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Abstract: In this paper, we theoretically analyze the sampling behaviours for a sequence of two-armed bandits

under conventional UCB algorithms. Assume the sequence of two-armed bandits has horizon-dependent gaps

∆n. It is proved under certain conditions that the sequence of selected numbers of the optimal arm N∗(n)

has the property that N∗(n)/n converges almost surely to 1, meanwhile the the sequence of selected numbers

of the sub-optimal arm N∗(n) has the property that N∗(n)∆2
n/ logn converges in probability to a constant

dependent on the algorithm. As a result, we get the asymptotical limit of regrets and regret processes as well.

To assess theoretical performances, several comparable experiments are conducted and discussed.
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1 Introduction

In sequential decision making problems, there exist quintessential exploration vs. exploitation trade-

offs. This is a balance between staying with the option that gave highest payoffs in the past and

exploring new options that might give higher payoffs in the future. Multi-armed bandit problems are

the most basic examples derived from such dilemmas. This concept originated from a clinical trial

study in 1933 [18] which introduced one of the earliest heuristic algorithms Thompson Sampling for

multi-armed bandits [1]. In the classical stochastic k-armed bandit problem, a learner pulls one of k

arms sequentially at each time t ∈ {1, 2, . . .}, and the environment, according to the corresponding

arm-dependent distribution of that arm, reveals a reward Xt. The most common objective of the
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learner is to choose actions that lead to the largest possible cumulative reward over all n rounds,

which is
∑n
t=1Xt. Initially ignorant of the environment, the learner must navigate the balance

between exploring new arms and exploiting the best arm played by far. Today, the MAB manifests

itself in various forms and finds applications across a wide spectrum, including advertising placement,

dynamic pricing, online auctions, e-commerce and matching markets among others [6].

In its most basic formulation, i.e. the stochastic stationary multi-armed bandit model, a Multi-

armed bandit problem with K-arms is defined by a sequence of distributions Pi, 1 ≤ i ≤ K, where

each i is the index of an action (i.e., the arm of a bandit) and the distributions are unknown (in

general, we call P := (P1, P2, · · · , Pk)) an environment). Successive plays of machine i yield rewards

Xi,1, Xi,2, · · · , which are independent and identically distributed according to Pi with unknown

expectation µi. Independence also holds for rewards across machines; i.e., Xi,m and Xj,m are

independent (and usually not identically distributed) for each 1 ≤ i < j ≤ K and each m,n ≥ 1.

During the interaction at round t, the learner selects an action (arm) At ∈ A according to a policy

or an algorithm π, and then the environment responds to this action by providing the reward

Xt = XAt,NAt (t)
, where Ni(t) is the number of times arm i was chosen after the end of round t, i.e.,

Ni(t) :=
∑t
s=1 1 {As = i}. For convenience, we denote the MAB problems as (K,P). If it has an

end round T , i.e. after the T -th round, the interaction ends, we call T the horizon and denote the

MAB problems as (K,P, H). The arm with the highest reward mean is referred to as the optimal

arm and the highest reward mean is denoted by µ∗. The remaining arms, collectively referred to as

suboptimal arms.

The difference between the mean reward of the optimal arm and that of any suboptimal arm j

is termed the sub-optimality gap, or simply the gap, of arm j, denoted as ∆j := µ∗ − µj . Natural

measures of the performance of an algorithm π after t rounds are the quantities below:

R̂π(t) :=

K∑
k=1

∆kNk(t), Rπ(t) =

K∑
k=1

∆kE(Nk(t)),

where the expectation is with respect to the randomness in the environment and policy and for

notational simplicity their dependence on the unknown distributions is usually suppressed. The

functions R̂π(n), Rπ(n) in the literature have been called pseudo-regret and regret, respectively.

There are much literature in the field of Multi-armed bandits. Most of them are about designing

policies for different kinds of environment classes and estimating their optimality via finite time

bounds and/or asymptotes of the regrets. The upper confidence bound (UCB) algorithm is the

most commonly used algorithm in MAB problems and is increasingly used in reinforcement learning

(see, for example, [4], [10] and the reference therein), which is based on the principle of optimism in
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the face of uncertainty and states that one should act as if the environment is as nice as plausibly

possible. Lai and Robbins [15] first used the confidence bounds and the idea of optimism, analysed the

asymptotes for various parametric bandit problems, showed that the order of the smallest achievable

regret is logarithmic in the horizon with constants related to the gaps. The first version of UCB is by

Lai [14]. Auer et al [3] proposed a simple but widely used version of UCB under the name of UCB1

and proved that the optimal logarithmic regret is also achievable uniformly over any finite horizon for

all reward distributions with bounded support. Moreover, the UCB-V algorithm of Audibert et al[2]

takes into account the variance of the distributions and later, Garivier and Cappé [11] and Maillard

et al. [17] independently proposed the KL-UCB algorithm which is shown to attain the optimal rate

log T for any finite horizon. In addition, it is also proved that no algorithm can achieve an expected

regret smaller than c
√
T for any given horizon T (the constant hides dependence on the number

of arms) uniformly over all problem instances (also called minimax regret). Theoretically, focusing

purely on expected regret minimization is not enough to characterize the fluctuation of algorithms

and evaluate their behaviours. Audibert et al [2] provides high-probability bounds on pseudo-regrets

under a parametric family of UCB1 algorithms. Fan and Glynn [9] developed approximations to the

regret distribution and found that Thompson sampling and UCB satisfy the same Strong laws of

large number (SLLN) and Central limit theorem (CLT), with the asymptotes of both the SLLN and

the (mean) centering sequence in the CLT matching the asymptotes of expected regret. Both the

mean and variance in the CLT grow at log(T ) rates. For more knowledge and literature on MAB

please refer to the comprehensive book by Lattimore and Szepesvari [16].

The celebrated result of Lai and Robbins [15] shows that the regret minimization in the stochastic

MAB problem is governed by the reciprocal of the minimal gap ∆ and therefore, in the most of

literature discussing the instance-dependent bounds of regrets, the gaps are assumed as positive

constants independent of the horizon. However, algorithms become more complexity when the gap

varies as horizon t, especially, the gap goes to zero as the horizon go to infinity. For example, when

we discuss the uniformly upper bound of UCB regrets, a borderline is ∆ �
√

log t
t and when we

discuss the minimax bound of regrets, in the worst case, the gap are set as ∆ � 1/
√
t (see Lattimore

and Szepesvari [16, Chapter 7 and Chapter 15]). Note that when it is emphasized that the gaps are

functions of horizon, one is interested in sequences of MAB problems in some extend.

Naturally, from a theoretical perspective, one may wonder how the approximating-to-zero gaps

effect the finite-time behaviours of algorithms, which differs from the asymptotical analyses in existing

literature where the gap is fixed when horizon goes increasingly and are more complicated because we

need explore at the same time the finite-time behaviours and the asymptotical rules as the horizon

goes increasingly. These questions also come from some interesting statistical inferences and tests.
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For example, for an unknown distribution Q, its statistical inference Q̃ can be obtained from sampling

by a method and hence depends on the sample size n and the method. Considering an interesting

thought experiment, if we test or compare the two distributions Q and Q̃ in a sequential adaptive

test, what will happen or what can we get from the test’s performance? Intuitively, answers will

depend on the difference between Q and Q̃, which generally is related to the sample size n, as well as

the duration H of sequential testing.

However, in existing literature there is rarely convincing quantitative and theoretical research on

this kind of problems. A unique paper is related to Kalvit and Zeevi [12] where they investigated the

arm-sampling behaviors under the assumption that the gaps vary on the horizon. For the UCB1

algorithm, considering a sequence of MABs (2,Pn, n)n≥1, they proved that if the gap of the n-th

MAB (2,Pn, n) is ∆n = ω(
√

lnn
n ) (Large gap), then for the n-th MAB, the number of times the

optimal arm is chosen in the entire n rounds N∗(n) satisfies that N∗(n)/n → 1 in probability,

otherwise, limn→∞N∗(n)/n ∈ (1/2, 1) or = 1/2 in probability depends on ∆n ∼
√

θ lnn
n (Moderate

gap, where θ is a positive constant) or o(
√

lnn
n ) (Small gap), respectively. They also provided the

first complete process-level characterization of the MAB problem under UCB in the conventional

diffusion scaling among other results. By the way, this paper justified the necessary of discussing

small gaps by more numerical experiments and potential applications.

