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Abstract. Due to the increasing number of constituting jobs and input
data size, the execution of modern complex workflow-based applications
on cloud requires a large number of virtual machines (VMs), which makes
the cost a great concern. Under the constraints of VM processing and
storage capabilities and communication bandwidths between VMs, how
to quickly figure out a cost-optimal resource provisioning and scheduling
solution for a given cloud workflow is becoming a challenge. The things
become even worse when taking the infrastructure-related failures with
transient characteristics into account. To address this problem, this paper
proposes a soft error aware VM selection and task scheduling approach
that can achieve near-optimal the lowest possible cost. Under the reli-
ability and completion time constraints by tenants, our approach can
figure out a set of VMs with specific CPU and memory configurations
and generate a cost-optimal schedule by allocating tasks to appropriate
VMs. Comprehensive experimental results on well-known scientific work-
flow benchmarks show that compared with state-of-the-art methods, our
approach can achieve up to 66% cost reduction while satisfying both
reliability and completion time constraints.

Keywords: Workflow scheduling · Cost optimization · Reliability
constraint · Soft error · Evolutionary algorithm

1 Introduction

Along with the increasing popularity of cloud services in a pay-as-you-go manner,
more and more enterprises and communities adopt cloud platforms to deploy
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their commercial or scientific workflows to facilitate the distribution of data
and computation-intensive applications [1]. However, as modern workflows grow
rapidly in terms of the number of constituting jobs and input data size, their
task allocation and scheduling complexity is skyrocketing. The scheduling of
workflows requires large number of virtual machines (VMs), which makes the
workflow execution cost a great concern to cloud service providers.

Since the resource allocation problem for cloud workflows is NP-complete
[1], various heuristics have been proposed to find near-optimal schedules quickly.
However, as more and more data center servers adopt CMOS-based processors,
few of existing methods take transient faults (i.e., soft errors) [2,3] into account.
Typically, a modern CMOS processor consists of billions of transistors where one
or more transistors form one logic bit to hold the logic value 0 or 1. Unfortunately,
various phenomena (e.g., high energy cosmic particles, cosmic rays) can result
into the notorious soft error where the binary values held by transistors are
changed by mistake, and the probability of incorrect results or system crashes
during cloud workflow execution becomes increasingly higher.

As a reliable fault-tolerance mechanism, the checkpointing with rollback-
recovery [4] has been widely adopted to improve the reliability of cloud workflow
execution. By periodically saving VM execution states in some stable storage
at specified checkpoints, the rollback-recovery can restore the system with the
latest correct state to enable re-execution when an execution error is detected.
However, the unpredictable overhead of checkpointing with rollback-recovery
operations prolonged the execution time of workflow jobs due to re-execution
which not only cause severe temporal violations [1], but also increase the overall
execution cost.

To achieve increasing profit in the fierce cloud computing market, cloud ser-
vice providers need to explore efficient cloud workflow schedules involving both
resource provisioning (i.e., a set of VMs with specific processing and storage
configurations) and allocation (i.e., assignment of workflow tasks to the VMs
without violating VM memory constraints) to minimize the execution cost. In
this paper, we propose a novel approach that can generate cost-optimal and soft
error resilient schedules for workflow applications considering the overhead of
both checkpointing with rollback-recovery and inter-VM communications. This
paper makes following three major contributions:

– Under the constraints of VM memory size and overall workflow makespan,
we formalize the cost-optimization problem of task scheduling for cloud work-
flows considering the overhead of both checkpointing with rollback-recovery
and inter-VM communication.

– Based on two-segment group genetic algorithm (TSG-GA), we propose a soft
error aware cost-optimized workflow scheduling approach that can quickly
figure out a schedule with cost-optimal resource provisioning and task-to-VM
allocation for a given workflow application.

