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Abstract

This paper concentrates on the off-policy evaluation task in contextual bandits, aim-
ing to rigorously quantify the performance of a target policy using data collected under
a potentially different and unknown behavior policy. Recent research has shifted focus
from estimating expectations to constructing reliable prediction intervals for the reward
under a target policy. Based on conformal prediction, these methods control marginal
coverage with finite-sample theoretical guarantees, making them particularly suited for
safety-critical applications. In this paper, we further investigate how to achieve cov-
erage conditional on a pre-collected offline dataset, introducing a novel algorithm that
constructs probably approximately correct prediction intervals. Our approach primarily
relies on rejection sampling and split conformal prediction. Theoretical results on the
finite-sample properties and asymptotic behavior of our method are established, and
simulation experiments are conducted to validate its effectiveness.

1 Introduction

In many fields such as healthcare, marketing, and content recommendation, understanding the
potential impact of a decision-making policy prior to deployment is essential. Directly testing
a new policy in the real world, however, is often impractical due to ethical considerations,
resource constraints, or associated risks. Therefore, we may seek to evaluate the target policy’s
performance using offline data previously collected under a different behavior policy. This
process is known as off-policy evaluation (OPE)

Problems in the aforementioned fields are commonly modeled within the contextual bandits
framework. At each time step, the agent observes a context, selects an action according to
a given policy, and then receives a random reward from the environment that depends on
the context-action pair. While most OPE methods for contextual bandits have traditionally
focused on the expectation of reward under the target policy, they may not be suitable in
safety-critical settings due to their inability to capture the variability of the reward. Con-
sequently, recent literature has turned to considering alternative measures of performance,
including variance, quantiles, and conditional values at risk, among others; see e.g., [Keramati
et al., 2020]; [Chandak et al., 2021]; [Huang et al., 2021].
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A promising approach for uncertainty quantification is through prediction intervals (PIs).
Unlike confidence intervals, which give a range for a population parameter, like a mean, PIs
directly cover the reward itself with a specified confidence level. In [Taufiq et al., 2022], an
algorithm for constructing finite-sample valid PIs was first proposed within the contextual
bandits framework, incorporating stochastic policies and continuous action spaces. Notably,
their method accounts for individual effects rather than evaluating the average impact of
the target policy across all contexts, meaning that the constructed PIs are adaptive to test
contexts, which is of significant interest in fields such as precision medicine [Lei and Can-
dès, 2021]. However, their approach requires estimating the probability densities of rewards
conditional on context-action pairs, which can be challenging when the model is unknown.
To address this limitation, [Zhang et al., 2023] introduced a sub-sampling-based method and
extended the framework to both contextual bandits and sequential decision-making scenarios.
Nevertheless, their approach is restricted to discrete action spaces, motivating us to explore
methods applicable to more general action spaces.

In both [Taufiq et al., 2022] and [Zhang et al., 2023], the authors employ conformal pre-
diction (CP) [Vovk et al., 2005, Shafer and Vovk, 2008, Balasubramanian et al., 2014], a
well-established and effective method for uncertainty quantification. CP constructs reliable
PIs with finite-sample theoretical guarantees, relying solely on the exchangeability of the cali-
bration dataset and the test point, irrespective of the underlying data distribution. However, a
key limitation of CP is that its validity is inherently unconditional (or marginal), meaning the
nominal coverage it provides is valid only under the randomness of both the calibration and
test data. This marginal validity can be problematic in the OPE setting, where the calibra-
tion data is pre-collected and fixed. The PIs constructed by CP in this scenario are no longer
guaranteed to achieve the required coverage and may result in undercoverage without proper
control. Therefore, we aim to establish a stronger form of validity, referred to as training
conditional validity in [Vovk, 2013], which ensures that the PIs attain the desired coverage,
conditional on the given dataset.

In this paper, we propose PAC Off-Policy Prediction (PACOPP), a novel algorithm that
applies a modified split CP method to construct PIs for the rewards under target policy in
contextual bandits using an offline observational dataset. PACOPP enjoys both finite-sample
theoretical guarantees and adaptivity with respect to the test context, without relying on any
distributional or space assumptions. Our approach, to the best of our knowledge, is the first
method with these properties that achieves probably approximately correct (PAC) validity, a
type of training conditional validity, in the OPE task, guaranteeing that the constructed PIs
attain the required coverage with a specified high probability.

In summary, our contributions are as follows: (i) Methodologically, we develop a novel proce-
dure to construct off-policy PAC prediction intervals for a target policy’s reward at any test
context in bandits. our method achieves stronger validity and is more general than previous
works, as it does not require model estimation and can be applied to continuous actions. (ii)
Theoretically, we provide finite-sample theoretical guarantees for the validity of PACOPP and
prove that it is asymptotically efficient when the estimators are consistent. Additionally, we
extend the theoretical results of split CP with PAC validity, offering a two-sided bound in a
PAC sense for the first time.
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2 Preliminaries

We begin with some necessary preliminaries, including the formulation of our research problem,
as well as the definition of PAC prediction intervals. For convenience, we define ∆(X ) as the
set of all probability distributions over the space X , and [n] as the index set {1, 2, . . . , n} for
an integer n > 0 throughout this paper.

2.1 Problem formulation

We denote contexts, actions and rewards by S,A, and R, respectively, with their corresponding
spaces given by S,A, and R ⊂ R. These spaces can be either discrete or continuous. In the
OPE setting, we assume access to an observational dataset D = {Si, Ai, Ri}ni=1, collected over n
rounds through interactions between a behavior policy πb and the environment. In each round
i ∈ [n], a context Si = si is independently drawn from the context distribution PS ∈ ∆(S).
An action Ai = ai is then selected according to the behavior policy πb( · |si), where a policy
is defined as a mapping from S to ∆(A). The environment subsequently reveals a reward
Ri ∼ PR( · |si, ai), with PR : S × A → ∆(R) mapping context-action pairs to distributions
over the reward space R. Given a target policy πe that may differ from πb, the goal of OPE
is to predict the potential reward that would be obtained from the environment if πe were
implemented instead of πb. Specifically, OPE aims to quantify the target reward Rn+1, which,
together with a test context Sn+1, follows the target distribution given by

P πe(ds, dr) := PS(ds)

∫
A
PR(dr|s, a)πe(da|s). (1)

Using the dataset D, methods based on CP construct distribution-free PIs CD(Sn+1) such that

P [Rn+1 ∈ CD(Sn+1)] ≥ 1− ϵ, (2)

where ϵ is a pre-specified failure probability. These methods are often preferred over traditional
approaches that estimate E[Rn+1], as the PIs better capture the variability in target rewards
while provide finite-sample guarantees. However, these intervals are marginal valid because all
variables in (2) are treated as random, including the test point (Sn+1, Rn+1) and the dataset D.
As a result, CD(Sn+1) does not guarantee 1− ϵ coverage conditional on a specific Sn+1 (object
conditional validity) or on a fixed observational dataset D (training conditional validity).

