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Stable quantum interference enabled by coexisting detuned and
resonant STIRAPs*
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Inspired by a recent experiment [Phys. Rev. Lett. 122 253201(2019)] that an unprecedented quantum interference
was observed in the way of stimulated Raman adiabatic passage (STIRAP) due to the coexisting resonant- and detuned-
STIRAPs, we comprehensively study this effect. Our results uncover the scheme robustness towards any external-field
fluctuations coming from laser intensity noise and imperfect resonance condition, as well as the persistence of high-contrast
interference pattern even when more nearby excited levels are involved. We verify that an auxiliary dynamical phase
accumulated in hold time caused by the presence of the quasi-dark state in detuned-STIRAP can sensitively manipulate the
visibility and frequency of the interference pattern, representing a new hallmark to measure the hyperfine energy accurately.
The robust stability of the scheme comes from the intrinsic superiority embedded in the STIRAP mechanism that preserves
the coherence of population transfer, which promises a remarkable performance of quantum interference in a practical
implementation.
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1. Introduction

Quantum interference effect serving as one of the most in-
triguing features that can distinguish a quantum system from
classical candidates, has facilitated versatile applications in di-
verse systems, covering the range from electron source,[1,2]

single-atom-cavity system,[3] superconducting device[4–6] to
solid-spin system.[7–9] For realizing quantum interference, all
accessible routes on different platforms essentially require at
least more than two possible paths for transferring the informa-
tion, returning a representation of small forces or energies in
precision measurement,[10–12] quantum entanglement,[13–15]

or quantum sensing[16] at the microscopic level. In reality,
a high-quality interference based on the quality of a quan-
tum system is still very limited due to the imperfect stability
of external magnetic or optical fields under real implementa-
tion, which can sensitively dephase the interference by artifi-
cial measurement or noise effect.[17] Although a large num-
ber of approaches for overcoming the instability or imperfect
measurement have been proposed, e.g., quantum nondemoli-
tion measurement allows repeated detection of quantum states
without destroying them;[18] quantum plasmonics experiments
exhibit remarkable preservation of coherence,[19] a more pre-
cise atom interferometry is achieved by transferring the pho-
ton momentum to atoms while minimizing its uncertainty;[20]

however it is still challenging for realizing extremely stable
quantum interference in a well-defined isolated system.

Thanks to the contributions by Liu and coworkers, an un-

precedented observation of quantum interference phenomenon
induced by the stimulated Raman adiabatic passage (STIRAP)
was achieved recently,[21] arising a new avenue to precise mea-
surement utilizing an absolute adiabatic system.[22] The STI-
RAP technique, basically benefiting from a well coherence-
preservation, has been widely used for a deterministic popu-
lation transfer among ground states with high efficiency.[23]

Unfortunately, only (two-photon) resonant-STIRAP (or R-
STIRAP) is favored by previous studies owing to the exis-
tence of an absolute dark eigenstate which is totally isolated
from the influences of other bright eigenstates.[24] In contrast,
detuned-STIRAP (or D-STIRAP) enabled by other nearby en-
ergy levels is usually ignored[25,26] because of the coexisting
R-STIRAP making its impact less important. The achievement
of the STIRAP-induced quantum interference effect unexpect-
edly reveals the virtue of D-STIRAP even if the resonant trans-
fer is active, which can provide an accurate measurement for
the tiny energy difference between hyperfine ground states.

Inspired by their experimental facts,[21] in the present
work, we theoretically re-study the intriguing feature of quan-
tum interference induced by the coexisting resonant and de-
tuned STIRAPs in a multi-level Λ system. Our results can un-
cover the importance of D-STIRAP by adding a controllable
dynamical phase between two quantum paths. The observed
interference frequency and high-visibility that quantitatively
rely on the strength of two-photon detuning in D-STIRAP, can
be used as a reliable measurement for the ground-state energy
difference in a practical implementation. Furthermore, the in-

*Project supported by the National Natural Science Foundation of China (Grant Nos. 11474094 and 11104076) and the Science and Technology Commission of
Shanghai Municipality, China (Grant No. 18ZR1412800).

†Corresponding author. E-mail: jqian1982@gmail.com
© 2021 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb　　　http://cpb.iphy.ac.cn

053701-1

http://dx.doi.org/10.1088/1674-1056/abe0c5
mailto:jqian1982@gmail.com
http://iopscience.iop.org/cpb
http://cpb.iphy.ac.cn


Chin. Phys. B Vol. 30, No. 5 (2021) 053701

terference pattern obtained can persist a stable output against
significant stochastic fluctuations from external laser intensity
noise as well as the imperfect energy splitting of ground states.
These results mainly ascribe to the remarkable stability and
coherence possessed by a usual STIRAP system.[27,28] An ex-
tensive study with multiple excited states nearby also strongly
confirms the robustness of this STIRAP-induced quantum in-
terference in a practical multi-level atomic system.