– We evaluate our approach on well-known complex scientific benchmarks and
show the effectiveness of the proposed approach.
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The rest of this paper is organized as follows. Section 2 presents Section the
related work. Section 3 formalizes the cost optimization problem for cloud work-
flow scheduling considering both resource and reliability constraints. Section 4
details our proposed approach, and Sect. 5 presents the corresponding experi-
mental results on well-known benchmarks. Finally, Sect. 6 concludes the paper.

2 Related Work

Despite all the advantages of cloud computing, task scheduling in cloud work-
flows with minimum completion time and reduced cost while maintaining high
reliability have become a major challenge, which have attracted great attention
from researchers and industry. For instance, Topcuoglu et al. [5] proposed a
Heterogeneous Earliest Finish Time (HEFT) algorithm which assigns the task
with the highest priority to the VM, in order to achieve the earliest finish time.
Panday et al. [6] presented a scheduling heuristic based on Particle Swarm Opti-
mization (PSO) to minimize the total execution cost of application workflows
on cloud computing environments while balancing the task load on the available
resources. Since, the faster cloud services are normally more expensive, therefore,
users face a time-cost trade-off in selecting services. As any delay in completion
time can produce negative impacts on cost optimization of workflow schedul-
ing. A general way to address this trade-off is to minimize monetary cost under
a deadline constraint. Nonetheless, only a few approaches have been presented
to address this issue in the literature [7–10], which solve the workflow schedul-
ing problem on the Infrastructure as a Service (IaaS) platform. Aforementioned
literatures can effectively minimize the makespan or cost but, none of them
considered reliability during task scheduling.

In order to achieve the reliability, Wang et al. [11] proposed a LAGA (Look-
Ahead Genetic Algorithm) to optimize the reliability and makespan of a workflow
application simultaneously. An algorithm was designed and implemented in [12]
by Wen et al. to solve the problem of deploying workflow applications over fed-
erated clouds while meeting the reliability, security and monetary requirements.
Although the above work can guarantee the reliability but, they did not consider
the soft error occurrences in cloud data centers. Wu et al. [3] proposed a soft
error-aware energy-efficient task scheduling for workflow applications in DVFS-
enabled cloud infrastructures under reliability and completion time constraints.
However, the above work did not consider the cost optimization.

To our best knowledge, our work is the first attempt to minimize the execu-
tion cost of cloud workflows under makespan, reliability and memory constraints
while considering soft errors in cloud data centers.

3 Scheduling Model and Problem Definition

In this section, we present VM model, workflow model and fault tolerance.
Finally, the problem of cost optimization workflow scheduling in the cloud envi-
ronment is defined.
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3.1 Modeling of VM

IaaS cloud provider offers a set of VM configurations C = {C0, C1, ..., Cn} to
tenants by renting VMs on demand. The VM configuration Ci is characterized by
a four-tuple (vn, bw, ram, price), where vn(Ci), bw(Ci), ram(Ci) and price(Ci)
denote the number of vCPUs, the network bandwidth, the memory and the rental
price per unit time of Ci, respectively. A running VM with certain configuration
is treated as an instance and customers can purchase unlimited number of VM
instances according to their requirements. The set of VM instances is denoted
by S = {S0, S1, ..., Si}, where Si is a VM instance with a certain configuration
ϕ(Si) of C. We assume that all the tasks are parallelizable so that all vCPUs can
be fully used and have same processing capacities. It is noteworthy that although
cloud service providers have massive computing and memory resources, there are
upper limits on the number of vCPU and the amount of memory for a single VM
instance. In addition, the allocation of memory source of VM is usually discrete,
i.e., ram(Si) = α · M , where M is the unit of memory which depends on cloud
service providers and α is an integer.

