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A B S T R A C T

Trend and attribution analysis of vegetation greenness is crucial to explain and predict ecosystem responses to 
climate change. The common practice to detect and explain greenness pattern from remote sensing time series is 
mostly based on pixel-by-pixel analysis, which often fails to account for spatial autocorrelation and may lead to 
spurious patterns. Here we applied the Partitioned Autoregressive Time Series (PARTS) method to the 
Normalized Difference Vegetation Index-3rd generation (NDVI3g) data and multiple climate datasets, and 
examined the climate effects on greenness trend in China. This method considers temporal and spatial auto
correlation structure, and aggregates pixel information to rigorously test the hypotheses about regional patterns. 
The results showed that greenness trends were strongly impacted by climate change, environmental background 
and their interactions. In regions with lower greenness, higher temperature, more precipitation and soil moisture, 
and lower vapor pressure deficit (VPD), the greening rate tends to be higher. For the whole China, long-term 
trends of temperature (P < 0.05) and soil moisture (P < 0.05) made significantly negative effects on green
ness trend, while trend of precipitation (P < 0.05) and VPD (P < 0.001) made significantly positive impacts. But 
their effects strongly interacted with environmental background. The overall positive VPD impact was signifi
cantly enhanced with an increase in VPD level (P < 0.001), which was also supported by the significantly 
positive VPD impact in the northwestern arid regions (high VPD) and the significantly negative impact in the 
tropical and subtropical areas (low VPD). In the cold ecosystems, the change in soil moisture made significantly 
negative effect on greenness trend. This study provides new insights into the driving mechanisms of greenness 
change, which is useful to inform ecosystem modeling to make accurate predictions. Moreover, the analysis 
framework with PARTS method could be effectively applied to other regions or to analyzing other ecosystem 
responses to climate change.

1. Introduction

Terrestrial vegetation plays vital roles in the coupled human- 
environment system (DeFries, 2008). Vegetation absorbs CO2 through 
photosynthesis, influencing the carbon sequestration capacity and the 
global carbon budget (Friedlingstein et al., 2023). It impacts hydrolog
ical cycles through the water transfer between the land and the atmo
sphere due to evapotranspiration and leaf interception (Gentine et al., 
2019). Vegetation could provide animals with habitats and food re
sources to maintain biodiversity (Radeloff et al., 2019), and supply 
various ecosystem services that are closely linked to human well-being 
such as crop and wood production (Bennett et al., 2009). Due to 

climate change and land use activities, terrestrial vegetation is under
going pronounced changes, causing great consequences on human- 
environment systems (Piao et al., 2020). For example, the greening 
trend of global vegetation leads to an increase in terrestrial carbon sinks, 
which has offset approximately 29 % of anthropogenic CO2 emissions 
(Friedlingstein et al., 2023; Zhu et al., 2016). Therefore, detection and 
attribution of greenness change pattern is crucial for understanding the 
energy, water, and biogeochemical cycles across terrestrial landscapes, 
and assessing the delivery of ecosystem services that linked with human 
wellbeing (Miralles et al., 2025).

Due to the unique optical spectrum of vegetation, the long-term 
remote sensing time series are widely used to analyze vegetation 
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greenness trends at different spatial and temporal scales (Piao et al., 
2020). The common practice of doing so consists of two steps: (i) con
ducting trend analysis by pixel, and making maps of trends at pre- 
defined significance levels from which we visually describe where the 
significant changes occur (de Beurs and Henebry, 2007); (ii) averaging 
the trends of pixels to reflect the overall trend for a geographical unit (e. 
g., a region, climate zone, or ecosystem type)(Zhu et al., 2020). As 
regarding the first step, the commonly used trend detection methods 
include Mann-Kendall test (MK) with Sen’s slope, Least Squares (LS) 
method, and Size-Robust Trend analysis (SR) (Fensholt et al., 2012; Xu 
et al., 2013). However, MK and LS methods do not consider the temporal 
autocorrelation in the time series, which may lead to increased type I 
error rate; SR considers temporal autocorrelation, but cannot insuffi
ciently rejects null hypothesis (Ives et al., 2021). As regarding the second 
step, the overall greenness trend of a region from averaging pixel-level 
trends information is uncertain due to the spatial autocorrelation 
among pixels (Ives et al., 2021; Wadoux and Heuvelink, 2023). There
fore, a method that could account for spatial and temporal autocorre
lation and enables to aggregate pixel information to test hypothesis of 
regional trend pattern is needed (Ives et al., 2021).

Attribution analysis is prerequisite for predicting greenness trend 
under future environmental change (Piao et al., 2020). To quantify the 
impacts of various natural and anthropogenic factors on greenness 
change, statistical methods are widely used including correlation anal
ysis, regression analysis and more advanced methods such as random 
forests and Geodetector method (Shi et al., 2020; Zhao et al., 2018; Zhu 
et al., 2020). These methods can address specific challenges in attribu
tion analysis of greenness change such as factor interactions (Zhu et al., 
2020), and provide useful information about driving mechanisms (Piao 
et al., 2020). But many concerns remain in the analysis and have been 
neglected (Ives et al., 2021). First, correlation or regression analysis 
conducted at pixel level cannot infer the causes of greenness change at 
the regional level due to the same challenge as pixel-level trend analysis 
mentioned above (Wadoux and Heuvelink, 2023). Second, the current 
statistical methods often do not distinguish the effect of year-to-year 
fluctuations of driving factors and the effect of their long-term trends 
(Ives, 1995; Linscheid et al., 2020). Since the ecological processes that 
govern the year-to-year fluctuations in greenness may be fundamentally 
different from the processes that govern the long-term greenness trend, 
the short-term relationships which regression or correlation analysis 
focuses on could not be used to predict and explain the long-term 
greenness trend (Linscheid et al., 2020; Walker et al., 2020; Wolko
vich et al., 2012). Terrestrial ecosystem modelling method accounts for 
complex ecological processes, and have advantages in quantifying the 
contributions of driving factors, and making future predictions (Pei 
et al., 2022; Zhang et al., 2022). For example, ecosystem models have 
shown that carbon dioxide concentration, climate change, land use 
change, and nitrogen deposition are the main driving factors of global 
vegetation greenness changes (Zhu et al., 2016). However, more often 
than not, statistical methods still play an important role in detecting the 
trends and examining the relationships from model simulation outputs 
(Zhang et al., 2022). Therefore, an attribution method that can examine 
the long-term relationships between the trends of greenness and climate 
factors and enables to aggregate pixel impact information to test 
regional patterns is needed (Ives et al., 2021; Linscheid et al., 2020).