2. Theoretical formulation
2.1. Reduced model and eigenenergy

As represented in Fig. 1(a), the energy levels |g0⟩, |er,d1⟩
and |gr,d⟩ describe the initial ground state, two middle ex-
cited states and two ground hyperfine substates. The pump
and Stokes lasers with Rabi frequencies Ωp(t) and Ωs(t) reso-
nantly coupling states |g0⟩ → |er⟩ and states |er⟩ → |gr⟩, serve
as the basis of a round-trip STIRAP transition. Typically
speaking, such a five-level model contains two STIRAP paths,
which are named as D-STIRAP and R-STIRAP, enabled by the
round-trip optical pulses as displayed in Fig. 1(b). More con-
cretely, R-STIRAP refers to the transition of |g0⟩� |er⟩� |gr⟩
with both one (or two)-photon detuning vanishing. Whereas
D-STIRAP carries out among states |g0⟩� |ed1⟩� |gd⟩, ac-
companied by the one (two)-photon detuning ∆1 (δ ) with
respect to |er⟩ (|gr⟩).[29] As for a practical one-photon de-
tuning ∆1 which is usually orders of magnitude larger than
the hyperfine energy difference δ caused by Zeeman split-
ting of an external magnetic field, we first safely ignore the
detuned state |ed1⟩ and pay attention to a four-level config-
uration. For example, in 87Rb atoms the level spacing be-
tween |er⟩ = |52P3/2,F = 2⟩ and |ed1⟩ = |52P3/2,F = 3⟩ is
about ∆1 ≈ 267 MHz[30] while the Zeeman splitting δ between
|gr⟩= |52S1/2,F = 2,mF = 0⟩ and |gd⟩= |52S1/2,F = 2,mF =

1⟩ is only scaling of a few kHz typically.[31] For a complete
study, the impact of multi-excited states nearby will leave for
discussion in Section 4.

In the rotating-wave frame, the four-level scheme Hamil-
tonian reads (h̄ = 1)[32]

ℋ̂=−δ σ̂gdgd +
1
2
[
Ωpσ̂g0er +Ωs(σ̂ergr + σ̂ergd)+h.c.

]
, (1)

where σ̂i j = |i⟩⟨ j| is the projection operator, and the two-
photon detuning δ characterizes the energy difference between
|gr⟩ and |gd⟩. For R-STIRAP with δ = 0, there exists a dark
eigenstate with its energy Ed = 0. At the same time, the adja-
cent magnetic substate |gd⟩ detuned by δ [̸= 0] to the resonant
level |gr⟩ permits the D-STIRAP, which supports a quasi-dark-
state (not eigenstate) energy Eqd. Here the round-trip STIRAP
pulses adopting a generalized form of[33]

Ωp(t) = A(t − τ)+A(t − τ −∆T −T ),

Ωs(t) = A(t)+A(t −2τ −∆T −T ),
(2)

are displayed in Fig. 1(b), where τ is the delayed time between
two pulses Ωp(s) and the amplitude function A(t) is given by

A(t)≡

Ω0,p(s) sin4
(

πt
T

)
, 06 t 6 T,

0, otherwise.
(3)

Here T is the common pulse length, Ω0,p(s) are the peak am-
plitudes of pump (Stokes) lasers.

Population initialized on state |g0⟩ individually undergo-
ing R-STIRAP and D-STIRAP paths will interfere with each
other. In this case, if we detect the final population on state
|g0⟩ after all pulses, an oscillation pattern occurs as a function
of the product of the hold time ∆T and the two-photon detun-
ing δ . Such an interfering effect can serve as a new way for
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Fig. 1. (a)–(b) A five-level Λ configuration and the atom-field interactions, carried out by a pair of round-trip STIRAP pulses composed by
two pumps and two Stokes lasers. Relevant parameters are described in the text. (c) The proof-of-principle experiment for realizing a STIRAP
atom interferometer based on quantum interfering of the population undergoing different STIRAP paths.
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realizing a STIRAP atom interferometer. To qualitatively un-
derstand its essence, we first separately study them in decom-
posed three-level models, as shown in the insets of Figs. 2(a)
and 2(b). The separated three-level Λ models that contain
states |g0⟩, |er⟩, |gr⟩ for R-STIRAP and states |g0⟩, |er⟩, |gd⟩
for D-STIRAP, can be described by the reduced three-level
Hamiltonians

ℋ̂r =
1
2
[
Ωpσ̂g0er +Ωsσ̂ergr +h.c.

]
, (4)

ℋ̂d = −δ σ̂gdgd +
1
2
[
Ωpσ̂g0er +Ωsσ̂ergd +h.c.

]
, (5)

and by diagonalizing Eqs. (4) and (5), we analytically solve all
eigenvalues, which are

ε0 = 0, ε± =±
√

Ωp
2 +Ωs

2/2, (6)

ε
′
0 =

(
δ + Ω̃ cos ζ

3

)
3

, ε
′
± =

(
δ + Ω̃ cos 2π∓ζ

3

)
3

, (7)

with

Ω̃ =
√

3(Ωp
2 +Ωs

2)+4δ 2,

ζ = 2π − arccos
δ

Ω̃ 3

(
9Ωs

2 −18Ωp
2 +8δ

2) .
A qualitative representation of eigenvalues is compara-

bly shown in Figs. 2(a)–2(b). It is clear that the dark energy
Ed ≡ ε0 persists zero due to the presence of an absolute zero-
energy dark eigenstate |Ed⟩ = 1√

Ω 2
p+Ω 2

s
(Ωs|g0⟩ −Ωp|gr⟩) in

R-STIRAP. While as for D-STIRAP there does not exist such
an eigenstate; however, we observe a quasi-dark state |Eqd⟩
with its energy Eqd shifted by δ during the hold time in which
Ωp =Ωs = 0. As displayed in Fig. 2(b), this quasi-dark energy
Eqd is marked by a grey shaded curve which composes parts of
eigenenergies ε ′0 and ε ′+ due to the emergence of two avoided
crossings between them. Once the system evolves along with
the quasi-dark state |Eqd⟩, it will get an extra phase ∆Φ due to
this shifted energy δ in Eqd. Finally, it leads to the population
interference with that evolves along the dark eigenstate after
the round-trip STIRAP pulses.