3.2 Modeling of Workflow

A workflow W = (T,E) as shown in Fig. 1 with dependent tasks is represented as
the Directed Acyclic Graph (DAG), where T = {t0, t1, ..., tn} represents the task
set and E denotes the set of dependencies between tasks. For instance, euv ∈ E
indicates the dependency between task tu and tv, where tu is the immediate
predecessor of tv, and tv is the immediate successor of tu. We use a four-tuple
(referload,mem, pred, succ) to represent a task, where referload(tu), mem(tu),
pred(tu) and succ(tu) denote the reference workload, the maximum memory
required for task execution on a VM instance, the immediate predecessors and
the immediate successors of task tu, respectively. If pred(tu) = ∅, then tu is an
entry task and if succ(tu) = ∅, then tu is an exit task. This article allows single
entry and exit task, this can be assured by adding a pseudo entry task and a
pseudo exit task. We assume the reference workload is task execution time on a
VM instance whose vCPU number equals 1.

t0

t1

t5

t4

t2

t3

540

240

240
540

1040

240

240

20

Fig. 1. A workflow example with 6 tasks

As shown in Fig. 1, each edge euv have weight wtu,v, which represents the
amount of data that needs to be transmitted from tu to tv. A task cannot start
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its execution until the input data has been received from all of its predeces-
sors. If task tu and tv are assigned to VM Si and Sj , the communication cost
comm(tu, tv) can be calculated as follows:

comm(tu, tv) =

{
0 if Si = Sj

wtuv

bwi,j
if Si �= Sj

(1)

We consider that the communication bandwidth bwi,j between Si and Sj is
the lower bandwidth, i.e., bwi,j = min(bw(ϕ(Si)), bw(ϕ(Sj))).

3.3 Modeling of Tasks with Fault Tolerance

To ensure the reliability of workflow execution in a cloud environment, we use an
equidistant checkpointing technique [4], where the lengths of checkpoint inter-
vals are same. The execution state of task is stored in a secure device [3,13],
guaranteeing that the task can read the latest correct state to re-execute when
a soft error occurs.

Suppose that task tu is assigned to VM Si, so the best case execution time
of task tu without any soft error can be formulated as

ETbest(tu, Si) =
referload(tu)

vn(ϕ(Si))
+ N(tu, Si) · Oi, (2)

where N(tu, Si) is the number of checkpoint of task tu on VM Si and Oi is the
time overhead of checkpointing. Checkpoint interval length of task tu assigned
to VM Si is formulated as

Seg(tu, Si) =
referload(tu)

vn(ϕ(Si))
· 1
N(tu, Si) + 1

. (3)

Let Fmax denotes the maximum number of fault occurrences during task
execution. Therefore, with Fmax soft error occurrences, the worst case execution
time of task tu on VM Si can be expressed as

ETw(tu, Si) =
referload(tu)

vn(ϕ(Si))
+ 2 · N(tu, Si) · Oi + Seg(tu, Si) · Fmax, (4)

where 2 ·N(tu, Si) indicates the accumulative overhead of Fmax checkpoint sav-
ing and retrieval operations, and Seg(tu, Si) ·Fmax represents the fault tolerance
overhead.

In order to minimize the worst case execution time ETw(tu, Si), we use the
optimal number of checkpoint Nopt(tu, Si) [4], which can be calculated as

Nopt(tu, Si) =

√
Fmax

Oi
· referload(tu)

vn(ϕ(Si))
− 1. (5)
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We assume that the average arrival rate of soft error λi of the VM instance
Si is consistent with Poisson distribution [3]. Therefore, the probability of F soft
error occurrences on VM Si can be formulated as

Pr(tu, Si, F ) =
e−λi·ETw(tu,Si) · (λi · ETw(tu, Si))F

F !
. (6)

Task reliability is defined as the probability that a task can be successfully
executed in the presence of soft errors. The probability of successful recovery of
F faults can be calculated as

Prsucceed(F, Si) = e−λi·F ·Seg(tu,Si). (7)

Hence, the reliability of task tu on VM Si can be calculated as

R(tu, Si) =
Fmax∑
F=0

Pr(tu, Si, F ) · Prsucceed(F, Si). (8)