In fact, it is inherently impossible to design non-trivial algorithms that output PIs with object
conditional validity without making modeling assumptions ([Foygel Barber et al., 2021]), al-
though training conditional validity is achievable. In this paper, we focus on achieving training
conditional validity and aim to devise an algorithm that outputs PIs that are probably approx-
imately correct, as defined by (3). To this end, we impose the following standard assumption
on the weight function w(s, a), which is defined as w(s, a) := πe

πb
(da|s):

Assumption 1. The weight function is uniformly upper bounded, i.e., sup(s,a)∈S×A w(s, a) =
b < ∞. Additionally, we set w(s, a) = 0 if πb(da|s) = πe(da|s) = 0.
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2.2 PAC Prediction Intervals

We restate the definition of PAC prediction intervals (sets) from [Park et al., 2020] as follows.
Let X ∈ X be inputs, Y ∈ Y be outcomes and P be the joint distribution of (X,Y ). A set-value
function C, which takes an input x ∈ X and outputs a subset of Y , is called approximately
correct if the probability that C(X) fails to contain Y is bounded by a given ϵ ∈ (0, 1), i.e.,

LP (C) := P(X,Y )∼P [Y /∈ C(X)] ≤ ϵ.

Given a dataset D treated as random, a set-valued function CD constructed from D is said to
be probably approximately correct if it is approximately correct with high probability. That is,
for a given δ ∈ (0, 1),

P [LP (CD) ≤ ϵ] ≥ 1− δ.

Finally, we refer to CD(X) as a (ϵ, δ)-PAC prediction interval.

To our setting. For the OPE problem formulated in the previous subsection and any pre-
specified (ϵ, δ) ∈ (0, 1)2, the desired (ϵ, δ)-PAC prediction interval for the target reward Rn+1

is the value of a set-valued function Ĉ at the test context Sn+1, which satisfies

P
[
LPπe (Ĉ) ≤ ϵ

]
≥ 1− δ, (3)

where the coverage error is defined as

LPπe (Ĉ) = P(Sn+1,Rn+1)∼Pπe

[
Rn+1 /∈ Ĉ(Sn+1)

]
,

and P πe is the target distribution defined in (1).

3 PAC Off-Policy Prediction in Contextual Bandits

The mismatch between πe and πb induces a discrepancy between the target distribution P πe

and the joint context-reward distributions of the observational data, commonly referred to
as a distribution shift. This shift violates the assumptions underlying standard CP-based
method, which assume exchangeable or i.i.d. distributions between the test and observational
data. While the “weighted CP” approach [Tibshirani et al., 2019] extend CP by relaxing
the assumption to weighted exchangeability or independence, its application in OPE requires
estimating the weights

P πe

P πb
(ds, dr) =

∫
A PR(dr|s, a)πe(da|s)∫
A PR(dr|s, a)πb(da|s)

(4)

for all (s, r) pairs in the observational and test datasets, which can be challenging as the model
of reward distribution PR is unknown.

Another natural approach to address the distribution shift is to construct a subset from the
observational dataset whose distribution resembles the target distribution. In this work, we
adopt a rejection sampling strategy [Neumann, 1951, Owen, 2013, Park et al., 2022] to generate
such sub-samples.
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Rejection sampling. Rejection sampling (RS), also known as the acceptance-rejection
method, is a fundamental technique for generating samples from a target distribution using
samples from a proposal distribution, along with auxiliary variables and a scaling constant.
Supposing the Assumption 1 holds and the behavior policy πb is also known, this procedure
can generate samples from the target distribution using D. Specifically, for each (Si, Ai, Ri)
in the dataset D, we independently sample a auxiliary uniform random variable Vi ∼ U([0, 1])
and retain (Si, Ri) if Vi ≤ 1

b
w(Si, Ai), where w is the weight function and b is the uniform

upper bound. This process constructs a set Drs with a random size Nrs ≤ n, denoted by

Drs :=

{
(Si, Ri) | (Si, Ai, Ri) ∈ D and Vi ≤

1

b
w(Si, Ai)

}
. (5)

We rigorously establish in Proposition 1 (with the proof provided in Appendix A.1) that each
sample in Drs independently follows the target distribution P πe .

Proposition 1. Let i1, i2, . . . , iNrs be elements of the set {i | (Si, Ri) ∈ Drs}, arranged in
ascending order. Define Zj = (Sij , Rij) for j ∈ [Nrs]. Under the randomness of D and
V := (V1, . . . , Vn), conditional on the event Nrs = nrs ∈ [n], we have Zj

i.i.d.∼ P πe for j ∈ [nrs],
denoted by Drs ∼ (P πe)nrs.

The RS procedure circumvents the estimation of the conditional reward distribution PR by
introducing exogenous randomness, a strategy also employed in [Zhang et al., 2023]. However,
unlike Zhang’s approach, which is restricted to discrete action spaces, the RS method extends
to continuous action spaces as well. Building on Proposition 1, we propose an algorithm,
inspired by [Vovk, 2013] and [Park et al., 2020], to construct the PAC prediction interval as
specified in (3).

Algorithm. After the RS procedure, we adhere to the structure of split CP approach [Romano
et al., 2019] for constructing PIs. At first, the dataset Drs is partitioned into two disjoint
subsets: the training set Drs

1 of size L = Nrs−M and the calibration set Drs
2 of size M = ⌊γNrs⌋,

where γ ∈ (0, 1) is a fixed proportion. Subsequently, the ϵlo (lower) and ϵup (upper) conditional
quantile functions of R given S, denoted by q̂ϵlo and q̂ϵup , are estimated using the training set
Drs

1 , with ϵup − ϵlo = 1 − ϵ. A variety of algorithms, including linear regression [Koenker
and Bassett Jr, 1978], neural networks [Taylor, 2000], and random forests [Meinshausen and
Ridgeway, 2006], can be employed for this purpose.1 For a given context s, these estimated
quantile functions enable the parameterization of PIs in the following widely-used form2:

Ĉτ (s) := [q̂ϵlo(s)− τ, q̂ϵup(s) + τ ] ∩R, (6)

where the scalar τ is used to calibrate the black-box PI [q̂ϵlo(s), q̂ϵup(s)].

After training q̂ϵlo and q̂ϵup , for each observation (Si, Ri) in the calibration set Drs
2 , we define

τi := max{q̂ϵlo(Si)−Ri, Ri − q̂ϵup(Si)} (7)
1For the sake of simplicity in the discussion, we assume no additional exogenous randomness is introduced

by the quantile prediction algorithm.
2This framework is flexible and can be adapted to other interval forms. For instance, if the target distribu-

tion Pπe is characterized by a joint probability density function f(s, r), the intervals can be parameterized in
a highest-density form: Ĉτ (s) = {r ∈ R | f̂(s, r) ≥ τ}, where τ ≥ 0 and f̂ is the estimated density function.
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which represents the minimal τ such that Ri ∈ Ĉτ (Si). Note that these τi values are referred to
as non-conformity scores within the framework of CP, where they quantify the extents to which
the observations in the calibration set “conform” to the training set. In the split CP method,
the empirical 1−ϵ quantile of these scores is typically used to construct a 1−ϵ marginally valid
PI, which has been shown to also achieve (ε, δ)-PAC validity, with ε ≥ ϵ +

√
− log δ
2M

([Vovk,

2013]). While one could employ split CP with the 1− ϵ+
√

− log δ
2M

quantile for constructing a
(ϵ, δ)-PAC valid PI, this requires that M exceeds (− log δ)/2ϵ2, a condition that may not be
guaranteed in our setting.

