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The development of ultracoarse-grained models for large
biomolecules needs to derive the optimal number of coarse-
grained (CG) sites to represent the targets. In this work, we pro-
pose to use the statistical internal cluster validation indexes to
determine the optimal number of CG sites that are optimized
based on the essential dynamics coarse-graining method. The
calculated curves of Calinski-Harabasz and Silhouette Coefficient
indexes exhibit the extrema corresponding to the similar CG

numbers. The calculated ratios of the optimal CG numbers to the
residue numbers of fine-grained models are in the range from
4 to 2. The comparison of the stability of index results indicates
that Calinski-Harabasz index is the better choice to determine
the optimal CG representation in coarse-graining. © 2019 Wiley
Periodicals, Inc.

DOI: 10.1002/jcc.26070

Introduction

All-atom molecular dynamics (MD) simulation of large
biomolecules[1–3] can be prohibitively expensive. To solve this
problem, many researchers have devoted to developing the so-
called coarse-grained (CG) models[4–8] for accelerating simulation.
The CG models could be constructed from the fine-grained
models such as all-atom model by using the “bottom-up” strate-
gies.[9,10] By resorting to the strategies, we could set up a connec-
tion between the statistical properties of fine-grained ensembles
and CG ensembles.[11–21] Construction of CG models based on
all-atom models needs a preliminary definition of how to map
fine-grained models to CG models. For example, the CG represen-
tation of amino acids in protein is usually defined according to
their chemical groups. In the high-resolution Martini CG
models,[22–24] each chemical group in the amino acid is usually
represented by more than two CG beads. However, for the con-
struction of low-resolution ultracoarse-grained (UCG)
model,[17,18,25–29] how to map a target biomolecule into its UCG
representation is more complicated, since the number of UCG
sites is usually far less than the number of residues in proteins.

Coarse-graining a protein with a given sequence composed of
M residues into the number N (N < M) UCG beads involves two
major optimization problems in mathematics.[16,17,30] First, if the
sequential M residues are CG into a specific number of N UCG
beads, it means that the protein sequence needs to be divided
into N clusters that are separated by N-1 boundaries along the
protein backbone, which refers to the problem of boundary opti-
mization. Second, the coarse-graining number N itself should be
considered as a variable of defined property function ƒ(N) of tar-
get system, which means that the magnitude of N should make
the property function ƒ(N) the most optimal. Thus, determining
the optimal number N needs to optimize ƒ(N) with respect to the
variable N, namely, the problem of N optimization.

In order to solve the problem of boundary optimization,
Zhang et al. proposed a combined algorithm[7,17,18] composed

of simulated annealing[31] and steepest descent[32] (SASD) to
obtain the optimal N-1 boundaries dividing the protein
sequence into N clusters, based on their proposed essential
dynamics coarse-graining (ED-CG) method.[17,18] Xia and
coworkers developed two efficient and rapid algorithms,[16,33]

namely, the stepwise optimization imposed with boundary con-
straint (SOBC)[33] and stepwise local iterative optimization
(SLIO)[16] for coarse-graining. The further comparison of SASD,
SOBC, and SLIO combined with ED-CG demonstrates that SLIO
is the most accurate and fast algorithm for coarse-graining.[30]

In addition, Koehl et al. utilized the method of renormalization
group[34,35] to optimize the CG beads for large biomolecules.
Chen and Habeck also introduced a Bayesian approach[36] for
coarse-graining biomolecular structures. Zhang and Voth pro-
posed a density-based ED-CG method[18] to coarse-grain a
given protein without the sequence known. Recently, our group

[a] Z. Wu, Y. Zhang, J. Z. Zhang, F. Xia
Shanghai Engineering Research Center of Molecular Therapeutics and New
Drug Development, School of Chemistry and Molecular Engineering, East
China Normal University, Shanghai 200062, China
E-mail: fxia@chem.ecnu.edu.cn

[b] J. Z. Zhang, F. Xia
NYU-ECNU Center for Computational Chemistry at NYU Shanghai,
Shanghai 200062, China