The proof-of-principle STIRAP atom interferometer can
also be indicated with the help of STIRAP interfering effect.
As demonstrated in Fig. 1(c), starting from the initialized state
|g0⟩ that the forward STIRAP pulse (Stokes exceeds pump)
acts as the first “beam splitter” (BS) that coherently splits into
two STIRAP paths, giving rise to a superposition state be-
tween |gr⟩ and |gd⟩. However, before the arrival of the sec-
ond inverse pulse pair, there exists a hold time ∆T enabling
a free evolution along with the absolute dark or quasi-dark
states, accordingly. Until reaching the second BS (pump ex-
ceeds Stokes), the population will converge at state |g0⟩ again.
If detecting the final population of |g0⟩ it reveals a clear inter-
ference pattern that strongly depends on the relative phase ∆Φ

accumulated between the two paths. This behavior is analo-
gous to the undergoing of different optical paths, which is the
so-called STIRAP atom interferometer. By detecting the in-
terference fringe, we can precisely obtain a relative phase ∆Φ

and other information.
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Fig. 2. Schematic time-dependent eigenvalues for (a) R-STIRAP and (b) D-
STIRAP, depending on two three-level Λ structures (see insets). Here the
dark-state energy Ed and quasi-dark-state energy Eqd are individually high-
lighted by the grey shaded region, respectively.

2.2. Coherent population transfer along individual STI-
RAP paths

In order to know the real population dynamics in reduced
models that could help us understand the observation of in-
terference more clearly, we begin with a study of population
transfer and eigenstate evolution in individual STIRAP paths.
Numerical results for the realistic time-dependent population
dynamics come from solving a master equation

dρ̂r(d)

dt
= i
[
ρ̂r(d),ℋ̂r(d)(t)

]
+ ℒ̂r(d), (8)

where the subscript r(d) refers to R (or D)-STIRAP, and the
density matrix ρ̂r(d) is of 3× 3 type. ℒ̂r(d) representing the
influence of spontaneous decay from state |er⟩, takes forms of

ℒ̂r = Γ ∑
j∈{g0,gr}

[
σ̂ jer ρ̂rσ̂er j −

1
2
(σ̂erer ρ̂r + ρ̂rσ̂erer)

]
, (9)

ℒ̂d = Γ ∑
j∈{g0,gd}

[
σ̂ jer ρ̂dσ̂er j −

1
2
(σ̂erer ρ̂d + ρ̂dσ̂erer)

]
, (10)

with Γ the decay rate. Pg0 , Per , Pgr(d) are defined by the diago-
nal elements of the density matrix representing the state popu-
lation. We show the real population dynamics in Fig. 3(a1) for
R-STIRAP that reveals a well-expected transfer perfectly co-
inciding with the ideal dark-eigenstate |Ed⟩ evolution as shown
in Fig. 3(a2). That fact confirms the coherent adiabatic popu-
lation transfer in R-STIRAP.

However, as for D-STIRAP there does not exist an abso-
lute single eigenstate for achieving the adiabatic transfer since
|ε ′0⟩, |ε ′±⟩ are all related to the lossy excited state |er⟩. Because
|er⟩ suffers from an inevitable loss Γ that may break the adi-
abaticity of STIRAP. Fortunately, thanks to the emergence of
avoided crossings by shift δ where the eigenenergies ε ′0 and
ε ′+ become degenerate. The expected population transfer la-
beled by the grey shaded curves as presented in Figs. 3(b2)–
3(b3), first obeys |g0⟩ of |ε ′0⟩, and then jumps to |gd⟩ of |ε ′+⟩
at the first avoided crossing. Subsequently, it returns back to
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|g0⟩ of |ε ′0⟩ at the second avoided crossing. Benefiting from
such a coherent population transfer between |ε ′0⟩ and |ε ′+⟩,
Fig. 3(b1) shows a perfect population dynamics for D-STIRAP
under δ = 0.05. Although the system does not contain a dark
eigenstate, we find that the population dynamics agrees well
with the evolution of quasi-dark state |Eqd⟩, as shown by grey
shaded curves in Figs. 3(b2)–3(b3). Therefore, our results in-
dicate that the coherent population transfer can be well kept
even in D-STIRAP as long as δ is suitable. Nevertheless, once
δ is increased to 0.5 that is comparable to Ω0 [= 1.0] which
may break the coherent transfer between |ε ′0⟩ and |ε ′+⟩ at the

avoided crossing point, the final population Pg0(∞) on state
|g0⟩ becomes lower, see Figs. 3(c1)–3(c3). This is made by a
larger energy gap at the avoided crossing when δ is increased,
which leads to the decoherence effect by the excited-state loss
in the process. To avoid this effect, we will adopt Ω0 = 5.0 in
the calculation.

So far, we have clearly shown the real population transfer
as well as the ideal eigenstate evolution. Our results verify that
both R-STIRAP and D-STIRAP can enable a perfect coherent
population transfer in its individual three-level configurations
as long as δ is appropriate.
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Fig. 3. (a1)–(a2) The real population dynamics and the evolution of zero-energy dark eigenstate |ε0⟩= |Ed⟩ in R-STIRAP. (b1)–(b3) For the three-
level D-STIRAP with δ = 0.05, the real population dynamics as well as the evolution of eigenstates |ε ′0⟩ and |ε ′+⟩. Especially, the evolution of
quasi-dark-state |Eqd⟩ is highlighted by the grey shaded curves, which contains parts of |ε ′0⟩ and |ε ′+⟩. Similarly, (c1)–(c3) show the case of δ = 0.5.
Here ∆T = 100,T = 100,τ = 20,Ω0 = 1 and Γ (Γ −1) treats as the frequency (time) unit throughout the paper.