To address this issue, we introduce a critical constant k(M, ϵ, δ), defined as

k(M, ϵ, δ) := argmax
k∈{−1,0,...,M−1}

k s.t. FB(M,ϵ)(k) ≤ δ, (8)

where FB(M,ϵ)(·) is the cumulative distribution function of a binomial distribution B(M, ϵ)
with M trials and success probability ϵ. Rather than using a specific empirical quantile of the
non-comformity scores, we define

τ̃ := τ(M−k(M,ϵ,δ)), (9)
where τ(k) denotes the k-th smallest τi, with τ(M+1) = ∞. In Theorem 1 (with proof provided
in Appendix A.2), we demonstrate that Ĉτ̃ (Sn+1) forms a valid (ϵ, δ)-PAC prediction interval.

Theorem 1. Suppose the Assumption 1 holds and the behavior policy πb is known. For any
τ ≥ τ̃ , where τ̃ is defined in (9), it holds that

P
[
LPπe (Ĉτ ) ≤ ϵ

]
≥ 1− δ. (10)

Using the RS method (5) with a known behavior policy, the above procedure generates PIs
{Ĉτ (Sn+1)}τ≥τ̃ that are approximately 1 − ϵ correct with probabilities at least 1 − δ, where
the probabilities are taken over both the observation dataset D and the auxiliary variables V .
Clearly, typical measures, such as the cardinality or Lebesgue measure, of the interval size are
non-decreasing as τ increases. Therefore, Ĉτ̃ (Sn+1) is a better choice compared to any Ĉτ (Sn+1)
with τ > τ̃ from the perspective of informativeness. To further illustrate the efficiency of Ĉτ̃ ,
we establish in Theorem 2 two-side bounds on the probability that the coverage error of Ĉτ̃ is
exact ϵ.

Theorem 2. Assume the conditions in Theorem 1 hold. Additionally, suppose that all τi
defined in (7) have no ties almost surely. Then, for any fixed ∆ϵ ∈ (0, ϵ), there exists positive
constants C1 and C2 depending only on ϵ, δ and ∆ϵ, such that

1− δ − C1√
n
< P

[
ϵ−∆ϵ < LPπe (Ĉτ̃ ) ≤ ϵ

]
< 1− δ +

C2√
n
. (11)

Theorem 2 demonstrates that Ĉτ̃ achieves exact 1 − ϵ coverage with probability 1 − δ in an
asymptotic sense (see Appendix A.3 for the proof). Simulations were conducted to verify this
result and provide intuitive insights, as shown in Figure 1. Although equation (11) indicates
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Figure 1: Empirical probabilities of P[ϵ−∆ϵ < LPπe (Ĉτ̃ ) ≤ ϵ] for varying sample sizes n (with
∆ϵ = 0.05) and varying ∆ϵ (with n = 2000), ϵ = 0.2, δ = 0.1.

that there is always an asymptotic probability δ such that the coverage of Ĉτ̃ (Sn+1) is strictly
less than 1− ϵ, it can be similarly derived that

δ − C√
n
< P

[
ϵ < LPπe (Ĉτ̃ ) ≤ ϵ+∆ϵ

]
≤ δ,

for any fixed ∆ϵ ∈ (0, 1 − ϵ] and a constant C. This implies Ĉτ̃ (Sn+1) achieves exact 1 − ϵ
coverage over the joint distribution of (Sn+1, Rn+1) with a probability tending to 1. To further
investigate the coverage conditional on the testing context Sn+1, let qα(s) denote the α-th
quantile of the conditional distribution of Rn+1 given Sn+1 = s, where α ∈ {ϵlo, ϵup}. Then, a
desirable oracle PI would be

Coracle(Sn+1) = [qϵlo(Sn+1), qϵup(Sn+1)], (12)

which ensures exact 1 − ϵ coverage conditional on any value of Sn+1. In Theorem 3, we
show that, assuming the consistency of the quantile estimators (see Assumption 3 for details),
along with a regularity condition, the symmetric difference between Ĉτ̃ (Sn+1) and Coracle(Sn+1)
converges to zero in probability.

Theorem 3. Assume the conditions in Theorem 1 hold. Under Assumptions 3 and 4, as
n → ∞,

L
(
Ĉτ̃ (Sn+1)∆Coracle(Sn+1)

)
= oP(1).

Here, L(·) denotes the Lebesgue measure, and ∆ is the symmetric difference operator.

Thus far, we have assumed that the behavior policy πb is known, thereby granting access to the
oracle weight function w. However, in most real-world applications, πb is typically unknown
but can be estimated from observational data. We summarize our aforementioned approach
in Algorithm 1, wherein the behavior policy is replaced with an estimator π̂b.

We proceed to establish a theoretical guarantee for Algorithm 1 (see Appendix A.5 for the
proof), assuming the estimated behavior policy is sufficiently accurate. Formally, we make the
following assumption:
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Algorithm 1 PAC Off-Policy Prediction
1: Input Observational data D = {Si, Ai, Ri}ni=1; PAC parameters (ϵ, δ) ∈ (0, 1)2; a target

policy πe; a behavior policy estimation algorithm ALp; a quantile prediction algorithm
ALq; quantile levels ϵlo, ϵup with ϵup − ϵlo = 1− ϵ; and a test context Sn+1.

2: Split D into two disjoint subsets D1 ∪ D2 of sizes n1 and n2, respectively.
3: Apply ALp to D1 to estimate the behavior policy π̂b.
4: Set ŵ(s, a) = πe

π̂b
(da|s) and calculate b̂ = sup(s,a)∈S×A ŵ(s, a). Independently sample Vi ∼

U([0, 1]) for i = 1, . . . , n.
5: Extract (Si, Ri) from (Si, Ai, Ri) in D1 and D2 for which Vi ≤ 1

b̂
ŵ(Si, Ai). Denote these

subsets by Drs
1 and Drs

2 , respectively.
6: Use ALq on Drs

1 to train conditional quantile functions q̂ϵlo and q̂ϵup . Compute τi for each
data in Drs

2 according to (7).
7: Set τ̃ as the (M−k(M, ϵ, δ))-th smallest τi, where k(M, ϵ, δ) is defined in (8) and M = |Drs

2 |.
8: Output the Prediction interval: Ĉτ̃ (Sn+1) = [q̂ϵlo(Sn+1)− τ̃ , q̂ϵup(Sn+1) + τ̃ ] ∩R.

Assumption 2. There exist (ϵ′, δ′) ∈ (0, 1)2 such that the estimated weight function ŵ(s, a) =
πe

π̂b
(da|s) and b̂ = sup(s,a)∈S×A ŵ(s, a) in step 4 of Algorithm 1 satisfy

P [EPπb |ŵ(S,A)/EPπb [ŵ(S,A)]− w(S,A)| ≤ 2ϵ′] ≥ 1− δ′, (13)

and b̂ < ∞ a.s., where, with a slight abuse of notation, EPπb (·) denotes the expectation over
the joint distribution PS×πb conditional on the training set D1, and the probabilities are under
the randomness of D1.
Theorem 4. Suppose that the Assumption 2 holds. Then, the output Ĉτ̃ from Algorithm 1
satisfies

P
[
LPπe (Ĉτ̃ ) ≤ ϵ+ ϵ′

]
≥ (1− δ′)(1− δ). (14)

In addition, if all τi have no ties almost surely. Then, for any fixed ∆ϵ ∈ (0, ϵ), we also have

P
[
ϵ− ϵ′ −∆ϵ < LPπe (Ĉτ̃ ) ≤ ϵ+ ϵ′

]
≥ (1− δ′)(1− δ − C√

n
), (15)

for some positive constants C depending only on ϵ, δ and ∆ϵ.