The aforementioned issues and challenges in trend and attribution 
analysis from remote sensing data has been recognized and accounted 
for in several studies (Cortés et al., 2021; Xu et al., 2013; Zhou et al., 
2001). Zhou et al. (2001) recognized early the role of spatial autocor
relation in analyzing change patterns from remote sensing, and devel
oped metrics to measure spatial autocorrelation to assist in explaining 
change patterns. Cortés et al. (2021) pointed out that the commonly 
used pixel-based trend analysis might lead to higher rate of false posi
tives and further cause the interpretation of spurious spatial patterns. A 
novel statistical method was then developed to correct the pixel trend by 
considering its neighboring pixels, and reduced the detected greening 

from 35.2 % to 15.3 % of the terrestrial land surface (Cortés et al., 2021). 
Although they give pixel-scale P-values corrected for spatial autocorre
lation, they do not lead to map-scale statistical tests that aggregate the 
power from all pixels on a map (Ives et al., 2021; Ives et al., 2022). One 
more difficulty is the large data size of remote sensing time series, which 
limits the use of traditional spatial regression models or other advanced 
methods such as Geodetector (Ives et al., 2022; Zhu et al., 2020). For 
example, processing the matrix for storing spatial autocorrelation be
tween each pair of millions of pixels is almost impossible (Ives et al., 
2021). Given the above gaps, we employed the PARTS method to 
reanalyze the spatial patterns of greenness trend in China and their re
lationships with climate change. PARTS method can account for tem
poral and spatial autocorrelation in large remote sensing data and make 
a statistical test for regional pattern by aggregating pixel information 
from millions of pixels; it can also quantify the relationship between 
long-term trends of greenness and climatic factors (Ives et al., 2021; Ives 
et al., 2022). Moreover, understanding the greenness change in China is 
important because its largest greening rate has made substantial con
tributions to global carbon reduction efforts (Chen et al., 2019).We 
addressed the following research questions: (1) What is the overall 
greenness trend in China from 1982 to 2015? Is it significant? (2) Do the 
greenness trends differ significantly among different vegetation types 
and eco-geographical zones? What is the trend in each type/zone? (3) 
Do the greenness trends change significantly with in the gradients of 
environmental background? (4) How do the long-term trends in climatic 
factors influence greenness trends? (5) Do the impacts of climate change 
on greenness trends differ significantly among different eco- 
geographical zones and vegetation types? Section 3.1 provides the an
swers to research questions (1) and (2). Questions (3) and (4) are spe
cifically examined in Section 3.2. The results related to research 
question (5) are shown in Section 3.3.

2. Data and methods

2.1. Data and preprocessing

2.1.1. NDVI dataset
Vegetation leaf has lower reflectance in the red satellite band due to 

photosynthetic activities, and higher reflectance in the near-infrared 
band due to spongy mesophyll (Zeng et al., 2022). Based on this ratio
nale, NDVI is developed using spectrometric data at red and near- 
infrared bands as shown in Eq. (1): 

NDVI =
ρNIR − ρRed

ρNIR + ρRed
(1) 

where ρRed and ρNIR is the reflectance of red and near-infrared bands, 
respectively. NDVI curve could well capture the intra- and inter-annual 
variations of vegetation growth, photosynthetic activity, and greenness 
level so that NDVI has been widely used to analyze broad-scale vege
tation dynamics (Piao et al., 2020).

Annual mean NDVI, calculated from the NDVI3g dataset, was used to 
analyze greenness trends (Pettorelli et al., 2005). The dataset is derived 
from the Advanced Very High Resolution Radiometer (AVHRR) image 
records that are formed from two AVHRR instruments, the AVHRR/2 
that flew from July 1981 to November 2000 and the AVHRR/3 instru
ment that has flown since November 2000 (Pinzon and Tucker, 2014). 
These instruments are on board a series of NOAA satellites (NOAA 7, 9, 
11, 14, 16, 17, and 18) (Li et al., 2023). An inter-calibration processing 
chain based on Bayesian methods were developed to minimize AVHRR/ 
2 and AVHRR/3 NDVI incompatibilities and achieve good data consis
tency with the effects of calibration loss, orbital drift, volcanic eruptions, 
and other factors removed (Pinzon and Tucker, 2014). Compared to 
NDVI data products from other satellites such as MODIS, this one has 
longer time range from 1981 to 2015 at a spatial resolution of 0.0833◦

and a temporal resolution of approximately 15 days. The iterative 
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Savitzky-Golay (SG) filtering was applied to the NDVI time series to 
eliminate outliers and correct the lower NDVI values due to cloud 
contamination (Chen et al., 2004). First, the SG filter was applied to the 
raw NDVI time series to fit a new long-term change trend curve. Second, 
the new change trend curve was compared to the raw time series to 
determine the weight of each point. These weights would be used to 
calculate the fitting-effect index which determines when the iteration 
exits to get the best description of NDVI variations. Third, the outliers 
within raw time series indicated by lower weights were replaced with 
the values of fitted change trend curve, generating a new time series. 
Fourth, a new iteration was made based on the derived time series 
following the steps 1–3, and iteration would exit when the fitting-effect 
index achieved the minimum. Through this model, the processed NDVI 
curve approaches the upper envelope of original NDVI data, and gives 
the best description of plant growth curve. The detailed description of 
this method could be found in the paper by Chen et al (2004). Based on 
the improved NDVI time series, annual mean NDVI was calculated as the 
average of all NDVI observations within a calendar year (Pettorelli et al., 
2005).

2.1.2. Climate datasets
Annual mean temperature, annual precipitation, annual mean VPD, 

annual mean soil moisture, and annual mean solar radiation were 
selected as potential climatic driving factors of vegetation greenness. 
Numerous studies have shown that these factors significantly impact 
vegetation dynamics in specific ecosystems(Hao et al., 2024; Nemani 
et al., 2003; Piao et al., 2020; Wu et al., 2015; Yuan et al., 2019).

Annual mean temperature and annual precipitation was calculated 
from the monthly temperature and precipitation data of China (Peng 
et al., 2019). The dataset was spatially downscaled from the 0.5-degree 
Climatic Research Unit (CRU) time series dataset with the climatology 
dataset of WorldClim using delta spatial downscaling. The WorldClim 
data show well capture climatology at high resolution, while the coarse- 
resolution CRU data have low bias in representing long-term variability. 
The rationale is to fuse the monthly anomaly time series of CRU tem
perature or precipitation with WorldClim climatology to generate long- 
term (1901–2023) and high-resolution (~1km) climate time series with 
high accuracy. Annual mean temperature was determined as the average 
of monthly temperature within a calendar year, and annual precipitation 
was defined as the sum of monthly precipitation.

Annual mean soil moisture was calculated from the monthly soil 
moisture data generated by the Global Land Data Assimilation System 
Version 2.0 (GLDAS-2.0) Noah land surface model L4 (Rodell et al., 
2004). The GLDAS ingests satellite- and ground-based observational 
data products, using advanced land surface modeling and data assimi
lation techniques, in order to generate optimal fields of land surface 
states and fluxes. It adopts multiple advanced land surface models 
among which Noah is representative and proves to be reliable in climate 
research, hydrological studies, and environmental monitoring (Rodell 
et al., 2004). The GLDAS Version 2.0 were forced by the global meteo
rological forcing dataset from Princeton University, and generated the 
monthly soil moisture data at a grid size of 0.25◦ from 1948 to 2015. 
While the dataset provides soil moisture values at different depths, we 
selected soil moisture（kg/m2）at 0–10 cm which was more closely 
related with vegetation growth (Hao et al., 2024). Annual mean soil 
moisture was defined as the average of monthly soil moisture within a 
calendar year.