We remark that Kalvit and Zeevi [12] focused on the optimal arm’s sampling characteristics and

get accurate asymptotical speeds of pseudo-regrets in the cases of moderate or small gaps (Theorem

4 and 5 therein). But they left the case of large gaps. The one of main obstacles, in our opinion,

is that the sub-optimal arm’s sampling characteristics are not accurate by far in the case of large

gaps, meanwhile the major driver of the regret performance of an algorithm is its sub-optimal arm

sampling. In this paper, we try to fill the blank.

For simplicity, we will focus on the behaviours of a sequence of 2-armed bandit problems with large

gaps under a UCB algorithm (see Section 2 below). Heuristically, we can image that when the gap ∆n

decrease from a constant to
√

lnn
n , the sub-optimal arm is chosen more and more frequently. To find

some concise and proper conclusions with an universal method is the main difficulty. Our results show

that under certain conditions, the sub-optimal arm sampling N(n) satisfies that N(n)∆2
n/ log n→ ρ

in probability, where ρ is a constant dependent on the algorithm. When ∆n is degenerated to a

positive constant, this results is consistent with the existing asymptotical one which holds for the

single MAB (see [9]). Based on this results, we also get the asymptotical results of regret.

Our contributions in this paper have two folds. We conduct a more detailed investigation on the

behavior of a sequence of MAB problems under the so-called large gap conditions. An interesting

quantitative relationship is identified between the number of samples allocated to the suboptimal
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arm by the algorithm and the gap itself. We also present the characteristics of regret under these

conditions using diffusion limits. These new results also hold for the single MAB problem and

hence extend the existing asymptotical theory. Our study deeps the understanding of a sequence of

MAB problems under UCB algorithms and provide a new angle to discuss behaviours of algorithms,

especially in a sequence of environments. In methodology, as that Cowan and Katehakis [7] observed,

the Law of the iterated logarithm (LIL) for reward sequences is the critical factor to get the growth

rate of the regret, see also for example Fan and Glynn [9] and Kalvit and Zeevi [12]. However, when

we consider a sequence of MABs, the reward sequences in essence are consisted of triangular arrays,

which can not assure the LIL. To overcome this difficulty, we adopt a different methods by combining

Donsker’s invariant principle, continuous mapping theorem and Slutsky Lemma, which provides a

new scheme of methods in some sense. For more details please refer to our main theorems and the

corresponding Remarks in Section 3.

This paper is divided into 5 sections. The introduction, Section 1, primarily delineates the

research background, motivations, and the contributions of this paper. The specifics of the model,

algorithm and notation are detailed in Section 2. Sections 3 is the theoretical core of the paper,

where we report the main theoretical results. Some complicated proofs are deferred to Appendices.

The subsequent Section presents numerical simulation results. Finally, concluding remarks and open

problems are presented in Section 5.

2 Notation, model and algorithm

For any positive natural number n, let [n] = {1, 2, 3, · · · , n}. We say an = o (bn) or bn = ω (an) if

{an}n≥1 and {bn}n≥1 are two sequences of real numbers and lim
n→∞

an
bn

= 0. Similarly, an = O (bn)

or bn = Ω (an) if lim sup
n→∞

∣∣∣anbn ∣∣∣ ≤ C for some constant C. If an = O (bn) and an = Ω (bn) hold

simultaneously, we say an = Θ (bn), and we write an � bn and an ∼ bn in the special cases where

lim
n→∞

an
bn

= c ∈ (0,+∞) and lim
n→∞

an
bn

= 1, respectively. If either sequence {an}n∈N+ or {bn}n∈N+ is

random, and one of the aforementioned ratio conditions holds in probability, we use the subscript p

with the corresponding Landau symbol. For example, an = op (bn) if an/bn
p−→ 0 as n→∞. Besides,

the notation ”
d−→” signifies convergence in distribution, while ”⇒” denotes weak convergence. Lastly,

the notations ”d·e” and ”b·c” are used herein to represent the ceiling function (rounding up) and the

floor function (rounding down), respectively.

We call a probability distribution P σ-sub-Gaussian, if there exists a positive number σ such

that for any λ ∈ R, it holds that E (exp(λ(X − E(X)))) ≤ exp(λ2σ2/2), where X is a random

variable following the distribution P . In a bandit, if for any arm i ∈ A, the reward distribution Pi is
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σ-sub-Gaussian, we say the bandit model is a σ-sub gaussian bandit.

For simplicity, in this paper we focus on a sequence of stochastic 2-armed sub gaussian bandits

(2,Pn, n). For each n, the bandit problem (2,Pn, n) has the arm set A = {1, 2}, the horizon n and

the environment Pn = {Pn,1, Pn,2} where Pn,1, Pn,2 are sub-Gaussian with (unknown) parameter σ

and unknown means µn,1, µn,2, respectively. We always assume that µn,1 6= µn,2 and denote the gap

between the two arms by ∆n, i.e. ∆n = |µn,1 − µn,2|.

During the interaction at round t (t ∈ {1, 2, . . . , n}), the learner selects an action (arm) An,t ∈ A

and receives a reward Xn,t where the action is chosen according to a policy or algorithm π =

(π1, · · · , πn) which is a sequence of probability on A such that the conditional distribution of An,t

given An,1, Xn,1, . . . , An,t−1, Xn,t−1 is πt (·|An,1, Xn,1, . . . , An,t−1, Xn,t−1). Denote the sequence of

rewards associated with the pulls of arm i by (Xn,i,j)j=1,2,···, with Xn,i,j representing the reward

received the j-th time arm i is sampled. (Xn,i,j)i,j are independent each other.

Let Nn,i(t) be the number of times that the arm i was selected after the end of round t ≤ n, i.e.

Nn,i(t) =
∑t
s=1 1{An,t=i}. Then Xn,t = Xn,An,t,NAn,t (n,t)

and the corresponding sample mean of the

rewards

µ̄n,i(t) :=

∑Nn,i(t)
j=1 Xn,i,j

Nn,i(t)
.

The following algorithm 1 is a classical and relatively simple version of UCB algorithm. where

Algorithm 1 UCB(δ) algorithms for k-armed bandits

1: Input: Confident level δ.
2: At t = 1, 2, . . . , k, play each arm i ∈ {1, 2, . . . , k} once.
3: for t ∈ {k + 1, k + 2, . . . , } do

4: Play arm At ∈ argmax
i∈{1,2,...,k}

(
µ̄i(t− 1) +

√
2 log 1/δ
Ni(t−1)

)
( Ties are broken uniformly)

µ̄i(t) is the sample mean of the rewards of the i-th arm after the round t. In general, we call

UCBi(t) := µ̄i(t− 1) +

√
2 log 1/δ

Ni(t− 1)

the UCB index of arm i at round t, and call

Bi(t) =

√
2 log 1/δ

Ni(t− 1)

the exploration bonus or confidence width of arm i at round t. Lattimore and Szepesvári introduced

this algorithm in [16, Chapter 7]) and analysed the regret’s upper bound for 1-sub-Gaussion MAB

under this algorithm with δ = n2 where n is the horizon. In this paper, we choose the δ in the form
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of 1/nρ/2. In other words, we introduce a coefficient ρ ∈ R+ such that

Bi(t) =

√
ρ log n

Ni(t− 1)
, UCBi(t) = µ̄i(t− 1) +Bi(t)

for all t ≤ n. We denote this UCB algorithm by UCB(ρ), where the parameter ρ may adjust the

arm-exploring rate. The version of UCB discussed here is most similar to that analysed by Auer et

al.[3] under the name UCB1, but that algorithm used t rather than n in the exploration bonus.

We denote the regret of (2,Pn, n) after round t ≤ n under the algorithm UCB(ρ) by

Rρ(n, t) = ∆nE(Nn,j(t))

where j = argmini=1,2µn,i is the sub-optimal arm. Similarly, we denote the pseudo-regret by

R̂ρ(n, t) := ∆nNn,j(t).

In this paper, we also discuss the random regret

R̃ρ(n, t) =

t∑
s=1

(max{µn,1, µn,2} −Xn,s) .