2.3. Measuring interference pattern

To obtain the STIRAP interference pattern under the in-
fluence of the relative phase ∆Φ, we resort to the full system
and numerically solve the master equation[34]

dρ̂

dt
= i
[
ρ̂, ˆℋ(t)

]
+ ℒ̂(ρ̂), (11)

with ρ̂ a 4 × 4 density matrix referring to the basis of
{|g0⟩, |er⟩, |gr⟩, |gd⟩}, and the Lindblad operator ℒ̂ is given
by[35]

ℒ̂(ρ̂) = Γ ∑
j∈{g0,gr,gd}

[
σ̂ jer ρ̂σ̂er j −

1
2
(σ̂erer ρ̂ + ρ̂σ̂erer)

]
. (12)

Note that Γ is the spontaneous decay rate from the resonant
excited state |er⟩ determined by its lifetime, and the popula-
tion on state |g0⟩ defined by Pg0(t) = ρg0g0(t) serves as the
main observable quantity in detection. For t → ∞ it means the
final time. Here ρi j(t) (i, j ∈ (g0,er,gr,d) stands for the element

of density matrix ρ̂ , and ρ j j(t) means the | j⟩ state population.
As predicted by the experiment,[21] we numerically study the
relationship between Pg0(∞) and ∆T , and confirm its strongly
oscillating behavior.

Before quantitatively understanding this relationship, we
first solve for an analytical expression of the relative phase ∆Φ,
which is

∆Φ = Φd −Φr ≈ ϕ(δ )+δ ×∆T, (13)

with Φd and Φr the accumulated phases in each STIRAP path,
given by[36,37]

Φd =
∫ t

0
Eqd(t ′)dt ′ ≈ ϕ(δ )+δ ×∆T,

Φr =
∫ t

0
Ed(t ′)dt ′ = 0. (14)

Here the total evolution time before the measurement is
t = 2(T + τ)+∆T . Eqd(t) and Ed(t) in integrals stand for the
quasi-dark state and dark eigenstate energies, respectively; see

053701-4



Chin. Phys. B Vol. 30, No. 5 (2021) 053701

Fig. 2 and texts below. Note that no phase is accumulated in R-
STIRAP due to Ed = 0. However, for D-STIRAP we could get
a non-zero phase accumulation. By replacing Eqd(t), a more
concrete expression for calculating Φd is

Φd =
∫ T

0
ε
′
0(t

′)dt ′+
∫ T+2τ+∆T

T
ε
′
+(dt ′)dt ′

+
∫ 2T+2τ+∆T

T+2τ+∆T
ε
′
0(t

′)dt ′. (15)

We can define ϕ(δ ) =
∫ T

0 ε ′0(t
′)dt ′ +

∫ 2T+2τ+∆T
T+2τ+∆T ε ′0(t

′)dt ′ =
2
∫ T

0 ε ′0(t
′)dt ′ due to the symmetry of ε ′0(t) by round-

trip pulses, which describes the phase accumulated dur-
ing the atom-light interaction region. The second term∫ T+2τ+∆T

T ε ′+(dt ′)dt ′ ≈ δ ×∆T comes from a steady shift δ of
quasi-dark energy ε ′+ during the hold time ∆T region. There-
fore for a given δ , the phase difference ∆Φ between two paths
is only determined by δ ×∆T since ϕ(δ ) is unvaried. By ad-
justing ∆T , we observe a high-contrast interfering pattern, as
plotted in Fig. 4(a), where the peaks from constructive interfer-
ence locate exactly at ∆Φ = 2nπ (n ∈ integers). Note that the
constructive interference could be enabled by the least phase
difference with n = 1, which is ∆Φ = 2π = δ × (1/ f ), result-
ing in the oscillating frequency f of the interference pattern,
analytically expressed as

f = δ/2π. (16)

It is clear that f increases linearly with δ .
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Fig. 4. (a) The population Pg0(∞) oscillates after a round-trip STIRAP, as
a function of the hold time ∆T ∈ [100,1100] for δ = 0.05. A parallel axis
on top denotes the accumulated dynamical phase ∆Φ accordingly. (b) The
frequency of the interference oscillation with respect to δ is comparably
presented, where numerical and analytical results are respectively labeled
by solid curve and dots. Similar to (a), (c) also shows the interfering pattern
yet with the variation of δ . Here ∆T = 100, Ω0 = Ω0,p(s) = 5.0.

A numerical verification as presented in Fig. 4(b) also
shows a robust linear tendency between f and δ . In Fig. 4(b),
the analytical expression of Eq. (16) is plotted by a solid line,
while numerical results (black dots) are obtained from the
frequency spectrum analysis when transforming into the fre-
quency domain by Fourier transform. For every δ , it is possi-
ble to get a steady interference oscillation pattern within a hold

time ∆T , like in Fig. 4(a). That fact, on one hand, provides a
reliable determination of the Zeeman splitting energy δ under
an adjustable external magnetic field; on the other hand, it in-
teractively returns a high-contrast quantum interference effect
for further practical applications. This visual STIRAP inter-
ference pattern can also be observed when transferring to the
frame with respect to δ since ∆Φ is also δ -dependent. By
scanning the hyperfine energy δ , a high-contrast interfering
pattern can also be observed as shown in Fig. 4(c). However,
this pattern turns to be a quick amplitude-damping behavior
with the increase of |δ | due to the breakup of coherence be-
tween R-STIRAP and D-STIRAP. So only around the two-
photon resonance, the interference pattern is best.

