for A ∈ A .

Theorem 1.1. Suppose x ∈ E and A ∈ A . Then we have

L(λ) := Ex (e−λTA
)

=

⎧⎨⎩
∑

z∈A fs(x,z)(M(eλ
− 1))∑

z∈A fs(y,z)(M(eλ − 1))
, if λ > 0,

1, if λ = 0,
(1.2)

for any y ∈ A, where

fk(u) :=

∑
0≤i≤k, 0≤j≤M−k

C i
kC

j
M−k(N − 1)i(−1)j

N(i + j) + u(N − 1)
(1.3)

for 0 ≤ k ≤ M and u > 0. Here Cm
n :=

n!
m!(n − m)!

(0 ≤ m ≤ n) denotes the combinatorial number.

Since

Ex(TA) = −L′(0) and Varx(TA) = L′′(0) − (L′(0))2, (1.4)

we can get the following corollary.

Corollary 1.2. Suppose x ∈ E and A ∈ A . Then we have

Ex(TA) =
M(N − 1)

|A|

∑
z∈A

[gs(y,z)(0) − gs(x,z)(0)] (1.5)

and

Varx(TA) =
2M(N − 1)

|A|

∑
z∈A

[
Mg ′

s(x,z)(0) − Mg ′

s(y,z)(0) + Ex(TA)gs(x,z)(0)
]

+ [Ex(TA)]2 − Ex(TA) (1.6)

for any y ∈ A, where

gk(u) :=

∑
0≤i≤k, 0≤j≤M−k,

i+j̸=0

C i
kC

j
M−k(N − 1)i(−1)j

N(i + j) + u(N − 1)
(1.7)

for 0 ≤ k ≤ M and u ≥ 0.

Remark. (1) We can get the higher-order moments for TA by taking higher-order derivatives of L(λ). The notation will
be more complicated, so we omit the details here.

(2) Fix A ∈ A . Applying (1.5), we conclude that Ex(TA) is a decreasing function of
∑

z∈A gs(x,z)(0).

In history, the Ehrenfest model was first proposed in Ehrenfest and Ehrenfest (1907) as ‘‘a test bed of key concepts of
statistical mechanics’’ (see Meerson and Zilber (2018)). There are many problems concerning this simple but insightful
model. The study of the hitting time was first restricted in the 2–Urn case (when N = 2), see Blom (1989), Lathrop et al.
(2016), Palacios (1994), etc. Recently, Chen et al. (2017) considered the 3–Urn case and computed Ex(Ty) when s(x, y) = 0.
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Then Song and Yao (2019) extended their result to all N ≥ 2 and all x, y ∈ E. The N–Urn model has attracted attentions
in application fields recently, see Aloisi and Nali (2018), for example. So it is worthwhile to investigate the model more
deeply. The authors of all the above references did not consider the distribution of the hitting time. And they did not
consider TA for A other than a singleton. Furthermore, the methods in Chen et al. (2017) and Song and Yao (2019) cannot
be used to prove Theorem 1.1. In this paper, we adopt a new method to solve the problem. The new method relies on an
auxiliary continuous-time Markov chain, which is the main contribution of this paper.

The organization of this paper is as follows. In Section 2, we introduce an auxiliary continuous-time Markov chain and
explore the relationship with the original discrete-time Markov chain. In Section 3, we prove Theorem 1.1 with the help
of the above auxiliary chain, and then prove Corollary 1.2. In Section 4, we give some examples and use Corollary 1.2 to
extend the results in Chen et al. (2017) and Song and Yao (2019).

2. An auxiliary continuous-time Markov chain

In this section, we introduce a continuous time Markov chain on E = {1, . . . ,N}
M . Let {Y1(t) : t ≥ 0}, . . . , {YM (t) : t ≥

0} be M independent continuous-time Markov chains on {1, . . . ,N} with the same Q-matrix

Q =

⎡⎢⎢⎢⎢⎢⎣
−1 1

N−1 · · ·
1

N−1
1

N−1 −1 · · ·
1

N−1

...
...