3.4 Problem Definition

A binary tuple (Task VM, VM VMC ) is used to represent a workflow scheduling
scheme P , where Task VM represents the mapping of tasks to VM instances,
and VM VMC represents the VM instances to VM configurations mapping.
VM VMCi is used to represent the configurations of VM instance Si, i.e.,
ϕ(Si) = VM VMCi. Task VMu indicates the VM instance to which task tu
is assigned. Let STi,u and FTi,u denote the start time and finish time of task tu
on VM Si, respectively. We get the start time of the task tu on VM Si as follows:

STi,u =

⎧⎪⎪⎨
⎪⎪⎩

0 if pred(tu) = ø
max

tw∈previous(tu)
{ max

tv∈pred(tu)
{FTi,u+

comm(tu, tv)}, FTi,w} if pred(tu) �= ø

(9)

FTi,w is the finish time of the task tw executed before task tu on the same
VM instance Si and previous(tu) represents the tasks executed before tu on Si.
Note that if there are multiple tasks that can be executed at the same time on
the same VM instance, we select a task according to the order in which the tasks
are scheduled to the VM instance. Therefore, FTi,u is formulated as

FTi,u = STi,u + ETw(tu, Si). (10)

The makespan of workflow W can be obtained as,

makespan(W,P ) = max
tu∈T (W )&Si∈S(P )

{FTi,u}, (11)

where T (W ) is the task set of workflow W , S(P ) is the set of VM instances
obtained by scheduling scheme P . In Sect. 3.3 we have obtained the reliability
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of a task, to calculate the workflow reliability we find the cumulative product of
the reliability R(W,P ) of all the workflow tasks [3,14], such as

R(W,P ) =
∏

tu∈T (W )&Si∈S(P )

R(tu, Si). (12)

Let ti denote the tasks assigned to the VM Si, i.e., ti = {tu|Task V Mu = Si}.
The start time V MSTi

and end time V MFTi
of VM Si can be formulated as

V MSTi
= min

tu∈ti
{STi,u}, (13)

V MFTi
= max

tu∈ti
{FTi,u}. (14)

Finally, the cost of workflow W scheduling can be formulated as

Cost(P,W ) =
∑

Si∈S(P )

price(VM VMC i(P )) · (V MSTi
− V MFTi

). (15)

Considering a workflow W and a set of VM configurations C, we need to
find a suitable scheduling scheme P to minimize the cost of workflow scheduling
while satisfying the makespan constraint Dgoal, memory constraint, and relia-
bility constraint Rgoal. Therefore, the problem to be solved in this paper can be
formally defined as the minimization problem:

Minimize : Cost(W, P ) (16)
Subject to : R(W, P ) ≥ Rgoal, (17)

makespan(W, P ) ≤ Dgoal, (18)
mem(tu) < ram(ϕ(Si)), tu ∈ T (W ) & Si ∈ S(P ). (19)

Equation (19) describes the memory constraints of workflow scheduling. The
memory required for a task should not exceed the RAM of the VM instance
on which the task it assigned. The problem presented in this paper is a typical
combinatorial optimization problem. It is worth noting that although assigning
tasks to the powerful VM instances can reduce the makespan of a workflow, but
the idle time caused by data dependencies on the powerful VM instances will
increase the cost and excessive memory resources can also impose costly penal-
ties. Meanwhile, the reliability of task can also be influenced by the processing
capability of VM instances, which makes the scheduling problem more complex.

4 Our Evolutionary Approach

Genetic algorithm (GA) has the characteristics of powerful global search ability,
excellent concurrency and strong robustness, which is easy to combine with other
methods and has become a universal optimization method [15]. It is widely used
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in workflow scheduling and cloud computing [8,16,17]. Since the existing GA is
difficult to apply directly to the workflow scheduling problem, we explore the
two-segment group genetic algorithm (TSG-GA) for cost optimized workflow
scheduling with makespan, reliability and memory constraints. The algorithm
consists of encoding, initial population generation, selection, crossover, mutation,
elitism, fitness function and chromosome modification.