To simplify the notations, we write Nn,i(n), Rρ(n, n), R̂ρ(n, n) and R̃ρ(n, n) as Ni(n), Rρ(n), R̂ρ(n)

and R̃ρ(n), respectively.

3 Theoretical results

First of all, we note that the regret is essentially dependent on the gap and the sub-optimal arm’s

selected numbers. Kalvit and Zeevi [12] obtained the asymptotes of the optimal arm’s selected

numbers under the UCB1 algorithm. However, in the large gaps, their result is not enough to get

accurate asymptotes of the sub-optimal arm’s selected numbers. In this section, we will provide

theoretical answers for the following questions: in the large gap case, as n→∞,

(1) what is the asymptotical characteristic of the sub-optimal arm’s selected numbers?

(2) what is the asymptotical limit of regret sequence Rρ(n) or pseudo regret sequence R̂ρ(n)?

(3) what is the asymptotical limit of random-regret sequence R̃ρ(n) = nµ1 −
∑n
s=1Xn,t?

Without loss of generality, in the sequel, we always assume the arm 1 is the optimal arm. The

following assumption essentially say that ∆n is in the large gap case.
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Assumption 1. Assume that there exists a constant α ∈ [0, 1/2] such that h(n) := nα∆n is o(nε)

for any ε > 0. In addition, if α = 1/2, h(n) = ω(
√

lnn).

Furthermore, to fertilize the theoretical analyses, we need the following technical conditions on

the function h(n).

Assumption 2. The sequence {h(n)}n≥1 can be extended to a positive function h(·) on (0,+∞),

which satisfies the following conditions.

(1) h′(t) ≥ 0 for sufficiently large t,

(2) αh(t) ≥ th′(t) for sufficiently large t,

(3) limt→∞ h(t)/tβ = 0 for any β > 0.

We get the asymptotical characteristic of the sub-optimal arm’s selected numbers as follows.

Theorem 1. Apply the algorithm UCB(ρ) as shown in Algorithm 1 on a sequence of two-armed

σ-subgaussian bandit problem (2,Pn, n). Suppose assumptions 1 and 2 hold. Then for any ρ > 4σ2,

as n→∞,
N1(n)

n
→ 1 a.s.,

N2(n)∆2
n

log n

p−→ ρ.

The proof of Theorem 1 is deferred to Appendix B.

Since distributions on bounded intervals are also sub-gaussian distributions, the aforementioned

theorem can be applicable to bandits where the reward distributions of all arms are bounded. This

leads to the following corollary:

Corollary 1. In a two-armed bandit, if the reward distributions for both arms lie within the interval

[a, b], using the UCB(ρ) algorithm with ρ > (b− a)2, the same conclusion as in Theorem 1 can be

deduced.

Proof: It is well known that probability distributions within the interval [a, b] are b−a
2 -subgaussian

distributions (see, Lattimore and Szepesvári[16, Chapter 5]). Consequently, the condition ρ > (b−a)2

indeed fulfills the prerequisites of Theorem 1. �

Below are some remarks on these results.

Remark 1. Kalvit and Zeevi [12] studied the asymptotical limits of a sequence of MABs with rewards

in [0, 1]. The UCB type algorithm in their paper is not UCB(ρ) but UCB1, which, for comparisons,

is stated below and denoted by UCB1(ρ). When ρ > 1, [12] proved that, among other results, if the

gap is large, N1(n)/n→ 1 in probability. Meanwhile, Fan and Glynn [9] proved that if a two-armed
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Algorithm 2 UCB1(ρ) for k-armed bandits

Input: Exploration coefficient ρ ∈ R+.
2: At t = 1, 2, . . . , k, play each arm i ∈ {1, 2, . . . , k} once.

for t ∈ {k + 1, k + 2, . . . ,H} do

4: Play arm At ∈ argmax
i∈{1,2,...,k}

(
µ̄i(t− 1) +

√
ρ log t
Ni(t−1)

)
(Ties are broken uniformly)

MAB has Gaussian rewards with variance 1, denoting the gap constant by ∆, under the algorithm

UCB1(2), the number of pulling the sub-optimal arm N2(t) almost surely has an asymptotical rate

2 log n/∆n. Namely, as the round t goes to infinity, N2(t)∆2/ log t→ 2 almost surely. Our results

strengthen Kalvit and Zeevi’s result on N1(n) from convergence in probability to convergence almost

surely, and generalize the Fan and Glynn’s result from Gaussian rewards to sub-Gaussian rewards

(our results are valid on the single MAB problem because a single MAB problem with infinite horizon

can be looked as a sequence of MAB problems with increasing horizons and constant gaps fulfill our

assumptions), though we take a slightly different UCB algorithm. Our result shows that even we

apply the UCB(δ) algorithm on the MAB problems with varied environments and varied horizons, it

can exhibit stability as same as applied to a fixed environment.

Remark 2. The reason why we take UCB(ρ) rather than UCB1(ρ) mainly comes from technology

and methodology. Intuitively, because what we concern is universal natures of MABs exhibited in

their finite horizon, whose relationship we have not made any assumptions about except the longer

horizons and smaller gaps, to find some meaningful results their regular behaviours shall be recognized

in an understandable manner as soon as possible. While we believe for long horizon n and after

large 1 << t ≤ n rounds, UCB(ρ) and UCB1(ρ) are very similar in behaviours, the relatively small

exploration in UCB1(ρ) bring us extra obstacles, especially when t << n, since as the gap becomes

smaller, the small exploration is harder to bring us quickly out the trip of sub-optimal arm being

mistakenly evaluated as the optimal arm.

Remark 3. In order to get the asymptotical results on N2(t), it is required that ρ > 4σ2. When the

rewards are bounded in [0, 1], it is ρ > 1, which is consistent with the setting in Kalvit and Zeevi

[12]. There is a gap compared to the setting when studying the asymptotical rate of regret for a single

MAB problem (see, for example, Fan and Glynn [9] with ρ = 2σ2). For a single MAB problem, how

ρ effects the corresponding regret was discussed in [2], where they reported that given the UCB1(ρ)

algorithm, the greater the ρ, the thinner the tail on the pseudo-regret.

Remark 4. Cowan and Katehakis [7] observed that the Law of the iterated logarithm (LIL) for

reward sequences is only really required for the derivation of the regret remainder term bounds when

the asymptotes of algorithms’ regret are considered. Fan and Glynn [9] successfully applied the LIL to
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get their almost surely asymptotical rate of N2(t). Kalvit and Zeevi [12] also directly borrowed this tool

to their work on a sequence of MABs, however, it maybe need more explanations. In fact, when we

consider a sequence of MABs (2,Pn, n), the reward sequences in essence are consisted of triangular

arrays—for a given n, the possible reward sequences are Xn,1,i, Xn,2,i where 1 ≤ i ≤ n. However, the

LIL is not always true for triangular arrays. A simple counterexample can be constructed as follows.

If {Xn,i, n ≥ 1, 1 ≤ i ≤ n} is a set of independent random variables with the same standard normal

distribution, then

lim inf
n→∞

∑n
i=1Xn,i√
n log log n

= +∞. (1)

In fact, by some direct computations, we have that

P
(∑n

i=1Xn,i√
n log n

≥
√

2

)
=

∫ ∞
√

2 logn

1√
2π
e
−x2
2 dx ≥ 1

2
√

2π log n

1

n
(1− 1

n
),

and hence
∞∑
n=1

P
(∑n

i=1Xn,i√
n log n

>
√

2

)
= +∞,

which plus Borel-Cantalli Lemma shows that

lim inf
n→∞

∑n
i=1Xn,i√
n log n

≥
√

2.

In this paper we abandon the LIL tool. Instead, we use a new scheme—a combinator of Donsker’s

invariant principle, continuous mapping theorem and Slutsky Lemma, to get the asymptotics of N2(n).

For details please see the proof of Theorem 1 in Appendix B.

Furthermore, from Theorem 1, we can get the asymptotical rate of the regret Rρ(n) and the

pseudo regret R̂ρ(n).

Theorem 2. Under the assumption of Theorem 1, R̂ρ(n) ∼p ρ log n/∆n and Rρ(n) ∼ ρ log n/∆n.

