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Dynamical phases in a one-dimensional chain of heterospecies Rydberg atoms
with next-nearest-neighbor interactions
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We theoretically investigate the dynamical phase diagram of a one-dimensional chain of laser-excited two-
species Rydberg atoms. The existence of a variety of unique dynamical phases in the experimentally achievable
parameter region is predicted under the mean-field approximation, and the change in those phases when the
effect of the next-nearest-neighbor interaction is included is further discussed. In particular, we find that the com-
petition of the strong Rydberg-Rydberg interactions and the optical excitation imbalance can lead to the presence
of complex multiple chaotic phases, which are highly sensitive to the initial Rydberg-state population and the
strength of the next-nearest-neighbor interactions.
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I. INTRODUCTION

Ultracold atoms combined with optical lattices [1–5] can
give rise to a clean and controllable platform for simulat-
ing and studying quantum many-body physics [6], capably
demonstrating various quantum phases and even the dynamics
of phase transitions. Recently, an efficient optical-lattice trap
for Rydberg atoms was realized in experiments [7], extending
quantum simulation research to the realm of Rydberg atom
physics. Differently from the commonly used ground-state
atoms, the giant dipole moment induced by highly excited
atomic states results in an interaction of unprecedented
magnitude and range between two Rydberg atoms, that is, the
Rydberg-Rydberg interaction (RRI) [8], which could further
lead to the Rydberg blockade effect [9]. This characteristic of
Rydberg atoms is conducive to simulation of strongly corre-
lated quantum many-body systems [10–13] and to realization
of nonequilibrium quantum phase transitions [14].

So far, little attention has been paid to the heterospecies
Rydberg lattice gas, most research has focused on the dy-
namical phases of single-species Rydberg lattice gases when
both strong RRIs and spontaneous emission effects are present
[15–20]. For a single-species Rydberg lattice gas, intrinsically,
only the strong RRIs in the nearest-neighbor (NN) sites
should be considered [12], since the long-range RRIs due to
next-nearest-neighbor (NNN) interactions are already orders
of magnitude smaller [21]. However, things will be quite
different for the heterospecies case. Here the heterospecies
case can be two Rydberg atoms of different atomic species
[22] or two same-species atoms occupied in different Rydberg
hyperfine states [23]. The different excitation frequencies
would disrupt the Rydberg blockade mechanism as well as
those phases existing in the single-species case. Moreover,
the RRIs between heterospecies Rydberg atoms can vary by
orders of magnitude [22,24], which means the NNN interaction
between two Rydberg atoms of the same species could be com-
parable to the NN interaction between heterospecies atoms,
and vice versa. So the effect of NNN interaction deserves to
be discussed in the lattice model of heterospecies Rydberg
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atoms. Especially, the importance of NNN interactions has
been demonstrated in a recent experiment showing that the
excitation dynamics could be significantly different from the
common cases [25].

In the present work we explore the dynamical phase
diagram of a one-dimensional (1D) chain of heterospecies
Rydberg atoms in an open environment. The Rydberg atoms of
two species are alternatively arranged in the 1D optical lattice,
with internal states being subjected to laser pumping and
spontaneous decay. By the mean-field approximation (MFA),
we predict the presence of a rich variety of dynamical phases,
involving three stable phases—the antiferromagnetic phase,
the bistable antiferromagnetic phase, and the tristable antifer-
romagnetic phase—and unstable phases whose dynamics can
change from ordinary oscillation to chaos in the strong-RRI
case. No uniform phase that presents in the single-species
case is found due to the heterospecies atomic excitations.
We investigate the impacts of repulsive and attractive NNN
interactions on these phases and find that stable phases prefer
repulsive ones. Especially, the chaotic phase has been shown
to have a high sensitivity to NNN interactions, which verifies
the necessity of including them in our model of a heterospecies
Rydberg atom chain.

The paper is organized as follows: In Sec. II we report a
scheme for presenting the exciting dynamics of a heterospecies
Rydberg atom chain and derive basic master equations, from
which the stationary-state solutions can be solved. In Secs. III
and IV, we investigate the change in phase diagrams without
and with the effect of NNN RRIs, respectively. In Sec. V, we
compare the different influences of repulsive and attractive
NNN RRIs on the chaotic phase. Finally, a brief conclusion is
given in Sec. VI.

