
Improving Availability of Multicore Real-Time
Systems Suffering Both Permanent and

Transient Faults
Junlong Zhou ,Member, IEEE, Xiaobo Sharon Hu , Fellow, IEEE, Yue Ma , Student Member, IEEE,

Jin Sun ,Member, IEEE, Tongquan Wei , Senior Member, IEEE,

and Shiyan Hu , Senior Member, IEEE

Abstract—CMOS scaling has greatly increased concerns for both lifetime reliability due to permanent faults and soft-error reliability

due to transient faults. Most existing works only focus on one of the two reliability concerns, but often times techniques used to increase

one type of reliability may adversely impact the other type. A few efforts do consider both types of reliability together and use two

different metrics to quantify the two types of reliability. However, for many systems, the user’s concern is to maximize system

availability by improving the mean time to failure (MTTF), regardless of whether the failure is caused by permanent or transient faults.

Addressing this concern requires a uniform metric to measure the effect due to both types of faults. This paper introduces a novel

analytical expression for calculating the MTTF due to transient faults. Using this new formula and an existing method to evaluate

system MTTF, we tackle the problem of maximizing availability for multicore real-time systems with consideration of permanent and

transient faults. A framework is proposed to solve the system availability maximization problem. Experimental results on a hardware

board and simulation results of synthetic tasks show that our scheme significantly improves system MTTF (and hence availability)

compared with existing techniques.

Index Terms—System availability, soft-error reliability, lifetime reliability, multicore real-time systems

Ç

1 INTRODUCTION

MULTICORE processors have become the mainstream for
current and future embedded microprocessors in var-

ious real-time applications. However, the exponential
increase in power density of multicore processors caused by
aggressive technology scaling can lead to elevated operating
temperature and frequent temperature variations, which
accelerate chip wear-out due to electromigration (EM) [1],
time-dependent dielectric breakdown (TDDB) [2], stress
migration (SM) [3], and thermal cycling (TC) [4]. Such accel-
erated wear-outs eventually result in permanent faults
occurring earlier and reduce lifetime. Furthermore, the
decreasing feature size and operating voltage make the cir-
cuits more vulnerable to transient faults, thus degrade

soft-error reliability. To reduce the cost of repairing/replac-
ing an entire system and maintain quality of service,
improving lifetime reliability (LTR) and soft-error reliability
(SER) becomes an imperative design concern of multicore
systems, especially for embedded systems deployed in criti-
cal applications and harsh environments.

As aforementioned, multicore systems are mainly sus-
ceptible to two faults: permanent fault resulting in faulty
hardware and transient fault resulting in soft error. Perma-
nent fault is a type of failure that continues to exist until the
faulty hardware is repaired or replaced, and is caused by
circuit wear-out [5], [6], [7]. Transient fault is a type of fail-
ure that appears for a short time and then disappears with-
out damage to the device, and is caused by cosmic radiation
[8], [9], [10]. Many safety-related embedded systems are
required to have the capacity of providing a reliable execu-
tion in the presence of both faults.

Extensive investigations have been made in the design of
reliability-aware real-time systems. However, most of them
either focus on LTR [7], [11], [12], [13], [14] or SER [15], [16],
[17], [18], [19]. Although the causes and repair techniques of
transient and permanent faults are quite different, certain set
ups of a chip in general impact both SER and LTR. For exam-
ple, decreasing the core frequency would decrease SER but
increase LTR. Therefore, it is important to consider the two
faults at the same time when selecting the right set ups for
the chip. Having a common metric would make it easier to
balance the effects on SER and LTR. A few recent works

� J. Zhou and J. Sun are with the School of Computer Science and
Engineering, Nanjing University of Science and Technology, Nanjing
210094, China. E-mail: {jlzhou, sunj}@njust.edu.cn.

� X. S. Hu and Y. Ma are with the Department of Computer Science and
Engineering, University of Notre Dame, Notre Dame, IN 46656.
E-mail: {shu, yma1}@nd.edu.

� T. Wei is with the School of Computer Science and Technology, East China
NormalUniversity, Shanghai 200062, China. E-mail: tqwei@cs.ecnu.edu.cn.

� S. Hu is with the Department of Electrical and Computer Engineering,
Michigan Technological University, Houghton, MI 49931.
E-mail: shiyan@mtu.edu.

Manuscript received 15 May 2018; revised 25 June 2019; accepted 5 Aug.
2019. Date of publication 14 Aug. 2019; date of current version 5 Nov. 2019.
(Corresponding author: Junlong Zhou.)
Recommended for acceptance by S. Ha.
Digital Object Identifier no. 10.1109/TC.2019.2935042

IEEE TRANSACTIONS ON COMPUTERS, VOL. 68, NO. 12, DECEMBER 2019 1785

0018-9340� 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-7734-4077
https://orcid.org/0000-0002-7734-4077
https://orcid.org/0000-0002-7734-4077
https://orcid.org/0000-0002-7734-4077
https://orcid.org/0000-0002-7734-4077
https://orcid.org/0000-0002-6636-9738
https://orcid.org/0000-0002-6636-9738
https://orcid.org/0000-0002-6636-9738
https://orcid.org/0000-0002-6636-9738
https://orcid.org/0000-0002-6636-9738
https://orcid.org/0000-0002-8413-000X
https://orcid.org/0000-0002-8413-000X
https://orcid.org/0000-0002-8413-000X
https://orcid.org/0000-0002-8413-000X
https://orcid.org/0000-0002-8413-000X
https://orcid.org/0000-0003-4855-2499
https://orcid.org/0000-0003-4855-2499
https://orcid.org/0000-0003-4855-2499
https://orcid.org/0000-0003-4855-2499
https://orcid.org/0000-0003-4855-2499
https://orcid.org/0000-0002-7421-1711
https://orcid.org/0000-0002-7421-1711
https://orcid.org/0000-0002-7421-1711
https://orcid.org/0000-0002-7421-1711
https://orcid.org/0000-0002-7421-1711
https://orcid.org/0000-0003-2512-0634
https://orcid.org/0000-0003-2512-0634
https://orcid.org/0000-0003-2512-0634
https://orcid.org/0000-0003-2512-0634
https://orcid.org/0000-0003-2512-0634
mailto:
mailto:
mailto:
mailto:


[20], [21], [22], [23], [24] have examined both SER and LTR
together. But all these works utilize separate metrics to eval-
uate reliability. Specifically, mean time to failure (MTTF) is
used to measure LTR while the probability of successful exe-
cution is used to estimate SER. However, evaluating LTR
and SERwith different metrics presents two dilemmas. First,
for system users, the concern is the mean time to first failure,
regardless of whether the failure is caused by a permanent
fault or transient fault. It is true that repairing the two differ-
ent failures incurs different overheads, but at the end of the
day, any failure would cause an interruption of normal exe-
cution. Second, certain design decisions (e.g., task mapping
and voltage/frequency scaling) may increase LTR but
decrease SER or vice versa. Without a common metric, it is
difficult to gauge how tradeoffs should be made to achieve
overall high system reliability. To this end, we use the MTTF
as the commonmetric to evaluate LTR and SER.

In this paper, we first propose using MTTF to evaluate
LTR and SER, and present a novel analytical method to cal-
culate the MTTF due to transient faults. We then formulate
the problem of maximizing the availability for real-time sys-
tems running on multicores in the presence of both perma-
nent and transient faults. Finally, we design a hybrid
framework to solve the system availability maximization
problem. This paper makes the following contributions.

� We propose an analytical method to calculate the
MTTF due to transient faults for a core executing a
given workload. In addition, we show that our
MTTF expression indeed correctly represents MTTF.
Based on the expression, we formulate a max-min
problem to optimize the availability of multicore
real-time systems that suffer from both permanent
and transient faults.