Proof: Pseudo-regret R̂ρ(n) ∼p ρ log n/∆n is a plain corollary of Theorem 1. In addition, from

Theorem 1 we have that

lim inf
n→∞

Rρ(n)∆n

log n
= lim inf

n→∞
∆2
nE
(
N2(n)

log n

)
≥ ρ.

On the other hand, for any l ∈ (0, 1), from (22) in Appendix A,

Rρ(n) = ∆nE(N2(n)) ≤ ∆n

(
ρ log n

∆2
n(1− 2l)2

+ 1 + E(Gn,2) + E(Gn,3)

)
.
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Furthermore,

E(Gn,2)≤
n∑

m=s1(n)

P (µ̄n,2(m) > µn,2 + δ) ≤
n∑

m=s1(n)

exp

{
−mδ

2

2σ2

}

≤ 1

1− e−
δ2

2σ2

exp

{
−s1(n)δ2

2σ2

}
≤ 2σ2

l2∆2
n

n−
ρl2

2σ2 ,

and

E(Gn,3)≤
n∑

k=s1(n)

n∑
t=k+1

P

(
µ̄n,1(t− k) < µn,1 −

√
ρ log n

t− k

)

≤ n2 exp

{
−ρ log n

2σ2

}
= n2− ρ

2σ2 .

Hence,

lim sup
n→∞

Rρ(n)∆n

log n
≤ ρ

(1− 2l)2
+ lim sup

n→∞

(
2σ2

l2 log n
n−

ρl2

2σ2 +
∆2
nn

2− ρ

2σ2

log n

)
= ρ.

Combining the two sides, and letting l→ 0, we get the conclusion of Theorem 2. �

Diffusion scaling serves as a fundamental method for assessing the performance of stochastic

systems, extensively utilized within the operations research domain. However, the diffusion limit

behavior of bandit algorithms is still inadequately understood and remains predominantly unexplored.

[8] analyzed the diffusion limit of Thompson sampling under Gaussian priors. Kuang and Wager[13]

studied the diffusion limits for a class of sequentially randomized experiments. Their work is

not applicable to the UCB algorithm. Kalvit and Zeeve [12] analysed the UCB algorithm in the

conventional diffusion scaling in the cases of moderate and small gaps. Below, we present the diffusion

limit under the large gap case.

We have the following theorem:

Theorem 3. Consider UCB(ρ) as shown in Algorithm 1 on a two-armed σ-subgaussian bandit

problem. Let the variances of the two reward distributions be σ2
1 and σ2

2. Under the assumptions of

Theorem 1, as n→∞,

(1) when α = 0.5 and h(n) = ω(log n) or α < 0.5,

R̃ρ(n, bntc)√
n

⇒ σ1B(t);

11



(2) when α = 0.5 and ∃θ2 > 0 s.t. h(n) ∼ θ log n,

R̃ρ(n)√
n
→ ρ

θ
+ σ1B(1), in distribution;

(3) when α = 0.5 and h(n) = o(log n),

h(n)R̃ρ(n)√
n log n

→ ρ, in probability.

where the symbol “⇒ ” denotes the weak convergence in Skorokhod Space D[0, 1], t ∈ [0, 1] and B(t)

is a standard Brownian motion in R.

Proof: Let C be the space of continuous functions [0, 1] 7→ R, endowed with the uniform metric

that defines the distance between two continuous functions x(·) and y(·) on [0, 1] as ρ(x, y) :=

supt∈[0,1] |x(t) − y(t)|. Let D be the space of right-continuous functions with left limits, mapping

[0, 1] 7→ R2, and endowed with the Skorohod metric (see [5], Chapters 2 and Chapters 3, for an

overview). Let D0 be the set of elements of D of the form (φ1, φ2) where φi is a non-decreasing

real-valued function satisfying 0 ≤ φi(t) ≤ 1 for i ∈ {1, 2} and t ∈ [0, 1].

For t ∈ [0, 1], define

ψ1,n(t) :=

∑bntc
j=1 Xn,1,j − µnnt√

n
, ψ2,n(t) :=

∑bantc
j=1 Xn,2,j −

(
µn − h(n)

nα

)
ant

√
an

,

where an := 2ρn2α(logn)2

(h(n))2 and µn = E(Xn,1,1). Define

W1(t) := σ1B(t), W2(t) := σ2W (t),

where B(t) and W (t) are independent standard Brownian motions in R. Then (ψ1,n, ψ2,n) ∈ D,

and for any i ∈ {1, 2}, P(Wi ∈ C) = 1. Since for fixed i ∈ {1, 2}, (Xn,i,j)j∈N are independent and

identically random variables, we know from the generalized Donsker’s Theorem (See [5], Section 10,

for details) that as n→∞,

(ψ1,n, ψ2,n)⇒ (W1,W2) in D.

For t ∈ [0, 1], let g1(t) := t, g2(t) := 0,

φ1,n(t) :=
N1,n(bntc)

n
, φ2,n(t) :=


N2,n(bntc)

an
,

N2,n(bntc))
an

≤ 1,

1,
N2,n(n)
an

> 1,

12



then (φ1,n, φ2,n) ∈ D0. Consequently, by Theorem 1, we obtain as n→∞,

(φ1,n, φ2,n)⇒ (g1, g2) in D0.

Thus, we have convergence in the product space (see [5], Theorem 3.9), i.e., as n→∞,

(ψ1,n, ψ2,n, φ1,n, φ2,n)⇒ (W1,W2, g1, g2) in D ×D0.

For i ∈ {1, 2} and i ∈ {1, 2}, define the composition (ψi,n ◦φi,n)(t) := ψi,n(φi,n(t)), (W1 ◦g1)(t) :=

W1(g1(t)) = W1(t), (W2 ◦ g2)(t) := W2(g2(t)) = W2(0). Since W1,W2, g1, g2 ∈ C w.p. 1, it follows

from the continuous mapping theorem that as n→∞,

(ψ1,n ◦ φ1,n, ψ2,n ◦ φ2,n)⇒ (W1 ◦ g1,W2 ◦ g2) in D.

Note that

R̃ρ(n, bntc) =

N1,n(bntc)∑
j=1

(µn −Xn,1,j) +

N2,n(bntc)∑
j=1

(µn −Xn,2,j)

=

N1,n(bntc)∑
j=1

(µn −Xn,1,j) +

N2,n(bntc)∑
j=1

(µn −∆n −Xn,2,j) + ∆nN2,n(bntc).

Therefore,

R̃ρ(n, bntc)√
n

=−
∑N1,n(bntc)
j=1 (Xn,1,j − µn)

√
n

−
∑N2,n(bntc)
j=1 (Xn,2,j − µn + ∆n)

√
n

+
∆nN2,n(bntc)√

n

=
∆nN2,n(bntc)√

n
− ψ1,n ◦ φ1,n(t)−

√
an
n
ψ2,n ◦ φ2,n(t).

If α = 0.5 and h(n) = ω(log n) or α < 0.5, as n → ∞, from Theorem 1 and the continuous

mapping theorem, we have that

R̃ρ(n, bntc)√
n

⇒W1 ◦ g1 = W1(t),

in D[0, 1].

13



By the same arguments, if α = 0.5 and ∃θ2 > 0 s.t. h(n) ∼ θ2 log n, then as n→∞,

R̃ρ(n)√
n

=
R̃ρ(n, n)√

n
= −

∑N1,n(n)
j=1 (Xn,1,j − µn)

√
n

−
∑N2,n(n)
j=1 (Xn,2,j − µn + ∆n)

√
n

+
∆nN2,n(n)√

n

= −ψ1,n ◦ φ1,n(1)−
√
an
n
ψ2,n ◦ φ2,n(1) +

∆nN2(n)√
n

⇒W1(1) +
ρ

θ2
;

if α = 0.5, h(n) = o(log n) and h(n) = ω
(√

log n
)
, then as n→∞,

∆nR̃ρ(n)

log n
=−h(n)

log n
ψ1,n ◦ φ1,n(1)− h(n)

log n

√
an
n
ψ2,n ◦ φ2,n(1) +

h(n)∆nN2(n)√
n log n

→ ρ,

in probability. From above results, we can readily get the desired conclusions. �

4 Numerical Simulations

In existing literature, there is very little work of reporting numerical experiments on the performance

of a sequence of MABs. In this section, we provide some concrete and comparable simulation results

which can not only help us to assess and verify the performance of Theorem 1, exhibit the stochastic

natures of MABs, but also inspire us to make other possible discovery. Our numerical experiments

are aimed to evaluate the impact of the length of horizon, the parameter ρ in UCB(ρ) algorithms

and the distributions of rewards. We also simulate the behaviour in the UCB1(ρ) algorithm in order

to explore the difference between the two algorithms. We design serval groups of 2-armed bandit

numerical experiments. In all experiments, Arm 1 is set to be the optimal arm with an expected

value 1/2.