In general, πb can be estimated using existing supervised learning algorithms. However, these
methods typically fail to provide theoretical guarantees for satisfying condition (13). In Ap-
pendix B, we introduce a Maximum Likelihood Estimation (MLE) approach for estimating
πb and demonstrate that, under the realizable and uniformly bounded assumptions, condition
(12) is satisfied when n1, the size of D1, is sufficiently large. Furthermore, we can see that, as
n1, n2 → ∞, the output Ĉτ̃ of Algorithm 1 using the MLE (24) recovers exact 1− ϵ coverage
asymptotically, as guaranteed by (15).

4 Synthetic Data Experiments

In the absence of established baselines for our problem, we compare our proposed method,
PACOPP, with the following competing approaches, both of which are distribution-free off-
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policy prediction algorithms capable of handling continuous action spaces.

Conformal Off-Policy Prediction (COPP). COPP was introduced in Taufiq et al. [2022]
and has been demonstrated to achieve marginal valid coverage. Using a behavior policy es-
timator π̂b and a reward distribution estimator P̂R, both trained on D1, COPP estimates
the weight (4) via a Monte Carlo approach: ŵ(s, r) =

∑h
i=1 P̂R(r|s, aei )/

∑h
i=1 P̂R(r|s, ai),

where ai ∼ π̂b(·|s), aei ∼ πe(·|s) and h is the number of Monte Carlo samples. COPP con-
structs PIs based on the weighted CP framework. That is, it outputs (s, r) pairs whose
non-conformity scores lie below the 1 − ϵ quantile of the weighted empirical distribution:
F̂ s,r
n2

:=
∑

D2
pŵi (s, r)δτi + pŵn2+1(s, r)δ∞, where pŵi (s, r) :=

ŵ(Si,Ri)∑
D2

ŵ(Si,Ri)+ŵ(s,r)
, and pŵn2+1(s, r) :=

ŵ(s,r)∑
D2

ŵ(Si,Ri)+ŵ(s,r)
.

Conformal Off-Policy Prediction with Rejection Sampling (COPP-RS) To better
address the question of ”why use PAC PIs instead of marginally valid PIs,” we propose a new
algorithm, COPP-RS, which, like PACOPP, employs rejection sampling to handle distribution
shift. The only difference is that COPP-RS directly uses the 1 − ϵ empirical quantile of the
non-conformity scores for construction. Specifically, denote by τ (1−ϵ) the 1− ϵ quantile of the
distribution

∑
(Si,Ri)∈Drs

2

1
M+1

δτi +
1

M+1
δ∞. COPP-RS then outputs the PI: Ĉτ (1−ϵ)(Sn+1) =

[q̂ϵlo(Sn+1) − τ (1−ϵ), q̂ϵup(Sn+1) + τ (1−ϵ)] ∩ R. It is straightforward to verify that Ĉτ (1−ϵ)(Sn+1)
also attains marginal coverage at level 1− ϵ under the conditions in Theorem 1.

Implementation details. We consider an experimental setup similar to the continuous
action space scenario described in [Taufiq et al., 2022]. The observational data D is generated
according to the following distributions:

Si
i.i.d.∼ N(0, 4); Ai|si ∼ N(si/4, 4); Ri|si, ai ∼ N(si + ai, 1) + U([−2, 2]).

A total of n = 2000 samples are generated, with 75% allocated for training and the remaining
for calibration. In the training set, neural networks (NNs) are used to estimate the behavior
policy π̂b and the quantiles q̂ϵ/2, q̂1−ϵ/2. For the COPP algorithm, in addition to these estimates,
we also estimate the reward distribution PR. Here, we assume the conditional density model
is misspecified as P̂R(r|s, a) = N(µ(s, a), σ(s, a)), where µ(s, a) and σ(s, a) are both NNs. The
number of Monte Carlo samples is h = 100. We define the target policy as

πe(·|s) = N(s/4, 1).

In each simulation, 10000 test data points are generated from the target distribution to eval-
uate the coverage probability. Finally, we set the nominal miscoverage level ϵ = 0.2 and
conduct 1000 simulations.

Results. Figure 2 presents the coverages and interval lengths of different methods. For the
PACOPP algorithm, we set δ = 0.5, 0.25, 0.1, and 0.01, denoted as PAC-0.5, PAC-0.25,
PAC-0.1, and PAC-0.01, respectively. Our findings are summarized as follows. First, since
COPP requires estimating the reward distribution PR, it fails to achieve the nominal coverage
when the conditional density model is misspecified. In contrast, methods based on rejection
sampling (COPP-RS and PACOPP) achieve valid coverage. Second, compared to COPP-RS,
PACOPP provides control over the probability of undercoverage, i.e., when the coverage falls
below 1− ϵ. As observed in our experiments, when δ = 0.5, the performance of PACOPP’s PI
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Figure 2: Empirical coverages and average lengths of prediction intervals based on COPP,
COPP-RS and PACOPP with δ = 0.5, 0.15, 0.1 and 0.01. The nominal level is 80%.

closely matches that of COPP-RS. As δ decreases, the probability of undercoverage decreases,
while the interval length increases accordingly. Compared to marginally valid methods, PA-
COPP provides an additional mechanism to balance the trade-off between the probability
of undercoverage and interval efficiency. Notably, even when δ = 0.01, PACOPP’s PI is
not excessively conservative. Therefore, in scenarios requiring strict control over the risk of
undercoverage, PACOPP is more suitable than marginally valid methods.

5 Related Work

Off-policy evaluation. OPE is one of the most fundamental topics in Reinforcement learning
([Sutton and Barto, 2018]) and has been extensively studied, resulting in a vast body of
literature. The primary challenge in OPE arises from the distribution shift in rewards, induced
by the discrepancy between the behavior and target policies. Current methods, which typically
focus on estimating the expected reward (policy value), are broadly categorized into three main
approaches: (i) importance sampling ([Precup, 2000]; [Liu et al., 2018]; [Schlegel et al., 2019]),
known for its unbiased nature but susceptible to high variance; (ii) direct methods ([Thomas
and Brunskill, 2016]; [Le et al., 2019]; [Shi et al., 2022]), which directly learn the model before
policy evaluation, potentially introducing bias but offering lower variance; and (iii) doubly
robust methods ([Dudík et al., 2011]; [Jiang and Li, 2016]; [Kallus and Uehara, 2020]), which
combine the first two approaches to achieve more robust estimators. For an extensive review,
we refer readers to [Uehara et al., 2022].

In addition to point estimates for the value of the target policy, less attention has been paid
to interval estimates of the policy value for uncertainty quantification. To provide confidence
regarding the accuracy of these estimates, [Thomas et al., 2015] proposed high confidence
off-policy evaluation, which derives a lower confidence bound on the target policy’s value
by applying concentration inequalities to importance sampling estimates. Other approaches,
such as bootstrap ([Hanna et al., 2017]), kernel Bellman loss ([Feng et al., 2020]) and empirical
likelihood methods ([Dai et al., 2020]), have also been employed to derive confidence intervals.
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Nevertheless, all of these methods focus on the average effect of the target policy and do not
account for the variability in the reward itself.