Initial Population

Chromosome Modification 
& Elitism 

Selection

# of iterations > K

Optimal Solution

C0 C1 C2 C3

Crossover Operation

C3 C2 C1

C0 C1 C1 C3 C3 C1 C2 C6

Task_VM & VM_VMC Mapping

C0 C4 C1 C3 C3 C5 C2 C6

Randomly 
Delete

Randomly 
Delete

Mutation OperationC1 C1

t4 t5 t3
t0 t0 t4t2 t1 t3 t1 t2 t5

t0 t4 t1 t3 t2 t5 t0 t1 t3 t4 t5 t2

t1 t3 t1 t3

t0 t4 t1 t2 t3 t5 t0 t1 t3 t4 t5 t2

Fig. 2. The execution process of TSG-GA

The overall execution process of TSG-GA is shown in Fig. 2. We first ran-
domly generate the initial population according to the target encoding, and select
individuals with better fitness from initial population for crossover, mutation,
and modification operations. Here the modification operation is used to satisfy
the memory constraint for each chromosome. Then, we use the elitism strategy
to preserve the best individual generated during the process of evolution. After
a certain number of iterations (K), the final best individual (global optimal
solution) is returned as the workflow scheduling solution.

4.1 Encoding

As discussed in Sect. 3.4, the encoding of our approach is a two segment integer
encoding based on task grouping. For example, we use ind to represent a chro-
mosome, i.e., an individual in the population, and ind consists of two segment:
ind.Task VM and ind.VM VMC.

The encoding example is shown in Fig. 3. Task VM is a group-based integer
encoding, grouping tasks according to their corresponding VM instances. The
encoding length of Task VM is equal to the number of tasks. Gene index in
Task VM encoding represents the task, and the value represents the correspond-
ing VM instance, For example, Task VM(1) = 1 indicates that task t1 is assigned
to VM instance S1. VM VMC is encoded as a variable length integer encoding,
the length of which is the maximum index value of the VM instances in Task VM.
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Task

Task_VM

VM_VMC

0 1 2 3 4 5

VM_Configs 0 1 2

0 1 0 1 2 3

0 1 2 3

3

Fig. 3. An example of encoding

Similar to Task VM encoding, VM VMC(1) = 2 indicates that the configuration
of VM Instance S1 is C2. The two-segment integer encoding method designed in
this paper is simple and intuitive.

4.2 Fitness Function

Fitness function is used to evaluate the fitness of solution in the evolution pro-
cess. In this paper, we use fitness function to minimize the cost Cost(W,P ) as
described in Eq. (15). In order to satisfy makespan and reliability constraints,
penalty parameters γ and δ are introduced. How to satisfy memory constraints
will be described in Sect. 4.4. The fitness of a chromosome deteriorates if it does
not meet the makespan or reliability constraint. Let ξ be the set of constraints
{Dgoal, Rgoal}, the Fitness function can be formulated as

Fitness(W,P ) =

{
Cost(W,P ), ξ is satisfied

γ · δ · Cost(W,P ), otherwise
(20)

γ and δ are the real numbers greater than 1 if Dgoal and Rgoal are not
satisfied, respectively. The goal of TSG-GA is to minimize the Fitness(W,P ).

4.3 Crossover and Mutation

The designed crossover operator can ensure that the original task grouping and
VM configurations information of chromosomes will not be lost, which uses the
tasks in the same VM instance as the crossover unit to avoid the problem that
the direct crossover for Task VM may destroy the task grouping information.

Figure 4 shows the execution process of the crossover operator. Suppose ind1
and ind2 are parents. Firstly, an empty chromosome L1 is created as the off-
spring, and then a segment of genes of ind1.Task VM are randomly selected.
As shown in Fig. 4, ind1.Task VM(3) to ind1.Task VM(4) are selected. Genes
in the same groups as the selected genes are copied into the offspring L1
with the associated VM configurations, i.e., ind1.Task VM(1), ind1.Task VM(3),
ind1.Task VM(4), ind1.VM VMC(1), and ind1.VM VMC(2). The length of the
selected genes is limited to length of ind1.VM VMC to avoid duplicating genes
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Task_VM