� We present a hybrid framework to solve the avail-
ability maximization problem, in which an offline
and an online approach are alternately employed to
improve the system availability based on the core
states. The offline approach builds on reliability-
aware methods for increasing system availability by
balancing SER and LTR. The online approach
improves the system availability by balancing the
diverse availabilities of individual cores. MTTF-
aware heuristics are used in the online approach to
adjust the strategy generated from the offline
approach.

The rest of this paper is organized as follows. Section 2
shows the background of this work. Section 3 introduces
the analytical method to calculate the MTTF due to transient
faults. Section 4 defines the optimization problem and
presents an overview of our framework to solve the prob-
lem. Our framework consists of an offline approach and an
online approach, which are described in Sections 5 and 6,
respectively. Experimental results are discussed in Section 7
and concluding remarks are given in Section 8.

2 BACKGROUND

2.1 Related Work

Considerable research efforts have been devoted to investi-
gating permanent faults in the past decade. Huang et al. [11]
established an analytical model to estimate the LTR of

multicores and designed a simulated annealing based
method to maximize system lifetime. Amrouch et al. [12]
studied the impact of individual aging mechanisms on the
probability of failures and the interdependencies of these
mechanisms. Duque et al. [13] developed an LTR model that
considers the variation of fault behaviors at runtime, and
proposed an adaptive LTR-driven scheduling approach.
Unlike the approaches in [11], [12], [13] that solve the LTR
optimization problem statically, Chantem et al. [14] pre-
sented an online LTR-aware task scheduling which slows
down core wear-out speed, and Ma et al. [7] designed an
online framework which maximizes LTR through core utili-
zation control. However, none of the above-mentioned work
takes into account transient faults.

On the other hand, a lot of studies have focused on
improving SER. Zhao et al. [15] explored the optimal fre-
quency for each task to maximize system SER under the
deadline and energy constraints. Rozo et al. [16] presented
an adaptive fault-tolerant technique to improve SER by
dynamically tuning resource allocation. Haque et al. [17]
tackled the problem of minimizing the energy consumed by
real-time tasks under a given SER constraint. Although
these proposed techniques can either lower fault rate or tol-
erate occurred transient faults, they cannot handle the
uncertainty in transient fault occurrences. Zhou et al. [18]
introduced a fault adaptation variable to model the uncer-
tainty, and proposed a stochastic fault-tolerant task schedul-
ing algorithm. However, all the aforementioned approaches
do not deal with permanent faults. Axer et al. [19] presented
an SER analysis approach to detect and recover transient
faults while keeping time predictability for periodic task
sets executing in mixed-critical systems. Though [19] has
made impressive contributions in fault detection and recov-
ery, it does not consider two specific aspects related to sys-
tem SER improvements: 1) some design decisions such as
task mapping and task operating frequency selection have
great impacts on reliability, and 2) lifetime is also an impor-
tant concern in embedded systems. Our work attempts to
address these missing aspects.

A few recent papers have focused on handling perma-
nent and transient faults simultaneously. An efficient fault-
aware resource management method is designed for net-
work-on-chip systems [20]. The authors proposed placing
spare cores to improve system SER and LTR. Huang et al.
[21] developed a software/hardware recovery based sched-
uling algorithm to deal with both permanent and transient
faults. A genetic algorithm based approach is introduced to
jointly improve SER and LTR by determining the mapping
and frequency for each task [22]. Kim et al. [23] presented
energy and lifetime optimization techniques that use DVFS-
aware reliability model and Q-learning-based method for
multicore systems considering permanent and transient
faults. Ma et al. [24] established an online framework for
enhancing SER and LTR of real-time systems running on
Big-Little type MPSoCs. However, all these works lack a
uniform metric to measure the effect due to both faults, thus
are not suitable for addressing the user’s concern of maxi-
mizing system availability regardless of whether the failure
is caused by permanent or transient faults.

MTTF is used as the common metric to evaluate system
reliability. Aliee et al. [25] presented a success tree based

1786 IEEE TRANSACTIONS ON COMPUTERS, VOL. 68, NO. 12, DECEMBER 2019



scheme to carry out reliability analysis for embedded systems
suffering both permanent and transient faults. The approach
can model more general component dependencies instead of
the serial failure model used in our paper. However, it uses a
Monte-Carlo (MC) analysis to compute the overall system
MTTF. The MC analysis requires designers to specify a time
step for discretizing the continuous-time reliability functions
for both permanent and transient fault processes and thus is
time-consuming. Unlike [25], we analytically derive the
MTTF due to transient faults and use a simplified version of
the LTRmodeling tool [26] to obtain the MTTF due to perma-
nent faults. The analytical method avoids the use ofMC anal-
ysis and the simplified tool significantly reduces the number
of MC trials with an acceptable accuracy degradation. There-
fore, our approach is more computational-efficient. Using the
common metric MTTF, we formulate and solve the problem
of maximizing availability for general real-time applications
running on multicore systems with consideration of perma-
nent and transient faults.1

2.2 Architecture and Application Model

We consider a multicore system C that consists of M homo-
geneous cores fC1; C2; . . . ; CMg. C executes a task set T that
consists of N independent periodic tasks ft1; t2; . . . ; tNg
with real-time constraints. The characteristics of a task ti
ð1 � i � NÞ is described by a quadruplet ti : fpi; di; wti; rig,
where pi and di are the period and relative deadline of task
ti, respectively. wti is the worst-case execution time of task
ti at the core’s maximum frequency, and ri is the task vul-
nerability factor indicating the probability that a transient
fault at the hardware level ultimately leads to a program
failure at the task level [28]. The period of a task is assumed
equal to its deadline [8], i.e., pi ¼ di. The hyper-period of
task set T , denoted by HT , is the least common multiple of
all task periods fp1; p2; . . . ; pNg.

The task set is periodically executed on the multicore sys-
tem, and each core is dynamic voltage and frequency scaling
(DVFS) enabled and supports a discrete set of frequencies
varying from the minimum voltage/frequency to the maxi-
mum voltage/frequency. For simplicity, we will use the
term frequency change to stand for both supply voltage and
frequency adjustments in what follows. Denoting the mini-
mum and maximum frequency supported by a core as fmin

and fmax, the operating frequency fi of task ti running on the
multicore system, normalized with respect to fmax, satisfies
0 < fmin � fi � fmax ¼ 1:0. The execution time ti of task ti at
frequency fi is then given bywti=fi.

2.3 Soft-Error Reliability Model

Transient faults are in general modeled using an exponen-
tial distribution with an average arrival rate �, which repre-
sents the expected number of failures occurring per second
and increases as the voltage/frequency decreases [9]. Let
�ðfiÞ denote the raw fault rate of a core running at fre-
quency fi, it then can be calculated by

�ðfiÞ ¼ �0 � 10
að1�fiÞ
1�fmin ; (1)

where �0 is the average fault rate at the maximum frequency
fmax, and a is a hardware specific constant that indicates the
sensitivity of fault rates to frequency scaling. Considering
the task vulnerability, the actual fault rate of executing task
ti on a core at frequency fi is then �ðfiÞ � ri.