[c] K. Xia
Division of Mathematical Sciences, School of Physical and Mathematical
Sciences, Nanyang Technological University, 637371, Singapore
E-mail: xiakelin@ntu.edu.sg

[d] K. Xia
School of Biological Sciences, Nanyang Technological University, 637371,
Singapore

Contract Grant sponsor: Nanyang Technological University; Contract
Grant number: Startup Grant M4081842; Contract Grant sponsor:
National Natural Science Foundation of China; Contract Grant numbers:
21433004, 21673185, 21773065, 21873078; Contract Grant sponsor:
Singapore Ministry of Education Academic Research Fund; Contract Grant
numbers: Tier 1RG31/18, Tier 2 MOE2018-T2-1-033

© 2019 Wiley Periodicals, Inc.

FULL PAPER WWW.C-CHEM.ORG

J. Comput. Chem. 2020, 41, 14–20 WWW.CHEMISTRYVIEWS.COM14

https://orcid.org/0000-0003-4612-1863
https://orcid.org/0000-0003-4183-0943
https://orcid.org/0000-0001-9458-9175
http://WWW.C-CHEM.ORG
http://WWW.CHEMISTRYVIEWS.COM


developed a new convolutional[37] and K-means[38] coarse-
graining method[29] to construct UCG models from the low-
resolution data of cryoelectron microscopy.[39]

On the other hand, in order to solve the problem of
N optimization, Sinitskiy et al. proposed an empirical formula[40]

to determine the optimal N to represent large biomolecules. Xia
and coworkers developed the SLIO algorithm to determine the
optimal coarse-graining number N. In particular, it is highlighted
that the SLIO algorithm does not depend on any empirical
parameters and it could derive the change of the values of the
function ƒ(N) with respect to the variable N. The previous results
optimized by SLIO show that the curve of ƒ(N) change monoto-
nously with N, as well as the increments of ƒ(N) tend to
approach a constant as N becomes large.[30] However, the
monotonous curve of ƒ(N) did not exhibit any extrema so that
we needed to set a threshold to judge whether the function
has been converged.

Actually, the “N optimization” aforementioned is a problem
of data classification in nature. The purpose of data classifica-
tion is to find out the regularity or connection within the data
clusters. The problem of coarse-graining a protein in biology
could be categorized as a specific kind of data classification
without the external information known. The number of CG
sites in coarse-graining, namely, the number of clusters, is an
important parameter in the data classification. In the classical
K-means algorithm, the parameter K is always manually deter-
mined just based on the data distribution. In this work, we
propose to use the statistical internal cluster validation indexes
including the Calinski-Harabasz index (CH index)[41–43] and
Silhouette-Coefficient index (SC index)[41–43] to determine the
optimal number of clusters, namely, the optimal number of CG
sites in coarse-graining. The ED-CG method is used in this work
to coarse-grain the biomolecules into CG sites. The CG sites
derived from ED-CG method could preserve the essential
dynamics of intradomains of proteins, as proposed by Zhang
et al.[17] in the previous study.

Theory and Methods

The ED-CG method and SLIO algorithm

In this work, we coarse-grain protein sequences by using the
SLIO algorithm[16] based on the ED-CG method.[17,30] In the ED-
CG method, a property function ƒED-CG(N) is defined as the sum
of the squared displacement difference of pairwise Cα atoms,
as shown in eq.(1):

χ2ED−CG =
1
3N

XN
I = 1

1
nt

Xnt
t =1

X
i2I

X
j ≥ i2I

Δri tj j−Δrj tj j
�� ��2 !

ð1Þ

where N is the number of CG sites and nt denotes the number of
snapshots of Cα atoms extracted from MD trajectories. The Δri
and Δrj represent the displacements of the ith and jth Cα atoms,
respectively. If the ith Cα atom moves in a direction similar to
the jth Cα atom, the squared displacement difference |Δri(t)
− Δrj(t)|2 should be small. In the ED-CG method, the optimal
number N should make the residual χ2ED − CG achieve minimal.