VM_VMC

ind1 ind2

L1L2

Randomly Choose 
VM Instances

Crossover

L1L2

Fig. 4. An example of Task VM and VM VMC crossover

from ind1 too much which destroy the grouping information of ind2. Then copy
the groups and corresponding VM configurations of ind2 that do not overlap
with the previously copied genes of ind1 into L1. Here ind2.Task VM(2) and
ind2.Task VM(5) cannot be copied because the corresponding VM instances
overlap with the previously copied VM instances. At this time, there are some
fragments of L1.Task VM are not filled. We simply assign the tasks in these
fragments to the existing or new VM instances and the crossover operation is
completed. Same operation is performed by swapping the roles of ind1 and ind2,
and we get the offspring individual L2.

For mutation operator, as shown in Fig. 2, it marks a chromosome as a
mutated individual according to mutate rate, where we randomly delete one
of the VM instance and assign the tasks of the VM instance to the existing or
new VM instances. This paper argues that splitting and reorganizing the tasks
in the VM instance with the most tasks is beneficial to jump out of the local
optimum.

4.4 Chromosome Modification

The cloud workflow scheduling problem in this paper includes memory constraint
that genetic algorithm does not have ability to deal with. In the process of evo-
lution, if memory constraint is not satisfied, chromosome modification algorithm
is called to satisfy the memory constraint.

As shown in Algorithm 1, for the chromosome that does not satisfy memory
constraint, lines 3–15 search for an alternative VM configuration for each VM
instance (traversing from k = 0) that does not satisfy memory constraint. Line
8 uses GetAvailV mConfig function to get an available VM configuration for
the VM instance which need to increment the RAM from VM configurations C.
The available configuration should satisfy memory constraint and have the same
or similar processing capability with the original VM instance (the number of
vCPUs is close to the original VM instance). Then line 9 uses the available VM
configuration to replace the configuration of original VM instance, and line 12
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Algorithm 1: Chromosome Modification
Input: i) ind, the chromosome to be modified;

ii) vmConfigs, available VM configuration set;
Output: new ind, modified chromosome

1 ReformIndividual(ind, vmConfigs) begin
2 new ind = ind;
3 for k = 0 to ind.V M V MC.size() do
4 v = ind.V M V MC[k];
5 candidate = [];
6 tasks = GetTasks(ind, k);
7 if FindMaxMem(tasks) > vmConfigs[v].ram then
8 for vmConfig ∈ GetAvailV mConfig(vmConfigs[v], tasks) do
9 new ind.V M V MC[k] = vmConfig;

10 candidate ind = new ind;
11 candidate.add(candidate ind);

12 end
13 new ind = FindElitis(candidate);

14 end

15 end
16 return new ind;

17 end

adds the modified chromosome to the candidate individual set. Line 13 selects
the best individual from the candidate individual set. In the end, the entire
chromosome is modified and the memory constraint is satisfied.

Table 1. Price of custom machine types provided by Google Cloud

Charge items Cost

vCPU $0.033174/vCPU hour

Memory $0.004446/GB hour

5 Performance Evaluation

The effectiveness of the proposed method was evaluated through thorough exper-
iments based on WorkflowSim [18] using well-known workflows [19] such as
CyberShake, Inspiral and Epigenomics. Three workflows with two sets of tasks
for each workflow were used in the experiment, which were generated by the
toolkit Workflow-Generator [20] based on its default configurations. To reflect
memory constraints, we randomly add memory attributes (1–8 GB) to the tasks
of the generated workflows. Furthermore, HEFT and PSO algorithms with
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makespan and VM idle time minimization were compared with the proposed
method. The HEFT algorithm assigns a task to the VM instance to achieve
the earliest finish time according to task priority, yielding shortest workflow
makespan. The PSO is an evolutionary computational algorithm which is widely
used in the research of task scheduling for workflow application in the cloud. For
comparison with our approach, the HEFT and PSO algorithm were modified
to make sure an unlimited number of VM instances can be created with the
same configuration. We also added memory constraints in both HEFT and PSO
algorithm, and minimized the size of the memory of VM instance to reduce its
execution cost. In addition, we calculated the reliability and cost of workflow
scheduling according to Eqs. (12) and (15), respectively. All the experiments
were performed on a desktop with 3.10 GHz Intel Core i5 CPU and 8 GB RAM.