The SER of a task is defined as the probability of its suc-
cessful execution without the occurrence of any transient
faults, and can be determined by the exponential failure
law. Using the exponential distribution assumption, the
SER of a task instance (job) of ti is expressed as [10]

Ri ¼ e
��ðfiÞ�ri �

wti
fi : (2)

Replication is widely used to improve SER. In this paper,
we consider multicore systems that use replication to toler-
ate up to one transient fault for each task since single-fault-
tolerance is a common assumption [10]. Given task ti exe-
cuting at frequency fi with a recovery task running at the
same frequency, the SER of the task is calculated as

Rrep
i ¼ 1�

�
1� e

��ðfiÞ�ri �
wti
fi

�2

: (3)

2.4 Lifetime Reliability Model

We consider four IC-dominant failure mechanisms: EM,
TDDB, SM, and TC. Other failure mechanisms such as nega-
tive/positive bias temperature instability can be incorpo-
rated using the sum-of-fault rate model [3], [22].

EM refers to dislocation of metal atoms caused by
momentum imparted by electrical current in wires and vias
[1]. The MTTF due to EM is

MTTFEM ¼ AEM

Ga
e
EactEM

dT ; (4)

where AEM is a constant determined by the physical charac-
teristics of the metal interconnect, G is the current density,
EactEM is the active energy for electromigration, a is an
empirically determined constant, d is the Boltzmann con-
stant, and T is the runtime temperature.

TDDB refers to deterioration of the gate oxide layer [2].
The MTTF due to time-dependent dielectric breakdown is

MTTFTDDB ¼ ATDDB
1

V

� �ð#1�#2T Þ
e
AþB=TþCT

dT ; (5)

where ATDDB is a fitting constant, V is the supply voltage,
and #1, #1, A, B, and C are empirical fitting parameters.

SM is caused by the directionally biased motion of atoms
in metal wires due to mechanical stress caused by thermal
mismatch between metal and dielectric materials [3]. The
MTTF resulting from stress migration is

MTTFSM ¼ ASMjT0 � T j�ae
EactSM

dT ; (6)

where ASM is a fitting constant, T0 is the mental deposition
temperature during fabrication, and EactSM is the activation
energy for stress migration.

TC refers to wear due to thermal stress induced by mis-
matched coefficients of thermal expansion for adjacent
material layers [4]. The number of cycles to failure (NTC)
can be calculated as

NTC ¼ ATCðDT � TthÞqe
EactTC
dTmax ; (7)

1. The preliminary version of this manuscript appears in [27].

ZHOU ET AL.: IMPROVING AVAILABILITY OF MULTICORE REAL-TIME SYSTEMS SUFFERING BOTH PERMANENT AND TRANSIENT... 1787



where ATC is an empirically determined constant, DT is the
thermal cycle amplitude and can change between cycles,
T th is the temperature at which inelastic deformation
begins, q is the Coffin-Manson exponent constant, EactTC is
the activation energy for thermal cycling, and Tmax is the
maximal temperature during the cycle.

Although the scaling parameters of the above four failure
mechanisms can be quite different, the aging effects caused by
these failure mechanisms can be dealt with simultaneously as
done by existing work, e.g., in [3], [26]. We leverage a hierar-
chical LTR modeling tool [26] to estimate the system-level
MTTF due to permanent faultswhen considering the four fail-
ure mechanisms. The tool models wear due to the above four
mechanisms at the device level. The tool accounts for the effect
of using multiple devices in a component upon fault distribu-
tions. Based on the device-level reliability models and tempo-
ral failure distributions, component-level MTTF is calculated
[26]. Then, using the component-level reliability as input, the
system-level MTTF is obtained by MC simulation. The effi-
cacy of this hierarchical modeling tool has been validated in
[26]. The tool is shown to be accurate and efficient in estimat-
ing system-level LTR and thus it has beenwidely adopted.

3 MTTF DUE TO TRANSIENT FAULTS

A simple way to estimate the MTTF due to transient faults
(MTTFT ) is calculating the reciprocal of average failure rate.
However, this only holds if SER follows an exponential dis-
tribution. Though the simplest model for SER can be
described by an exponential distribution as shown in
Eq. (2), after considering task recovery techniques, the reli-
ability model no longer follows an exponential distribution
as shown in Eq. (3). Since we are interested in system MTTF
when executing a given workload, unfortunately we cannot
simply use 1/� to estimate the MTTFT . In this paper, we
introduce an analytical approach for calculating the MTTFT

by using task-level SERs, which are obtained based on the
failure rate model. Obtaining MTTFT enables the designers
to utilize a common metric to evaluate LTR and SER, which
allows to make decisions for achieving overall high system
reliability. This section first introduces an analytical method
to calculate the MTTFT for one core and gives a simple
example to illustrate the calculation, then proves some
properties of the MTTF expression, and finally shows that
the expression indeed correctly represents MTTF.

We represent the set of tasks allocated to core Cj
ð1 � j � MÞ by T ðCjÞ, which satisfies T ðCjÞ � T and consists
of rj tasks ft1; t2; . . . ; trjg. The hyper-period of task set T ðCjÞ
is represented by HT ðCjÞ. Since each task in set T ðCjÞ gener-
ates a sequence of jobs within its period, we use J ðCjÞ ¼
fJ1; J2; . . . ; Jnjg to represent all the jobs of T ðCjÞ ¼
ft1; t2; . . . ; trjg in HT ðCjÞ, where nj ¼

Prj
i¼1 HT ðCjÞ=pi is the

number of jobs on core Cj during a hyper-periodHT ðCjÞ.

We denote the mean time to first failure of core Cj due to
transient faults byMTTFT ðCjÞ. To deriveMTTFT ðCjÞ, the dif-
ficulty is not in computing the SER of tasks or multiplying
the SER of individual tasks, but is in modeling the time to
first failure due to transient faults and the corresponding
probability of the first failure, as well as doing the integration
based on them. Fig. 1 illustrates the time to first failure due to

a transient fault occurring during the execution of job J‘
ð1 � ‘ � njÞ in the kth run of set J ðCjÞ. Here TexeðJ ðCjÞÞ ¼Pnj

‘¼1 t‘ is the total execution time of jobs in set J ðCjÞ,
TexeðJ ‘ðCjÞÞ ¼

P‘
i¼1 ti is the total execution time of jobs J1 to

J‘ on core Cj, and J ‘ðCjÞ is the set of jobs J1; J2; . . . ; J‘. As

shown in Fig. 1, the time to first failure is equal to ðk� 1Þ�
HT ðCjÞ þ TexeðJ ‘ðCjÞÞ, where HT ðCjÞ is assumed equal to

TexeðJ ðCjÞÞ considering that the idle timewithout task execu-

tion in HT ðCjÞ is deemed reliable and thus is not included

in the calculation of the time to first failure. Now, let

PsuccðJ ðCjÞ; k� 1Þ be the probability that the first k� 1 runs
of J ðCjÞ are all successful, and PfailðJ‘Þ be the probability

that J‘ is erroneous but J1 to J‘�1 in the same run ofJ ðCjÞ are
successful. ThenMTTFT ðCjÞ is

MTTFT ðCjÞ ¼
X1

k¼1

Xnj

‘¼1
fðk� 1Þ � HT ðCjÞ

þ TexeðJ ‘ðCjÞÞg � PsuccðJ ðCjÞ; k� 1Þ � PfailðJ‘Þ:
(8)

Using Eq. (8) to computeMTTF directly is challenging due to

the infinite number of summation terms.However, by apply-
ing a series of algebraic transformations, we can remove

these terms and derive a simple expression to calculate

MTTF. Below, we show key steps of the transformation.
Based on the definition of PsuccðJ ðCjÞ; k� 1Þ and PfailðJ‘Þ,

we have

PsuccðJ ðCjÞ; k� 1Þ ¼
Ynj

‘¼1
R‘

� �k�1
(9)

PfailðJ‘Þ ¼ R1R2 � � �R‘�1ð1�R‘Þ; (10)

where R‘ is the reliability of job J‘ and can be obtained
using Eq. (2). Let PfailðJ ðCjÞÞ be the probability that J ðCjÞ
sees a failure in a run, it can be then expressed as

PfailðJ ðCjÞÞ ¼ 1�
Ynj

‘¼1
R‘: (11)

Thus the probability PsuccðJ ðCjÞ; k� 1Þ can be written as

PsuccðJ ðCjÞ; k� 1Þ ¼ ð1� PfailðJ ðCjÞÞÞk�1: (12)

According to Eqs. (9), (10), (11), and (12), we can rewrite
Eq. (8) as

Fig. 1. The time to first failure due to a transient fault of job J‘ in the kth run of J ðCjÞ. J ðCjÞ ¼ fJ1; . . . ; Jnjg represents all the jobs of set T ðCjÞ in a
hyper-periodHT ðCjÞ and TexeðJ ‘ðCjÞÞ is the total execution time of jobs J1 to J‘ on core Cj.