Conformal prediction. CP has gained popularity in OPE due to its ability to construct
distribution-free PIs with finite-sample guarantees and account for individual effects. The ap-
plication of CP to OPE originated from [Tibshirani et al., 2019], who developed the “weighted
conformal prediction” method that extends standard CP to covariate shift settings, in which
the covariate distributions of test and training data differ, while the conditional distributions
remain the same. This method offers an valuable approach to addressing distribution shift
and was subsequently applied to OPE in contextual bandits [Taufiq et al., 2022] (COPP) and
Markov decision processes [Foffano et al., 2023].

As discussed in Section 4, these direct application of weighted CP in OPE requires estimating
the conditional probability densities of rewards, and may underperform if the model is mis-
specified. Additionally, COPP directly estimates the conditional quantiles from observational
data. As a result, the algorithm essentially calibrates intervals constructed from the estimated
conditional quantiles under the behavior policy. Even if the quantile estimation algorithm is
consistent, the resulting PIs will not converge to the oracle intervals defined in (12). In con-
trast, PACOPP ensures this convergence property (Theorem 3). Furthermore, since the weight
(4) depends on both s and r, COPP must use a grid of potential values for Rn+1 corresponding
to each Sn+1 when generating the final PI, introducing additional computational overhead. By
contrast, PACOPP explicitly outputs PIs without this extra burden.

In [Zhang et al., 2023], the authors avoid model estimation by selecting subsamples from ob-
servational data where the action matches the pseudo action generated by a designed auxiliary
policy. These subsamples preserve the same conditional distribution as the target population,
enabling the use of weighted CP for PI construction. However, their method is inherently
limited, as it is only applicable when the action space is discrete. In contrast, our approach,
PACOPP, is applicable to continuous action spaces, such as the doses of medication admin-
istered in precision medicine.

As discussed in Section 3, although split (inductive) CP has been shown in [Vovk, 2013] to
automatically achieve training conditional validity in a PAC type, it is not applicable in our
context due to its sample size requirement. In [Park et al., 2020], the authors proposed an
adjusted version of split CP that constructs confidence sets for deep neural networks with
finite-sample PAC validity. This method was further extended to handle covariate shift set-
tings in [Park et al., 2022], where it was modified using Clopper-Pearson upper bounds to
handle cases when the importance weights (the likelihood ratio of covariate distributions) are
unknown, but confidence intervals for these weights are available. The distinction between our
approach and theirs is that PACOPP explicitly provides the calibration parameter as specified
in (9), while their approach requires solving an optimization problem. Additionally, we derive
theoretical probability bounds for our approach achieving exact nominal coverage (Theorem
2) and establish its asymptotic efficiency. In contrast, their method lacks these theoretical
foundations.
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6 Conclusion

In this paper, we introduce PACOPP, a novel algorithm for constructing predictive inter-
vals on off-policy rewards in contextual bandit settings. PACOPP enjoys distribution-free
finite-sample guarantees and adaptivity to individuals by adapting conformal prediction to
the OPE task. Unlike previous approaches, PACOPP is the first to achieve probably ap-
proximately correct validity, with the ability to control undercoverage probability through a
separate confidence level.

Currently, we address distribution shift through rejection sampling, which, while feasible,
reduces the available sample size, resulting in lower data utilization and ultimately leading to
more conservative PIs. Improving the data utilization in this context presents a challenge that
requires further exploration. Additionally, extending PACOPP to sequential decision-making
scenarios would be an interesting direction for further research.
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A Proofs

A.1 Proof of Proposition 1

Proof. Clearly, for each i ∈ [n], the probability that Vi ≤ 1
b
w(Si, Ai) equals to∫

S

∫
A

1

b

πe

πb

(da|s)πb(da|s)PS(ds) =
1

b
.

Therefore, the size Nrs follows a binomial distribution B(n, 1
b
) because of the independence.

For any {(sj, rj)}Nrs
j=1 ∈ (S ×R)Nrs , conditional on the event that Nrs = nrs ∈ [n],

P(Zj ∈ (dsj, drj), ∀j ∈ [Nrs] | Nrs = nrs)

=
1

P(Nrs = nrs)
P
(
∃ σ1 < · · · < σnrs ∈ [n] s.t. (Sσj

, Rσj
) ∈ (dsj, drj), Vσj

≤ 1

b
w(Sσj

, Rσj
), ∀j ∈ [nrs]

and Vi >
1

b
w(Si, Ai), ∀i ∈ [n] \ {σ1, . . . , σnrs}

)
=

1(
n
nrs

)
b−nrs(1− 1

b
)n−nrs

∑
σ1<···<σnrs

b−nrs(1− 1

b
)n−nrs

∏
j∈[nrs]

P
(
(Sσj

, Rσj
) ∈ (dsj, drj) | Vσj

≤ 1

b
w(Sσj

, Rσj
)

)
,

where the summation is taken over all possible choices of σ1, . . . , σnrs . Moreover, for each
i ∈ [n] and any (s, r) ∈ S ×R,

P
(
(Si, Ri) ∈ (ds, dr) | Vi ≤

1

b
w(Si, Ri)

)
=b

∫
A

1

b

πe

πb

(da|s)PS(ds)πb(da|s)PR(dr|s, a)

=

∫
A
PS(ds)πe(da|s)PR(dr|s, a)

=P πe(ds, dr).

Finally, we have

P(Zj ∈ (dsj, drj), ∀j ∈ [Nrs] | Nrs = nrs) =
∏

j∈[nrs]

P πe(dsj, drj).

The proof is complete.

A.2 Proof of Theorem 1

Proof. We first consider the probability of {LPπe (Ĉτ ) ≤ ϵ} conditional on the event that the
rejection sampling procedure generates Nrs = nrs samples. We omit the trivial cases of nrs = 0
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or 1, where Ĉτ (s) can be set to R. For nontrivial cases, Proposition 1 enables us to interpret
the conditional probability as

P[LPπe (Ĉτ ) ≤ ϵ | Nrs = nrs] = PDrs∼(Pπe )nrs [LPπe (Ĉτ ) ≤ ϵ].

Now, for any partition of Drs and any realization of the set Drs
1 , the parameterized in-

terval Ĉτ (s) for a fixed s is nonrandom after training q̂ϵlo and q̂ϵup , and depends only on
τ . It can be easily verified from the definition (6) that the coverage error LPπe (Ĉτ ) =
P(Sn+1,Rn+1)∼Pπe (Rn+1 /∈ Ĉτ (Sn+1)), as a function of τ , is monotonically decreasing and right-
continuous. Next, we define

τ ∗ := inf{τ ∈ R : LPπe (Ĉτ ) ≤ ϵ}, (16)

and let {αj}∞i=1 be a positive sequence such that αj ↓ 0. Denote by m = ⌊γnrs⌋ the size of Drs
2 .

For τ̃ = τ(m−k(m,ϵ,δ)) with k(m, ϵ, δ) ̸= −1, the right-continuity implies that the event

{LPπe (Ĉτ̃ ) > ϵ} ⇐⇒ {τ̃ < τ ∗} ⇐⇒
∞⋃
j=1

{τ̃ < τ ∗ − αj}.

Since τi represents the minimal τ such that Ri ∈ Ĉτ (Si) in Drs
2 ,

{τ̃ < τ ∗ − αj} ⇐⇒ {∃ at most k(m, ϵ, δ) indeices i s.t. τi ≥ τ ∗ − αj}
=⇒ {∃ at most k(m, ϵ, δ) indeices i s.t. τi > τ ∗ − αj}
⇐⇒ {∃ at most k(m, ϵ, δ) indeices i s.t. Ri /∈ Ĉτ∗−αj

(Si)}.