In the first group experiments, we let the reward distributions be Bernoulli, set the varied gaps

∆n = 1/ ln(n), and let the horizon n varies in the set{103, 104, 105, 106} i.e. when we simulate the

n-horizon two-armed bandits, the reward distribution of suboptimal arm is Ber(1/2 − 1/ ln(n)).

In addition we conduct the experiments under the UCB(ρ) algorithm with ρ = 1/2 and ρ = 2

respectively. As a comparison, we also conduct experiments under the UCB1(ρ). Every experiment is

repeated 200 times. We observe the numbers of the suboptimal arm (namely, Arm 2) is selected and

compute the ratios of this number over log n/∆2
n. The box-plot diagram of the ratios is presented as

follows.

14



Figure 1: Box-Plot of Result= N2(n)∆2
n/ ln(n) under Bernoulli distributions of rewards with

∆n = 1/ ln(n) and ρ = 1 after 200 simulations .

Figure 2: Box-Plot of Result= N2(n)∆2
n/ ln(n) under Bernoulli distributions of rewards with

∆n = 1/ ln(n) and ρ = 4 after 200 simulations .

In order to explore the possible differences arising from the distribution of rewards, we make

the second group of experiments, where except that the distributions are replaced by the normal

distributions with variance parameter σ2 = 1/4, other setting are same as those in the first group.

The box-plot diagram of the ratios is presented as follows.

Figure 3: Box-Plot of Result= N2(n)∆2
n/ ln(n) under Normal distributions of rewards with ∆n =

1/ ln(n) and ρ = 4 after 200 simulations.
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Figure 4: Box-Plot of Result= N2(n)∆2
n/ ln(n) under Normal distributions of rewards with ∆n =

1/ ln(n) and ρ = 1 after 200 simulations.

From the above figures we have the following observations.

(1) In all figures 1-4, the ratio N2(n)∆2
n/ ln(n) exhibits a trend of getting closer to the parameter

ρ. But when the horizon becomes increasingly longer, we cannot observe the phenomenon

that the ratio N2(n)∆2
n/ ln(n) becomes more and more concentrated. This shows that even if

Theorem 1 can promise the concentration in theory (in these cases, the conditions of Theorem

1 hold), the timescales are too long. Cowan and Katehakis [7] also explicitly pointed out the

similar observations.

(2) In Figure 2 and Figure 4, ρ = 1/2 and σ2 = 1/4, which is out the work range of Theorem 1.

We also observe more outliers in Figure 4 than that in Figures 3 even when the horizon n is

large. These evidences show the difficulty when we try to prove Theorem 1 for small ρ.

(3) From the figures 1-4, we can readily see that the statistical behaviours of UCB1(ρ) is almost

same as those of UCB(ρ). We guess all theoretical results in Section 3 shall be true for the

algorithm UCB1(ρ), while the rigorous proof is still open for us.

As we remarked in Remark 3, Fan and Glynn [9] got the asymptotical result of N2(n)∆2/ lnn in

the case where a fixed two-armed bandit has rewards of normal distributions with variance σ2 = 1 by

taking the algorithm UCB1(2) (ρ = 2σ2). While, in this paper, we only get the asymptotical result

for a sequence of two-armed bandits in the setting ρ > 4σ2. To explore the possible difficulties, we

design two groups of experiments. In the first group of experiments we let the reward distributions

be Bernoulli, set the varied gaps ∆n ≡ 0.1, and let the horizon n varies in the set {103, 104, 105, 106}.

The algorithm for a fixed two-armed bandit is UCB1(1/2) while the one for a sequence of two-armed

bandits is UCB(1/2). The setting of the second group is same except that the reward distributions is

replaced by Normal with variance σ2 = 1/4. In these experiments, for the given two-armed bandit,

we simulate the increasing horizons by adding i.i.d rewards. Alternatively, to simulate a sequence of
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two-armed bandits, for each different n, we independently produce an n-horizon two-armed bandit.

For simplicity, we call the former as a fixed environment and the latter as a varied environment,

respectively. Every experiment is repeated 100 times. The box-plot diagram of the ratios is presented

as follows.

Figure 5: Box-Plot of Result= N2(n)∆2
n/ ln(n) under Bernoulli distributions of rewards with ∆n = 0.1

and ρ = 1/2 after 100 simulations.

Figure 6: Box-Plot of Result= N2(n)∆2
n/ ln(n) under normal distributions of rewards with ∆n = 0.1

and ρ = 1/2 after 100 simulations.

From Figure 5 and Figure 6, we observe that in our experimental setting which imitates the

situation ρ = 2σ2, the statistical performances of the ratios N2(n)∆2
n/ ln(n) of the sequences of

two-armed bandits is at least not worse than those of the single two-armed bandit. However, it

is hard to assert that the asymptotical result of N2(n)∆2
n/ lnn can be extended to the situation

ρ ≥ 2σ2 when the rewards have σ-sub-Gaussian distributions, because our theoretical results are

based on convergence of probability and/or almost surely convergence which is essentially not to be

verified by the Box-Plot figures.
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5 Conclusion and open problems

In this paper we study the sampling behaviours of a sequence of two-armed bandits {(2,Pn, n)}n
under the algorithm UCB(ρ). Assume the two-armed bandit (2,Pn, n) has σ-sub-Gaussion distributed

rewards and the gap ∆n = ω

(√
lnn
n

)
, i.e. by the terminology in [12], {(2,Pn, n)}n have large

gaps. In theory, we proved that when ρ > 4σ2 the number N∗(n) of the optimal arm selected

has the property that N∗(n)/n converges almost surely to 1 and the selected numbers of the sub-

optimal arm N∗(n) has the property that N∗(n)∆2
n/ lnn converges in probability to the constant ρ.

Based on these results, we get the asymptotical limit of regrets and regret processes as well. These

theoretical results generalize and improve the existing ones in [12] and [9]. In numerical experiments,

we simulate the behaviors of two-armed bandits under different setting including algorithms, sizes of

gap, the parameter ρ, the horizon n and the distribution of rewards, which provide more evidences

and intuitions to understand the bandit problems, especially, when the gaps are asymptotically

degenerative.

Although in theory we have obtained the accurate asymptotical speed of arms’ selected numbers,

there are still many unsolved problems. For example, in this paper, we only get the results under

the algorithm UCB(ρ), while the algorithm discussed in [12] and [9] is UCB1(ρ). We believe that

the performances of UCB(ρ) and UCB1(ρ) are similar, which are also verified by our simulation.

However, it is open for us by far to prove the same conclusions under the algorithm UCB1(ρ). In

addition, in this paper, we only consider the relatively simple case of two-armed bandit problems. It

is more interesting and complicated to explore the same problems for the bandits with more than 2

arms, which we will discuss in other place.

Appendix A: Auxiliary results

We will use the following inequality in our proofs, which can be readily get from the property of

sub-Gaussian distribution.

Lemma 1 (Chernoff-Hoeffding bound). Suppose that {Yi,j : i ∈ {1, 2} , j ∈ N+} is a collection

of independent, σ-subgaussian random variables. Then, for any m1,m2 ∈ N+ and x > 0,

P

(∑m1

j=1 Y1,j

m1
−
∑m2

j′=1 Y2,j′

m2
≥ x

)
≤ exp

(
−x2m1m2

2σ2(m1 +m2)

)
.

Proof: By the properties of σ-subgaussian random variables (see [16], Lemma 5.4), random variable
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∑m1
j=1 Y1,j

m1
−

∑m2
j′=1

Y2,j′

m2
is
√

1
m1

+ 1
m2
σ-subgaussian. Therefore,

P

(∑m1

j=1 Y1,j

m1
−
∑m2

j′=1 Y2,j′

m2
≥ x

)
≤ exp

(
−x2

2σ2

(
1

m1
+

1

m2

)−1
)
,

which leads to the desired result. �

Before proving Theorem 1, we prove the following lemma.