1788 IEEE TRANSACTIONS ON COMPUTERS, VOL. 68, NO. 12, DECEMBER 2019



MTTFT ðCjÞ ¼
X1

k¼1
ðk� 1Þð1� PfailðJ ðCjÞÞÞk�1 � HT ðCjÞ

� PfailðJ ðCjÞÞ þ
X1

k¼1
ð1� PfailðJ ðCjÞÞÞk�1

�
Xnj

‘¼1
TexeðJ ‘ðCjÞÞ � PfailðJ‘Þ:

(13)

Since
P1

k¼1ðk� 1Þak�1 ¼ a

ð1�aÞ2
and

P1
k¼1 a

k�1 ¼ 1
1�a, we can

derive that

X1
k¼1

ðk� 1Þð1� PfailðJ ðCjÞÞÞk�1 ¼ 1� PfailðJ ðCjÞÞ
ðPfailðJ ðCjÞÞÞ2

; (14)

X1
k¼1

ð1� PfailðJ ðCjÞÞÞk�1 ¼ 1

PfailðJ ðCjÞÞ
: (15)

Finally,MTTFT ðCjÞ can be calculated as

MTTFT ðCjÞ ¼
HT ðCjÞ þ TexpðJ ðCjÞÞ

PfailðJ ðCjÞÞ
� HT ðCjÞ

¼ TexeðJ ðCjÞÞ þ TexpðJ ðCjÞÞ
PfailðJ ðCjÞÞ

� TexeðJ ðCjÞÞ:
(16)

TexpðJ ðCjÞÞ in Eq. (16) is the expected time to failure when
the fault occurs in the first run, and it is expressed as

TexpðJ ðCjÞÞ ¼
Xnj

‘¼1
TexeðJ ‘ðCjÞÞ � PfailðJ‘Þ: (17)

According to the above transformation, given the execution
time and reliability of each job, the MTTFT given in Eq. (16)
can be readily evaluated, where the reliability of jobs (i.e.,
R1; R2; . . . ; R‘) are derived by Eqs. (1) and (2). Note that we
cannot ignore TexeðJ ðCjÞÞ and TexpðJ ðCjÞÞ in Eq. (16) to fur-
ther simplify MTTFT since doing this would result in non-
negligible error.

In Eq. (16), HT ðCjÞ is assumed equal to TexeðJ ðCjÞÞ. This
assumption works well for heavily loaded systems (i.e., sys-
tems that are busy) but results in larger approximation error
for lightly loaded systems. The reasons why it is acceptable
to assume that the system under consideration is heavily
loaded (i.e., busy) are given as follows. First, in a heavily
loaded system, accelerated aging of cores caused by heavy
workloads makes the multicore processor prone to suffer
permanent faults. Second, long task execution times in a
heavily loaded system expose the processor to more tran-
sient faults. Thus, it is more critical to consider permanent
and transient faults simultaneously and making tradeoff
between LTR and SER to achieve overall high system reli-
ability in heavily loaded systems than lightly loaded sys-
tems. We believe that our analytical model can be improved
to reduce approximation error for lightly loaded systems by

judiciously calculating the slack time. We leave the detailed
discussion of this aspect to future work.

For better understanding, we provide a simple example
to illustrate the calculation of MTTFT . This example consid-
ers three tasks t1; t2; t3 on a core running at the maximum
frequency. The task-related parameters are presented in
Table 1. From the table, we can easily derive the execution
time of these tasks during a hyper-period. That is,
Texe ¼ 0:1� 4þ 0:14� 3þ 0:19� 2 ¼ 1:2s. Using the earli-
est-deadline-first policy [29], we can determine the schedul-
ing order of tasks during a hyper-period. Assuming that the
fault rate �0 at the maximum frequency is 1:0� 10�7 [15],
the reliability of t1 � t3 can be obtained using Eq. (2) as
R1 ¼ 0:999999995, R2 ¼ 0:9999999916, R3 ¼ 0:9999999867.
Given the task reliabilities, we can use Eqs. (11) and (17) to
calculate Pfail and Texp of the task set, respectively. That is,
Pfail ¼ 7:180� 10�8 and Texp ¼ 1:058� 10�8s. Finally, substi-

tuting Texe, Texp, and Pfail into Eq. (16), we have MTTFT ¼
1:2þ1:058�10�8

7:180�10�8 � 1:2 ¼ 1:671� 107s ¼ 0:53 year. We also inves-

tigate the value of MTTFT in Section 7 using other fault rate
values (i.e., �0 ¼ 1:0� 10�6 and �0 ¼ 1:0� 10�8) suggested
from [15].

The MTTFT ðJ ðCjÞÞ expression in Eq. (16) is derived for a
workload J ðCjÞ being periodically executed. One immedi-
ate question is what the MTTFT ðJ ðCjÞÞ would be if we treat
two or more runs of J ðCjÞ as the given workload being peri-
odically repeated. Clearly this new MTTFT ðJ ðCjÞÞ based on
multiple runs of J ðCjÞ should be exactly the same as the
one in Eq. (16). We introduce a theorem below to show that
computing MTTFT ðJ ðCjÞÞ using Eq. (16) indeed draws the
desired conclusion.

Theorem 1. For any given job setJ ðCjÞ and any integerm (� 2),
let JmðCjÞ denote the set containing m runs of J ðCjÞ, i.e.,
JmðCjÞ ¼ fJ1; J2; . . . ; Jnj ; J1; J2; . . . ; Jnj ; � � � ; J1; J2; . . . ; Jnj|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

nj�m

g. Then

MTTFT ðJmðCjÞÞ ¼ MTTFT ðJ ðCjÞÞ holds if both are evaluated
following the expression in Eq. (16).

Theorem 1 can be proved by a series of inductions. Its proof
is given in theAppendix,which can be found on theComputer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TC.2019.2935042. The theorem demonstrates
that the calculation ofMTTFT given in Eq. (16) indeed satisfies
the basic property that MTTFT should be independent of the
number of runs of a given periodical task set used to calculate
MTTFT .

4 OVERALL FRAMEWORK

As pointed out earlier, the user’s goal is to maximize system
availability, no matter whether the system failure is caused
by permanent or transient faults. In this section, we first
describe the studied problem and then provide a high-level
overview of our approach to solve this problem.

4.1 Problem Definition

System availability is defined as the ratio of system uptime
to the sum of system uptime and downtime [30]. Since
uptime is quantified by MTTF and downtime is equal to
MTTR, system availability is written as

TABLE 1
Task Execution Time at the Maximum Frequency, Period,

Vulnerability to Soft Error, and Deadline

Task
Execution Time

(ms)
Period
(ms)

Vulnerability
to Soft-Error

Deadline
(ms)

t1 100 300 0.5 300
t2 140 400 0.6 400
t3 190 600 0.7 600

ZHOU ET AL.: IMPROVING AVAILABILITY OF MULTICORE REAL-TIME SYSTEMS SUFFERING BOTH PERMANENT AND TRANSIENT... 1789

http://doi.ieeecomputersociety.org/10.1109/TC.2019.2935042.
http://doi.ieeecomputersociety.org/10.1109/TC.2019.2935042.