As Drs
2 ∼ (P πe)m, each sample in Drs

2 independently satisfies Ri /∈ Ĉτ∗−αj
(Si) with probability

LPπe (Ĉτ∗−αj
), and we have that LPπe (Ĉτ∗−αj

) > ϵ by the definition of τ ∗. Then, it holds

PDrs
2 ∼(Pπe )m(τ̃ < τ ∗ − αj) ≤ FB(m,LPπe (Ĉτ∗−αj

))(k(m, ϵ, δ)) ≤ FB(m,ϵ)(k(m, ϵ, δ)) ≤ δ,

where the second inequality follows from the fact that, for a fixed k, the c.d.f. FB(m,ε)(k) :=∑k
i=0

(
m
i

)
εi(1 − ε)m−i is decreasing w.r.t. ε ∈ [0, 1], and the last inequality follows from the

definition of k(m, ϵ, δ). Together with the continuity of measures, we have

PDrs
2 ∼(Pπe )m [LPπe (Ĉτ̃ ) > ϵ] = lim

j→∞
PDrs

2 ∼(Pπe )m(τ̃ < τ ∗ − αj) ≤ δ, (17)

which also holds if k(m, ϵ, δ) = −1, in which case LPπe (Ĉτ̃ ) = 0.

Finally, since (17) is true for any partition and realization of Drs
1 , we can marginalize to obtain

PDrs∼(Pπe )nrs [LPπe (Ĉτ̃ ) ≤ ϵ] ≥ 1− δ.

Multiplying by the probability of Nrs = nrs and summing over nrs, it then holds for any τ ≥ τ̃
that

P[LPπe (Ĉτ ) ≤ ϵ] ≥ 1− δ.

The proof is complete.
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A.3 Proof of Theorem 2

To facilitate the proof of Theorem 2, we first establish an upper bound on the probability
that Ĉτ̃ is approximately correct, as detailed in Lemma 2. The proof of this lemma relies on
the well-known Berry-Esseen inequality, presented in Lemma 1 (Theorem 3.4.17 in [Durrett,
2019]). Throughout this part, the letters C1, C2 and C denote positive constants that do not
depend on m, l or n. Their values may vary at different places.

Lemma 1 (Berry-Esseen inequality). Let X1, X2, . . . be i.i.d. with EXi = 0, EX2
i = σ2 and

E|Xi|3 = ρ < ∞. If Fn(x) is the distribution function of
∑n

i=1 Xi/σ
√
n and Φ(x) is the

standard normal distribution function, then it holds for all n that

sup
x∈R

|Fn(x)− Φ(x)| ≤ 3ρ

σ3
√
n
.

Lemma 2. Assume the conditions in Theorem 2 hold. For τ̃ defined in (9), we have

P
[
LPπe (Ĉτ̃ ) ≤ ϵ

]
< 1− δ +

C√
n
. (18)

Proof of Lemma 2
Similar to the proof of Theorem 1, we first show that

P
[
LPπe (Ĉτ̃ ) ≤ ϵ|Nrs = nrs,Drs

1

]
= PDrs

2 ∼(Pπe )m

[
LPπe (Ĉτ̃ ) ≤ ϵ

]
< 1− δ +

C√
m
, (19)

where τ̃ = τ(m−k(m,ϵ,δ)) and m = ⌊γnrs⌋. Suppose that k(m, ϵ, δ) ̸= −1, which is always true if
m ≥ m0 := log1−ϵ δ. Then, for τ ∗ defined in (16),

{LPπe (Ĉτ̃ ) ≤ ϵ} ⇐⇒ {τ̃ ≥ τ ∗} ⇐⇒ {∃ at least k(m, ϵ, δ) + 1 indeices i s.t. τi ≥ τ ∗}
=⇒ {∃ at least k(m, ϵ, δ) indeices i s.t. τi > τ ∗}
⇐⇒ {∃ at most k(m, ϵ, δ) indeices i s.t. Ri /∈ Ĉτ∗−αj

(Si)}.

since there are almost surely no ties. Together with the fact that LPπe (Ĉτ∗) ≤ ϵ, we have

PDrs
2 ∼(Pπe )m [LPπe (Ĉτ̃ ) ≤ ϵ]

≤1− FB(m,LPπe (Ĉτ∗ ))
(k(m, ϵ, δ)− 1)

≤1− FB(m,ϵ)(k(m, ϵ, δ)− 1)

=1− FB(m,ϵ)(k(m, ϵ, δ) + 1) + FB(m,ϵ)(k(m, ϵ, δ) + 1)− FB(m,ϵ)(k(m, ϵ, δ)− 1)

<1− δ + FB(m,ϵ)(k(m, ϵ, δ) + 1)− FB(m,ϵ)(k(m, ϵ, δ)− 1),

where the last inequality follows from the definition of k(m, ϵ, δ). To bound the last two terms,
it follows from Lemma 1 that

FB(m,ϵ)(k(m, ϵ, δ) + 1)− FB(m,ϵ)(k(m, ϵ, δ)− 1)

≤2 sup
x∈R

∣∣FB(m,ϵ)(σϵ

√
mx+mϵ)− Φ(x)

∣∣+ Φ(
k(m, ϵ, δ) + 1−mϵ

σϵ

√
m

)− Φ(
k(m, ϵ, δ)− 1−mϵ

σϵ

√
m

)

≤6(ϵ(1− ϵ)3 + (1− ϵ)ϵ3)

σ3
ϵ

1√
m

+

√
2

π

1

σϵ

√
m
,
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where σϵ =
√
ϵ(1− ϵ). Therefore, (19) holds for m ≥ m0. After marginalizing, it holds for

nrs ≥ ⌊m0/γ⌋+ 1 that

P
[
LPπe (Ĉτ̃ ) ≤ ϵ|Nrs = nrs

]
< 1− δ +

C1√
nrs

.

Finally, for n ≥ ⌊m0/γ⌋+ 1,

P
[
LPπe (Ĉτ̃ ) ≤ ϵ

]
≤

⌊m0/γ⌋∑
nrs=0

P(Nrs = nrs) +
n∑

nrs=⌊m0/γ⌋+1

P(Nrs = nrs)P
[
LPπe (Ĉτ̃ ) ≤ ϵ|Nrs = nrs

]
< FB(n,1/b)(⌊m0/γ⌋) +

n∑
nrs=⌊m0/γ⌋+1

P(Nrs = nrs)(1− δ +
C1√
nrs

)

≤ 1− δ +
C2√
n
+ C1

n∑
nrs=⌊m0/γ⌋+1

1
√
nrs

(
n

nrs

)
1

bnrs
(1− 1

b
)n−nrs

= 1− δ +
C2√
n
+ C1b

n∑
nrs=⌊m0/γ⌋+1

1
√
nrs

nrs + 1

n+ 1

(
n+ 1

nrs + 1

)
1

bnrs+1
(1− 1

b
)n−nrs

≤ 1− δ +
C2√
n
+

C1√
n
.

As (18) always holds for suitable C if n ≤ ⌊m0/γ⌋, we complete the proof.