Lemma 2. Under the same conditions as Theorem 1, there exist ε1(ρ, σ, α) ∈ (0, ρ) (dependent only

on ρ, σ, α), such that

0 < ρ− ε1(ρ, σ, α) < lim inf
n→∞

Ni′(n)∆2
n

lnn
< lim sup

n→∞

Ni′(n)∆2
n

lnn
≤ ρ(

1− 1
2 ∨

√
4σ2

ρ

)2 a.s. (2)

Proof: Without loss of generality, suppose that arm 1 is optimal, i.e., µ1 > µ2. We divide the proof

into two parts.

(I) In this part, we show the left inequality of (2), i.e.

lim inf
n→∞

N2(n)∆2
n

lnn
≥ ρ− ε1(ρ, σ, α) > 0 a.s.

Our argument is enlightened by the method used in Appendix D1 of [12].

For any ε ∈ (0, ρ), we define

v(t) := t− (ρ− ε) t
2α ln t

(h(t))2
.

Observed that

v′(t) = 1 +
ρ− ε
h2(t)

[
2h′(t)t2α ln t

h(t)
− 2α ln t+ 1

t1−2α

]
.

and that

[t−αh(t)]′ =
th′(t)− αh(t)

tα+1
.

Based on the assumptions of h(t), for sufficiently large t we have that v(t) is positive and increasing

and that t−αh(t) is decreasing. Therefore, for sufficiently large n, we have that u(n) := dv(n)e > 0
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and for t ∈ [v(n), n], v(t) is increasing and t−αh(t) is decreasing. Note that

N1(n) ≤u(n) +

n−1∑
t=u(n)

1 {An,t+1 = 1, Nn,1(t) ≥ u(n)}

≤u(n) + Z1(n), (3)

where

Z1(n) =

n−1∑
t=u(n)

1

{
Ȳn,1(t)− Ȳn,2(t) ≥

√
ρ lnn

(
1√

Nn,2(t)
− 1√

Nn,1(t)

)
−∆n, Nn,1(t) ≥ u(t)

}
,

and

Ȳn,i(t) :=

∑Nn,i(t)
j=1 Yn,i,j

Nn,i(t)
, Yn,i,j := Xn,i,j − µn,i, i ∈ {1, 2} , j ∈ N+.

It is easy to check that for sufficiently large n, t− 1 ≥ Nn,1(t)≥u(t) and

1√
Nn,2(t)

− 1√
Nn,1(t)

=
1√

t−Nn,1(t)
− 1√

Nn,1(t)
≥ 0.

Therefore

E [Z1(n)] ≤
n−1∑
t=u(n)

P

{
Ȳn,1(t)−Ȳn,2(t)≥

√
ρ ln t

(
1√

Nn,2(t)
− 1√

Nn,1(t)

)
− h(t)

tα
, Nn,1(t)≥u(t)

}

=

n−1∑
t=u(n)

P
{
Ȳn,1(t)−Ȳn,2(t) ≥ r1 (Nn,2(t), Nn,1(t))

√
ρ ln t,Nn,1(t)≥u(t)

}
(4)

=

n−1∑
t=u(n)

t−1∑
m=u(t)

P
{
Ȳn,1(t)−Ȳn,2(t) ≥ r1 (Nn,2(t), Nn,1(t))

√
ρ ln t,Nn,1(t)=m

}

≤
n−1∑
t=u(n)

t−1∑
m=u(t)

P

{∑m
j=1 Yn,1,j

m
−
∑t−m
j′=1 Yn,2,j′

t−m
≥ r1 (t−m,m)

√
ρ ln t

}
,

where

r1(x, y) :=
1√
x
− 1
√
y
− h(t)

tα
√
ρ ln t

.

Since m ∈ [u(t), t− 1] ⊂ [v(t), t− 1], for t large enough,

r1 (t−m,m) ≥ r1 (t− v(t), v(t)) =
r2(t, ε)h(t)

tα
√

ln t
> 0. (5)
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where

r2(t, ε) :=
1√
ρ− ε

− 1√
t1−2α(h(t))2(ln t)−1 − ρ+ ε

− 1
√
ρ
.

We can therefore apply the Chernoff-Hoeffding bound (Lemma 1) to (4) to conclude that

E [Z1(n)] ≤
n−1∑
t=u(n)

t∑
m=u(t)

exp

[(
1√
t−m

− 1√
m
− h(t)

tα
√
ρ ln t

)2−ρm(t−m) ln t

2σ2t

]

=

n−1∑
t=u(n)

t∑
m=u(t)

exp

[
−ρ ln t

2σ2t
(f1(t,m))

2

]
, (6)

where

f1(t, x) := r1(t− x, x)
√
x(t− x) =

√
x−
√
t− x−

h(t)
√
x(t− x)

tα
√
ρ ln t

.

Notice that for t large enough, f1(t, x) is non-decreasing on x ∈ [v(t), t− 1]. Thus, we have in (6)

that

f2
1 (t,m) ≥ f2

1 (t, v(t)) = v(t)
(
t− v(t)

)
r1 (t− v(t), v(t)) =

(
t− t2α (ρ− ε) ln t

(h(t))2

)
(ρ− ε) (r2(t, ε))

2
.

Using these facts in (6), we conclude

E [Z1(n)] ≤
n−1∑
t=u(n)

t∑
m=u(t)

exp

[
−ρ ln t

2σ2

(
1− (ρ− ε) ln t

t1−2α(h(t))2

)
(ρ− ε) (r2(t, ε))

2

]

≤
n−1∑
t=u(n)

ρ ln t

(h(t))2
exp

{[
2α− ρ

2σ2

(
1− (ρ− ε) ln t

t1−2α(h(t))2

)
(ρ− ε) (r2(t, ε))

2

]
ln t

}
. (7)

For any δ > 0, by Markov’s inequality, we then have

P
(
N1(n)− u(n) ≥ δn2α lnn

(h(n))2

)
≤ P

(
Z1(n) ≥ δn2α lnn

(h(n))2

)
≤ E (Z1(n)) (h(n))2

δn2α lnn
.

Consequently, by (7),

P
(
N1(n) ≥ u(n) +

δn2α lnn

(h(n))2

)
≤ (h(n))2

δn2α lnn

n−1∑
t=u(n)

ρ ln t

(h(t))2
exp

{[
2α− ρ

2σ2

(
1− (ρ− ε) ln t

t1−2α(h(t))2

)
(ρ− ε) (r2(t, ε))

2

]
ln t

}
.
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Note that limt→∞
ln t

t1−2α(h(t))2 = 0. For n large enough, there exist a constant C1 such that

P
(
N1(n) ≥ u(n) +

δn2α lnn

(h(n))2

)
≤ C1 lnn

δ(h(u(n)))2
exp

{[
2α− ρ

2σ2

(
1−

√
ρ− ε
ρ

)2
]

lnn

}
. (8)

Let g(ε) := 2α − ρ
2σ2

(
1−

√
ρ−ε
ρ

)2

. Note that ρ > 4σ2 ≥ 2σ2(2α + 1). Since g(ρ) < −1 and

g(0) = 2α ≥ 0. Therefore, there exist ε1(ρ, σ, α) ∈ (0, ρ) such that ∀ε ≥ ε1(ρ, σ, α), g(ε) < −1. Finally

since δ > 0 is arbitrary, we conclude from (8) using the Borel-Cantelli Lemma that

− lim inf
n→∞

(
N2(n)(h(n))2

n2α lnn
− ρ+ ε1(ρ, σ, α)

)
= lim sup

n→∞
ρ− ε1(ρ, σ, α)− N2(n)(h(n))2

n2α lnn

= lim sup
n→∞

N1(n)−
[
n− (ρ− ε1(ρ, σ, α))n2α(h(n))−2 lnn

]
n2α(h(n))−2 lnn

≤ 0 a.s., (9)

i.e.,

lim inf
n→∞

N2(n)∆2

lnn
≥ ρ− ε1(ρ, σ, α) > 0 a.s. (10)

(II) In this part, we show the right inequality of (2). It is sufficient to prove that

lim sup
n→∞

N2(n)∆2
n

lnn
≤ ρ

(1− 2l)2
, a.s.

for any l ∈
(

1/4 ∨
√

σ2

ρ , 1/2
)

.