A ¼ MTTF

MTTF þMTTR
; (18)

where MTTR is the mean time to repair [30]. For each core
that may suffer from both transient and permanent faults,
the availability of core Cj is computed as

AðCjÞ ¼ Min :

(
MTTFT ðCjÞ

MTTFT ðCjÞ þMTTRT ðCjÞ
;

MTTFP ðCjÞ
MTTFP ðCjÞ þMTTRP ðCjÞ

)
;

(19)

where MTTFT ðCjÞ is calculated using our formula given in
Eq. (16) and MTTFP ðCjÞ can be obtained using the LTR
modeling tool [26]. MTTRT ðCjÞ and MTTRP ðCjÞ are con-
stants once recovery techniques are determined. Maximiz-
ing the availability of core Cj then becomes

Max AðCjÞ ¼ Max Min :

(
MTTFT ðCjÞ

MTTFT ðCjÞ þMTTRT ðCjÞ
;

MTTFP ðCjÞ
MTTFP ðCjÞ þMTTRP ðCjÞ

)
:

(20)

Through a series of transformations (see the Appendix,
available in the online supplemental material), maximizing
the core availability AðCjÞ given in Eq. (19) is equivalent to
maximizing the core MTTF in the presence of permanent
and transient faults. The core MTTF is given by

MTTF ðCjÞ ¼ Min : f�j �MTTFT ðCjÞ;MTTFP ðCjÞg; (21)

where �j ¼ MTTRP ðCjÞ=MTTRT ðCjÞ. Accordingly, the
objective of maximizing the system availability is equivalent
to maximizing the system MTTF (denoted by MTTFsys) in
the presence of two faults, which is expressed as

Max MTTFsys ¼ Max MinjMTTF ðCjÞ; 8j ¼ 1; 2; . . . ;M: (22)

Clearly, we formulate the problem of maximizing MTTF
(and hence availability) for a multicore as a max-min opti-
mization problem, i.e., maximizing the minimum MTTF of
all cores. The max-min formulation is an approximation to

more precise but very complex ways to compute the MTTF
of a multicore system using the serial failure model (i.e., the
system fails if any one core fails), thus has been used fre-
quently in the literature. The error resulted by this approxi-
mation becomes larger if the MTTF of each core is closer to
one another and if the number of cores is larger. Otherwise,
the error would be small. Since we aim to improve overall
system MTTF especially when loads are quite different,
using the max-min approximation is acceptable.

In the above formulation (Eq. (22)) we adopt the serial
failure model. It is possible the system can tolerate some
core failures, e.g., through re-mapping tasks from the faulty
core to a spare core if the system has some spare cores (e.g.,
cores not turned on due to the dark-silicon concern [31]).
Our optimization framework may be extended to this
type of setups, but needs to significantly revise the assum-
ptions, architecture and failure models as well as consider
the timing overheads of task communication and migra-
tion. As for how to revise the models and assumptions as
well as how to use spare cores for enhancing system reli-
ability, it is not the focus of this paper and is a different
problem [20]. We leave the detailed discussion of this
aspect to future work.

Since the system may suffer from both transient and
permanent faults, we focus on handling the two faults
simultaneously and solving the problem of maximizing
system availability by improving SER and LTR. Specifi-
cally, the problem is described as follows. Given a task
set T to be executed periodically on the multicore sys-
tem C, design a strategy including (i) the allocation of N
tasks to M cores (ii) determining whether any tasks
should be replicated and (iii) the frequency that each
task should be executed at in each hyper-period, in order
to maximize system MTTF (and hence system availabil-
ity) while satisfying design constraints. Formally, we
intend to solve the following

Maximize MTTFsys ¼ Minj MTTF ðCjÞ; 8j ¼ 1; 2; . . . ;M;

Subject to fmin � fi � fmax; 8i ¼ 1; 2; . . . ; N;
(23)

wti=fi � di; 8i ¼ 1; 2; . . . ; N: (24)

Eq. (23) is introduced to bound the operating frequency of
tasks and Eq. (24) captures the real-time requirement that
each task needs to be finished before its deadline.

4.2 Overview of HAOF

We propose a hybrid availability optimization framework
(HAOF) that consists of an offline approach and an online
approach to improve the availability for real-time systems
running on multicores in the presence of both permanent
and transient faults. The offline approach solves the max-
min problem defined in Eqs. (22), (23), and (24) statically,
and the online approach dynamically tunes the task alloca-
tion and scheduling strategy obtained from the offline
approach to further increase system availability.

A high-level depiction of HAOF is given in Fig. 2. HAOF
operates as follows. In the first hyper-period, HAOF adopts
the task allocation and scheduling strategy generated by the
offline approach to execute tasks. The offline approach
improves the system availability by maximizing the

Fig. 2. Overview of HAOF.

1790 IEEE TRANSACTIONS ON COMPUTERS, VOL. 68, NO. 12, DECEMBER 2019



availability of individual cores separately. After executing
tasks on cores, the states (including wear, temperatures, and
frequency setups) of all cores can be derived. At the end of
the first as well as each subsequent hyper-period, HAOF
checks whether the availability of individual cores are bal-
anced. If the availability of all cores are balanced, indicating
that the current strategy can achieve the maximum system
availability since no one core would fail much earlier than
others, no adjustment is needed for the next hyper-period.
Otherwise, the current strategy needs an adjustment. HAOF
then utilizes the online approach, which improves the sys-
tem availability by balancing the availability of all cores, to
decide the strategy for the next hyper-period.

The two main components of HAOF, offline and online
approaches, are introduced in the following two sections.

5 OFFLINE STAGE

The offline stage aims to improve the availability of the entire
multicore system by maximizing the availability of individ-
ual cores independently. The approach builds on four reli-
ability-aware methods, which are designed for increasing
the availability of cores for different states. Since three of the
four reliability-aware methods are either simple to realize or
have been widely explored, most of the discussion will be on
the fourth method. This section introduces the details of our
offline approach and our concernedmethod.

5.1 Maximize the Availability of A Core

The key issue in our offline approach is how to maximize the
availability of a core. To solve the problem of maximizing
theMTTF (and hence availability) of a core (e.g., Cj), we need
to first determine MTTFT ðCjÞ and MTTFP ðCjÞ. Using our
proposed analytical method to calculate MTTFT ðCjÞ and the
system-level LTR modeling tool [26] to estimateMTTFP ðCjÞ,
this can be readily achieved. Depending on which reliability
dominates, different methods may be adopted accordingly
to maximize system availability. We group the relationship
between �j �MTTFT ðCjÞ and MTTFP ðCjÞ into four scenarios
when running task set T ðCjÞ under various core states (i.e.,
wear, temperature profiles, and frequency setups):

Scenario 1. �j �MTTFT ðCjÞ 	MTTFP ðCjÞ;
Scenario 2. �j �MTTFT ðCjÞ < MTTFP ðCjÞ;
Scenario 3. �j �MTTFT ðCjÞ > MTTFP ðCjÞ;
Scenario 4. �j �MTTFT 
MTTFP ðCjÞ.