In order to search for the optimal number N, we developed
the SLIO algorithm, which could be combined with ED-CG for
coarse-graining biomolecules. SLIO is an accurate and efficient
optimization algorithm, which has been demonstrated by tests
performed by us.[16,30] The detailed principle of the SLIO algo-
rithm is described in the previous study.[16]

Definition of distance metric

1. Through all-atom MD simulation, we can get the coordinates

of Cα atoms of frames, denoted as Cw
i : xwi ,y

w
i ,z

w
i

� �
, where Cw

i

refers to the coordinates of the ith Cα atoms in the wth
frame. W denotes the total number of frames and we chose
arbitrary 2000, 3500, and 5000 frames in data analysis.

2. Calculate the equilibrium position coordinates Ci : xi ,yi ,zið Þ
over all chosen frames, where xi = 1
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ment vector Δrwi : Δxwi ,Δywi ,Δzwi
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of each atom in each

frame, where Δxwi = xwi −xi , Δywi = ywi −yi , and Δzwi = zwi −zi .
The calculated displacement vector Δrwi in Table 1 could be
considered as a 3×M dimensional vector for index calcula-
tion, where M denotes the number of Cα atoms in a frame.

3. Define the distance metric of the data points based on the data
set. In the traditional clustering algorithm, the Euclidean dis-
tance is always used to measure the distance or the dissimilarity
between data points. The distance metric is defined in eq. (2):
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where the first term represents the similarity of equilibrium
positions scaled by the number of frames W and the second
term measures the difference of displacement vectors over the
total W frames.

Table 1. The initial data set in this article. The equilibrium position coordinates of each Cα atom and displacement vectors of each frame are used as the
features for internal cluster validation calculation.

No.C Coordinates Vector Δr1 Vector Δr2 …… Vector ΔrW

1 x1 y1 z1 Δx11 Δy11 Δz11 Δx21 Δy21 Δz21 …… ΔxW1 ΔyW1 ΔzW1
2 x2 y2 z2 Δx12 Δy12 Δz12 Δx22 Δy22 Δz22 …… ΔxW2 ΔyW2 ΔzW2
…… …… …… …… …… ……
M xM xM xM Δx1M Δy1M Δz1M Δx2M Δy2M Δz2M …… ΔxWM ΔyWM ΔzWM
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Internal cluster validation indexes

The cluster validation indexes[41–43] can be divided into two cat-
egories: external and internal cluster validation indexes. The
external cluster validation indexes are based on external super-
vised learning information of data, while the internal indexes
are based only on the intrinsic properties of data distribution
itself. Since there is no supervised learning information pro-
vided for the problem of coarse-graining, external cluster vali-
dation indexes cannot be used in this case. We choose four
commonly used internal indexes including the CH index,[41–43]

SC index,[41–43] Davies–Bouldin index,[43] and Dunn index[43] for
coarse-graining, and the curves of the Davies–Bouldin index
and the Dunn index are unstable and discontinuous. Thus, we
mainly discuss the coarse-graining results by using the CH and
SC indexes.

The CH index[41–43] is defined in eq. (3):

CH Nð Þ= SSB= N−1ð Þ
SSW= M−Nð Þ ð3Þ

where SSB=
PN
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M

PM
i =1Xi .

N denotes the variable of cluster number and M denotes the
number of total Cα atoms. The notations SSB and SSW denote
the intercluster and intracluster similarity of clusters, respec-
tively. The CH index is calculated according to eq. (3) and its
maximum corresponds to the optimal number of CG sites N.

The SC index[41–43] is defined as in eq. (4):

SC Nð Þ= 1
M

XM
i = 1
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. What is different from CH index

is that the calculation of a(Xi) and b(Xi) in the SC index does not
involve the center point of each cluster, but is described by the
distance metric between every two data points within the clus-
ter or between the clusters. The index is calculated based on
different number of CG sites, and the value of N corresponding
to the maximum is the optimal number of CG sites.