Let s(n) :=
⌈

4ρ lnn
∆2
n

⌉
. Since ρ > 4σ2, for any l ∈

(
1/4 ∨

√
σ2

ρ , 1/2
)

satisfying that l2ρ/σ2 > 1

and 1
(1−2l)2 > 4. Let δ = l∆n. For the arm 2, we have

N2(n) ≤ s(n) +

n−1∑
t=s(n)

1 {An,t+1 = 2, Nn,2(t) ≥ s(n)} = s(n) +Gn,1 +Gn,2 +Gn,3, (11)

where

Gn,1 =

n−1∑
t=s(n)

1

{
An,t+1 = 2, µ̄n,2(t)+

√
ρ lnn

Nn,2(t)
≥ µn,1 − δ, µ̄n,2(t)≤µn,2 + δ,Nn,2(t)≥s(n)

}
,

Gn,2 =

n−1∑
t=s(n)

1

{
An,t+1 = 2, µ̄n,2(t)+

√
ρ lnn

Nn,2(t)
≥ µn,1 − δ, µ̄n,2(t)>µn,2 + δ,Nn,2(t)≥s(n)

}
,

Gn,3 =

n−1∑
t=s(n)

1

{
An,t+1 = 2, µ̄n,2(t) +

√
ρ lnn

Nn,2(t)
< µn,1 − δ,Nn,2(t) ≥ s(n)

}
.
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Gn,1 is upper bounded via

Gn,1 ≤
n−1∑
t=s(n)

1

{
An,t+1 = 2, (∆n − 2δ)

2 ≤ ρ lnn

Nn,2(t)
, Nn,2(t) ≥ s(n)

}

≤
n−1∑
t=s(n)

1

{
An,t+1 = 2, s(n) ≤ Nn,2(t) ≤ ρ lnn

(∆n − 2δ)
2

}

≤ ρ lnn

(∆n − 2δ)
2 − s(n) + 1. (12)

For G2, we have that

Gn,2 ≤
n−1∑
t=s(n)

1 {An,t+1 = 2, µ̄n,2(t) > µn,2 + δ,Nn,2(t) ≥ s(n)}

≤
N2(n)∑
m=s(n)

1 (µ̄n,2(m) > µn,2 + δ) . (13)

Therefore,

P(Gn,2 > εs(n))≤ 1

εs(n)

n∑
m=s(n)

P (µ̄n,2(m) > µn,2 + δ) ≤ 1

εs(n)

n∑
m=s(n)

exp

{
−mδ2

2σ2

}

≤ 1

εs(n)

1

1− e−
δ2

2σ2

exp

{
−s(n)δ2

2σ2

}
=

1

εs(n)

2σ2

δ2
exp

{
−s(n)δ2

2σ2

}
,

and hence, using the fact s(n)δ2/σ2 > 2ρl2

σ2 lnn, we have that

P(Gn,2 > εs(n)) ≤ σ2

2ρl2ε lnn
n−

2ρl2

σ2 .

Since ρl2

σ2 > 1, by Borel-Cantelli Lemma and the Gn,2/s(n) ≤ ε almost surely.

For Gn,3, we have that

Gn,3 =

n−1∑
t=s(n)

1

{
An,t+1 =2, µ̄n,1(t)+

√
ρ lnn

Nn,1(t)
≤ µ̄n,2(t)+

√
ρ lnn

Nn,2(t)
< µn,1−δ,Nn,2(t)≥s(n)

}

≤
n−1∑
t=s(n)

1

{
An,t+1 = 2, µ̄n,1(t) < µn,1 − δ −

√
ρ lnn

Nn,1(t)
, Nn,2(t) ≥ s(n)

}

≤
N2(n)∑
k=s(n)

n∑
t=k+1

1

{
µ̄n,1(t− k) < µn,1 − δ −

√
ρ lnn

t− k

}
. (14)
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Therefore, for any ε > 0, thanks to ρ > 4σ2, we have that

P(Gn,3 > εs(n))≤ 1

εs(n)
E(Gn,3)

≤ 1

εs(n)

n∑
k=s(n)

n∑
t=k+1

P

(
µ̄n,1(t− k) < µn,1 − δ −

√
ρ lnn

t− k

)

≤ 1

εs(n)

n∑
k=s(n)

k+s(n)∑
t=k+1

P

{
µ̄n,1(t− k) < µn,1 −

√
ρ lnn

t− k

}

+
1

εs(n)

n∑
k=s(n)

n∑
t=k+s(n)

P {µ̄n,1(t− k) < µn,1 − δ}

≤ 1

εs(n)
n
[
s(n) exp{−ρ lnn

2σ2
}+

1

1− e−δ2/2σ2 exp{−s(n)δ2

2σ2
}
]

≤ 1

ε

[
n1− ρ

2σ2 +
2σ2n

s(n)δ2
exp{−s(n)δ2

2σ2
}
]
.

The same arguments as those used to Gn,2 implies that Gn,3 ≤ εs(n) almost surely.

Summing up, we get that

N2(n) ≤ ρ lnn

(∆n − 2δ)
2 + 2εs(n)

almost surely. Then letting ε→ 0 yields that

N2(n)∆2
n

lnn
≤ ρ

(1− 2l)
2 a.s.

which completes the proof of the second step. �

By the same argument with some necessary modifications, we can readily get the following result.

Corollary 2. For any constant γ ∈ (0, 1], there exist constants 0 < C1 < +∞,

C1 < lim inf
n→∞

Nn,i′(γn)(h(γn))2

(γn)2α lnn
. a.s. (15)

Proof: Note that following the same argument in Part 1, we have that

Nn,1(γn) ≤ u(γn) + Z1(n),

where

E [Z1(n)] ≤
γn−1∑
t=u(γn)

t−1∑
m=u(t)

P

{∑m
j=1 Yn,1,j

m
−
∑t−m
j′=1 Yn,2,j′

t−m
≥ r1 (t−m,m)

√
ρ ln t

}
,
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and that

P
(
Nn,1(γn) ≥ u(γn) +

δ(γn)2α ln(γn)

(h(γn))2

)
≤ C1 ln(γn)

δ(h(u(γn)))2
exp

{[
2α− ρ

2σ2

(
1−

√
ρ− ε
ρ

)2
]

lnn

}
, (16)

which implies the left inequality of (15) by Borel-Cantelli Lemma. �

Appendix B: Proof of Theorem 1

Proof: From the conclusion of Lemma 2 in Appendix A and the equation n = N1(n) +N2(n), we

can derive the first part of the theorem’s conclusion, i.e., as n→∞,

Ni∗(n)

n
=
N1(n)

n
= 1− N2(n)

n
→ 1 a.s. (17)

Next, we will prove the second part of the conclusion. We divide the proof into two steps.

Step 1: Proving that for any ε > 0,

lim
n→∞

P
(
N2(n)∆2

n

lnn
≤ ρ− ε

)
= 0. (18)

By (4), we have that for any given ε ∈ (0, ε/2)

E [Z1(n)] ≤
n−1∑
t=u(n)

P
{
Ȳn,1(t)− Ȳn,2(t) ≥ r1 (Nn,2(t), Nn,1(t))

√
ρ ln t,Nn,1(t) ≥ u(t)

}

≤
n−1∑
t=u(n)

P
{
Ȳn,1(t)− Ȳn,2(t) ≥

√
ρh(t)r2(t, ε)

tα
, Nn,1(t) ≥ u(t)

}

=

n−1∑
t=u(n)

P (Wn,1(t) ≥ r2(t, ε), Nn,1(t) ≥ u(t)) ,

where

Wn,1(t) :=
tα

√
ρh(t)

(
Ȳn,1(t)− Ȳn,2(t)

)
.