...

1
N−1

1
N−1 · · · −1

⎤⎥⎥⎥⎥⎥⎦ . (2.1)

Then define Y (t) := (Y1(t), . . . , YM (t)) for all t ≥ 0. It follows that {Y (t) : t ≥ 0} is a continuous-time Markov chain with
state space E. The next proposition gives the basic relationship between {Xn : n = 0, 1, 2, . . .} and {Y (t) : t ≥ 0}.

Proposition 2.1. If X0 and Y (0) have the same distribution, then {Xn : n = 0, 1, 2, . . .} and the embedded chain of
{Y (t) : t ≥ 0} have the same finite-dimensional distributions.

Proof. Set σ0 := 0 and σn := inf{t > σn−1 : Y (t) ̸= Y (σn−1)} for n ≥ 1. Then for n ≥ 1, denote ξn := σn − σn−1. Since
ξ1, ξ2, . . . are i.i.d. exponential random variables with parameter M , and {ξ1, ξ2, . . .} are independent of {Y (σn) : n =

0, 1, 2 · · ·}, we can deduce that {Y (σn) : n = 0, 1, 2 · · ·} is a time-homogeneous discrete-time Markov chain on E with
transition probability

P(Y (σn+1) = y | Y (σn) = x) =

{
1

M(N−1) , if s(x, y) = M − 1,
0, otherwise.

(2.2)

See Chapter 3 of Lawler (2006) for details. Comparing (2.2) with (1.1), we can get that {Y (σn)} has the same finite-
dimensional distribution with {Xn}, as desired. □

From Proposition 2.1, we can define {Y (t)} and {Xn} on the same probability space and treat {Xn} as the embedded
chain of {Y (t)}. So we can use the same notations Px, Ex and Varx when considering the both processes. Next, we use the
superscript ‘‘Y ’’ to denote the hitting time for {Y (t)}. That is, for nonempty A ⊆ E, denote the hitting time

T Y
A := inf{t ≥ 0 : Y (t) ∈ A},

and use T Y
x as an abbreviation for T Y

{x}, where x ∈ E. The next proposition shows the relationship of the Laplace transforms
between TA and T Y

A .

Proposition 2.2. For any x ∈ E, A ⊆ E and λ ≥ 0, we have

Ex (e−λTA
)

= Ex
(
e−M(eλ−1)TYA

)
. (2.3)

Proof. Note that T Y
A =

∑TA
i=1 ξi. Since TA is independent of {ξ1, ξ2, . . .}, and ξ1, ξ2, . . . are i.i.d exponential random variables

with parameter M , we can deduce that for any u ≥ 0,

Ex(e−uTYA ) = Ex

(
exp

{
−u

TA∑
i=1

ξi

})
= Ex

( TA∏
i=1

e−uξi

)

= Ex

(
Ex

( TA∏
i=1

e−uξi

⏐⏐⏐⏐⏐TA
))

= Ex
[(

Ex(e−uξ1 )
)TA]

= Ex

[(∫
∞

0
e−utMe−Mtdt

)TA
]

= Ex

[(
M

u + M

)TA
]

. (2.4)
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Then for any λ ≥ 0, take u = M(eλ
− 1) ≥ 0, we have M

u+M = e−λ. Substitute it into Eq. (2.4), we conclude that

Ex (e−λTA
)

= Ex
(
e−M(eλ−1)TYA

)
,

as desired. □

As a corollary, we can get the following relationship of the expectations and variances between TA and T Y
A .

Corollary 2.3. For any x ∈ E and A ⊆ E, we have

Ex(TA) = MEx(T Y
A ) and Varx(TA) = M2Varx(T Y

A ) − Ex(TA).