Proof. Consider the probability

P
[
ϵ−∆ϵ < LPπe (Ĉτ̃ ) ≤ ϵ|Nrs = nrs,Drs

1

]
= PDrs

2 ∼(Pπe )m

[
ϵ−∆ϵ < LPπe (Ĉτ̃ ) ≤ ϵ

]
with m = ⌊γnrs⌋. Define δ∆ := FB(m,ϵ−∆ϵ)(k(m, ϵ, δ)), then we have k(m, ϵ−∆ϵ, δ∆) = k(m, ϵ, δ)
by the definition (8). Hence, for τ̃ = τ(m−k(m,ϵ,δ)), (19) yields

PDrs
2 ∼(Pπe )m

[
LPπe (Ĉτ̃ ) ≤ ϵ−∆ϵ

]
< 1− δ∆ +

C√
m
.

Together with (17), it holds that

PDrs
2 ∼(Pπe )m

[
ϵ−∆ϵ < LPπe (Ĉτ̃ ) ≤ ϵ

]
=1− PDrs

2 ∼(Pπe )m

[
LPπe (Ĉτ̃ ) ≤ ϵ−∆ϵ

]
− PDrs

2 ∼(Pπe )m

[
LPπe (Ĉτ̃ ) > ϵ

]
>δ∆ − δ − C√

m
.

We next show that δ∆ = FB(m,ϵ−∆ϵ)(k(m, ϵ, δ)) approaches 1 at an exponential rate. By treating
B(m, ϵ) as the sum of m independent Bernoulli random variables with success probability ϵ,
it follows from Hoeffding’s inequality that

FB(m,ϵ)(mϵ−mt) ≤ exp{−2mt2}.
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Choosing t =
√

log δ
−2m

leads to a lower bound for k(m, ϵ, δ):

k(m, ϵ, δ) ≥ (ϵ−
√

log δ

−2m
)m. (20)

Then, for sufficiently large m satisfying
√

log(1/δ)
2m

< ∆ϵ, we can obtain again from Hoeffding’s
inequality that

δ∆ ≥ 1− exp(−2m[∆ϵ −
√

log(1/δ)

2m
]2).

Therefore, after marginalizing,

P
[
ϵ−∆ϵ < LPπe (Ĉτ̃ ) ≤ ϵ|Nrs = nrs

]
> 1− δ − C

√
nrs

.

Finally, we obtain the lower bound of (11) in a manner similar to the proof of Lemma 2. The
upper bound follows directly from Lemma 2. The proof is complete.

A.4 Proof of Theorem 3

This proof is based on the proof of Theorem 1 in [Sesia and Candès, 2020]. Similar to Assump-
tion A4 in [Lei et al., 2018], the following consistency assumption is weaker than requiring
L2-convergences and can be achieved by many consistent estimators.

Assumption 3. Denote by l the size of the training set Drs
1 used to fit the conditional quantile

functions q̂ϵlo and q̂ϵup. For sufficiently large l, the following conditions hold:

P
[
ES

[(
q̂ϵlo(Sn+1)− qϵlo(Sn+1)

)2] ≤ ηl/2
]
≥ 1− ρl/2,

P
[
ES

[(
q̂ϵup(Sn+1)− qϵup(Sn+1)

)2] ≤ ηl/2
]
≥ 1− ρl/2,

for some sequences ηl = o(1) and ρl = o(1), as l → ∞. Here, ES(·) denotes the expectation
w.r.t Sn+1, and the probabilities are taken over Drs

1 .

In addition, a regularity assumption is needed.

Assumption 4. The probability density of the random variable

T := max{qϵlo(S)−R,R− qϵup(S)},

where (S,R) ∼ P πe, is bounded away from zero in a neighborhood of zero.

Proof. It suffices to show that, as |Drs| = nrs → ∞,

(i) |q̂ϵlo(Sn+1)− qϵlo(Sn+1)| = oP(1) and |q̂ϵup(Sn+1)− qϵup(Sn+1)| = oP(1);
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(ii) τ̃ = oP(1).

Here and in the subsequent part of the proof, the probabilities are taken over Drs and Sn+1; the
sizes of the training set Drs

1 and the calibration set Drs
2 are denoted by l and m, respectively.

(i) Define the random set

Bl,lo = {s : |q̂ϵlo(s)− qϵlo(s)| ≥ η
1/3
l }, Bl,up = {s : |q̂ϵup(s)− qϵup(s)| ≥ η

1/3
l },

and Bl = Bl,lo ∪Bl,up. We have by Markov’s inequality that

P(Sn+1 ∈ Bl | Drs
1 )

≤P(Sn+1 ∈ Bl,lo | Drs
1 ) + P(Sn+1 ∈ Bl,lo | Drs

1 )

=P(|q̂ϵlo(Sn+1)− qϵlo(Sn+1)| ≥ η
1/3
l | Drs

1 ) + P(|q̂ϵup(Sn+1)− qϵup(Sn+1)| ≥ η
1/3
l | Drs

1 )

≤η
−2/3
l ES

[(
q̂ϵlo(Sn+1)− qϵlo(Sn+1)

)2]
+ η

−2/3
l ES

[(
q̂ϵup(Sn+1)− qϵup(Sn+1)

)2]
.

≤η
1/3
l

with probability at least 1−ρl, by Assumption 3. This implies |q̂ϵlo(Sn+1)−qϵlo(Sn+1)| = oP(1)
and |q̂ϵup(Sn+1)− qϵup(Sn+1)| = oP(1).

(ii) Consider the following partition of the calibration set Drs
2 :

Drs
2,a = {(Si, Ri) ∈ Drs

2 : Si ∈ Bc
l }, Drs

2,b = {(Si, Ri) ∈ Drs
2 : Si ∈ Bl}.

Since Bl only depends on Drs
1 , the size of Drs

2,b conditional on Drs
1 can be bounded using

Hoeffding’s inequality as

P(|Drs
2,b| ≥ mη

1/3
l + t) ≤ P(

∑
(Si,Ri)∈Drs

2

1({Si ∈ Bl}) ≥ mP(Si ∈ Bl) + t) ≤ exp

(
−2t2

m

)
.

Choosing t = C
√
m logm leads to |Drs

2,b| = oP(m) = oP(n
rs).

Now, for each (Si, Ri) ∈ Drs
2 , define Ti = max{qϵlo(Si) − Ri, Ri − qϵup(Si)}. By the definition

(7) of τi, it can be easily derived that

|Ti − τi| ≤ η
1/3
l , for i s.t. (Si, Ri) ∈ Drs

2,a. (21)

Recall that τ̃ = τ(m−k(m,ϵ,δ)), we also define the k-th smallest Ti as T(k). In addition, when
restricted to the dataset Drs

2,a, define τa(k) and T a
(k) as the k-th smallest τi and Ti for i s.t.

(Si, Ri) ∈ Drs
2,a. As demonstrated in (20), a similar bound for k(m, ϵ, δ) can be established as

(ϵ−
√

log δ

−2m
)m ≤ k(m, ϵ, δ) ≤ m(ϵ+

√
log(1− δ)

−2m
). (22)

For nrs large enough, without loss of generality, we assume |Drs
2,b| < m − k(m, ϵ, δ) because

|Drs
2,b| = oP(m). Then, it is straightforward to verify that

τa(m−k(m,ϵ,δ)−|Drs
2,b|)

≤ τ(m−k(m,ϵ,δ)) ≤ τa(m−k(m,ϵ,δ)).
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Together with (21), we have

T a
(m−k(m,ϵ,δ)−|Drs

2,b|)
− η

1/3
l ≤ τ̃ ≤ T a

(m−k(m,ϵ,δ)) + η
1/3
l ,

which in turn yields

T(m−k(m,ϵ,δ)−|Drs
2,b|) − η

1/3
l ≤ τ̃ ≤ T(m−k(m,ϵ,δ)+|Drs

2,b|) + η
1/3
l .