Before discussing how to handle each of the four scenarios,
we first justify that all four scenarios indeed exist. We have
carried out several simulations to evaluate �j �MTTFT ðCjÞ
andMTTFP ðCjÞ for different benchmark programs, core wear
states, temperature profiles, and frequencies. Benchmark
tasks (representing automotive, network, office, security, tele-
communication, and consumer applications from MiBench

[32]) and ALPHA 21264 microprocessor [33] are used in the
simulations2. The results of �j �MTTFT ðCjÞ and MTTFP ðCjÞ
are summarized in Fig. 3, which clearly show that all four sce-
narios exist depending on the actual benchmarks. From the
above, it is clear that we compare the frequencies of perma-
nent faults and transient faults by including the factor �. For
better understanding, we give a simple example to sketch out
how the frequency of permanent faults can be comparable to
that of transient ones. If transient fault occurs twice a day
while permanent failure occurs once in two years, assuming
� is 1500 (within the range of ½1000; 10000�), then MTTFP ¼
2 year and � �MTTFT ¼ 1500� 0:5 day ¼ 2:05 year are com-
parable. Besides, there are actual systems (e.g., the brake-by-
wire system [35]) in which the rates of permanent and tran-
sient faults are indeed comparable.

The offline approach (OFA) is summarized inAlgorithm 1,
which is a combination of four reliability-aware methods
for handling the four different scenarios listed above. OFA
first generates an initial assignment to cores and the operat-
ing frequencies of tasks using an input heuristic such as those
in [7], [17], and adopts the EDF scheduling policy [29] to
schedule the tasks (line 1). Using the EDF scheduling policy,
an incoming job with the earliest deadline is executed first.
Note that in the following algorithms, checking the task
schedulabiliity under EDF is well known [36], [37], [38] and
hence omitted. Given the initial workloads and frequency set-
tings of cores, OFA then evaluates the MTTF of cores (line 3)
and invokes different reliability-aware methods to maximize
the availability of cores based on the different scenarios
(lines 4-13).

Specifically, for each core Cj, if MTTFP ðCjÞ is far greater
than �j �MTTFT ðCjÞ (scenario 1), the core’s availability is
dominated by �j �MTTFT ðCjÞ and Full Replication and
Speedup can be safely used to increaseMTTFT ðCjÞ (lines 5-6).
Full Replication and Speedup refers to the strategy that each
original task has a recovery task, and both original and recov-
ery task are executed at the maximum frequency. For this sce-
nario, other existing techniques such as [9], [39], [40] can be
used to increase MTTFT ðCjÞ. On the other hand, if �j�
MTTFT ðCjÞ is far greater than MTTFP ðCjÞ (scenario 4),
LTR-aware Strategy as in [11], [12], [13], [14] can be used
to maximize MTTFP ðCjÞ and hence improve core availabil-
ity (lines 10-11).

If MTTFP ðCjÞ is greater than �j �MTTFT ðCjÞ but not by
too much (scenario 2), when maximizing core availability,
the negative effect on LTR due to executing an increased

Fig. 3. � �MTTFT andMTTFP for 14 different sets of benchmark tasks.

2. The simulation results here are not meant to be comprehensive
but just to demonstrate that all four scenarios identified can occur. In
the simulation,MTTFT is calculated using Eq. (16), same as the example
given in Section 3. MTTFP is derived using the LTR modeling tool [26].
The detailed settings of this tool for ALPHA 21264 microprocessor can
be found in [34]. The value of � is set to 10.

ZHOU ET AL.: IMPROVING AVAILABILITY OF MULTICORE REAL-TIME SYSTEMS SUFFERING BOTH PERMANENT AND TRANSIENT... 1791



workload (caused by replication) at the maximum fre-
quency should be taken into account. Thus, we adopt Partial
Replication and Speedup to select a subset of tasks to have
recovery tasks and execute them at the maximum frequency
(lines 7-8). On the other hand, if �j �MTTFT ðCjÞ is greater
than MTTFP ðCjÞ but not by too much (scenario 3), DVFS-
based Strategy as in [22], [23] that reduce the operating tem-
perature for increasing MTTFP ðCjÞ and consider the nega-
tive effect of DVFS on SER can be applied to handle this
scenario (lines 12-13).

Algorithm 1. Offline Approach to Improve System
Availability

1 generate an initial task and frequency assignment by an
input heuristic (e.g., SER/LTR-aware schemes [7], [17])
and determine the task sequence using the EDF [29];

2 for j ¼ 1 toM do
3 calculateMTTFT ðCjÞ using Eq. (16) and deriveMTTFP ðCjÞ

using the tool [26] based onworkload T ðCjÞ and frequency
setupFðCjÞ;

4 if �j �MTTFT ðCjÞ < MTTFP ðCjÞ then
5 if �j �MTTFT ðCjÞ 	MTTFP ðCjÞ then
6 Full Replication and Speedup (scenario 1);
7 else
8 Partial Replication and Speedup (scenario 2);
9 else
10 if �j �MTTFT ðCjÞ 
MTTFP ðCjÞ then
11 LTR-aware Strategy (scenario 4);
12 else
13 DVFS-based Strategy (scenario 3);

From Algorithm 1, readers can easily find that our OFA,
which considers availability, actually compares MTTFP and
� �MTTFT . Thus the relative magnitude of MTTFP and
MTTFT are more important in determining which reliability
improvement approach should be used. Our OFA has con-
sidered all four possible scenarios which may occur in dif-
ferent application systems. Among the four approaches
used in OFA, Full Replication and Speedup is simple to
implement, DVFS-based Strategy and LTR-Aware Strategy
have been explored in the literature. Therefore, we focus on
discussing the Partial Replication and Speedup strategy for
scenario 2 in the rest of this section. Note that our proposed
analytical method for calculating the MTTF due to transient
faults is still applicable to the approaches designed for
other scenarios.

5.2 Partial Replication and Speedup

Replication and speed selection can be used to maximize
core MTTF (and hence availability) for the scenario
�j �MTTFT ðCjÞ < MTTFP ðCjÞ since it improves the SER
due to transient faults, and simultaneously limits the nega-
tive effect on hardware aging due to the execution of an
increased number of tasks. Some researchers [22], [41] have
investigated the impact of selective replication and partial
speedup on SER and LTR, and observed that the technique
is effective in balancing the two reliabilities. However, the
existing work does not have a specific task replication and
frequency selection strategy to maximize system availability
when considering both transient and permanent faults. In
this paper, we propose a Partial Replication and Speedup

(PRS) approach to maximize core availability for the sce-
nario �j �MTTFT ðCjÞ < MTTFP ðCjÞ.

Note that PRS only allows a task to have at most one
recovery or raise the task’s frequency to the maximum fre-
quency, which means that the solution space considered in
PRS is a subset of and smaller than the entire solution space
of the studied problem. It is possible to use existing optimi-
zation methods (e.g., genetic algorithm) to search the entire
solution space, similar to the approaches in [22], [42]. How-
ever, an offline information often deviates from actual infor-
mation such that spending a lot of time optimizing may not
be as beneficial. In addition, offline approach is generally
used to produce conservative solutions which could be fur-
ther improved online. In PRS, rather than slightly raise fre-
quency, we increase a task’s operating frequency to a core’s
maximum frequency (leading to the fastest aging speed). By
doing this, conservative solutions can be ensured by PRS.
As for why PRS does not replicate a task and raise its oper-
ating frequency simultaneously to increase SER, it’s because
either of the two operations by itself is already capable of
greatly improving the SER of the task.

5.2.1 Replication versus Speedup for a Single Task

Since the MTTF of core Cj is the minimum of�j �MTTFT ðCjÞ
and MTTFP ðCjÞ, the main idea of PRS is to maximize
MTTFT ðCjÞ when �j �MTTFT ðCjÞ is below MTTFP ðCjÞ. We
achieve this by iteratively making the best choice (replica-
tion or speedup) for each task in terms of improving SER.
For this approach to be effective, the key is to select the
“right” tasks to have a recovery task and the “right” tasks to
execute at the maximum frequency.