Monthly VPD data from the TerraClimate product were used to 
calculate annual mean VPD (Abatzoglou et al., 2018). Conceptually, 
TerraClimate applies interpolated time-varying anomalies from CRU 
Ts4.0/ JRA55 (Japanese 55-year Reanalysis) to the high-spatial reso
lution climatology of WorldClim to create a high-spatial resolution 
dataset that covers a broader temporal record. The data spans the period 
from 1958 to 2020, with a spatial resolution of approx. 4 km (~1/24 
degree). Annual mean VPD was defined as the average of monthly VPD 
within a calendar year.

Annual mean solar radiation was calculated from monthly surface 
downward solar radiation of the ERA5-Land data. ERA5-Land is a replay 
of the land component of the ERA5 climate reanalysis, providing a 
consistent view of the evolution of land variables over several decades at 
an enhanced resolution (9 km vs 31 km in ERA5)(Muñoz-Sabater et al., 
2021). The data covers the period from 1950 to the present with a spatial 
resolution of approx. 9 km, and could be freely downloaded from the 
Climate Data Store (https://cds.climate.copernicus.eu). Annual mean 
solar radiation was defined as the average of monthly values within a 
calendar year.

Other data included the eco-geographical zones (Wu et al., 2003) and 
vegetation types of China. The Chinese vegetation type data were ac
quired from the National Cryosphere and Desert Data Center 
(https://www.ncdc.ac.cn/portal/). The nearest neighbor interpolation 
method was used to resample all datasets to the resolution of 0.0833◦ to 
be consistent with NDVI data. This method has been widely used in 
previous studies to resample climate data (Brandsma and Können, 2006; 
Piao et al., 2022). Compared to other resampling methods such as 
bilinear or cubic, the nearest neighbor method has higher computation 
efficiency when analyzing large-size data. Moreover, when downscaling 
the climate data, the use of this method is equivalent to assigning the 
fine grids with the same values of their belonged coarse gird so that the 
pattern of raw climate data is maintained to the largest extent.

2.2. Methods

2.2.1. PARTS method
We used the PARTS method to analyze the spatiotemporal patterns of 

greenness trends in China and the impacts of climate change at the map 
scale. The PARTS method mainly consists of two steps: first, by using an 
autoregressive model, PARTS derives the trend for each pixel in the time 
series; second, PARTS conducts map-scale hypotheses about the relation 
between per-pixel trends and independent variables by performing a 
generalized least square (GLS) regression that takes into account the 
spatial autocorrelation structure (Ives et al., 2021; Ives et al., 2022).

2.2.1.1. Pixel-level autoregressive trend analysis in PARTS. The trends of 
greenness and climate factors at the pixel level were calculated using an 
autoregressive (AR) model in PARTS (Ives et al., 2021), which was 
expressed in Eqs. (2) and (3): 

yi(t) = ai + cit + εi(t) (2) 

εi(t) = βiεi(t − 1) + δi(t) (3) 

where yi(t) represents dependent variable of pixel i in year t (e.g., 
greenness, annual mean temperature), ai is the intercept, and ci is the 
regression coefficient that reflects the rate of change. Since the time 
series was often temporally autocorrelated, the residuals εi(t) were 
further modeled using a first-order autocorrelation model. βi represents 
the autocorrelation coefficient, and δi(t) is Gaussian white noise with a 
mean of 0 and a variance of σ2. The Restricted Maximum Likelihood 
(REML) estimation was used to fit the model (Ives et al., 2010). The 
trends of greenness (ndvi.t), annual mean temperature (tmp.t), annual 
precipitation (pre.t), annual mean vapor pressure deficit (vpd.t), annual 
mean soil moisture (sm.t), annual mean solar radiation (ssr.t) for each 
pixel were calculated using this model.

2.2.1.2. GLS regression analysis in PARTS. PARTS conducts a GLS 
regression model that accounts for spatial autocorrelation structure to 
test the map-scale hypotheses about the patterns of greenness trends and 
their relationships with climate change (Ives et al., 2021). The model 
could be expressed in Eq. (4) as: 

ci = b0 + b1wi1 + ⋯ + bpwip + γi (4) 

where ci represents the dependent variable, and here can be greenness 
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trend of pixel i. wip is the independent variable p for pixel i, and bp 

represents its regression coefficient. The independent variables can be 
variables showing environmental background, such as vegetation types, 
or multi-year annual mean temperature, or variables showing the long- 
term climate trends, such as the trends of annual mean temperature 
(tmp.t) and annual precipitation (pre.t). Spatial error γi follows a multi
variate Gaussian distribution, N(0,σ2

γ V).
GLS regression represents the spatial autocorrelation between pixel 

trends ci and cj by a spatial correlation matrix V. The matrix V is ob
tained by fitting the correlation of the residuals from the AR trend 

analysis between pairs of pixels (cor
[
γi, γj

]
). The commonly used dis

tance decay function was used to model the correlation between pixel i 
and pixel j as shown in Eq. (5): 

v
(
dij
)
= e− (− dij/r)g (5) 

where dij represents the distance between pixels i and j, r is the range, 
and g controls the shape of the function as it decreases with distance. The 
parameter g is often set to 2 so that the function follows a Gaussian 
distribution (Ives et al., 2022). Since the measurement errors of the time 
series for individual pixels can manifest as local variations, the nugget 
effect should also be considered (Ives et al., 2021). Thus, the spatial 
correlation matrix V can be further expressed in Eq. (6) as: 

V = (1 − nugget)V(D) + nuggetI (6) 

D is the correlation matrix among N pixels, I is the identity matrix, and 
nugget represents the nugget. The detailed description of PARTS method 
could be found in Ives et al., (2021, 2022).

2.2.2. Applications of PARTS to greenness change analysis of China
PARTS method was implemented to analyze greenness trend patterns 

and examine their driving mechanisms under climate change at the map 
scale to answer the research questions proposed in Introduction 
(Table 1). We also conducted analyses by eco-geographical zone and 
vegetation type to investigate the difference in greenness trend and 
driving mechanism (Fig. 1). To avoid the effect of land use change, we 
only included in our analysis the vegetated pixels where land cover type 
did not change through the study period, and excluded the pixels which 
were classified as non-vegetated land cover type for any years (non- 
vegetated land), or in which land cover change occurred for any years 
(unstable land) (Fig.S1). The RemotePARTS package for R platform was 
used to implement the models, which is available at: https://doi. 
org/10.32614/CRAN.package.remotePARTS.