Proof. Fix x ∈ E and A ⊆ E. Define

L(λ) := Ex (e−λTA
)
, LY (λ) := Ex

(
e−λTYA

)
for λ ≥ 0. By Proposition 2.2, we have

L(λ) = LY
(
M(eλ

− 1)
)
. (2.5)

It is not difficult to get

L′(0) = ML′

Y (0) and L′′(0) = M2L′′

Y (0) + L′(0).

Therefore, we can conclude that

Ex(TA) = −L′(0) = −ML′

Y (0) = MEx(T Y
A ),

and

Varx(TA) = L′′(0) − (L′(0))2

= M2
[L′′

Y (0) − (L′

Y (0))
2
] + L′(0) = M2Varx(T Y

A ) − Ex(TA),

as desired. □

Remark. By taking higher-order derivatives from Eq. (2.5), we can get the relationship of the higher-order moments
between TA and T Y

A . Since the number of terms will increase in the higher-order moment case, we omit the detailed
computation here.

3. Proofs of Theorem 1.1 and Corollary 1.2

By Proposition 2.2, we can see that we only need to calculate the Laplace transform of T Y
A to obtain the Laplace

transform of TA. For a general A ⊆ E, the Laplace transform of T Y
A cannot be easily calculated. However, for A ∈ A (the

definition was given in Section 1), we can use the symmetric property to deal with it.
Denote by {pt} the transition semigroup of {Y1(t)} whose Q-matrix Q is given in (2.1). That is, pt (i, j) = P i(Y1(t) = j)

for all i, j ∈ {1, . . . ,N} and t ≥ 0. The next lemma gives an explicit formula for {pt}.

Lemma 3.1. For any i, j ∈ {1, . . . ,N} and t ≥ 0, we have

pt (i, j) =

⎧⎪⎨⎪⎩
(N−1)e

−
N

N−1 t
+1

N , if i = j,

1−e
−

N
N−1 t

N , otherwise.

Proof. By the symmetric property of the Q-matrix Q , we have for any t ≥ 0,

pt (i, j) =

{
pt (1, 1), if i = j,

pt (1, 2), otherwise.

Since
∑N

j=1 pt (i, j) = 1, it follows that pt (1, 2) =
1 − pt (1, 1)

N − 1
.
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By Kolmogorov’s backward equation, we have p′
t = Qpt . So

p′

t (1, 1) =

N∑
i=1

q1ipt (i, 1)

= −pt (1, 1) +

N∑
i=2

1
N − 1

pt (i, 1)

= −pt (1, 1) + pt (1, 2)

= −pt (1, 1) +
1 − pt (1, 1)

N − 1

= −
N

N − 1
pt (1, 1) +

1
N − 1

.

Since p0(1, 1) = 1, by solving the first-order linear ordinary differential equation, we get

pt (1, 1) =
(N − 1)e−

N
N−1 t + 1

N
.

And therefore,

pt (1, 2) =
1 − pt (1, 1)

N − 1
=

1 − e−
N

N−1 t

N
.

This completes the proof. □

Proof of Theorem 1.1. For x ∈ E, A ∈ A and u > 0, define

Gu(x, A) := Ex
[∫

∞

0
e−ut1A(Y (t))dt

]
,

where

1A(Y (t)) :=

{
1, if Y (t) ∈ A,

0, otherwise.

Denote by {Pt} the transition semigroup of {Y (t)}. That is, Pt (y, z) = Py(Y (t) = z) for all y, z ∈ E and t ≥ 0. By Lemma 3.1,
we have for any x = (x1, . . . , xM ), z = (z1, . . . , zM ) ∈ E,