Here the pattern contrast or so-called visibility during a
finite hold time ∆T given by[38]

vis(∆T ) =
Pmax

g0 −Pmin
g0

Pmax
g0 +Pmin

g0
, (17)

can serve as a key parameter for describing the interference
quality. Pmax(min)

g0 stands for the maximal (minimal) popula-
tion during the hold time. The amplitude damping observed
in Fig. 4(c) is due to the competing effect between R-STIRAP
and D-STIRAP. When |δ | is small and appropriate, the pop-
ulation can be transferred along both paths efficiently as dis-
played in Figs. 3(a1) and 3(b1), arising a high-contrast inter-
fering pattern. However, if |δ | is far from resonance, only the
R-STIRAP will play a dominant role rather than the inefficient
D-STIRAP, which would deeply lower the interfering ampli-
tude as well as its visibility. The limit case is the atomic popu-
lation would transfer along single three-level R-STIRAP path
and finally return back to state |g0⟩ without showing a visible
quantum interference pattern. A detailed discussion for co-
herent population transfer of individual R- and D-STIRAP has
been presented in Subsection 2.2.

3. Stable quantum interference
As have been shown in Ref. [39], the use of stabilized

lasers is important for continuous measurement feedback in
matter-wave interferometry. Due to the high requirement of
measurement accuracy, any shift of interference fringe may
return back necessary information about, e.g., hyperfine split-
ting energy, additional optical phase, which quantitatively de-
termines the measurement quality. It is obvious that the hy-
perfine energy δ can be directly determined by measuring
the frequency variation of the interference signal.[40] And the
phase shift accomplished via a wavelength-modulated optical
beam can be detected by solving the sequential interference
signals that are quadrature with each other.[41] However, the
laser system in the experiment can hardly acquire absolute sta-
bility because of the intensity noise even with the use of laser-
frequency stabilization technique, which possibly destroys sta-
ble interference output. This noise may lead to a stochastic
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fluctuation to the laser Rabi frequency, or arising an imperfect
two-photon resonance that breaks the dark state. It is clearly
shown that benefiting from the optimal coherent population
transfer based on two individual STIRAP paths our scheme
can manifest an unprecedented stabilization towards stochas-
tic fluctuations coming from the intensity noise as well as from
imperfect hyperfine energy splitting.

3.1. Fluctuation from laser intensity noise

To verify that, we add significant fluctuations to the peak
intensity of laser pulses by adopting the expression of

Ω
′
p(s)(t) = Ωp(s)(t)+δΩp(s)(t), (18)

with the perturbation term δΩp(s) adopted from a range of
[−δΩ ,δΩ ] and δΩ is chosen to be the maximal modu-
lation amplitude. For comparison, we numerically study
two ways of adding this laser intensity noise: i.e., δΩp(s)

is a time-dependent stochastic value within [−δΩ ,δΩ ]; or
δΩp(s) is modified to be a regular sinusoidal function which
is δΩp(s)(t) = δΩ sinωt,[42] and the frequency ω is arbitrary.
Here ω = π/5. In the calculation, the maximal modulation
amplitudes are δΩ = 0.2Ω0 and 0.5Ω0

[43] in cases (b) and (c)
for comparing the variation with stronger fluctuations.

In Fig. 5, case (a) [the first column] represents the original
laser pulse profile (Fig. 5(a1)), the realistic population dynam-
ics under different hold times (Figs. 5(a2)–5(a5)), and the ex-
pected interference pattern (Fig. 5(a6)) under the condition of
no fluctuation. Due to the change of hold time that gives rise
to different accumulated phases in D-STIRAP, the final popu-
lation on state Pg0(∞)(red-solid in Figs. 5(a2)–5(a5)) reveals a
∆T -dependent character, agreeing with the oscillating behav-
ior in Fig. 5(a6). Furthermore, even under strong stochastic
fluctuations to Ωp(s)(t), see the second and fourth columns of
Fig. 5, where δΩ = (0.2,0.5)Ω0, our results confirm that the
population dynamics as well as the interference pattern do not
change at all, which are the same as the findings in Figs. 5(a2)–
5(a6) with no fluctuations. The reason for that remarkable
preservation of high-quality interference (black-solid) as dis-
played in Figs. 5(b6) and 5(c6) should be understood by the
phase accumulation during the hold time ∆T , which critically
depends on the quasi-dark energy Eqd. If δΩs(p) = 0, the phase
difference shows a precise relation with respect to the splitting
δ . However, as δΩs(p) ̸= 0, it will lead to an extra perturbed
phase. Thanks to a stochastic fluctuation that arises a com-
plete compensation of the phase change on average, the system
could sustain the usual unperturbed phase difference.
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Fig. 5. (a1) The original laser pulses without fluctuations and ∆T = 100, the same as shown in Fig. 1(b). (a2)–(a5) The corresponding population dynamics
of Pg0(t) (red-solid), Pgr (blue-dashed), Pgd (black-dash-dotted), Per (green-dotted) under different hold time ∆T = 100,200,300,400, respectively. The
detection time is set to be tdet = 2(T + τ)+∆T after pulses. (a6) A high-contrast interference pattern vs. the hold time ∆T by detecting the final population
Pg0(∞). Similarly, case (b) shows the modified laser pulses Ω ′

p(t) (red) and Ω ′
s(t) (blue) as well as the population dynamics, under stochastic fluctuations

(second column) and sinusoidal modulation (third column), in which the modulation amplitude δΩp(s)(t) ∈ [−δΩ ,δΩ ], and δΩ = 0.2Ω0. The resulting
interference pattern is comparably shown in (b6) with the cases of stochastic fluctuations (black-solid) and sinusoidal modulation (blue-dashed). Case (c)
represents similar results with respect to case (b), except for a stronger modulation amplitude δΩ = 0.5Ω0. Here δ = 0.05, Ω0 = 5.0 are constant.
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Nevertheless, if the perturbation is replaced by a regular
sinusoidal modulation, as plotted in Figs. 5(b12) and 5(c12)
with the same amplitudes δΩ/Ω0 = 0.2 and 0.5, we observe
that the population dynamics is strongly impacted by the si-
nusoidal modulation, resulting in a thorough breakdown of
the interference pattern (blue-dashed curves in Figs. 5(b6) and
5(c6)). Because it is difficult to exactly overcome the phase
accumulation for a sinusoidal modulation during the evolu-
tion. We could expect a more visible interference output if
the modulation frequency ω is increased. Since a larger ω

leads to a fast modulation to the pulses that is more similar
to a stochastic perturbation, the resulting interference quality
will be improved.