3. Results

3.1. Patterns of greenness trends

At the pixel level, we analyzed the trends in vegetation greenness in 
China using AR model which accounts for temporal autocorrelation 
(Fig. 2). Greenness was higher in the southeast and lower in the north
west (Fig. 2a). 67 % of the pixels showed a greening trend (Fig. 2b). 
Specifically, 35 % of the pixels displayed a strong greening trend (t-test 
score > 2.05), while 7 % exhibited a strong browning trend (t-test score 
> 2.05). Greenness trends in the North China Plain, Loess Plateau were 
stronger than those in southern China, which was different from previ
ous findings (Chen et al., 2019). The reason is that this study shows the 
relative trend which excludes the influence of greenness background, 
and makes the trends comparable among pixels (Ives et al., 2021). Also, 
intensive management and ecological protection project have indeed led 
to substantial greenness increase (Chen et al., 2019). Strong browning 
areas were mainly located in northern Xinjiang and some northeastern 
regions of China.

Spatial regression models that accounts for spatial autocorrelation 
were further employed to identify the overall trend of China and 

different vegetation types and eco-geographical regions (Table 2). The 
results indicate that the overall vegetation greenness in China shows a 
significant increasing trend, with a relative rate of 0.0012 per year (P <
0.001), which was consistent with previous findings (Chen et al., 2019; 
Piao et al., 2015). There are significant differences in the greenness 
trends among different vegetation types (P < 0.001). Except alpine 
meadows, subalpine shrubs and shrub deserts, other vegetation types 
exhibited a significant increasing trend in greenness at the significance 
level of 0.05 (Table 2). Among them, the temperate coniferous forests 
showed the largest increase. Significant differences in greenness trend 
were also observed among different eco-geographical zones (P = 0.023). 
Except the temperate zones and Tibetan Plateau, all other eco- 
geographical regions displayed a significant increasing trend in green
ness (P < 0.05), and the warm temperate and subtropical zones showed 
the largest increase in greenness. The rapid greenness increase in 
temperate and subtropical forests benefits largely from the intensive 
management effect and the implementation of natural forest conserva
tion project (NFCP) (Liao et al., 2024).

Table 1 
Spatial regression models in PARTS to analyze the patterns of greenness trends 
and their climate effects. The dependent variable is greenness trend (ndvi.t). The 
independent variables include average greenness (ndvi), average annual tem
perature (tmp), average annual precipitation (pre), average soil moisture (sm), 
and average VPD (vpd) of multiple years; vegetation type (veg_type); eco- 
geographical zone (eco_type); the trends of annual average temperature (tmp.t), 
annual precipitation(pre.t), annual soil moisture (sm.t), annual VPD (vpd.t) and 
annual solar radiation (ssr.t); and their interactions. All continuous variables 
were standardized to have a mean of 0 and a variance of 1 so that their 
regression coefficients were comparable. Q1-5 represents the research questions 
proposed in Introduction.

Goal Formula Research questions

Patterns of greenness 
trend in China

ndvi.t ~ 1 What is the overall 
greenness trend in China? Is 
it significant? (Q1)

ndvi.t ~ veg_type What are the greenness 
trends of different 
vegetation types? Are they 
significantly different? (Q2)

ndvi.t ~ eco_type What are the greenness 
trends of different eco- 
geographical regions in 
China? Are they 
significantly different? (Q2)

Impact of environment 
background on 
greenness trend

ndvi.t ~ ndvi + tmp +
pre + sm + vpd

Are there significant 
differences in the greenness 
change along the gradients 
of environmental context 
including tmp, pre, sm and 
vpd? (Q3)

Impact of climate 
change on greenness 
trends

ndvi.t ~ ndvi + tmp +
pre + sm + vpd + tmp.t 
+ pre.t + sm.t + vpd.t +
tmp.t:(tmp + pre + sm +
vpd) + pre.t:(tmp + pre 
+ sm + vpd) + sm.t:(tmp 
+ pre + sm + vpd) + vpd. 
t:(tmp + pre + sm + vpd)

How do different climate 
factors affect greenness 
trend? Do the impacts of 
climate change differ 
significantly along with 
environmental gradients? 
(Q4)

Impact of climate 
change on greenness 
trends by eco- 
geographical region

ndvi.t ~ tmp.t*eco_type; 
ndvi.t ~ pre.t*eco_type; 
ndvi.t ~ vpd.t*eco_type; 
ndvi.t ~ sm.t*eco_type; 
ndvi.t ~ ssr.t*eco_type

Do the impacts of climate 
change differ significantly 
among eco-geographical 
zones? How do climate 
factors impact greenness 
trend in each zone? (Q5)

Impact of climate 
change on greenness 
trends by vegetation 
type

ndvi.t ~ tmp.t*veg_type; 
ndvi.t ~ pre.t*veg_type; 
ndvi.t ~ vpd.t*veg_type; 
ndvi.t ~ sm.t*veg_type; 
ndvi.t ~ ssr.t*veg_type

Do the impacts of climate 
change differ significantly 
among different vegetation 
types? How do climate 
factors impact greenness 
trend in each type? (Q5)
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3.2. Long-term climate effects on greenness trend

Based on the spatial and temporal patterns of greenness and climatic 
factors at the pixel scale, a spatial regression model that accounts for 
spatial autocorrelation was used to analyze the impact of climate change 
on vegetation trends (Table 1). The dependent variable was greenness 
trend, while the independent variables included multi-year 
(1982–2015) averages of temperature (tmp), precipitation (pre), soil 
moisture (sm), vapor pressure deficit (vpd), solar radiation (ssr) (Fig. 3); 
trends in annual mean temperature (tmp.t), annual precipitation (pre.t), 
annual mean soil moisture (sm.t), annual mean VPD (vpd.t), annual 
mean surface solar radiation (ssr.t) from 1982 to 2015 (Fig. 4); and their 
interactions. The annual VPD influenced by both temperature and air 
humidity, showed high values in the northwest, followed by the east, 
and the lowest values occurred on the Tibetan Plateau due to low tem
perature and arid condition (Fig. 3c). The pattern of annual soil mois
ture, generally consistent with the precipitation distribution, decreased 
from the southeast to the northwest (Fig. 3d). The solar radiation 
showed clear spatial variations with high values in the Northwest and on 

the Tibetan Plateau and low values in the Northeast and South of China 
(Fig. 3e). Accounting for spatial autocorrelation, tmp.t and ssr.t showed a 
significant increasing overall trend (P < 0.05) (Fig. 4). The overall 
trends for pre.t, sm.t and vpd.t were not significant (P > 0.05), although 
pixels with strong trends occurred in some regions (Fig. 4). Areas with 
strong increasing annual precipitation were mainly located in the west; 
VPD showed an increasing trend in the east; soil moisture decreased in 
the southeast and increased in the northwest; annual solar radiation 
showed a strong increasing trend in the Southeast and a strong 
decreasing trend in the west of the Tibetan Plateau (Fig. 4).