Pt (x, z) =

M∏
i=1

pt (xi, zi) = pkt (1, 1)p
M−k
t (1, 2) =

1
NM ((N − 1)e−

N
N−1 t + 1)k(1 − e−

N
N−1 t )M−k,

where k = s(x, z). Thus for any u > 0,

Gu(x, {z}) =

∫
∞

0
e−utPt (x, z)dt

=
1
NM

∫
∞

0
e−ut

(
(N − 1)e−

N
N−1 t + 1

)k (
1 − e−

N
N−1 t

)M−k
dt

s=e
−

N
N−1 t

HHHHHHH
N − 1
NM+1

∫ 1

0
s
N−1
N u−1

[(N − 1)s + 1]k(1 − s)M−kds

=
N − 1
NM+1

∫ 1

0
s
N−1
N u−1

k∑
i=0

C i
k(N − 1)isi

M−k∑
j=0

C j
M−k(−1)jsjds

=
N − 1
NM+1

∑
0≤i≤k, 0≤j≤M−k

C i
kC

j
M−k(N − 1)i(−1)j

∫ 1

0
s
N−1
N u−1+i+jds

=
N − 1
NM

∑
0≤i≤k, 0≤j≤M−k

C i
kC

j
M−k(N − 1)i(−1)j

N(i + j) + u(N − 1)
=

N − 1
NM fk(u). (3.1)
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This, together with the fact that A ∈ A , yields Gu(y, A) = Gu(z, A) for all y, z ∈ A and u > 0. Furthermore, by the strong
Markov property, we obtain that for any y ∈ A and u > 0,

Gu(x, A) = Ex
[∫

∞

0
e−ut1A(Y (t))dt

]
= Ex

[∫
∞

TYA

e−ut1A(Y (t))dt

]
= Ex

(
e−uTYA

)
Gu(y, A)

and hence

Ex
(
e−uTYA

)
=

Gu(x, A)
Gu(y, A)

=

∑
z∈A Gu(x, {z})∑
z∈A Gu(y, {z})

=

∑
z∈A fs(x,z)(u)∑
z∈A fs(y,z)(u)

. (3.2)

Therefore, the desired result (1.2) follows immediately from (2.3) and (3.2). □

Remark. From (3.1), we can get that

fk(u) =
1
N

∫ 1

0
s
N−1
N u−1

[(N − 1)s + 1]k(1 − s)M−kds (3.3)

for any 0 ≤ k ≤ M and u > 0. We call (3.3) the ‘‘integral version’’ for fk(u). It will be useful for simplifying the formulas
in Section 4.

Proof of Corollary 1.2. From (1.3) and (1.7), we can see that

gk(u) = fk(u) −
1

u(N − 1)
(3.4)

for any 0 ≤ k ≤ M and u > 0. Then by (1.2) and (3.4), we have for any λ ≥ 0 and y ∈ A,

L(λ) =
|A| + M(N − 1)(eλ

− 1)
∑

z∈A gs(x,z)(M(eλ
− 1))

|A| + M(N − 1)(eλ − 1)
∑

z∈A gs(y,z)(M(eλ − 1))
=:

L1(λ)
L2(λ)

,

where L1(λ) denotes the numerator and L2(λ) denotes the denominator. Hence L1(λ) = L(λ)L2(λ). Therefore, by Leibnitz’s
formula we can get{

L′

1(0) = L′(0)L2(0) + L(0)L′

2(0),
L′′

1(0) = L′′(0)L2(0) + 2L′(0)L′

2(0) + L(0)L′′

2(0).
(3.5)

Note that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L1(0) = L2(0) = |A|,

L′

1(0) = M(N − 1)
∑
z∈A

gs(x,z)(0), L′

2(0) = M(N − 1)
∑
z∈A

gs(y,z)(0),

L′′

1(0) = M(N − 1)

[∑
z∈A

gs(x,z)(0) + 2M
∑
z∈A

g ′

s(x,z)(0)

]
,

L′′

2(0) = M(N − 1)

[∑
z∈A

gs(y,z)(0) + 2M
∑
z∈A

g ′

s(y,z)(0)

]
.

(3.6)

The desired results (1.5) and (1.6) then follow from (1.4), (3.5) and (3.6). □

4. Some special examples

In this section, we consider several special examples. To simplify the notation, we use gk as an abbreviation for gk(0)
in this section (0 ≤ k ≤ M). Before discussing the examples, we first give the expressions for g0, gM and gk+1 − gk, that
will be used later.