II. SCHEME AND MASTER EQUATION

As shown in Fig. 1, the system we propose consists of
a chain formed by two-species Rydberg atoms, trapped in a
regular 1D lattice. Efficient trapping of single rubidium atoms
in a 1D optical lattice was initially realized in Ref. [7], and the
loading of different atoms can use a species-selective optical
lattice [26,27]. Here we assume that the atoms of species A

and B are alternatively arranged at the lattice sites with a filling
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FIG. 1. (Color online) Schematic of two-species atoms (A and
B) trapped in a 1D optical lattice. Atoms are excited from the
ground state |gj 〉 to the Rydberg state |rj 〉 by different laser Rabi
frequencies �A and �B . Simultaneously, they are suffering from
nonignorable spontaneous decay γ . The NN and NNN RRI strengths
are, respectively, labeled UAB and UAA(BB), representing the inter-
species short-distance and intraspecies long-distance interactions.
The one-photon detunings between the laser frequency and the atomic
transition frequency are denoted �A and �B , differently.

factor of one atom per site and the hopping of an atom into
an adjacent filled site is forbidden by the large depth of the
lattice. Each atom j is modeled as a two-level configuration,
composed of a ground state |gj 〉 and a Rydberg state |rj 〉,
whose transition is performed by an off-resonant laser beam
with Rabi frequency �j and one-photon detuning �j . For the
lattice structure here, if we replace the site index with the atom
species inside, i.e., j = A, we have j ± 1 = B and j ± 2 = A.
It is also noteworthy that the assumption of two-species atoms
can be equivalent to a scheme of same-ground-state atoms
excited to two different Rydberg hyperfine states [23].

In the absence of external fields, two atoms prepared in the
nS-Rydberg states generally interact via a nonresonant van der
Waals (vdW) RRI, described by Uij = C

(ij )
6 /|xi − xj |6, where

xi(j ) represents the position of atom i(j ) in the lattice and C
(ij )
6

the coefficient for dispersion. To our knowledge, C
(ij )
6 is well

defined [28] and measured [29] in the case of same species
of atoms, such as Rb-Rb, Na-Na, K-K, Li-Li, and Cs-Cs.
However, as for different atomic species or different hyperfine
states, C

(ij )
6 changes significantly [22,30,31]. In this paper,

we focus on two vdW-type interactions: (i) the interspecies
interaction between NN sites of different atomic species,
denoted Uj,j±1 = UAB ; and (ii) the intraspecies interaction
between NNN sites of the same atomic species, denoted
Uj,j±2 = UAA or UBB .

Here we consider both NN and NNN interactions, since
the long-range NNN RRIs between same-species atoms are no
longer negligible once the intraspecies interactions are much
stronger than the interspecies ones. Other longer-range in-
teractions, such as the next-next-nearest-neighbor interaction,
are smaller than the NNN interactions by at least a factor
of (C(AB)

6 /C
(AA(BB))
6 )(2/3)6 and, therefore, are negligible here.

Then in a frame rotating at the laser frequency, the Hamiltonian
of the system reads

H =
∑

j

(
Hj +

∑
k=j±1,j±2

Ujk|rj 〉〈rj | ⊗ |rk〉〈rk|
)

, (1)

where Hj = −�j |rj 〉〈rj | + �j (|gj 〉〈rj | + |rj 〉〈gj |), account-
ing for the single atom-laser coupling; Ujk = UAB for NN

RRIs with k = j ± 1; and Ujk = UAA or UBB for NNN RRIs
with k = j ± 2. The system dynamics is described by the
master equation of the density matrix operator ρ [32],

∂tρ = −i[H,ρ] + L[ρ], (2)

where the effect of the spontaneous decay from the unstable
state |rj 〉 at the rate γ is included by the Lindblad operator,

L [ρ] = γ
∑

j

(
−1

2
{|rj 〉〈rj |,ρ} + |gj 〉〈rj |ρ|rj 〉〈gj |

)
. (3)

Due to the enormous Hilbert space, it is hard to perform an
exact numerical simulation of the above chain model with a
large atom number, so we apply the MFA here. Compared with
the method of Monte Carlo simulations [18], as the interatomic
quantum correlation and its fluctuations are ignored, the MFA
may fail to predict the phase transition under the same system
parameters or to obtain the exact boundary in the phase
diagram. However, the MFA is still regarded as a reliable and
adequate tool to qualitatively describe the phase diagram and,
at least, to predict the existence of different kinds of steady-
state phases [15–17]. Under the MFA we can neglect the
intersite quantum correlation and factorize the density matrix
at each site, ρ = ⊗jρj [33,34]. For atom j , the second term
in Eq. (1) should be replaced with |rj 〉〈rj |

∑
k=j±1,j±2 ρk,rr ,

where ρk,ab=gg,gr,rg,rr represents the density matrix elements
for a two-level atom at site k. Furthermore, we consider two
sublattices filled with atoms A and B, respectively, as shown in
Fig. 1. The excitation probabilities of their Rydberg states are
different. This is why the uniform phase cannot be found here.
We assume that the NNN interactions between same-species
atoms are also relatively weak so the induced blockade effect
is ignored.