Environmental gradients could significantly affect greenness trend 
(P < 0.001). The greenness trend differed significantly with ndvi (coef
ficient: − 0.0738; P < 0.001), tmp (coefficient: 0.0128; P < 0.001), pre 
(coefficient: 0.0033; P = 0.086), sm (coefficient: 0.003; P = 0.009), and 
vpd (coefficient: − 0.0063; P < 0.001) (Table 3a). This suggested that in 
regions with lower vegetation greenness, warmer and wetter climates, 
and moist soils and air, the greening rate was higher. This suggests that 
vegetation growth is faster in favorable conditions, but could slow down 
when approaching or exceeding the optima (Huang et al., 2019). At the 

Fig. 1. Distribution of eco-geographical zones and vegetation types. (a) Eco- geographical zones including cold temperate humid region (CTHR), temperate humid/ 
semi-humid region (THSR), warm temperate humid/semi-humid region (WTHSR), northern subtropical humid region (NSTHR), subtropical humid region (STHR), 
southern subtropical humid region (SSTHR), tropical humid region (THR), northern semi-arid region (NSAR), northwest arid region (NWAR), Tibetan Plateau region 
(TPR). (b) Vegetation types including cold temperate/temperate mountainous coniferous forests (CTCF/TMCF), temperate coniferous forests (TCF), subtropical and 
tropical coniferous forests (STCF/TCF), temperate deciduous broadleaf forests (TDBF), subtropical and tropical evergreen broadleaf forests (STEBF/TEBF), subalpine 
shrub (SAS), shrub desert (SD), temperate grassland (TG), alpine grassland (AG), subtropical grassland (STG), alpine meadow (AM).

Fig. 2. Spatial patterns of multi-year greenness and greenness trends. (a) Multi-year greenness showing the average over the period 1982–2015; (b) Change trends 
from 1982 to 2015. An autoregressive model was applied to calculate the change trends as shown in Eq. (2). To make the trend comparable among pixels, the map 
showed the relative change trends, which were calculated by dividing the raw change trends by multi-year average greenness for the corresponding pixels.
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national scale, without accounting for interactions among variables, the 
trends of temperature (tmp.t), precipitation (pre.t), and VPD (vpd.t) did 
not have significant effects on the greenness trend, while the soil 
moisture trend (sm.t) was significantly and negatively correlated with 
the greenness trend at the significance level of 0.1 (coefficient: − 0.0011, 
P = 0.074) (Table 3b). The negative correlation is supported by previous 
findings that vegetation greening could significantly reduce soil mois
ture due to enhanced evapotranspiration and leaf interception of pre
cipitation (Li et al., 2018).

The significant effect of the interaction between factors was indi
cated by model comparison that the spatial regression model that 
included interactions significantly differed from the model without in
teractions (Chi-square test, P < 0.001). The effect of precipitation trends 
on greenness trends was significantly modulated by greenness levels 
(ndvi) (coefficient: − 0.0192; P = 0.021), suggesting that in areas with 
lower greenness, precipitation trend had a stronger positive effect on 
greenness trend. In regions with high greenness, precipitation can 
negatively impact greenness, because excessive rainfall may prevent 
root respiration, reduce soil nutrition, or decrease photoperiod (Guo 
et al., 2020; Huete et al., 2006). The influence of VPD trend on the 
greenness trend significantly interacted with the level of VPD (vpd) 
condition (Table 3c). In areas with higher VPD level, the overall positive 
relationship between the trends of VPD and greenness was significantly 
enhanced. Because these regions are covered by grasslands in which a 
moderate increase in VPD can maintain leaf expansion, allowing leaves 
to absorb more CO2 and promote photosynthesis (Yu et al., 2022). We 
found that soil moisture was significantly and negatively correlated with 
greenness trend, but its effect closely interacted with ambient environ
mental conditions. In regions with lower greenness, temperature and 
VPD, an increase in soil moisture tended to significantly decrease 
greenness trend. The reason is that an increase in soil moisture may be 
accompanied by melting permafrost and intensified soil erosion, leading 
to weak photosynthesis and browning trend (Li et al., 2024).

3.3. Climate impacts by vegetation type and eco-geographical zone

The impact of climate change on greenness trend for different 
vegetation types and eco-geographical zones was analyzed using a GLS 
regression model that accounts for spatial autocorrelation (Table 4 and 

5). Model comparison indicated that the effects of all climate factors on 
greenness trends differed significantly among vegetation types (Chi- 
squared test; P < 0.05). The influence of temperature on greenness 
trends varied in direction and magnitude across different vegetation 
types (Table 4). But only in the cold temperate mountainous coniferous 
forest region, the temperature trend was significantly and negatively 
correlated with the greenness trend (coefficient: − 0.006; P = 0.063) 
because of the warming-induced drought stress (D’Orangeville et al., 
2018). As regarding VPD, its trend was significantly and negatively 
correlated with greenness trend in subtropical and tropical evergreen 
broadleaf forests (regression coefficient: − 0.007; P = 0.085). The reason 
is that stomatal conductance is more sensitive to VPD change, and the 
elevated VPD could cause stomatal closure and weakened photosyn
thesis (Cunningham, 2005). Soil moisture trends had a significant 
negative correlation with trends in greenness in many ecosystems of 
cold regions, including cold temperate/temperate mountainous conif
erous forests (P = 0.06), temperate coniferous forests (P = 0.007), 
subalpine shrubs (P = 0.037), and temperate grasslands (P = 0.003), 
which was consistent with the results for the whole China. The positive 
effect of solar radiation on greenness trend was stronger in temperate 
needleleaf forest (P = 0.068), and the effects on greenness trend in 
temperate and alpine grasslands were significantly negative (P = 0.01 
and P = 0.052, respectively). The reason was that the increase in radi
ation could cause temperature rise in temperature-limited ecosystems (i. 
e., temperate needleleaf forests), and promote photosynthetic activities, 
while the increase could aggravate water stress in water-limited eco
systems (i.e., temperate grasslands) (Nemani et al., 2003).

Model comparison tests indicated that the effects of climate factors 
on greenness trends differed significantly across different eco- 
geographical zones (Chi-squared test; P > 0.05) (Table 5). Although 
precipitation was the main driving factor of greenness (Fensholt et al., 
2012; Piao et al., 2020), only in the northern semi-arid region did pre
cipitation changes demonstrate a significant positive effect on greenness 
trends (coefficient: 0.014; P = 0.009). In most eco-geographical zones, 
the VPD change showed a negative correlation with greenness trend. 
Notably, in arid regions of northwestern China, the trend in VPD 
exhibited a significantly positive correlation with greenness trends 
(coefficient: 0.017; P = 0.089). This was consistent with the above result 
that the positive effects of VPD was stronger in regions of higher VPD 
level (i.e. Northwest China). The influence of soil moisture varies in 
magnitude and direction across different eco-geographical zones, and 
the significantly negative effect of soil moisture was only observed in the 
north subtropical humid zone (coefficient: − 0.018; P = 0.015) where 
the elevated VPD was prone to cause stomatal closure of plant, and 
reduced photosynthetic activities. The significantly negative effect of 
solar radiation change on greenness trend was found only in the 
northern semi-arid region (P = 0.029). The reason was that radiation 
could aggravate water stress in water-limited ecosystems (Wu et al., 
2021).