Results and Discussion

SSB, SSW, and CH index for Ras

In order to obtain the relationship between the values of ED-CG
function[17] and the variable N, we employed the SLIO algo-
rithm[16] to optimize the initial clusters. The SLIO is one of the
efficient coarse-graining algorithms developed by our group.
One of its advantages is that it could give the results of opti-
mized function values of ED-CG with respect to the variable N,
whereas the SASD[17] and SOBC33 algorithms could not achieve
it. Our previous coarse-graining results[30] revealed that the

values of ED-CG function ƒED-CG(N) optimized by SLIO decreased
with the CG number N smoothly and monotonically. Also, the
functional increments approached to zero as N adopted a large

Figure 1. (a) Calculated values of SSW and SSB of Ras system with respect to
the number of CG sites, denoted by the red and blue curves respectively.
(b) The calculated CH index curve for Ras, with the maximal value 63.3
corresponding to the number of CG sites 41. The inset shows the optimized
functional values of ED-CG by SILO algorithm. (c) The cartoon representation
of Ras with its optimal 41 CG sites. [Color figure can be viewed at
wileyonlinelibrary.com]
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number. In the previous work, we set an empirical threshold to
judge whether the optimized functional values have achieved
convergence. If the increment of ƒED-CG(N) was smaller than the
threshold in certain round, the corresponding N would be con-
sidered as an optimal number to represent the target biomole-
cule. However, it had to be pointed that the resulted
N aforementioned did not correspond to a minimum of the
curve of ƒED-CG(N) rigorously. The reason lies in the fact that the
ED-CG method itself actually only considers the intracluster simi-
larity according to its definition. Thus, it is expected that we can
resort to the CH index whose definition considers the
intracluster and intercluster similarities to determine the
optimal N.

To estimate the CH index in eq. (3), we need to calculate SSB
and SSW at first. In the first case of coarse-graining system, we
chose the important oncogenic Ras protein,[44–48] since our
group aimed to develop a UCG model of Ras for its functional
study. Ras protein has a total number of 166 residues and its
maximal residue-based CG number N in theory is 166. We con-
ducted a routine MD simulation and extracted the snapshots
from its trajectory for the CH index calculation. All the simula-
tions for target systems in this study were carried out for 100 ns
under the NPT ensemble using AMBER 18 package.[49,50] The cal-
culated results of SSB and SSW are shown in Figure 1a. It can be
seen that both SSB and SSW change monotonically with the
increased of number of CG sites and both of them tend to
approach constant. It is easy to understand the increased and
decreased tendency of SSB and SSW, since the increased
N definitely leads to the increased intercluster difference and
decreased intracluster difference according to their definitions
in the computational section.

On the basis of the results of SSB and SSW, CH index is calcu-
lated according to eq. (3) and the results are shown in
Figure 1b. The inset of Figure 1b shows that the optimized
values of ED-CG function approach to zero as the number N of
CG sites becomes larger. This curve does not exhibit an extre-
mum and the optimal number N cannot be determined rigor-
ously in mathematics. However, the calculated curve of the CH
index with respect to N in Figure 1b shows that the distribution
of CH index appears to be unimodal and its peak is very obvi-
ous. The maximal value of CH index is 63.3 and corresponds to
the optimal CG number N = 41. The total number of residues in
Ras is 166 and the ratio of residues to the optimal number of
CG sites is 4.05:1, approximately being 4:1. This ratio is in line
with our expectation on the resolution of CG representation of
target biomolecule. It means that if the ratio is too small such
as 1:1, the CG model has the same resolution as the fine-
grained model and cannot save any computational time in sim-
ulation. If the ratio is too large, this means that the CG sites are
too coarse to represent the crucial secondary structures in pro-
tein, which has been pointed out by us in the previous coarse-
graining of biomolecules.[28] Figure 1c clearly shows the optimal
41 CG sites derived from the CH index and these CG sites repre-
sent the crucial secondary structures such as the α-helices,
β-sheets, and flexible loops of Ras.