With all the approximations and assumptions above, the
motional equations of the density matrix can be derived as

ρ̇A,rr = 2�AρI
A,gr − ρA,rr , (4)

ρ̇A,gr = i�A,effρA,gr + i�A(1 − 2ρA,rr ) − 1
2ρA,gr , (5)

ρ̇B,rr = 2�BρI
B,gr − ρB,rr , (6)

ρ̇B,gr = i�B,effρB,gr + i�B(1 − 2ρB,rr ) − 1
2ρB,gr , (7)

where all the frequencies are scaled by the decay rate γ and
the effective detunings are defined as

�A,eff = �A − UAAρA,rr − UABρB,rr , (8)

�B,eff = �B − UBBρB,rr − UABρA,rr , (9)

from which we find that the bare detunings are shifted by
two nonlinear terms that are proportional to the NN and NNN
interactions, respectively.

In principle, via an adjustment of bare detunings �A and
�B , one can compensate for the density-dependent frequency
shifts caused by RRIs so that the effective detunings may
vanish. This is the internal working of the antiblockade
effect in a Rydberg chain of single-species atoms [35,36].
However, both intraspecies and interspecies RRIs work here,
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TABLE I. Eight types of possible dynamical phases obtained in
a chain of heterospecies Rydberg atoms with the impact of NN and
NNN RRIs. PRN represents the total number of physical roots of
Eqs. (10) and (11) (see text), and SRN and USRN stand for the
number of stable and unstable roots, respectively. The phases are
stable if SRN is larger than USRN. The three stable phases are labeled
nAF; the five unstable phases, CHn.

Phase

Stable Unstable

PRN 1 3 5 1 3 3 5 5
SRN 1 2 3 0 0 1 1 2
USRN 0 1 2 1 3 2 4 3
Label 1AF 2AF 3AF CH1 CH2 CH3 CH4 CH5

which induces a complicated nonlinear coupling, making the
compensation effect elusive.

We begin our discussion of the dynamical phase diagram
of such an open system by studying the features of the steady-
state solutions of Eqs. (4)–(7). When we set ρ̇k,r(g)r = 0, these
equations can be simplified to a pair of coupled stationary
equations,

(
�s

A,eff

)2 = 4�2
A

(
1 − 2ρs

A,rr

) − ρs
A,rr

4ρs
A,rr

, (10)

(
�s

B,eff

)2 = 4�2
B

(
1 − 2ρs

B,rr

) − ρs
B,rr

4ρs
B,rr

, (11)

where the superscript s denotes a steady-state solution.
�s

A(B),eff is defined as in (8) and (9) by replacing ρA(B),rr with
ρs

A(B),rr . We find that Eqs. (10) and (11) can give nine pairs
of roots (ρs

A,rr and ρs
B,rr ), in which only the real ones with

values belonging to [0,0.5] are physical, since for a single
two-level atom the excitation probability saturates at 0.5 [37].
The stability of these roots can be tested by adding small
perturbations and seeing whether the system can eventually
be settled with these solutions. A detailed description of
studying the stability criterion is presented elsewhere, e.g.,
the Supplementary Material to Ref. [15].