Above we examined the differences in the effects of climate change 
among different vegetation types and eco-geographical zones sepa
rately. However, one eco-geographical zone included many vegetation 
types, and the effects of climate factors in different vegetation types of 
an eco-geographical zone might be different from those of the whole 
China. Given this, we made analysis for each eco-geographical zone 
within which the effects of climate factors in different vegetation types 
were examined (Fig. S2). We found that the effect directions of climate 
factors in different vegetation types were generally consistent between 
the analysis for specific eco-geographic zone and for the whole China. 
But the effect magnitude and significance were different because the 
ranges of climate variables of a specific vegetation type varied among 
different zones and China. Given that our goal was to understand 
greenness change over the entire China, we would recommend to 
conduct analysis by vegetation type for the whole China which could 
encompass the wide range of relationships.

Table 2 
Trends in vegetation greenness trend by vegetation type and eco-geographical 
zone. The GLS model shown in Eq. (4) was used to regress greenness trend 
(ndvi.t) against vegetation types (ndvi.t ~ veg_type) and eco-geographical zones 
(ndvi.t ~ eco_type). * indicates that the overall trend is significant at the signif
icance level of 0.05. CTCF/TMCF: Cold temperate/temperate mountainous 
coniferous forests, TCF: temperate coniferous forests, STCF/TCF: subtropical 
and tropical coniferous forests, TDBF: temperate deciduous broadleaf forests, 
STEBF/TEBF: subtropical and tropical evergreen broadleaf forests, SAS: subal
pine shrub, SD: shrub desert, TG: temperate grassland, AG: alpine grassland, 
STG: subtropical grassland, AM: alpine meadow; CTHR: Cold temperate humid 
region, THSR: temperate humid/semi-humid region, WTHSR: warm temperate 
humid/semi-humid region, NSTHR: northern subtropical humid region, STHR: 
middle subtropical humid region, SSTHR: southern subtropical humid region, 
THR: tropical humid region, NSAR: northern semi-arid region, NWAR: north
west arid region, TPR: Tibetan Plateau region.

Vegetation type ndvi.t Eco-geographical zone ndvi.t

CTCF/TMCF 0.0012* CTHR 0.0007
TCF 0.0018* THSR 0.0002
STCF/TCF 0.0010* WTHSR 0.0018*
TDBF 0.0013* NSTHR 0.0018*
STEBF/TEBF 0.0010* STHR 0.0016*
SAS 0.0005 SSTHR 0.0021*
SD 0.0007 THR 0.0017*
TG 0.0014* NSAR 0.0019*
AG 0.0009* NWAR 0.0012*
SG 0.0013* TPR 0.0006
AM 0.0007 ​ ​
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4. Discussion

The research analyzes the greenness trends and their climate impacts 
in China using the PARTS method, which can consider spatial and 
temporal autocorrelation and effectively integrate information from 
millions of pixels to test hypotheses about regional patterns. This study 
gains new insights into the regional patterns of greenness trends and 
their climate impacts which are unable to do by previous statistical 
methods.

This study provides an analytical framework for examining 
ecosystem responses to global change, which has three advantages over 
the current common practice. First, it effectively accounts for temporal 
autocorrelation in remote sensing time series to achieve lower rate of 

false positive trends (Cortés et al., 2021; Ives et al., 2021). Second, it 
aggregates information from millions of pixels and makes a rigorous 
statistical test for the hypothesis about regional pattern. Due to spatial 
autocorrelation, integrating pixel information is much more complex 
than analyzing a single pixel time series (Wadoux and Heuvelink, 2023), 
and averaging pixel information might give a false pattern (Cortés et al., 
2021; Ives et al., 2021). Moreover, the models can handle huge samples 
of remote sensing time series, and here time series of about 120,0000 
pixels were included in the model in our study. Third, it can examine the 
effects of long-term climate trends rather than the effects of year-to-year 
fluctuations, because the ecological processes governing year-to-year 
fluctuations and long-term trends of greenness are different (Linscheid 
et al., 2020; Wolkovich et al., 2012). The long-term climate trends are 

Fig. 3. Spatial patterns of multi-year values of climatic factors averaged over the period from 1982 to 2015. (a) annual mean temperature (tmp), (b) annual pre
cipitation (pre), (c) annual mean VPD (vpd), (d) annual mean soil moisture (sm) and (e) annual mean solar radiation (ssr).
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needed to be chosen as driving factors to explain greenness trend (Ives, 
1995), as we did in this study.

This study provides new insights into the driving mechanisms of 
vegetation dynamics in China, which could also be extended to explain 
and predict ecosystem responses to climate change globally. First, 
ambient environmental conditions significantly affect the pattern of 
greenness change. In areas with adequate water and heat conditions (e. 
g., subtropical and warm temperate regions), vegetation greenness in
creases at a higher rate; but in regions of higher greenness (i.e., tropical 
forests), the greening rate slows down due to the saturation effect of 
NDVI or the close to temperature optima of vegetation productivity 
(Huang et al., 2019; Piao et al., 2020). Second, climate change 

significantly influences greenness trends, and their impacts interact 
strongly with environmental conditions. The result reveals a significant 
negative correlation between long-term trends of temperature and 
greenness, which is different from previous findings (Piao et al., 2015). 
There might be three reasons: (i) studies often use spatial averaging 
methods to uncover the relationship at the national scale, which carries 
much uncertainty (Wadoux and Heuvelink, 2023); (ii) this study ex
amines the long-term relationships between the trends of climate factors 
and greenness, instead of the relationships between their year-to-year 
fluctuations; (iii) rising temperatures may aggravate water stress 
(Fensholt et al., 2012) or surpass optimal temperature threshold of 
vegetation growth (Huang et al., 2019), and further limit greenness 

Fig. 4. Spatial patterns of the trends for climate factors from 1982 to 2015. Trends for (a) annual mean temperature (tmp.t), (b) annual precipitation (pre.t), (c) 
annual mean VPD (vpd.t), (d) annual mean soil moisture (sm.t) and (e) annual mean solar radiation (ssr.t). Trend was detected through an autoregressive model 
shown in Eq. (2). Except tmp.t, other variables are shown as relative trend, which is calculated as the raw trend value divided by the multi-year average climate 
factors for the corresponding pixel.
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increase.
Counterintuitively, the results show on average a significant negative 

correlation between soil moisture and greenness trend for the whole 
China, while VPD change exhibits a significant positive correlation with 

greenness trend. Generally, moderate soil moisture ensures normal 
transpiration and stomatal regulation in vegetation, and benefits plant 
growth. However, in cold areas with lower greenness, temperature and 
VPD, the overall negative impact of soil moisture change greenness was 
enhanced significantly. The reason is that an increase in soil moisture 
may be accompanied by melting permafrost and intensified soil erosion, 
leading to vegetation degradation and browning trend (Li et al., 2024; 
Yang et al., 2013). This result is well supported by the studies conducted 
in high-latitude ecosystems such as boreal forests (D’Orangeville et al., 
2018). Overall, the VPD shows a positive correlation with vegetation 
greenness changes, but it is modulated by temperature and VPD con
ditions. In regions with higher temperatures and lower VPD such as 
tropical and subtropical evergreen broadleaf forests, VPD trend has 
significant and negative influence on greenness trend, because the in
crease in VPD is prone to close stomata, and weakens photosynthetic 
activity (Cunningham, 2005). This might be useful to explain the sub
stantial damage to vegetation greenness in tropical forests caused by 
drought (Cunningham, 2005). We found that increasing VPD has 
significantly positive impacts on greenness in the arid regions of 
northwestern China where VPD is higher. On the one hand, vegetation 
are strongly tolerant to drought in this area; on the other hand, the 
increased water demand with increased VPD could promote the ab
sorption of soil water by roots and water use efficiency (Yu et al., 2022; 
Yuan et al., 2019). With the expected increase in VPD in tropics and soil 
moisture at many high-latitude areas under future climate warming 
(Berg et al., 2017; Fang et al., 2022), ecosystems in these regions might 
be at high risk according to our findings, and ecosystem models should 
carefully account for these underlying processes to better predict future 
changes.