Therefore, it suffices to prove that T(m−k(m,ϵ,δ)−|Drs
2,b|) and T(m−k(m,ϵ,δ)+|Drs

2,b|) is oP(1). In fact, by
Assumption 4, for any sufficiently small α > 0, there exists ϵα > 0 s.t. P(Ti > α) = ϵα < ϵ for
each Ti. Then, by Hoeffding’s inequality and (22), for sufficiently large m,

P(T(m−k(m,ϵ,δ)+|Drs
2,b|) ≤ α) = FB(m,ϵα)(k(m, ϵ, δ)− |Drs

2,b|)

≥ 1− exp

(
−2m[

k(m, ϵ, δ)− |Drs
2,b|

m
− ϵα]

2

)
.

One can prove in a similar manner that P(T(m−k(m,ϵ,δ)+|Drs
2,b|) ≥ −α) → 1 as m → ∞. Thus,

we obtain T(m−k(m,ϵ,δ)+|Drs
2,b|) = oP(1), and T(m−k(m,ϵ,δ)−|Drs

2,b|) = oP(1) analogously. Finally, this
proof is complete.

A.5 Proof of Theorem 4

Proof. For a realization of D1, the algorithm ALp outputs a behavior policy estimator π̂b.3
Then, it can be shown analogous to Proposition 1 that each sample in Drs

2 independently
follows the joint distribution

P̂ πe(ds, dr) :=

∫
A

ŵ(s, a)

Epπb [ŵ(S,A)]
PS(ds)πb(da|s)PR(dr|s, a).

Therefore, π̂b can be regarded as the true behavior policy for test data following P̂ πe . By using
the same approach as in the proof of Theorem 1, we can obtain

P[LP̂πe (Ĉτ̃ ) ≤ ϵ | D1] ≥ 1− δ. (23)

Let dTV(P̂
πe , P πe) be the total variation distance between P̂ πe and P πe . We have

dTV(P̂
πe , P πe) =

1

2

∫
S

∫
R

∣∣∣P̂ πe(ds, dr)− P πe(ds, dr)
∣∣∣

≤ 1

2

∫
S

∫
A

∫
R
|ŵ(s, a)/Epπb [ŵ(S,A)]− w(s, a)|PR(dr|s, a)πb(da|s)PS(ds)

=
1

2
EPπb |ŵ(S,A)/Epπb [ŵ(S,A)]− w(S,A)| .

3For simplicity, we also assume that ALp introduces no exogenous randomness.
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Denote by Ê the event
{

1
2
EPπb |ŵ(S,A)/Epπb [ŵ(S,A)]− w(S,A)| ≤ ϵ′

}
. By the fact that∣∣∣LP̂πe (Ĉτ̃ )− LPπe (Ĉτ̃ )

∣∣∣ ≤ dTV(P̂
πe , P πe), we then have by (13) and (23) that

P
[
LPπe (Ĉτ̃ ) ≤ ϵ+ ϵ′

]
≥ P

[
LPπe (Ĉτ̃ ) ≤ ϵ+ ϵ′, Ê

]
≥ P

[
LP̂πe (Ĉτ̃ ) ≤ ϵ, Ê

]
≥ (1− δ′)(1− δ).

Thus, (14) is obtained. To prove (15), it follows similarly from Theorem 2 that

P[ϵ−∆ϵ < LP̂πe (Ĉτ̃ ) ≤ ϵ | D1] ≥ 1− δ − C√
n
,

which, together with (13), yields

P
[
ϵ− ϵ′ −∆ϵ < LPπe (Ĉτ̃ ) ≤ ϵ+ ϵ′

]
≥ P

[
ϵ− ϵ′ −∆ϵ < LPπe (Ĉτ̃ ) ≤ ϵ+ ϵ′, E

]
≥ P

[
ϵ−∆ϵ < LP̂πe (Ĉτ̃ ) ≤ ϵ, E

]
≥ (1− δ′)(1− δ − C√

n
).

The proof is complete.

B An MLE approach for estimating πb

In this section, we establish the validity of Assumption 2 under an MLE approach and conduct
a detailed analysis of the associated sample complexity. Specifically, we consider a policy class
Π = {π : S → ∆(A)} that satisfies the following assumptions:

Assumption 5.

• Π is rich enough such that πb ∈ Π;

• For all π ∈ Π, sup(s,a)∈S×A
πe

π
(da|s) ≤ B < ∞.

We assume Π is discrete with size |Π| for simplicity. Given the training set D1 with size n1,
our objective is to identify a policy within Π that maximizes the likelihood of fitting D1. This
corresponds to solving the following MLE problem:

π̂b = argmax
π∈Π

∑
(Si,Ai,Ri)∈D1

log pπ(Ai, Si), (24)

where pπ(a, s) is the probability density or mass of π selecting action a at s. Leveraging an
existing theoretical result for MLE, we derive the following sample complexity for the estimator
(24) to satisfy condition (13).
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Theorem 5. Suppose the Assumption 5 holds. For the estimated weighted function ŵ(s, a) =
πe

π̂b
(da|s) with π̂b given in (24), it holds that, with probability at least 1− δ′,

EPπb |ŵ(S,A)/EPπb [ŵ(S,A)]− w(S,A)| ≤ 2ϵ′,

provided n1 ≥ 8B2 log(|Π|/δ′)
ϵ′2

, for any (ϵ′, δ′) ∈ (0, 1)2.

Proof. By Jensen’s inequality and the fact that ∥p− q∥L1 = 2dTV(p, q) for two distributions p
and q, we have

EPπb |ŵ(S,A)− w(S,A)| =
∫
S

∫
A

∣∣∣∣πe

π̂b

(da|s)− πe

πb

(da|s)
∣∣∣∣ πb(da|s)PS(ds)

=

∫
S

∫
A

πe

π̂b

(da|s) |πb(da|s)− π̂b(da|s)|PS(ds)

≤ B

∫
S

∫
A
|πb(da|s)− π̂b(da|s)|PS(ds)

≤ B

(∫
S

∣∣∣∣∫
A
|πb(a|s)− π̂b(a|s)| da

∣∣∣∣2 PS(ds)

)1/2

= 2B

(∫
S
[dTV(πb(·|s), π̂b(·|s))]2PS(ds)

)1/2

.

Together with Theorem 15.2 in [Agarwal et al., 2019], we obtain that, with probability at least
1− δ′,

EPπb |ŵ(S,A)− w(S,A)| ≤ 2B

√
2 log(|Π|/δ′)

n1

≤ ϵ′,

which implies |EPπb [ŵ(S,A)]− 1| ≤ ϵ′. Therefore,

EPπb |ŵ(S,A)/EPπb [ŵ(S,A)]− w(S,A)|

≤EPπb |ŵ(S,A)− w(S,A)|+
∣∣∣∣1− 1

EPπb [ŵ(S,A)]

∣∣∣∣EPπb [ŵ(S,A)]

≤ϵ′ + |EPπb [ŵ(S,A)]− 1|
≤2ϵ′.

we complete the proof.
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