To our knowledge, a typical external noise is stochastic
not regular. Therefore, our protocol can deservedly exhibit ro-
bust stability towards arbitrary stochastic fluctuations from the
laser intensity noise, preserving a high-contrast interference
output.

3.2. Imperfect stability from Zeeman splitting states

In fact, the Zeeman splitting δ can also be disturbed due
to the instability of the external magnetic field, probably suf-
fering from a stochastic shift δ ′ to the splitting level. In that
case, for the R-STIRAP path, the two-photon resonance con-
dition is perturbed by a stochastic detuning δ ′, leading to the
Hamiltonian ℋ̂r described by

ℋ̂r =−δ
′
σ̂grgr +

1
2
[
Ωpσ̂g0er +Ωsσ̂ergr +h.c.

]
, (19)

and for D-STIRAP the level shift turns to be δ + δ ′, and its
Hamiltonian ℋ̂d becomes

ℋ̂d =−(δ +δ
′)σ̂gdgd +

1
2
[
Ωpσ̂g0er +Ωsσ̂ergd +h.c.

]
. (20)

Intuitively such fluctuation will influence the population
transfer along R-STIRAP and D-STIRAP paths simultane-
ously, lowering the conversion efficiency. However, we show
that due to the randomness of fluctuations that can be almost
overcome on average, our scheme is able to maintain an ob-
servable quantum interference pattern even under very strong
energy-level disturbance. Relevant numerical results are sum-
marized in Fig. 6, where the time-dependent population trans-
fer Pg0(t) along each STIRAP path as well as the final in-
terference pattern are separately displayed. In the calcula-
tion, the random number δ ′ is created within the range of
[−0.5,0.5]δ by using the random number generator in Mat-
lab. Figures 6(a1) and 6(a2) show two sets of random numbers
δ ′(t) for δ = 0.05 and 0.5 respectively. When the Zeeman
splitting δ = 0.05(small), our results verify that such fluctua-
tion δ ′ arises no visible changes, as represented in Figs. 6(b1)–
6(d1) and 6(b2)–6(d2). Our findings show that the population
dynamics for both R-STIRAP and D-STIRAP are perfectly
agreeable, giving rise to a high-contrast quantum interference,
see Figs. 6(d1) and 6(d2).

Moreover, if the original splitting energy is relatively
large, e.g., δ = 0.5, yet keeping δ < Ω0, the time-dependent
population dynamics Pg0(t) for individual R-STIRAP and D-
STIRAP paths still does not change much under the influence
of stronger fluctuations. However, the interference is totally
destroyed. This fact can be understood by combining with
Fig. 4(c), in which the interference visibility emerges a clear
reduction if |δ | is enhanced. Because the coherence between
R-STIRAP and D-STIRAP decreases as δ increases. A limi-
tation lies in if δ is far off-resonance that two STIRAP paths
separately perform an individual population transfer. To this
end, no interference will emerge between them.

100 200 300 400 100 200 300 400
0.992

0.993

100 200 300 400
DT DT DT DT

0

0.5

1.0

In
te

rf
e
re

n
c
e

100 200 300 400
0.992

0.993

0.994

0 100 200 300
t

0 100 200 300

0 100 200 300

0 100 200 300

0 100 200 300
t

0

0.5

1.0

P
o
p
u
la

ti
o
n
 

d
y
n
a
m

ic
s 
P
g

↼t
↽

P
o
p
u
la

ti
o
n
 

d
y
n
a
m

ic
s 
P
g

↼t
↽

δ
′↼
t↽

δ
′↼
t↽

0 100 200 300
0

0.5

1.0

0

0.5

1.0

0

0.5

1.0

0

0.5

1.0

0 100 200 300
t

0

0.5

1.0

0 100 200 300
0

0.5

1.0

0

0.5

1.0

0

0.5

1.0

0 100 150 200 250 300
Evolution time t Evolution time t

-0.05

0

0.05

0 5 0 50 100 150 200 250 300
-0.5

0

0.5

300 400 500 600
0.9996

0.9998

1.0000

300 400 500 600
0.9996

0.9998

1.0000

(b2)(b1)

(c2)(c1)

(d1) (d2)

(a2)

(c3) (c4)

(d3) (d4)

(a1)

(b3) (b4)

t

tt t t

Fig. 6. (a1) The random number δ ′ with time t. Here δ = 0.05 and δ ′/δ ∈ [−0.5,+0.5]. (b1)–(b2) The population dynamics Pg0(t) of R-STIRAP
and D-STIRAP without perturbation, i.e., δ ′ = 0. (c1)–(c2) are similar to (b1)–(b2) except for δ ′/δ ∈ [−0.5,+0.5]. Insets of (c1)–(c2) amplify
the population variation of Pg0(∞) within the range of t ∈ [300,600]. (d1)–(d2) The interference pattern without or with stochastic fluctuations δ ′

from unstable hyperfine splitting states. (a2)–(d4) present similar results yet with a stronger stochastic fluctuation δ = 0.5 and δ ′/δ ∈ [−0.5,+0.5].
Other parameters are Ω0 = 5.0, ∆T = 100.
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All in all, our protocol shows robust stability against
stochastic fluctuations from the unstable energy shifts. Even if
the two-photon resonance can not be preserved perfectly, the
production of quantum interference pattern is still robust. The
only way for breaking such quantum interference is making
two-path decoherence, e.g., via a bigger ground energy split-
ting δ . Therefore, once δ is appropriately chosen, the stability
of our protocol against fluctuations is robust.