Note that for any real number a,
M∑
i=1

C i
Mai

i
=

∫ a

0

(1 + t)M − 1
t

dt =

M∑
i=1

∫ a

0
(1 + t)i−1dt =

M∑
i=1

(1 + a)i − 1
i

. (4.1)

By (1.7) and (4.1), we obtain

g0 =
1
N

M∑
i=1

C i
M (−1)i

i
= −

1
N

M∑
i=1

1
i

(4.2)
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and

gM =
1
N

M∑
i=1

C i
M (N − 1)i

i
=

1
N

M∑
i=1

N i
− 1
i

. (4.3)

For 0 ≤ k ≤ M − 1, by (1.7), (3.3) and (3.4), we have

gk+1 − gk = lim
u↓0

[fk+1(u) − fk(u)]

=

∫ 1

0
[(N − 1)s + 1]k(1 − s)M−k−1ds

=

k∑
i=0

C i
k(N − 1)k−i

∫ 1

0
sk−i(1 − s)M−k−1ds

=

k∑
i=0

C i
k(N − 1)k−i (k − i)!(M − k − 1)!

(M − i)!

=
(N − 1)k

MCk
M−1

k∑
i=0

C i
M

(N − 1)i
. (4.4)

4.1. First hitting time to a fixed singleton

When A = {y} where y ∈ E, we have A ∈ A . Therefore, by Theorem 1.1, we get that for x, y ∈ E,

Ex (e−λTy
)

=

⎧⎪⎨⎪⎩
fs(x,y)

(
M(eλ

− 1)
)

fM
(
M(eλ − 1)

) , if λ > 0,

1, if λ = 0.
(4.5)

Furthermore, by (1.5) in Corollary 1.2, we get that for any x, y ∈ E,

Ex(Ty) = M(N − 1)[gM − gs(x,y)]. (4.6)

Especially, for any x, y ∈ E such that s(x, y) = 0 (for example, when x = (1, . . . , 1) and y = (2, . . . , 2)), we have

Ex(Ty) = M(N − 1)[gM − g0]. (4.7)

We now explain how (4.6) and (4.7) match the results of Theorem 1.1 and Corollary 1.2 in Song and Yao (2019)
respectively. Combining (4.6) with (4.4) we obtain

Ex(Ty) = M(N − 1)
M−1∑
j=k

(gj+1 − gj) =

M−1∑
j=k

(N − 1)j+1

C j
M−1

j∑
l=0

C l
M

(N − 1)l
, (4.8)

where k = s(x, y). This is exactly the result of Theorem 1.1 in Song and Yao (2019). Applying (4.2) and (4.3), we can
rewrite (4.7) as

Ex(Ty) =
M(N − 1)

N

M∑
i=1

N i

i
(4.9)

for any x, y ∈ E satisfying s(x, y) = 0. This is exactly the result of Corollary 1.2 in Song and Yao (2019).
Next, we compute Varx(Ty) for x, y ∈ E. This was not done in Song and Yao (2019). By (1.6) in Corollary 1.2, we get

that for any x, y ∈ E,

Varx(Ty) = 2M(N − 1)
[
Mg ′

s(x,y)(0) − Mg ′

M (0) + Ex(Ty)gs(x,y)
]
+
[
Ex(Ty)

]2
− Ex(Ty). (4.10)

Especially, when s(x, y) = 0, (4.10) becomes

Varx(Ty) = 2M(N − 1)
[
Mg ′

0(0) − Mg ′

M (0) + Ex(Ty)g0
]
+
[
Ex(Ty)

]2
− Ex(Ty). (4.11)

By (4.1), for any real number a,
M∑
i=1

C i
Mai

i2
=

∫ a

0

M∑
i=1

C i
M t i−1

i
dt =

∫ a

0

M∑
i=1

(1 + t)i − 1
it

dt =

M∑
i=1

1
i

i∑
j=1

(1 + a)j − 1
j

. (4.12)
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With the help of (1.7), it follows that

g ′

0(0) − g ′

M (0) =
N − 1
N2

M∑
i=1

C i
M [(N − 1)i − (−1)i]

i2
=

N − 1
N2

M∑
i=1

1
i

i∑
j=1

N j

j
. (4.13)