We already know that when t is large enough, r2(t, ε) > 0. For any i ∈ {1, 2}, let

Qn,1(t) =

∣∣∣∣∣
∑Nn,1(bntc)
j=1 Yn,1,j√

n

∣∣∣∣∣ , Qn,2(t) =

∣∣∣∣∣
∑Nn,2(bntc)
j=1 Yn,2,j√

n2α(lnn)1+c/h2(n)

∣∣∣∣∣
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where c ∈ (0, 1) is a constant. We have that

max
u(n)≤t≤n−1

|Wn,1(t)| ≤ max
u(n)≤t≤n−1

tα
√
ρh(t)

(∣∣∣∣∣
∑Nn,1(t)
j=1 Yn,1,j

Nn,1(t)

∣∣∣∣∣+

∣∣∣∣∣
∑Nn,2(t)
j′=1 Yn,2,j′

Nn,2(t)

∣∣∣∣∣
)

≤ max
u(n)≤t≤n−1

{ √
2nα

√
ρh(n)

( √
n

Nn,1(t)
Qn,1(t) +

√
n2α(lnn)1+c/h2(n)

Nn,2(t)
Qn,2(t)

)}

≤ max
u(n)≤t≤n−1

√
2nα+1/2

√
ρh(n)Nn,1(t)

× max
u(n)≤t≤n−1

Qn,1(t)

+ max
u(n)≤t≤n−1

n2α
√

2(lnn)1+c

√
ρh2(n)Nn,2(t)

× max
u(n)≤t≤n−1

Qn,2(t). (19)

By using Corollary 2, it is easy to see that as n→∞, almost surely,

max
u(n)≤t≤n−1

√
2nα+1/2

√
ρh(n)Nn,1(t)

→ 0, max
u(n)≤t≤n−1

n2α
√

2(lnn)1+c

√
ρh2(n)Nn,2(t)

→ 0.

In addition, since Yn,i,j := Xn,i,j − µn,i, the collection {Yn,i,j : j ∈ N} is a series of independent

and identically distributed random variables, characterized by E (Yn,i,1) = 0 and Var (Yn,i,1) =

Var (Xi,1) ≤ σ2 (the properties of σ-subgaussian random variables). By the generalized Donsker’s

Theorem ([5, P.77]), ∑dnte
j=1 Yn,1,j√

n
and

∑dn2α(lnn)1+ct/h2(n)e
j=1 Yn,2,j√
n2α(lnn)1+c/h2(n)

converge weakly in Skorohod Space to a Brownian motion {W (t); t ≥ 0}, respectively. Using Corollary

2 again, we have that almost surely,

Nn,1(t)

n
→ 1 and

Nn,2(t)

n2α(lnn)1+c/h2(n)
→ 0.

Therefore, by the continuous mapping theorem,

max
u(n)≤t≤n−1

Qn,1(t) and max
u(n)≤t≤n−1

Qn,2(t)

converge in distribution to W (1) and W (0), respectively. Consequently, the Slutsky’s Lemma plus

(19) implies that in probability,

max
u(n)≤t≤n−1

|Wn,1(t)| → 0, (20)
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as n→∞. Taking δ = ε/2− ε > 0, we have that as n→∞,

P
(
N1(n)− u(n) ≥ δn2α lnn

(h(n))2

)
≤ P

(
Z1(n) ≥ δn2α lnn

(h(n))2

)
≤ E (Z1(n)) (h(n))2

δn2α lnn
≤ (h(n))2

δn2α lnn

n−1∑
t=u(n)

P(Wn,1(t) ≥ r2(t, ε))

≤ ρ+ ε

δ
P
(

max
u(n)≤t≤n−1

W1(t) ≥ min
u(n)≤t≤n−1

r2(t, ε)

)
→ 0,

where the last limit follows from (20) and the fact

lim
n→∞

min
u(n)≤t≤n−1

r2(t, ε) > 0.

As a result,

lim sup
n→∞

P
(
N1(n)− n+ ρn2α(h(n))−2 lnn

n2α(h(n))−2 lnn
≥ 2(ε+ δ)

)
≤ lim sup

n→∞
P
(
N1(n)− n+ ρn2α(h(n))−2 lnn

n2α(h(n))−2 lnn
≥ ε+ δ +

(h(n))2

n2α lnn

)
= lim sup

n→∞
P
(
N1(n)−

(
n− (ρ− ε)n2α(h(n))−2 lnn

)
≥ δn2α(h(n))−2 lnn+ 1

)
≤ lim sup

n→∞
P
(
N1(n)− u(n) ≥ δn2α(h(n))−2 lnn

)
= 0.

Consequently,

lim
n→∞

P
(
N1(n)− n+ ρn2α(h(n))−2 lnn

n2α(h(n))−2 lnn
≥ ε
)

= 0,

from which we can readily get (21) since N2(n) = n−N1(n).

Step 2 Proving that for any ε > 0,

lim
n→∞

P
(
N2(n)∆2

n

lnn
≥ ρ+ ε

)
= 0. (21)

This part is similar to and simpler than Part 2 in the proof of Lemma 2.

Let s1(n) :=
⌈
ρ lnn
∆2
n

⌉
=
⌈
ρn2α lnn
(h(n))2

⌉
, l ∈ (0, 0.5) and δ = lh(n)

nα = l∆n. For the arm 2, we have

N2(n) ≤ s1(n) +

n−1∑
t=s(n)

1 {An,t+1 = 2, Nn,2(t) ≥ s(n)} = s1(n) +Gn,1 +Gn,2 +Gn,3, (22)
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where

Gn,1 =

n−1∑
t=s1(n)

1

{
An,t+1 = 2, µ̄n,2(t)+

√
ρ lnn

Nn,2(t)
≥ µn,1 − δ, µ̄n,2(t)≤µn,2 + δ,Nn,2(t)≥s1(n)

}
,

Gn,2 =

n−1∑
t=s1(n)

1

{
An,t+1 = 2, µ̄n,2(t)+

√
ρ lnn

Nn,2(t)
≥ µn,1 − δ, µ̄n,2(t)>µn,2 + δ,Nn,2(t)≥s1(n)

}
,

Gn,3 =

n−1∑
t=s1(n)

1

{
An,t+1 = 2, µ̄n,2(t) +

√
ρ lnn

Nn,2(t)
< µn,1 − δ,Nn,2(t) ≥ s1(n)

}
.

Obviously, Gn,1 is upper bounded via

Gn,1 ≤
ρ lnn

(∆n − 2δ)
2 − s1(n) + 1.

For Gn,2, since

Gn,2 ≤
N2(n)∑

m=s1(n)

1 (µ̄n,2(m) > µn,2 + δ) .

due to Lemma 2, for any ε > 0 we have that

lim sup
n→∞

P(Gn,2 > εs1(n))≤ lim sup
n→∞

P

g(ρ)s1(n)∑
m=s1(n)

1 (µ̄n,2(m) > µn,2 + δ) > εs1(n)


≤ lim sup

n→∞

1

εs1(n)

g(ρ)s1(n)∑
m=s1(n)

P (µ̄n,2(m) > µn,2 + δ)

≤ lim sup
n→∞

g(ρ)− 1

ε
exp

{
−s1(n)δ2

2σ2

}
,

where g(ρ) =
(

1− 1
2 ∨

√
4σ2

ρ

)−2

, and hence

lim
n→∞

P(Gn,2 > εs1(n)) ≤ lim
n→∞

g(ρ)− 1

ε
n−

ρl2

2σ2 = 0.

Therefore Gn,2/s1(n)→ 0 in probability.

By the same discussions, since

Gn,3 ≤
N2(n)∑
k=s1(n)

n∑
t=k+1

1

{
µ̄n,1(t− k) < µn,1 − δ −

√
ρ ln t

t− k

}
.
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for any ε > 0, we have that

lim sup
n→∞

P(Gn,3 > εs(n))≤ lim sup
n→∞

P

g(ρ)s(n)∑
k=s1(n)

n∑
t=k+1

1

{
µ̄n,1(t− k) < µn,1 − δ −

√
ρ ln t

t− k

}
> εs(n)


≤ lim sup

n→∞

1

εs1(n)

g(ρ)s1(n)∑
k=s1(n)

n∑
t=k+1

P

(
µ̄n,1(t− k) < µn,1 − δ −

√
ρ lnn

t− k

)

≤ lim sup
n→∞

g(ρ)− 1

ε
n exp

{
−ρ lnn

2σ2

}
= 0,

which implies that Gn,3/s1(n)→ 0 in probability as n→∞.

Summing up, we obtain that for any l ∈ (0, 1),

lim
n→∞

P
(
N2(n)

s1(n)
<

1

(1− l)

)
= 1.

Letting l to approach zero, we get the desired results (21). �
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