4. Nearby excited levels
Before ending, we extend our model to a generalized

multi-level system with more than one neighboring excited
states. To this end, the D-STIRAP will follow the path of
|g0⟩� |edn⟩� |gd⟩, in which states |edn⟩ (n = 1,2, . . .) stand
for the nearby multiple excited states. ∆n is introduced to ex-
press the interstate energy spacing and consequently the de-
tuning of each state |edn⟩ is described by ∑

n
j=1 ∆ j. There-

fore, the systematic Hamiltonian ℋ̂ [Eq. (1)] should be re-
placed by ℋ̂′ = ℋ̂+ ℋ̂m in which the additional term ℋ̂m

stands for the auxiliary energy shift caused by the nearby ex-
cited states |edn⟩. For n = 1, ℋ̂m =−∆1σ̂ed1ed1 and for n = 2,
ℋ̂m =−∆1σ̂ed1ed1 −(∆1+∆2)σ̂ed2ed2 . By inserting ℋ̂′ into the
master equation, we are able to solve the interference pattern
as expected. Note that the spontaneous dissipation from all ex-
cited states |er⟩ and |edn⟩ should be considered. Here ∆ j = ∆

is assumed for simplicity.
Figure 7 presents the variation of pattern visibility (blue)

as well as pattern frequency (red) when more excited levels
are involved. Here we take |ed1⟩ and |ed2⟩ as examples, which
means it exists two D-STIRAP routes by following |g0⟩ �
|ed1⟩ � |gd⟩ and |g0⟩ � |ed2⟩ � |gd⟩. The corresponding
one-photon detunings are ∆1 and ∆1 +∆2. A quick search of
Fig. 7(a) arises a prediction that the visibility grows under the
help of multiple middle levels. For a reduced four-level model
with |er⟩, we find the final visibility is only vis = 0.9191 (not
shown). However, the presence of multi-levels adds auxiliary
D-STIRAP paths. e.g., for n = 1 vis ≈ 0.92 that slightly varies
with ∆, and for n = 2 the combination of |g0⟩� |ed1⟩� |gd⟩

and |g0⟩� |ed2⟩� |gd⟩ has raised the pattern vis to 0.9617
(blue-dashed). An additional merit lies in the persistence of
high visibility no matter how to change its spacing ∆ . That fact
strongly verifies the robustness of our scheme under the influ-
ence of nearby excited levels. Note that we choose ∆ ∈ [1,100]
here for meeting the validity of the four-level model as pro-
posed in Subsection 2.1, but our conclusion can be applied for
a system with more hyperfine excited levels. In addition, the
oscillation frequency of the interference pattern also keeps un-
varied in different multi-level schemes, and perfectly agrees
with the theoretical formula f = δ/2π ≈ 0.008 (δ = 0.05) as
expected. Figures 7(b1)–7(b3) and 7(c1)–7(c3) fully represent
the high-contrast quantum interference pattern under n= 1 and
2 for different detunings ∆ values, which perfectly agrees with
our theoretical analysis.

Finally, we carry out a brief numerical estimation based
on relevant experimental parameters of 87Rb atoms. Choosing
typical energy levels such as |g0⟩ = |5S1/2,F = 1,mF = −1⟩,
|gr⟩ = |5S1/2,F = 2,mF = 0⟩, |gd⟩ = |5S1/2,F = 2,mF = 1⟩
for ground states, and |er⟩ = |5P3/2,F = 2⟩ for the reso-
nant excited state, which determines the decay rate is about
Γ /2π = 6.0 MHz. In the reduced four-level model, during
the hold time between ∆T ∈ [5.3,31.8] µs we can set a com-
mon laser amplitude Ω0/2π = 30 MHz with its pulse length
T = 2.65 µs and delay time τ = 0.53 µs. Note that the hyper-
fine splitting energy δ can be adjusted by an external magnetic
field. Here if δ = 1.88 MHz corresponding to δ/Γ = 0.05 as
adopted in our calculation, we find a round-trip STIRAP in-
terference gives to the pattern visibility about 0.9191 accom-
panied by a fast oscillating frequency f = 210 kHz. To im-
prove the visibility of interference pattern, one way is to ad-
just the splitting energy δ to be smaller. For example, when
δ = 264 kHz corresponds to δ/Γ ≈ 0.007, the resulting visi-
bility can be increased to 0.9813 yet suffering from a relatively
slow oscillating frequency f ≈ 29.4 kHz. To this end, we have
verified that such a high-contrast quantum interference com-
ing from STIRAP interfering can robustly exist in a practical
atomic system.
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5. Conclusion
To conclude, the high-quality quantum interference effect

can enhance the accuracy of quantum measurement for facili-
tating an accurate control of hyperfine structure or phase sen-
sitivity. Guided by recent experimental facts we thoroughly
investigate the formation of a high-contrast quantum inter-
ference effect with robust stability, which essentially benefits
from the intrinsic advantages of the STIRAP technology. First,
the scheme exhibits a clear interference pattern with very high
visibility, supporting a quantitative and non-destructive detec-
tion of hyperfine energy without destroying the coherence of
quantum states. Second, the production of quantum interfer-
ence has a well-preserved stabilization against any stochas-
tic fluctuations coming from the laser intensity noise and the
small shift of two-photon resonance. These facts are intrin-
sically enabled by a stable coherent population transfer in
STIRAP, which is greatly isolated from external fluctuations.
Third, the robustness of our scheme is also revealed when
more excited states are involved in a real implementation, fa-
cilitating an enhancement for the interference visibility due to
the assistance from multiple D-STIRAP paths. This protocol
takes an important step towards the development of a stabi-
lized STIRAP atom interferometry with ultrahigh precision for
future experimental explorations.
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[2] Bäuerle C, Christian Glattli D, Meunier T, Portier F, Roche P, Roulleau