Let RSi be defined as

RSi ¼
1; if ti is selected to have a recovery task
0; if ti is selected to execute at frequency fmax

:

�

As described in Section 2.3, replicating a task can tolerate
one transient fault and hence improve SER, and increasing
task operating frequency leads to exponentially decreasing
transient fault rate and hence also improve SER. According
to Eqs. (1), (2), and (3), the SER increment of task ti achieved
by replication and speedup are given by DRr

i ¼ Rrep
i �Ri

and DRs
i ¼ Rijfi¼fmax �Ri, respectively. Since PRS needs to

decide the selection of tasks for replication or speedup, we
introduce a metric DRr�s

i to compare replication with
speedup with respect to improve SER, i.e.,

DRr�s
i ¼ DRr

i � DRs
i ¼ 2Ri �R2

i �Rijfi¼fmax : (25)

Clearly, DRr�s
i > 0 indicates replication is better for task ti

and DRr�s
i < 0 indicates speedup is better. Referring to

Eq. (2), we have that DRr�s
i is a function of task frequency

fi. Furthermore, it is a monotonically increasing function of
fi as stated in the following theorem. The proof of Theorem 2
can be found in the Appendix, available in the online
supplemental material.

Theorem 2. DRr�s
i as defined in Eq. (25) increases monotoni-

cally as fi increases.

According to Theorem 2, given a specific frequency fi for
task ti, DR

r�s
i must belong to one of the cases illustrated in

1792 IEEE TRANSACTIONS ON COMPUTERS, VOL. 68, NO. 12, DECEMBER 2019



Fig. 4. Note that fmin and fmax are given, fi is the operating
frequency of task ti, and f�i corresponds to the frequency
where DRr�s

i ðf�i Þ ¼ 0 and can be obtained by Eqs. (2) and
(25). The significance of Theorem 2 is that, after obtaining
DRr�s

i values for the four points, one can immediately
decide whether replication (RSi ¼ 1) or speedup (RSi ¼ 0)
should be chosen to maximize SER. We summarize the basic
steps needed to determine RSi for task ti in Algorithm 2.
The algorithm takes as inputs fi, fmin, fmax, and f�

i . It first
initializes the value of fi, then calculates the values of
DRr�s

i ðfminÞ and DRr�s
i ðfmaxÞ and compares the values of fi

and f�
i , and finally decides the value of RSi according to the

four cases illustrated in Fig. 4.

5.2.2 PRS Heuristic

Algorithm 2 decides whether a task should be replicated or
sped up in order to maximize SER. However, if each task is
replicated or sped up, LTR may be degraded. We now pres-
ent a heuristic to decide which task should be replicated/
sped up and which should be left alone so as to maximize
system availability when the system is in the concerned sce-
nario (�MTTFT < MTTFP ). At a high level, the heuristic
works as follows. It first uses Algorithm 2 to determine
whether replication or speedup should be applied to each
task. Based on the replication/speedup choice for each task
given byAlgorithm 2, it iteratively decideswhether the repli-
cation/speedup choice for a task should actually be adopted.
Some tasks may end up neither replicated nor sped up since
doing sowould lead to degraded system availability.

Algorithm 2. RSðfi; fmin; fmax; f
�
i Þ

1 fi ¼ f initi ;// f initi is derived by line 1 of Algorithm 1
if DRr�s

i ðfminÞ > 0 then

2 RSi ¼ 1; // DRr�s
i ðfiÞ > DRr�s

i ðfminÞ ) DRr
i > DRs

i

3 if DRr�s
i ðfmaxÞ < 0 then

4 RSi ¼ 0; // DRr�s
i ðfiÞ < DRr�s

i ðfmaxÞ ) DRr
i < DRs

i

5 if fi > f�
i && Rr�s

i ðf�i Þ ¼ 0 then

6 RSi ¼ 1; // DRr�s
i ðfiÞ > DRr�s

i ðf�
i Þ ) DRr

i > DRs
i

7 if fi < f�
i && Rr�s

i ðf�i Þ ¼ 0 then

8 RSi ¼ 0; // DRr�s
i ðfiÞ < DRr�s

i ðf�
i Þ ) DRr

i < DRs
i

Rather than blindly determining the increase/decrease in
MTTFT=MTTFP , our PRS judiciously controls the increase/
decrease in MTTFT=MTTFP to achieve a state in which
� �MTTFT and MTTFP are equal and the resultant core
MTTF is higher. The details of our heuristic PRS are given in
Algorithm 3. The algorithm takes as inputs the core work-
load T ðCjÞ and frequency setup FðCjÞ, the minimum/maxi-
mum frequency fmin=fmax, and a given constant�j capturing
the ratio ofMTTRP toMTTRT of core Cj. The algorithm starts
by determining the replication/speedup choice RSi for each

task ti using Algorithm 2 (lines 1-2). Temporary task set
T temp is used to store candidate tasks when deciding which
task’s replication and speedup choice should actually be
adopted. It keeps a copy of T ðCjÞ at first and will be updated
as each decision is made (line 3). The system’s current work-
load T cur is initialized to T ðCjÞ (i.e., no replication and using
initial frequency) (line 3). The algorithm then iteratively com-
pares the value of�j �MTTFT andMTTFP for the core’s cur-
rent workload. When the core is in the concerned scenario
(line 4), the algorithm first computes the increase in MTTF
for each candidate task ti 2 T temp if ti is replicated (lines 6-7)
or sped up (lines 8-9). The task that could lead to the maxi-
mum increase in MTTF is found (lines 10-13) and is allowed
to use its replication (lines 14-15) or speedup choice (lines 16-
17). The system’s current workload is then updated, and the
task is removed from T temp (line 18). Finally, when the core is
no longer in the concerned scenario, the algorithm returns
the achieved coreMTTF (line 19).

6 ONLINE STAGE

Intuitively, the MTTF of a multicore system is maximized
when the MTTF of individual cores are balanced, so no one
core fails much earlier than others. To this end, our online
stage aims to improve the system MTTF by balancing the
MTTF of all cores. The balanced MTTF is achieved by itera-
tively exploiting the core with the maximum MTTF, Cmax, to
increase the MTTF of the core with the minimum MTTF,
Cmin. This is because the system MTTF is determined by Cmin

and Cmax is most capable of increasing the MTTF of Cmin. The
improvement in MTTF of Cmin achieved by sacrificing the
MTTF of Cmax is realized by MTTF-aware task reassignment
or replication for the two cores. This section introduces our
online approach and MTTF-aware task reassignment/repli-
cation heuristics in detail.

Algorithm 3. PRSðT ðCjÞ;FðCjÞ; fmin; fmax;�j)

1 for i ¼ 1 to rj do
2 determine RSi by Algorithm 2;
3 T temp ¼ T ðCjÞ and T cur ¼ T ðCjÞ;
4 while �j �MTTFT ðT curÞ < MTTFP ðT curÞ do
5 for i ¼ 1 to sizeofðT tempÞ do
6 if RSi ¼ 1 then
7 D�j �MTTFT;i ¼ �j �MTTFT ðT cur þ tiÞ ��j �MTTFT ðT curÞ;
8 else
9 D�j �MTTFT;i ¼ �j �MTTFT ðT cur � ti þ tijfi¼fmaxÞ� �j�

MTTFT ðT curÞ;
10 if i ¼ 1 then
11 D�j �MTTFmax

T ¼ D�j �MTTFT;i and ‘ ¼ 1;
12 if D�j �MTTFT;i > D�j �MTTFmax

T then
13 D�j �MTTFmax

T ¼ D�j �MTTFT;i and ‘ ¼ i;
14 if Task deadline constraint holds for 8tj 2 T cur þ t‘ and

RS‘ ¼ 1 then
15 T cur ¼ T cur þ t‘;
16 else
17 T cur ¼ T cur � t‘ þ t‘jf‘¼fmax ;
18 T temp ¼ T temp � t‘;
19 returnMTTF ðT curÞ (i.e.,MTTF ðCjÞ) using Eq. (21);

6.1 Balance the Availability of Cores

The key challenge in our online approach is how to balance
the MTTF ofM cores. We tackle this challenge by iteratively

Fig. 4. An illustration of four cases of DRr�s
i values, where DRr�s

i > 0 for
(a) and (c) and DRr�s

i < 0 for (b) and (d).