5.1 Experimental Setting

The VM configuration and price were set by referring to custom machine types
of Google Cloud. According to the characteristics of workflows and the VM
configurations, a total of 40 VM configurations are selected with vCPU 1–4 and
memory of 1–10 GB (1 GB, 2 GB, ..., 10 GB). Moreover, the network bandwidth
between VM instances is 10 Mbps. The price of custom machine types provided
by Google Cloud is shown in Table 1:

Note that although the price shown in Table 1 is in hour, Google Cloud
can charge each VM instance in seconds. We assume that the soft error occurs
independently in each VM instance and it is in accordance with the Poisson
distribution. Supposing soft error occurrence rate λi of each VM instance is
the same for a workflow, we have taken different soft error rates for different
workflows, and the value of λi ranges from 10−6 to 10−3. We set the maximum
soft error tolerance number Fmax to 1, and the overhead of each checkpoint Oi

to 0.1 s. The size of the population of TSG-GA is 100, the number of generation,
the crossover rate, and the mutation rate are 100, 0.8 and 0.1, respectively. For
PSO, the size of the population is 100 and the number of generation is 100.
While the learning factors c1 = 2, c2 = 2, and inertia weight is 0.9.

To evaluate the effectiveness of the proposed TSG-GA under makespan, reli-
ability and memory constraints, we set makespan constraint to Dgoal = θ · MH,
where MH is the workflow scheduling makespan obtained by HEFT algorithm
and θ is a constant real number. In the experiment, we let θ take different values
(1 ≤ θ ≤ 2), which means that our approach should not make the makespan
of a workflow scheduling θ times longer than the makespan obtained by HEFT
algorithm, meanwhile, we set the workflow scheduling reliability constraint to
Rgoal = RH − β, where RH is the workflow scheduling reliability obtained by
HEFT algorithm and β is the reliability margin. The number of soft error toler-
ances Fmax is fixed and assumed that the soft error rate of each VM instance is
the same. Since the reliability of the task is directly related to the task execu-
tion time, it is more likely to encounter a soft error when the execution time
becomes longer, which results in lower reliability. The HEFT algorithm can
achieve approximate shortest makespan and highest task reliability as it finishes
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the task in the earliest time. Therefore, we used the reliability and makespan
obtained by HEFT as references of Rgoal and Dgoal for each workflow.

5.2 Results and Analysis

In the experiment, the workflow scheduling generated by our approach always
satisfies the memory constraint, because chromosome modification guarantees
the memory constraints. We performed experiments five times on each workflow
and finally took the average as the final result.
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Fig. 5. Cost of large workflows with fixed reliability (β = 0) and varying makespan
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Fig. 6. Cost of small workflows with fixed reliability (β = 0) and varying makespan

Results of Workflows with Fixed Reliability Constraint. Firstly, we per-
formed experiments using three workflows with two sets of task for each workflow
under different makespan constraints, fixed reliability constraint, and memory
constraint. Each set of tasks were defined as small and large workflows with 30 (or
24) and 100 tasks, respectively. We set θ to 1, 1.2, 1.5 and 2, and set β to 0 (i.e.,
RH). Figures 5 and 6 show the cost results of the proposed approach in compar-
ison with HEFT and PSO on large workflows (i.e., CyberShake 100, Sipht 100
and Epigenomics 100) and small workflows (i.e., CyberShake 30, Sipht 30 and
Epigenomics 24). Note that we did not set any constraint for PSO method, and
just get results of HEFT and PSO once for one workflow in the case of θ = 1.
Our approach spent around 11.20 s on average to generate one schedule on large
workflows and 1.41 s on small workflows.