P, Takada S and Waintal X 2018 Rep. Prog. Phys. 81 98a
[3] Tang J, Deng Y and Lee C 2019 Phys. Rev. Appl. 12 044065
[4] Tan X, Zhang D W, Zhang Z, Yu Y, Han S and Zhu S L 2014 Phys. Rev.

Lett. 112 027001
[5] Lecocq F, Ranzani L, Peterson G A, Cicak K, Simmonds R W, Teufel

J D and Aumentado J 2017 Phys. Rev. Appl. 7 024028
[6] Bagani K, Sarkar J, Uri A, Rappaport M L, Huber M E, Zeldov E and

Myasoedov Y 2019 Phys. Rev. Appl. 12 044062
[7] Bernien H, Childress L, Robledo L, Markham M, Twitchen D and Han-

son R 2012 Phys. Rev. Lett. 108 043604
[8] Rao D D B, Yang S and Wrachtrup J 2017 Phys. Rev. A 95 022310
[9] Miao K C, Bourassa A, Anderson C P, Whiteley S J, Crook A L, Bayliss

S L, Wolfowicz G, Thiering G, Udvarhelyi P, Ivady V, Abe H, Ohshima
T, Gali A and Awschalom D D 2019 Sci. Adv. 5 eaay0527

[10] Müller H, Peters A and Chu S 2010 Nature 463 926
[11] Brown R C, Wu S, Porto J V, Sansonetti C J, Simien C E, Brewer S M,

Tan J N and Gillaspy J D 2013 Phys. Rev. A 87 032504
[12] O’Malley P J J, Kelly J, Barends R, Campbell B, Chen Y, Chen Z,

Chiaro B, Dunsworth A, Fowler A G, Hoi I C, Jeffrey E, Megrant A,

Mutus J, Neill C, Quintana C, Roushan P, Sank D, Vainsencher A, Wen-
ner J, White T C, Korotkov A N, Cleland A N and Martinis J M 2015
Phys. Rev. Appl. 3 044009

[13] Ott J R, Mortensen N A and Lodahl P 2010 Phys. Rev. Lett. 105 090501
[14] Islam R, Ma R, Preiss P M, Tai M E, Lukin A, Rispoli M and Greiner M

2015 Nature 528 77
[15] Craddock A N, Hannegan J, Ornelas-Huerta D P, Siverns J D, Hachtel

A J, Goldschmidt E A, Porto J V, Quraishi Q and Rolston S L 2019
Phys. Rev. Lett. 123 213601

[16] Degen C L, Reinhard F and Cappellaro P 2017 Rev. Mod. Phys. 89
035002

[17] Comparat D 2020 Phys. Rev. A 101 023606
[18] Braginsky V B and Khalili F Y 1996 Rev. Mod. Phys. 68 1
[19] Tokpanov Y S, Fakonas J S, Vest B and Atwater H A 2019 Phys. Rev.

Appl. 12 044037
[20] McAlpine K E, Gochnauer D and Gupta S 2020 Phys. Rev. A 101

023614
[21] Liu L, Zhang D C, Yang H, Liu Y X, Nan J, Rui J, Zhao B and Pan J

W 2019 Phys. Rev. Lett. 122 253201
[22] Weitz M, Young B C and Chu S 1994 Phys. Rev. Lett. 73 2563
[23] Vitanov N V, Rangelov A A, Shore B W and Bergmann K 2017 Rev.

Mod. Phys. 89 015006
[24] Mark M J, Danzl J G, Haller E, Gustavsson M, Bouloufa N, Dulieu O,

Salami H, Bergeman T, Ritsch H, Hart R and Nägerl H C 2009 Appl.
Phys. B 95 219

[25] Vitanov N V and Shore B W 2006 Phys. Rev. A 73 053402
[26] Deng L and Nakajima T 2014 Phys. Rev. A 89 023406
[27] Bergmann K, Theuer H and Shore B W 1998 Rev. Mod. Phys. 70 1003
[28] Kotru K, Brown J M, Butts D L, Kinast J M and Stoner R E 2014 Phys.

Rev. A 90 053611
[29] Molony P K, Gregory P D, Ji Z, Lu B, Koppinger M P, Le Sueur C R,

Blackley C L, Hutson J M and Cornish S L 2014 Phys. Rev. Lett. 113
255301

[30] Auzinsh M, Berzins A, Ferber R, Gahbauer F, Kalvans L, Mozers A
and Spiss A 2015 Phys. Rev. A 91 053418

[31] Du Y X, Liang Z T, Huang W, Yan H and Zhu S L 2014 Phys. Rev. A
90 023821

[32] Martin J, Shore B W and Bergmann K 1995 Phys. Rev. A 52 583
[33] Ortiz S, Song Y, Wu J, Ivannikov V and Byrnes T 2018 Phys. Rev. A

98 043616
[34] Shore B W, Martin J, Fewell M P and Bergmann K 1995 Phys. Rev. A

52 566
[35] Manzano D 2020 AIP Adv. 10 106
[36] Møller D, Madsen L B and Mølmer K 2007 Phys. Rev. A 75 062302
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