Putting (4.9), (4.2) and (4.13) into (4.11), we have

Varx(Ty) =
M2(N − 1)2

N2

⎡⎣( M∑
i=1

N i

i

)2

− 2
M∑
i=1

1
i

M∑
j=i+1

N j

j

⎤⎦−
M(N − 1)

N

M∑
i=1

N i

i

for any x, y ∈ E such that s(x, y) = 0.

4.2. First hitting time to a fixed two-points set

Suppose x, y, z are three different points in E. Let A = {y, z}. We next compute Ex(TA) and Px(XTA = y).
Since A ∈ A . By (1.5) and (4.6), we have⎧⎪⎨⎪⎩

Ex(TA) =
M(N−1)

2

[
gM + gs(y,z) − gs(x,y) − gs(x,z)

]
,

Ex(Tz) = M(N − 1)
[
gM − gs(x,z)

]
,

Ey(Tz) = M(N − 1)
[
gM − gs(y,z)

]
.

(4.14)

On the other hand, by strong Markov property, we get

Ex(Tz) = Ex(TA) + Px(XTA = y)Ey(Tz). (4.15)

From (4.14) and (4.15), we obtain

Px(XTA = y) =
Ex(Tz) − Ex(TA)

Ey(Tz)
=

gM + gs(x,y) − gs(x,z) − gs(y,z)
2
[
gM − gs(y,z)

] .

4.3. First time that all balls are in the same urn

Proposition 4.1. Set x = (x1, x2, . . . , xM ) ∈ E and A = {(i, . . . , i) : i = 1, . . . ,N}. Then we have

Ex(TA) =
M(N − 1)

N

[
gM + (N − 1)g0 −

N∑
k=1

gnk

]
,

and for 1 ≤ i ≤ N,

Px(XTA = (i, . . . , i)) =
1
N

+
gni −

1
N

∑N
k=1 gnk

gM − g0
,

where ni = s(x, (i, . . . , i)) for i = 1, . . . ,N.

Proof. Set y = (1, . . . , 1), then y ∈ A ∈ A . By (1.5), we have

Ex(TA) =
M(N − 1)

|A|

∑
z∈A

[
gs(y,z) − gs(x,z)

]
=

M(N − 1)
N

[
gM + (N − 1)g0 −

N∑
k=1

gnk

]
.

Next, set z = (i, . . . , i). By the strong Markov property, we obtain that

Ex(Tz) = Ex(TA) +

∑
j̸=i

Px(XTA = (j, . . . , j))E(j,...,j)(Tz). (4.16)

By (4.6), Ex(Tz) = M(N − 1)(gM − gni ) and E(j,...,j)(Tz) = M(N − 1)(gM − g0) for j ̸= i. Hence (4.16) can be rewritten as

gM − gni =
1
N

[
gM + (N − 1)g0 −

N∑
k=1

gnk

]
+ [1 − Px(XTA = (i, . . . , i))](gM − g0).

Therefore,

Px(XTA = (i, . . . , i)) =
1
N

+
gni −

1
N

∑N
k=1 gnk

gM − g0
for 1 ≤ i ≤ N , as desired. □



C. Xin, M. Zhao, Q. Yao et al. / Statistics and Probability Letters 157 (2020) 108625 9

Corollary 4.2. If M ≤ N and x = (1, 2, . . . ,M), then we have

Ex(TA) =
M(N − 1)

N2

M∑
i=2

N i

i

and

Px(XTA = (i, . . . , i)) =

⎧⎪⎨⎪⎩
1
N +

N−M

M
∑M

i=1
Ni
i

, if i ≤ M,

1
N −

1∑M
i=1

Ni
i

, if M < i ≤ N.