CH indexes of RasGAP and ADK

To validate the CH index for determining the optimal CG num-
ber further, we also calculated the CH indexes of the RasGAP
complex[51] and the adenylate kinase (ADK),[52] as shown in
Figure 2. Figure 2a shows that the CH index distribution of

Figure 2. Calculated blue curves of CH index
for (a) RasGAP and (b) ADK systems, with the
insets showing the optimized functional
values of ED-CG by SILO algorithm. The
maximal value 160.1 of CH index in
(a) corresponds to the number of CG sites
109 and the three maximal values 72.6, 72.1,
and 71.7 of CH index in (b) correspond to
93, 68, and 85, respectively. The cartoon
representations of RasGAP and ADK with their
optimal CG sites are shown in (c) and (d),
respectively. [Color figure can be viewed at
wileyonlinelibrary.com]
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RasGAP is similar to that of Ras and the maximum of the CH
index curve with the value 160.1 corresponds to the number
N = 109. The number of residues of RasGAP is 486 and the ratio
of optimal CG sites to the whole number is about 4.45:1. The
ratio 4.45 is similar to that ratio 4.05 of the Ras system, which
seems to be a reasonable value to determine the resolution of
CG model relative to the fine-grained model.

Figure 2b shows the calculated results of the CH index for
the ADK system. The contour of the CH index curve of ADK is
remarkably different from the ones of Ras and RasGAP systems.
The CH index distribution of ADK has a flat plateau rather than
a sharp peak of RasGAP. It can be seen that the values of the

CH index do not change drastically at this rugged plateau, and
it has quite a few maxima with similar values close to each
other in the range from N = 50 to 120. For instance, the three
maxima with the calculated CH index values 72.1, 71.7, and
72.6 are close to each other and correspond to the CG number
N = 68, 85, and 93. The total number of residues of ADK is
214 and the corresponding CG ratios are 3.1, 2.5, and 2.3 for
the three numbers, respectively.

We note that the global maximum of the CH index with the
magnitude 72.6 corresponds to a coarse-graining ratio 2.3,
which indicates that one CG bead represents nearly two parti-
cles of a fine-grained model. However, such a ratio is consid-
ered to be small for mapping a fine-grained model to a CG
model, while other larger ones such as 3.1 seems to be a more
reasonable alternative for mapping. Therefore, it appears that
determining the optimal number of CG sites depends on the
specific case. In the case of ADK whose CH index has a flat pla-
teau, we propose that we can choose a certain maximum of CH
index that results in a more reasonable coarse-graining ratio,
not necessarily a global maximum. If we pursue a higher accu-
racy to represent the original fine-grained model by CG model,
we can use a small ratio to map the fine-grained model to the
CG model. On the contrary, if much less computational cost is
required for the simulation with CG model, a larger ratio needs

Figure 3. (a)–(c) Calculated blue curves of SC index for
Ras, RasGAP, and ADK, respectively. The optimal CG
sites indicated by extrema are 54, 212 and 68 in (a)–
(c), respectively. The cartoon representations of Ras,
RasGAP, and ADK with their optimal CG sites are
visualized in (d)–(f ), respectively. [Color figure can be
viewed at wileyonlinelibrary.com]

Table 2. The optimal CG sites determined by CH and SC indexes and
calculated ratios of the number of CG sites to the total number of Cα
atoms for Ras, RasGAP, and ADK systems, respectively.

Systems CH index SC index

Ras Optimal number 41 54
Ratios 4.05 3.02

RasGAP Optimal number 109 212
Ratios 4.46 2.29

ADK Optimal number 68, 85, 93 68
Ratios 3.15, 2.52, 2.30 3.15
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to be selected for the construction of the CG model. The opti-
mal CG sites of RasGAP and ADK with 109 and 93 determined
by CH index are visualized in Figures 2c and 2d, respectively.

Estimation of SC index

As what is defined in the computational section, the SC index is
different from the CH index and it depends only on the dis-
tance metrics between data points, rather than the centers of
clusters. Figures 3a–3c shows the calculated results of SC
indexes for Ras, RasGAP, and ADK systems, respectively.
Figure 3a clearly shows that the SC index curve is smoother
than that of the CH index, as well as the maximum is quite
obvious and unique. It has a maximum as the CG number
adopts 54. The ratio of the number of residues to the optimal
number 54 is about 3.1:1. This ratio 3.1 is slightly lower than
that obtained by CH index. For the RasGAP and ADK systems,
the optimal CG sites indicated by the SC index curves are
212 and 68, with the corresponding ratios being 2.3:1 and 3.2:1,
respectively. The SC index curves of Ras and ADK systems have
obvious peaks while this not visible.