This study has great implications for ecosystem assessment, envi
ronment management and policy making process. First, the detected 
greenness change patterns provide a useful indicator to track the prog
ress towards the China’s carbon neutrality goal and the sustainable 
development goal of “taking urgent action to combat climate change and 
its impacts” (SDGs GOAL 13) (Friedlingstein et al., 2023; Piao et al., 
2020). The detected overall greening trend of China suggests the effec
tiveness of major ecological projects such as the ‘grain-for-green’ and the 
Three-North Shelter Forest projects, and the great contribution of China 
to the reduction in global carbon emissions (Chen et al., 2019). Second, 
the findings about the difference in the climate effect on greenness trend 
give us useful information about climate risk management. Environment 
managers could tailor targeted policy to promote ecological protection 

Table 3 
Spatial regression model in PARTS to examine the climate effects on greenness 
trend. The dependent variable is greenness trend (ndvi.t), while the independent 
variables include multi-year averages of greenness (ndvi), temperature (tmp), 
precipitation(pre), soil moisture (sm), and vapor pressure deficit (vpd); temper
ature trend (tmp.t), precipitation trend (pre.t), soil moisture trend (sm.t); and 
vapor pressure deficit trend (vpd.t); and their interactions. The spatial regression 
analysis was conducted using remotePARTS package for R platform. The values 
of each independent variable were standardized to have a mean of 0 and a 
variance of 1. ***, P < 0.001; **, P < 0.01; *, P < 0.05; †, P < 0.1.

factor ndvi.t ndvi.t ndvi.t

ndvi − 0.0738*** ​ − 0.0745***
tmp 0.0128*** ​ 0.0149***
pre 0.0033† ​ 0.0004
sm 0.0030** ​ 0.0023†
vpd − 0.0063*** ​ − 0.0076***
tmp.t ​ − 0.0014 − 0.0073*
tmp.t:ndvi ​ ​ 0.0086
tmp.t:tmp ​ ​ 0.0024
tmp.t:pre ​ ​ − 0.0024
tmp.t:sm ​ ​ − 0.0001
tmp.t:vpd ​ ​ − 0.0025
pre.t ​ 0.0025 0.0070*
pre.t:ndvi ​ ​ − 0.0192*
pre.t:tmp ​ ​ − 0.0011
pre.t:pre ​ ​ 0.0035
pre.t:sm ​ ​ − 0.0003
pre.t:vpd ​ ​ 0.0013
vpd.t ​ − 0.0013 0.0104***
vpd.t:ndvi ​ ​ 0.0028
vpd.t:tmp ​ ​ − 0.0017†
vpd.t:pre ​ ​ 0.0007
vpd.t:sm ​ ​ 0.0009
vpd.t:vpd ​ ​ 0.0100***
sm.t ​ − 0.0011† − 0.0056*
sm.t:ndvi ​ ​ 0.0121*
sm.t:tmp ​ ​ − 0.0062***
sm.t:pre ​ ​ 0.0019
sm.t:sm ​ ​ − 0.0003
sm.t:vpd ​ ​ 0.0033*

Table 4 
The impacts of climate change on greenness trend within different vegetation 
types. A spatial regression model in PARTS was established to analyze the dif
ference in the climate effects on greenness trends among different vegetation 
types. The dependent variable is greenness trend, while the independent vari
ables include the trends in annual mean temperature (tmp.t), annual precipita
tion (pre.t), annual mean VPD (vpd.t), annual mean soil moisture (sm.t), and 
annual mean solar radiation (ssr.t). CTCF/TMCF: Cold temperate/temperate 
mountainous coniferous forests, TCF: temperate coniferous forests, STCF/TCF: 
subtropical and tropical coniferous forests, TDBF: temperate deciduous broad
leaf forests, STEBF/TEBF: subtropical and tropical evergreen broadleaf forests, 
SAS: subalpine shrub, SD: shrub desert, TG: temperate grassland, AG: alpine 
grassland, STG: subtropical grassland, AM: alpine meadow; * P < 0.05.

Vegetation tmp.t pre.t vpd.t sm.t ssr.t

CTCF/TMCF − 0.006* − 0.005 − 0.008 − 0.003* 0.001
TCF − 0.002 − 0.010 0.012 − 0.016* 0.015
STCF/TCF − 0.003 − 0.002 − 0.004 − 0.0001 0.002
TDBF 0.0001 − 0.001 − 0.002 0.0001 − 0.004
STEBF/TEBF − 0.004 − 0.004 − 0.007* − 0.001 0.001
SAS − 0.001 − 0.003 − 0.001 − 0.005* 0.001
SD − 0.004 0.003 − 0.002 0.0004 − 0.002
TG − 0.001 0.001 − 0.001 − 0.004* − 0.005*
AG − 0.001 0.002 0.001 − 0.0003 − 0.003
STG − 0.002 − 0.002 − 0.007 − 0.003 − 0.001
AM − 0.001 0.003 − 0.001 − 0.00004 0.002

Table 5 
The impacts of climate change on greenness trends within different eco- 
geographical zones. GLS regression model in PARTS was established to 
analyze the differences in the climate effects on greenness trends among 
different eco-geographical zones. The independent variables include the trends 
in annual mean temperature (tmp.t), annual precipitation (pre.t), annual mean 
VPD (vpd.t), annual mean soil moisture (sm.t), and annual mean solar radiation 
(ssr.t). CTHR: Cold temperate humid region, THSR: temperate humid/semi- 
humid region, WTHSR: warm temperate humid/semi-humid region, NSTHR: 
northern subtropical humid region, STHR: mid-subtropical humid region, 
SSTHR: southern subtropical humid region, THR: tropical humid region, NSAR: 
northern semi-arid region, NWAR: northwest arid region, TPR: Tibetan Plateau 
region. *P < 0.05.