We classify all the dynamical phases according to the
number of steady-state solutions as well as their dynamical
features. As summarized in Table I, the total numbers of
physical roots (PRN) are displayed in the first row of data, and
the numbers of stable (SRN) and unstable (USRN) roots, in the
second and third rows of data, respectively. If SRN > USRN,
the dynamical phase is a stable phase; if SRN < USRN, it is
an unstable phase. With the given parameters, in the current
scheme we find a total of three stable and five unstable
phases. Stable phases include the antiferromagnetic phase
(labeled 1AF), with SRN = 1 and USRN = 0; the bistable
antiferromagnetic phase (labeled 2AF), with SRN = 2 and
USRN = 1; and the tristable antiferromagnetic phase (labeled
3AF), with SRN = 3 and USRN = 2. The five unstable
phases are, respectively, labeled CH1, CH2, CH3, CH4, and
CH5, and their SRN and USRN are listed in Table I. In the
following discussion, we show that the dynamics of these
stable phases always settles on one of the stable roots in all
cases. However, the dynamics of the unstable phases is quite
different. In the weak-interaction case, where the RRIs are

FIG. 2. (Color online) Stationary solutions ρs
A,rr (red curves) and

ρs
B,rr (blue curves) as a function of detuning �B when atoms A are

assumed to be resonantly excited. (a) Weak-interaction case with
UAB = 10 and � = 2; (b) strong-interaction case with UAB = 50 and
� = 2. Stable and unstable solutions, respectively, are shown by solid
and dotted curves. Insets in (a): The regular oscillatory dynamics and
its single-frequency spectrum are observed at �B = 3.0, labeled “A”
in the figure. Insets in (b): The chaotic dynamics and its continuous
frequency spectrum are observed at �B = 6.0, labeled “B” in the
figure. The initial condition is ρt=0

A,rr = ρt=0
B,rr = 0.1. The decay rate γ

is the frequency unit.

comparable to or lower than the optical coupling strength,
the unstable phases tend to show simply oscillatory dynamics,
while in the strong-interaction case, in which the RRIs play the
dominant roles, that is, UAB � �A,�B , the system dynamics
easily tends to be chaotic. The significant difference between
the chaotic dynamics and the ordinary oscillatory dynamics is
the continuous frequency spectrum without any characteristic
frequency as shown in the insets in Fig. 2. Besides, we note
that although it is demanding to implement, for phases CH3,
CH4, and CH5, if the system is initially prepared properly, very
close to their stable roots, the dynamics may also be stable and
without oscillation.

In what follows we discuss the conditions of the emergence
of these phases and study their changes with and without the
effect of NNN RRIs by numerically simulating the system
dynamics. Before this, we have to make a realistic estimation
of all parameters required in the calculation. We use the
decay rate γ as the frequency unit and assume the condition
�A = �B = � with � = 10.0 for strong-optical-coupling
cases and � = 2.0 for weak-coupling cases. In addition,
strong and weak NN RRIs are represented by UAB = 50.0 and
UAB = 10.0, respectively. The validity of these parameters
can be verified by assuming that γ = 0.1 MHz; the resulting
RRIs are UAB = 5.0 or 1.0 MHz using the lattice spacing
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d = 3.84 or 5.0 μm. The required vdW interaction coefficient
is C

(ij )
6 = 16 GHz μm6, as suggested in Ref. [38].

III. PHASE DIAGRAM WITHOUT NNN RRIs

In this section we focus on the case without the impact of
NNN RRIs, i.e., UAA = UBB = 0. In experiments, NN RRIs
can be controlled directly by changing the interatomic distance
[29] and the detunings �A and �B can be easily adjusted by
changing the laser frequencies. We first fix �A = 0 (atom A
is resonantly excited) and tune �B from −20 to 40 to see
the change in the steady Rydberg population of different atom
species given by Eqs. (10) and (11).

In Fig. 2 we present the stationary Rydberg state popu-
lations with respect to �B , with the weak-interaction case
(UAB = 10.0 and � = 2) in Fig. 2(a) and the strong-interaction
case (UAB = 50.0 and � = 2) in Fig. 2(b). Stable and unstable
dynamical phases are, respectively, represented by solid and
dotted curves. For the weak-interaction case when �B < 0
or �B > 8.5, corresponding to the far-off-resonance cases
evaluated by the effective detuning �s

B,eff , there exists merely
the 1AF phase with its dominant Rydberg probability in atom
A. As �B grows from negative to small positive values, we
find that the increase in ρs

B,rr will make �s
A,eff(∝−UABρs

B,rr )
nonzero, which further yields the excitation probability ex-
change between atom A and atom B. However, as �B increases
to regime I, where �s

A,eff and �s
B,eff are comparable, the

steady-state solutions are found to become unstable, labeled
by the oscillatory phase CH1. In this case the system dynamics
can be characterized by the single-frequency oscillations due
to the presence of weak Rydberg interactions, as displayed in
the inset in Fig. 2(a). This finding shows similar results to the
single-species atom case, in which the dynamics of the system
will be periodically oscillating if its corresponding steady-state
solutions become unstable [see Fig. 2(b) in Ref. [15]).