Proof. For 1 ≤ i ≤ N ,

ni = s(x, (i, . . . , i)) =

{
1, if i ≤ M,

0, otherwise.

Putting k = 0 into (4.4) yields

g1 = g0 +
1
M

. (4.17)

By putting (4.2), (4.3) and (4.17) into Proposition 4.1, we get the desired results. □

4.4. First time that all balls are in different urns

Proposition 4.3. Suppose that M = N ≥ 2. Set x = (1, . . . , 1) and

B = {(i1, . . . , iM ) : (i1, . . . , iM ) is a permutation of {1, . . . ,M}}.

Then we have

Ex(TB) = M(M − 1)

[
−g1 +

M−2∑
k=0

1
k!

(
1
2!

−
1
3!

+ · · · + (−1)M−k 1
(M − k)!

)
gk

]
+

1
(M − 2)!

gM .

Proof. Set y = (1, 2, . . . ,M). Then y ∈ B ∈ A . By (1.5), we have

Ex(TB) =
M(M − 1)

|B|

∑
z∈B

[
gs(y,z) − gs(x,z)

]
= M(M − 1)

[
M∑

k=0

ak
M!

gk − g1

]
,

where ak = |{z ∈ B : s(y, z) = k}|. Pick an element of B with equal probability and denote it by Z = (Z1, Z2, . . . , ZM ). Let
η = s(Z, y). Then

ak
M!

= P(η = k) for 0 ≤ k ≤ M . Since

P(η = k) =
1
k!

(
1
2!

−
1
3!

+ · · · + (−1)M−k 1
(M − k)!

)
for k ≤ M − 2, P(η = M − 1) = 0 and P(η = M) =

1
M!

, the proof is completed. □

4.5. First time that h balls are in a fixed urn (for example, Urn 2)

In this subsection, set Ah = {y ∈ E : s(y, (2, . . . , 2)) = h} and s(x, (2, 2, . . . , 2)) = k.

Proposition 4.4. If k < h, then

Ex(TAh ) = M(N − 1)(gh − gk) =

h−1∑
i=k

(N − 1)i+1

C i
M−1

i∑
j=0

C j
M

(N − 1)j
. (4.18)

If k > h, then

Ex(TAh ) =

k−1∑
i=h

(N − 1)i+1

C i
M−1

M∑
j=i+1

C j
M

(N − 1)j
. (4.19)
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Proof. Firstly, suppose that k < h. By (4.4), (4.6) and the strong Markov property, we have

Ex(TAh ) = Ex(T(2,...,2)) − Ex
(
E
XTAh (T(2,2,...,2))

)
= M(N − 1)(gM − gk) − M(N − 1)(gM − gh)

=

h−1∑
i=k

(N − 1)i+1

C i
M−1

i∑
j=0

C j
M

(N − 1)j
.

Thus (4.18) holds.
Now we suppose that k > h. Let y = (1, . . . , 1). Then y ∈ A0 ∈ A . By (1.5), we get

Ex(TA0 ) =
M(N − 1)

|A0|

∑
z∈A0

[gs(y,z) − gs(x,z)].

Pick an element of A0 with equal probability and denote it by Z . Let η1 = s(y, Z) and η2 = s(x, Z). Then we have

Ex(TA0 ) = M(N − 1)[E(gη1 ) − E(gη2 )].

It is easy to check that η1 ∼ Bin
(
M,

1
N − 1

)
and η2 ∼ Bin

(
M − k,

1
N − 1

)
. Suppose that ζ1, ζ2, . . . , ζk are i.i.d.,

independent of η2, and ζ1 ∼ Bin
(
1,

1
N − 1

)
. For convenience, set Si = η2 +

∑i
l=1 ζl for 0 ≤ i ≤ k. Then Si ∼

Bin
(
M − k + i,

1
N − 1

)
. In particular, Sk has the same distribution as η1. It follows that

Ex(TA0 ) = M(N − 1)E(gSk − gS0 ) = M(N − 1)
k−1∑
i=0

E(gSi+1
− gSi ).