Zones tmp.t pre.t vpd.t sm.t ssr.t

CTHR − 0.012 − 0.003 0.017 0.001 0.004
THSR 0.002 − 0.001 0.004 0.0001 − 0.017
WTHSR − 0.001 − 0.002 − 0.010 − 0.009 − 0.005
NSTHR 0.009 − 0.012 − 0.015 − 0.018* 0.003
STHR − 0.004 − 0.001 − 0.011 0.003 0.003
SSTHR − 0.008 0.001 − 0.012 0.002 0.001
THR − 0.005 − 0.002 − 0.006 − 0.006 0.001
NSAR 0.005 0.014* 0.021 − 0.004 − 0.011*
NWAR − 0.004 0.002 0.017* − 0.001 0.004
TPR − 0.003 0.002 − 0.001 0.0001 − 0.001
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and restoration according to the unique driving mechanisms in different 
zones. For example, people in the tropics should take measures to 
mitigate and adapt to the severe consequence of atmospheric drought 
(increased VPD) on vegetation productivity (Cunningham, 2005). Third, 
analysis of greenness pattern is useful to better understand hydrological 
cycles and biodiversity pattern, and further to assess flooding risk or 
biodiversity loss (Ghalehteimouri et al., 2024). For example, vegetation 
greening could enhance evapotranspiration, re-allocate precipitation 
and runoff, and reduce flooding risk (Ghalehteimouri et al., 2024).

The study still has some limitations. Beyond the climatic factors in 
our analysis, other factors such as soil nutrient availability and extreme 
climates also impact vegetation greenness. Here this study did not ac
count for soil nutrient availability. Given that the focus is to examine the 
trends of climate factors on greenness trend, the trends of soil nutrient 
are difficult to derive due to the lack of continuous dataset and the 
stability of soil nutrient in the study period. Anthropogenic changes in 
the rate and distribution of nitrogen deposition could influence greening 
patterns (Piao et al., 2020), but much effort is still needed to elucidate 
the complex processes underlying the effect of nitrogen deposition on 
plants. Extreme climate event could cause sudden decrease in time series 
of greenness. But this does not influence the results about the impacts of 
the trends in climate factors on greenness trends. Because the used 
method could identify the trend correctly even when a sudden shock in 
time series occurred (Ives et al., 2021). We did not consider the lag effect 
of climate change on vegetation growth that especially matters for intra- 
annual plant fluctuations (Lian et al., 2021; Shen et al., 2022; Wu et al., 
2015). The climate data used in this study may be biased in some areas 
where is no station measurements for interpolation.

5. Conclusions

This study uses the PARTS method that accounts for temporal and 
spatial autocorrelation to reanalyze the patterns of greenness trend in 
China and the impacts of climate change. The identified patterns that 
undergo rigorous statistical tests are reliable, and provide new insights 
into vegetation dynamics in China. There is a significant overall 
increasing trend in vegetation greenness in China from 1982 to 2015. 
However, greenness trends differ significantly among vegetation types 
and eco-geographical regions (P < 0.05). The greenness trends are 
significantly influenced by environmental conditions, long-term climate 
change, and their interactions. Temperature does not make significant 
effect independently, but shows strong interactions with other climatic 
factors. As expected, precipitation has significant impacts on greenness 
in arid areas. The relationship between VPD change and greenness trend 
was significantly positive in the northwestern arid regions but negative 
in the tropical and subtropical areas. The negative effect of soil moisture 
on greenness trend was significant in the ecosystems of cold regions. 
Global warming has made widespread and profound impacts on eco
systems, and given that the warming trend will continue, the findings in 
this study is of great importance to predict the future effects of global 
climate change on vegetation dynamics. While the volume and 
complexity of remote sensing data necessitates more cautious analysis to 
identify underlying patterns, our study offers a new methodological 
framework for analysis of remote sensing time series for global change 
research.
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2022. Future reversal of warming-enhanced vegetation productivity in the Northern 
Hemisphere. Nature Climate Change 12, 581–586.

Zhao, L., Dai, A., Dong, B., 2018. Changes in global vegetation activity and its driving 
factors during 1982–2013. Agricultural and Forest Meteorology 249, 198–209.

Zhou, L., Tucker, C.J., Kaufmann, R.K., Slayback, D., Shabanov, N.V., Myneni, R.B., 
2001. Variations in northern vegetation activity inferred from satellite data of 
vegetation index during 1981 to 1999. Journal of Geophysical Research: 
Atmospheres 106, 20069–20083.

Zhu, L., Meng, J., Zhu, L., 2020. Applying Geodetector to disentangle the contributions of 
natural and anthropogenic factors to NDVI variations in the middle reaches of the 
Heihe River Basin. Ecological Indicators 117, 106545.

Zhu, Z., Piao, S., Myneni, R.B., Huang, M., Zeng, Z., Canadell, J.G., Ciais, P., Sitch, S., 
Friedlingstein, P., Arneth, A., 2016. Greening of the Earth and its drivers. Nature 
Climate Change 6, 791–795.

L. Chen et al.                                                                                                                                                                                                                                    International Journal of Applied Earth Observation and Geoinformation 139 (2025) 104548 

11 

http://refhub.elsevier.com/S1569-8432(25)00195-5/h0070
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0070
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0070
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0070
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0070
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0070
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0070
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0070
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0070
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0070
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0070
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0075
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0075
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0075
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0080
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0080
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0080
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0080
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0085
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0085
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0085
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0090
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0090
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0090
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0095
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0095
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0095
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0095
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0095
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0100
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0100
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0100
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0105
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0105
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0110
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0110
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0115
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0115
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0115
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0120
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0120
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0120
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0125
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0125
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0125
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0130
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0130
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0130
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0135
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0135
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0135
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0140
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0140
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0140
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0145
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0145
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0145
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0150
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0150
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0150
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0150
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0155
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0155
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0155
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0160
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0160
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0160
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0160
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0160
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0165
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0165
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0165
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0170
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0170
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0170
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0175
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0175
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0180
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0180
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0180
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0185
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0185
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0185
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0190
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0190
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0190
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0195
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0195
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0195
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0195
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0200
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0200
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0205
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0205
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0205
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0205
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0205
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0210
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0210
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0210
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0210
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0215
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0215
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0215
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0220
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0220
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0220
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0225
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0225
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0230
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0230
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0230
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0230
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0230
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0230
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0230
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0235
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0235
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0235
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0235
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0235
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0240
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0240
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0240
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0245
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0245
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0250
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0250
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0255
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0255
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0255
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0255
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0255
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0260
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0260
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0260
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0265
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0265
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0265
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0270
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0270
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0270
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0270
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0275
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0275
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0275
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0275
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0280
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0280
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0280
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0285
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0285
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0290
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0290
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0290
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0290
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0295
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0295
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0295
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0300
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0300
http://refhub.elsevier.com/S1569-8432(25)00195-5/h0300

	Accounting for temporal and spatial autocorrelation to examine the effects of climate change on vegetation greenness trend  ...
	1 Introduction
	2 Data and methods
	2.1 Data and preprocessing
	2.1.1 NDVI dataset
	2.1.2 Climate datasets

	2.2 Methods
	2.2.1 PARTS method
	2.2.1.1 Pixel-level autoregressive trend analysis in PARTS
	2.2.1.2 GLS regression analysis in PARTS

	2.2.2 Applications of PARTS to greenness change analysis of China


	3 Results
	3.1 Patterns of greenness trends
	3.2 Long-term climate effects on greenness trend
	3.3 Climate impacts by vegetation type and eco-geographical zone

	4 Discussion
	5 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Appendix A Supplementary data
	Data availability
	References