We now investigate the strong-interaction case, in which
the Rydberg blockade effect could play a significant role in
the system dynamics. Similarly to the result in the weak-
interaction case, at a negative or large positive �B the system
tends to stay in the 1AF phase. We then pay more attention
to the center region, where �s

A,eff ≈ �s
B,eff is satisfied. This

region can be divided into two parts.
In part I there exists only the 2AF phase, with two

stable roots (ρs
A,rr > ρs

B,rr and ρs
A,rr < ρs

B,rr ) as well as one
unstable root. The system will selectively settle on one of
the two stable roots, accounting for the initial population
preparations.

In part II the phase transitions from CH3 to CH1. CH3,
corresponding to one stable and two unstable roots, is an
unstable phase. Except that initially the system is prepared in
a state near the stable root, the system dynamics is oscillatory
and trends to be chaotic in the strong-interaction limit UAB �
�, characterized by a continuous spectrum in the frequency
domain as presented in the insets in Fig. 2(b). As �B increases,
no stable solution is supported by the given parameters and the
phase changes to CH1. However, owing to the strong RRIs,
this CH1 phase also shows chaotic dynamics instead of the
regular oscillations in the weak-interaction cases.

In Fig. 3 we plot the phase diagrams in a two-dimensional
(2D) parameter space of �A and �B , performing a comparison

FIG. 3. (Color online) Phase diagram in the 2D parameter space
(�A,�B ). Left-column diagrams are obtained from the strong-
interaction case with (a) UAB = 50.0, � = 2.0 and (c) UAB = 50.0,
� = 10.0. Right-column diagrams are from the weak-interaction case
with (b) UAB = 10.0, � = 2.0 and (d) UAB = 10.0, � = 10.0. γ is
the frequency unit.

among the four cases. In the case in Fig. 3(b), where the NN
interaction strength UAB = 10 and the optical coupling � = 2,
we find that the phase diagram is mainly occupied by the stable
phase 1AF, and the unstable phase CH1 survives only in two
narrow areas where �A and �B have opposite signs. When
the optical coupling increases enough to be comparable to the
interaction strength, as in Fig. 3(d), with UAB = � = 10, the
regions of CH1 expand, but 1AF is still the dominant phase.
We stress that due to the low ratio of interaction UAB and
�, in both cases, Figs. 3(b) and 3(d), the dynamics of the
unstable phase CH1 is only normal oscillation rather than
chaos. When we turn to a case with a very strong interaction
strength and a weak optical coupling, such as that in Fig. 3(a),
with UAB = 50 and � = 2, besides phases 1AF and CH1,
the phase diagram shows a large number of unique phases,
including the bistable phase 2AF and unstable phases CH2,
CH3, and CH4. Moreover, we find that the dynamics of these
unstable phases is no longer regular oscillations, but chaotic
oscillations without any characteristic frequencies, which is
similar to the case shown in the inset in Fig. 2(b). In the case
in Fig. 3(c) we keep UAB = 50 and increase � to 10. Due to the
narrowed gap between the interaction strength and the optical
coupling, the phase diagram degenerates and resembles those
for the cases in Figs. 3(b) and 3(d). CH1 becomes the only
survival unstable phase and 2AF shrinks into narrow areas
where the detunings of atoms A and B are almost equal. Also,
the dynamics of CH1 returns to normal oscillation, which
reconfirms that the condition for arising chaos in unstable
phases is the strong-interaction limit UAB � �.

IV. PHASE DIAGRAM WITH CONSIDERABLE NNN RRIs

In the following, we consider the effect of NNN RRIs on
the phase diagram of the system. For simplicity, we assume
that the long-range NNN RRIs for atoms of different species
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FIG. 4. (Color online) Stationary Rydberg population ρs
A,rr (red

curves) and ρs
B,rr (blue curves) with respect to �B . Stable and unstable

solutions are represented by solid and dashed curves, respectively.
The long-range NNN interaction is (a, c) U0 = 0.5UAB and (b, d)
U0 = −0.5UAB . (a, b) Weak-interaction case with UAB = 10.0 and
� = 2.0; (c, d) strong-interaction case with UAB = 50.0 and � = 2.0.
�A is fixed at 0 in all cases.

are equal and are half the NN RRIs, that is, UAA = UBB =
U0 = ±0.5UAB . Plus and minus signs represent repulsive and
attractive NNN RRIs, respectively.