For 0 ≤ i ≤ k − 1,

E(gSi+1
− gSi ) = E(gSi+ζi+1

− gSi ) = P(ζi+1 = 1)E(gSi+1 − gSi ).

If we have showed that for any ζ ∼ Bin
(
m,

1
N − 1

)
with 0 ≤ m ≤ M − 1,

E(gζ+1 − gζ ) =
(N − 1)M−m

MCm
M−1

M∑
i=M−m

C i
M

(N − 1)i
, (4.20)

then

Ex(TA0 ) =

k−1∑
i=0

(N − 1)k−i

Ck−i−1
M−1

M∑
u=k−i

Cu
M

(N − 1)u
=

k−1∑
j=0

(N − 1)j+1

C j
M−1

M∑
u=j+1

Cu
M

(N − 1)u
.

It follows that for k > h,

Ex(TAh ) = Ex(TA0 ) − Ex
(
E
XTAh (TA0 )

)
=

k−1∑
i=h

(N − 1)i+1

C i
M−1

M∑
j=i+1

C j
M

(N − 1)j
.

That is, (4.19) holds. Therefore it remains to prove (4.20). Applying (3.3) and (3.4), we obtain

E(gζ+1 − gζ ) = E
{
lim
u↓0

[fζ+1(u) − fζ (u)]
}

= E
[∫ 1

0
((N − 1)s + 1)ζ (1 − s)M−ζ−1ds

]

=

∫ 1

0
(1 − s)M−1E

[(
(N − 1)s + 1

1 − s

)ζ
]
ds

=

∫ 1

0
(1 − s)M−1

[
1 −

1
N − 1

+
1

N − 1
(N − 1)s + 1

1 − s

]m
ds
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= (N − 1)−m
∫ 1

0
(N − 1 + s)m(1 − s)M−1−mds

= (N − 1)−m
m∑
j=0

C j
m(N − 1)j

∫ 1

0
sm−j(1 − s)M−1−mds

=
1

MCm
M−1

m∑
j=0

C j
M (N − 1)j−m

i=M−j
HHHHH

(N − 1)M−m

MCm
M−1

M∑
i=M−m

C i
M

(N − 1)i

as desired. □

Remark. We can also use the method of electric networks to prove (4.19) after getting (4.18). Readers can refer to Doyle
and Snell (1984) and Lyons and Peres (2017) for the detailed instruction of this method. For n = 0, 1, . . ., let Φn =

s(Xn, (2, . . . , 2)). Then Φn denotes the number of balls in Urn 2 at time n. We see that {Φn : n = 0, 1, . . .} is the random
walk on the electric network {0, 1, . . . ,M} with

Ci,i+1 =
C i
M−1

(N − 1)i+1 and Ci,i = (N − 2)Ci,i+1 (i = 0, 1, . . . ,M).

It is easy to check that Ci =
C i
M

(N − 1)i
for i = 0, 1, . . . ,M . Use Ek

Φ to denote the expectation when Φ0 = k. For any

0 ≤ h ≤ M , set TΦ
h = inf{n ≥ 0 : Φn = h}. Clearly, for any x ∈ E and 0 ≤ h ≤ M , we have

Ex(TAh ) = Es(x,(2,...,2))
Φ (TΦ

h ). (4.21)

When 0 ≤ h < k ≤ M , by Corollary 2.21 on Page 48 of Lyons and Peres (2017), we get

Ek
Φ (TΦ

h ) + Eh
Φ (TΦ

k ) =

M∑
i=0

CiR(h ↔ k)

=

M∑
i=0

C i
M

(N − 1)i

k−1∑
j=h

1
Cj,j+1

=

M∑
i=0

C i
M

(N − 1)i

k−1∑
j=h

(N − 1)j+1

C j
M−1

. (4.22)

(4.19) then follows immediately from (4.18), (4.21) and (4.22), as desired.
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