To facilitate performance comparison, we took HEFT method as baseline,
and took scheduling costs divided by the cost of HEFT as the final costs for
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each workflow. Our approach always satisfied the constraints both on large and
small workflows. From Figs. 5 and 6, it can be observed that our approach out-
performs the HEFT and PSO algorithms. For example, compared to the HEFT
algorithm, PSO can achieve 40.0% cost reduction on the CyberShake 100 while
our approach can achieve 44.1% cost reduction when θ = 1. When θ = 2, PSO
can achieve 39.1% cost reduction on Sipht 30 while our approach can achieve
66.0% cost reduction. If we compare the worse performance cases, the proposed
approach TSG-GA only performs worse than PSO on CyberShake 30 in the case
of θ = 1. However, PSO performance is even worse than HEFT on half of the
workflows. This is mainly because it tends to converge prematurely and falls
into local optimum due to the lack of diversity of the population in the search
space. The processing capability of the VM instance using custom machine type
provided by Google Cloud is linear to the price in the experiment. Therefore,
cost reduction lies in reducing the idle time of VM instances, while HEFT just
finishes tasks as quickly as possible. Complex dependencies between tasks make
tasks to wait for execution on the VM instances, making it impossible to guar-
antee a minimum idle time. Our approach can create an appropriate number
of VM instances with appropriate configurations and schedule tasks reasonably
according to the dependencies, while reducing idle time of instances to reduce
costs. We can see that the cost optimization achieved on Epigenomics is only 2%.
This is because Epigenomics workflow transmits less data and its data depen-
dency is relatively simple, so its main cost comes from the vCPU usage time but
not idle time. It can be seen that as θ increases, our approach can achieve better
results due to the vast search space in genetic algorithm.

Results of Workflows with Fixed Makespan Constraint. We conducted
experiments with the three workflows discussed in the previous section under
fixed makespan constraint, different reliability constraints and memory con-
straint. We set θ to 1 and β to 0.0000, 0.0001, 0.0002 and 0.0003. Figures 7 and
8 show the comparisons of workflow scheduling results obtained by our approach
on those three workflows with HEFT and PSO algorithm.

Similarly, we used the HEFT as the benchmark. It is found that our app-
roach always satisfies the constraints on these three workflows and outperforms
the HEFT and PSO algorithms as depicted in Figs. 7 and 8. When β = 0, the
reliability constraint of CyberShake 30 is 0.9987 and our approach can achieve
6.5% cost reduction compared to HEFT method. When β = 0.0003, the relia-
bility constraint of CyberShake 30 is 0.9984, our approach can achieve 12% cost
reduction compared to HEFT method. Reliability constraint make VM config-
urations to have strong processing capability to allow tasks to be completed as
quickly as possible, which improves the reliability of the tasks. It can be seen
from Figs. 7 and 8, when reliability constraint become loose, our approach can
search for a better scheduling scheme.
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Fig. 7. Cost of large workflows with fixed makespan (θ = 1) and varying reliability
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Fig. 8. Cost of small workflows with fixed makespan (θ = 1) and varying reliability

6 Conclusions

Due to the increasing number of transistors on modern processors, the servers
in data center is more susceptible to the notorious transient faults (i.e., soft
errors). Although checkpointing with rollback-recovery mechanism is promising
in tackling this problem to improve the reliability of cloud workflows, its over-
head is too large to be neglected. The inevitable overhead will strongly affect
the overall cost of workflow execution on cloud with a pay-as-you-go manner.
To address this problem, this paper proposed a genetic algorithm based app-
roach, known as TSG-GA, that can quickly figure out a cost-optimal schedule
by considering both the overhead of checkpointing with rollback-recovery and
the resource constraints (i.e., maximum number of vCPUs and available memory
within a VM, network bandwidth) given by cloud workflow tenants. Comprehen-
sive experimental results on well-known complex scientific benchmarks shows the
effectiveness of our proposed approach.
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