Figure 4 shows the change in the steady-state Rydberg
populations ρs

A,rr and ρs
B,rr when the RRIs between NNN-site

atoms are included. Figures 4(a) and 4(c) show the weak-
NN-interaction case (UAB = 10) and the strong-interaction
case (UAB = 50), respectively. In both cases we set the NNN
interaction to be repulsive (U0 = 0.5UAB ) and the detuning
�A = 0. The arrangement is similar for Figs. 4(b) and 4(d),
but with an attractive NNN interaction. Compared with Fig. 2,
which neglects the effect of NNN interactions, we observe a
significant decrease in population in atom A (shown by red
curves), particularly in the region of large detuning |�B |,
because according to Eq. (8), a repulsive U0 could make
the effective detuning �s

A,eff more negative in addition to the
existing negative shift caused by the NN interaction term. In the
middle region where �B is positive but small, we numerically
find �s

A,eff ≈ �s
B,eff , and a repulsive NNN interaction can

partially compensate for the detunings (e.g., �B can be
compensated by U0ρ

s
B,rr if ρs

A,rr is small), which gives rise to
a reduction in the number of unstable or multistable (bistable
or tristable) stationary solutions.

However, turning to the attractive case (U0 < 0) we find that
it changes significantly. Due to the different signs of the NNN
interaction and the NN interaction, the effective steady-state
atomic detunings can be rewritten as

�s
A,eff = �A + (|U0|ρs

A,rr − UABρs
B,rr

)
, (12)

�s
B,eff = �B + (|U0|ρs

B,rr − UABρs
A,rr

)
. (13)

Differently from the repulsive case, here the frequency shifts
caused by the NNN interaction and the NN interaction are
opposite. As demonstrated in Fig. 4(b), where UAB = 10.0 is
relatively weak, we see that ρs

A,rr can touch the peak value 0.5
again when the frequency shifts in the effective detuning �s

A,eff

FIG. 5. (Color online) Phase diagram in (�A,�B ) space by the
effect of repulsive and attractive NNN RRIs. (a, b) Plots correspond
to the case in Fig. 3(a), where UAB = 50.0 and � = 2.0; (c, d) to the
case in Fig. 3(c), where UAB = 50.0 and � = 10.0. Correspondingly,
we use the NNN RRIs U0 = 0.5UAB (repulsive) in (a) and (c) and
U0 = −0.5UAB (attractive) in (b) and (d).

caused by the NN interaction and NNN interaction cancel
each other. As |�B | approaches 0, ρs

A,rr becomes unstable and
shows a sharp drop, in which a clear population exchange oc-
curs between atom A and atom B. This is because atom B is al-
most resonantly excited instead of atom A when �s

B,eff is close
to 0, due to the offset effect of the NN and the NNN interactions
in �s

B,eff . With a larger UAB value this will, further, lead to
multiple unstable solutions, as displayed in Fig. 4(d), where the
dynamics of the system becomes more complex and elusive.

Mapping these results into the 2D parameter space of �A

and �B and comparing them with the cases in Figs. 3(a) and
3(c), we more clearly find the change in dynamical phases
under the impact of the considerable NNN RRIs. As shown
in Fig. 5, generally speaking, dependent on the NNN RRIs
being repulsive (U0 > 0) or attractive (U0 < 0), all the unique
phases except the 1AF phase will diffuse from or converge to
the center region where �A ≈ �B ≈ 0. As stated in the
previous paragraph, this is due to the additive effect of the re-
pulsive NNN interaction and the NN interaction on the
effective detunings �s

A,eff and �s
B,eff . A typical example is

shown in Fig. 5(a), whose parameters are the same as in
Fig. 3(a), except that the NNN interaction U0 = 0.5UAB . We
find that the bistable phase 2AF occurs mainly when �A or
�B is far off-resonance, in order to compensate for the large
difference between ρs

A,rr and ρs
B,rr . A new tristable phase,

3AF, arises due to the multiple steady-state solutions caused
by the inclusion of NNN RRIs. Other unstable phases are all
dispersedly distributed in the parameter space and the CH2
phase disappears. In Figs. 5(c) and 5(d), where both the NN
interaction and the optical coupling are large, the number of
phases dramatically decreases, but compared with Fig. 3(c) we
still find similar diffusion and convergence effects caused by
the NNN interactions.