In addition, it can be seen that when the number of CG sites is

larger than half of the residue numbers (N ≥ M
2 ), the SC index

begins to increase with the cluster number in a linear-like way.
This is due to the reason that when the number of CG sites is

large (N ≥ M
2), more and more individual atom forms a cluster by

itself and a(Xi) will be equal to zero in eq. (4). With the further
increase in the number of CG sites(N), more and more a(Xi) will
be equal to zero. At the same time, b(Xi) will remain relatively
the same, and thus, s(Xi) will systematically increase. This is why
there is a linearly-like increase of the SC index. Traditionally,
both the CH index and the SC index are considered for the
measuring of clustering with a relatively large number of ele-
ments inside each cluster. However, in this paper, the size of
each cluster can be much smaller. And SC index may not be a
good measurement when the size of the cluster reduces to
smaller than two. The optimal CG sites of Ras, RasGAP, and ADK
derived from the curves of SC index are shown in Figures 3c–
3e, respectively.

In summary, Table 2 shows all the results of optimal number
of CG sites determined by CH index and SC index for Ras,
RasGAP, and ADK, respectively. The comparison of results indi-
cate that the ratios determined by SC index are a little smaller
than those determined by CH index for Ras and RasGAP sys-
tems, while they are similar for ADK. In the practical

application, a large ratio such as 4.0 or 3.0 might be the better
choice for mapping a fine-grained model to a CG model.

Stability of CH and SC indexes

Since both CH and SC indexes were calculated based on the
frames extracted from MD trajectories, we tested the stability of
the CH and SC indexes for the Ras system by using different
number of frames. Figures 4a and 4b show the calculated cur-
ves of CH and SC indexes with 2000, 3500, and 5000 frames
extracted from Ras trajectories, respectively. Figure 4a shows
that three curves of CH indexes calculated from 2000, 3500,
and 5000 frames almost completely overlap with each other,
which indicates that the CH index results are not dependent on
the number of frames. It also means that we can use a less
number of frames to calculate the CH index due to its stability.

In contrast, Figure 4b shows that the calculated curves of SC
indexes with different frames are severely dependent on the
number of frames. The three SC index curves differ in the peak
locations with each other and the maxima of curves calculated
from 2000, 3500, and 5000 frames correspond to the CG num-
bers 40, 52, and 54, respectively. Among them, the black curve
calculated from 2000 frames has the largest local maximal value
0.52, and the corresponding N = 40 is the smallest. As the num-
ber of frames increases, the values of the calculated maxima
gradually decrease and the corresponding N increases. The
compared results reveal that the SC index is dependent on the
number of MD frames and less stable than the CH index.

Conclusions

In this work, we propose to use internal cluster validation
indexes such as the CH index and the SC index to determine
the optimal CG sites in coarse-graining. A distance metric was
designed and combined with the ED-CG method for index cal-
culation. The CH and SC indexes were calculated for three bio-
molecular systems including Ras, RasGAP, and ADK,
respectively. All the ratios determined by the CH and SC
indexes are in the range of 4–2, which means that the number
of CG sites could be the 1/4–1/2 of the total residue number of
the fine-grained models. The calculated ratios are in line with
the expectation for the resolution of CG models. The test results
also reveal that the CH index is more stable in using different
number of frames than the SC index. Thus, we suggest using
the CH index to determine the optimal number of CG sites of
biomolecules in future coarse-graining.

Figure 4. (a) Calculated CH index curves with 2000,
3500, and 5000 frames extracted from MD trajectory
of Ras. All the maxima of the three curves correspond
to the number of CG sites 41. (b) Calculated SC index
curves with 2000, 3500, and 5000 frames extracted
from MD trajectory of Ras. The maxima of the black,
red, and blue curves correspond to 40, 52, and 54 CG
sites. [Color figure can be viewed at
wileyonlinelibrary.com]
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