Finally, we stress again the properties of all unique phases
possibly obtained in our scheme when both NN and NNN RRIs
are considered. A related result is also reported in Table I. The
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FIG. 6. Final-state distribution in the unstable-phase CH4 as functions of ρt=0
A,rr and ρt=0

B,rr . Cases (a) without NNN interactions [according to
Fig. 3(a); U0 = 0], (b) with repulsive NNN interactions [according to Fig. 5(a); U0 = 0.5UAB ], and (c) attractive NNN interactions [according
to Fig. 5(b); U0 = −0.5UAB ]. Detunings are chosen to be �A = �B = 15.0 (a), 23.0 (b), and 10.0 (c).

three stable phases are (i) 1AF, which includes one stable
solution and no unstable solution, so that the system finally
stays in the stable solution; (ii) 2AF, which includes two stable
solutions and one unstable solution, so that the system tends
to stop on the one near its initial state; and (iii) 3AF, which in-
cludes three stable solutions and two unstable solutions, so that
the system will also choose the nearest one to settle. In addition,
the five unstable phases are labeled CHn (n = 1, 2, 3, 4, 5),
where USRN is larger than SRN. Except when initially the
system is very close to the stable roots of CHn (n = 3, 4, 5), the
system will keep evolving and not settle on any stationary state.
In the strong-interaction case, where the RRI plays a dominant
role, the system may show complex chaotic dynamics that is
very sensitive to the initial prepared population in the Rydberg
state; in the weak-interaction case, with the RRI comparable to
the optical coupling strength, these unstable phases will lead
to regular oscillatory dynamics for the system.

V. INFLUENCE OF NNN RRIs ON THE CHAOTIC PHASE

In the strong-interaction case with UAB � � we have found
that the dynamics of the system can show chaotic properties
if the dynamical phase becomes unstable. Due to the high
sensitivity of the chaos, it becomes a good candidate to show
the dramatic influence of NNN RRIs on our model. Here, we
use CH4 (SRN = 1, USRN = 4) as an example to see the final
state. By directly solving the dynamical evolution of motional
equations (4)–(7) we can determine which phase the system
will finally evolve into. In the calculation, we assume that the
initial preparations ρt=0

A,rr and ρt=0
B,rr are fully adjustable.

Figures 6(a)–6(c) display the final state of the system when
the initial preparations in the Rydberg states are varied. Since
CH4 contains one stable solution the system may also possibly
stay on it when the initial prepared population is close to that
stable solution. Thus, when the system settles on CH4 its real
dynamics shows two different cases. One is a stable steady state
like 1AF (“1AF”) and the other is unstable chaos (“chaos”).
Figures 6(a)–6(c) respectively consider the cases without and
with repulsive and attractive Rydberg interactions between
two NNN-site atoms. We find, comparing to Fig. 6(a), that a
repulsive NNN interaction [see Fig. 6(b)] will make the system
more stable against chaos. It is more likely to show a stable
dynamics under the environment of the chaotic phase CH4.

However, when the NNN interaction is attractive, as plotted
in Fig. 6(c), we find that the area in the parameter space that
presents stable dynamics clearly shrinks dramatically. Except
when ρt=0

A,rr and ρt=0
B,rr are both close to the exact steady-state

solutions [ρs
A,rr = ρs

B,rr = 0.046], the dynamics of the system
will be totally chaotic and unmeasurable. This finding is
implied in Fig. 4(d), in which multiple unstable roots are
represented because U0 < 0.

VI. CONCLUSIONS

We represent a rich variety of dynamical phases of a
chain of two-species Rydberg atoms held in a 1D optical
lattice, where the optical transition between the atomic ground
state and the high-lying Rydberg state is performed by one-
photon excitation. In particular, except for the NN Rydberg
interaction between atoms of different species, the long-range
NNN interactions between atoms of the same species are
also considered. We show that the phase diagrams change
a lot when the long-range interaction is included. Especially,
repulsive or attractive long-range interactions can give rise to
a clear diffusing or converging effect on the original phase
diagrams without them. For instance, a repulsive NNN RRI
can help to stabilize the system against chaotic dynamics. In
addition, we also study the real final state of the chaotic phase
in the strong-interaction limit and illustrate its sensitivity to
the initial atomic preparations in the Rydberg state. Most of
these results and phenomena are novel, but we stress that when
�A = �B and the NNN RRI vanishes, our results will tend
to be consistent with the previous findings from a Rydberg
system of single-species atoms [15].
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