ZHOU ET AL.: IMPROVING AVAILABILITY OF MULTICORE REAL-TIME SYSTEMS SUFFERING BOTH PERMANENT AND TRANSIENT... 1793



using the best core Cmax to improve the worst core Cmin in
terms of MTTF. To accomplish this MTTF tradeoff, we need
to first find the two cores that are respectively associated
with the maximum MTTF (represented by MTTFmax

core ) and
the minimum MTTF (represented by MTTFmin

core). The calcu-
lation ofMTTFmin

core andMTTFmax
core are

MTTFmin
core ¼ Min : fMTTF ðC1Þ; . . . ;MTTF ðCMÞg;

MTTFmax
core ¼ Max : fMTTF ðC1Þ; . . . ;MTTF ðCMÞg:

�
(26)

After identifying cores Cmin and Cmax, the online approach
performs MTTF-aware task reassignment or replication
operation for the two cores depending on which type of reli-
ability dominates the availability of Cmin. The pseudocode of
the online approach is described in Algorithm 4.

Algorithm 4. Online Approach to Improve System
Availability

1 for j ¼ 1 toM do
2 calculate core MTTF,MTTF ðCjÞ, using Eq. (21);
3 derive the minimum and maximumMTTF (i.e.,MTTFmin

core

andMTTFmax
core ) ofM cores using Eq. (26);

4 Pre ¼ 0 and Cur ¼ MTTFmin
core ;

5 whileMTTFmin
core < MTTFmax

core and Pre 6¼ Cur do

6 Pre ¼ MTTFmin
core ;

7 ifMTTFmin
core ¼ MTTFP ðCminÞ then

8 call LMF Reassign, as given in Algorithm 5;
// Largest-DMTTF -First (LMF) Reassignment

9 else
10 call LMF Replicate, as given in Algorithm 6;

// Largest-DMTTF -First (LMF) Replication
11 computeMTTF ðCminÞ andMTTF ðCmaxÞ using Eq. (21);

12 obtainMTTFmin
core andMTTFmax

core using Eq. (26);

13 update Cmin, Cmax, T ðCminÞ, T ðCmaxÞ, FðCminÞ, FðCmaxÞ;
14 Cur ¼ MTTFmin

core ;
15 returnMTTFsys ¼ Min : fMTTF ðC1Þ; . . . ;MTTF ðCMÞg;

Algorithm 4 first computes the MTTF of M cores using
Eq. (21) (lines 1-2). Then, it obtains the minimum MTTF
MTTFmin

core and maximum MTTF MTTFmax
core of M cores using

Eq. (26) (line 3). Variables Pre and Cur are used to test if the
MTTF of M cores are balanced, and are initialized to 0 and
Amin

core, respectively (line 4). If the MTTF of cores are not bal-
anced, the algorithm iteratively uses core Cmax to help
increase the MTTF of core Cmin (lines 5-14). In each iteration,
the algorithm checks which MTTF (i.e., MTTFP or MTTFT )
dominates theMTTF of core Cmin. If theMTTF of Cmin is deter-
mined by MTTFP ðCminÞ, indicating that LTR (measured by
MTTFP ) of the core needs to be improved for maximizing
MTTF, the assignments of tasks to Cmin and Cmax are adjusted
using LMF Reassign (Algorithm 5), to be discussed in
Section 6.2, which judiciously selects a task and moves the
selected task from core Cmin to core Cmax (lines 7-8). Among
all the tasks originally assigned to Cmin, the reassignment of
the selected task leads to the largest DMTTFP . If the MTTF of
Cmin is determined by MTTFT ðCminÞ, indicating that SER
(measured by MTTFT ) of the core needs to be improved for
maximizingMTTF, a task is selected from core Cmin and repli-
cated on core Cmax using LMF Replicate (Algorithm 6), to be
discussed in Section 6.2. Among all the tasks originally

assigned to core Cmin, the replication of the selected task leads
to the largestDMTTFT (lines 9-10).

Note that task reassignment and replication are both per-
formed under the deadline constraint. After task reassign-
ment or replication, the MTTF ðCminÞ and MTTF ðCmaxÞ are
calculated using Eq. (21). Then MTTFmin

core and MTTFmax
core can

be readily derived using Eq. (26) (lines 11-12). At the end of
each iteration, the algorithm updates Cmin, Cmax, T ðCminÞ,
T ðCmaxÞ, FðCminÞ, FðCmaxÞ accordingly, and sets Cur to
MTTFmin

core (lines 13-14). This process repeats until core Cmax

cannot be used to increase MTTF of core Cmin. When the ter-
minating condition is met, the algorithm returns the
improved system availability (line 15).

6.2 MTTF-Aware Task Reassignment and
Replication

We have designed the MTTF-aware task reassignment and
replication (i.e., LMF Reassign and LMF Replicate) in the
online approach to maximize the MTTF of core Cmin,
depending on which reliability dominates the availability of
the core. Specifically, if the MTTF of core Cmin is decided by
MTTFP ðCminÞ, LMF Reassign is activated to improve the
MTTFP of core Cmin; otherwise, LMF Replicate is activated
to improve the MTTFT of core Cmin. Both operations are per-
formed in the same manner, that is, iteratively selecting the
best task on Cmin in terms of increasing MTTF to reassign to
Cmax or replicate on Cmax. The pseudocodes of these two pro-
cedures are described in Algorithms. 5 and 6, respectively.

Algorithm 5 uses temporary task set T temp to store candi-
date tasks when deciding which task should be selected for
reassignment to improve the LTR of core Cmin. T temp keeps a
copy of T min at first (line 1) where T min is the set of tasks on
core Cmin, and will be updated as each selection is made
(line 12). The algorithm then iteratively compares the value
of MTTF ðCminÞ and MTTF ðCmaxÞ. If core Cmax can be used to
help core Cmin, i.e., MTTF ðCminÞ < MTTF ðCmaxÞ, the algo-
rithm first computes the increase in MTTFP for each candi-
date task ti 2 T temp if ti is moved from core Cmin to core Cmax

(lines 2-4). The task that could lead to the maximum
increase in MTTFP is identified (lines 5-8) and allowed to be
reassigned if the deadlines of the tasks on core Cmax can all
be met (line 9). Subsequently, the task set of cores Cmin and
Cmax and their frequency setups Fmin and Fmax are updated
(line 10). The new MTTF of both cores after task reassign-
ment is calculated using Eq. (21) (line 11). Finally, if no cores
can be used to help core Cmin, i.e., the set of tasks on core Cmin

is empty or the availability of all cores are balanced, the
algorithm exits (lines 13-14).

Algorithm 6 has the similar workflow as Algorithm 5. A
temporary set T temp is also used to store candidate tasks
when deciding which task should be selected for replication
to improve the SER of core Cmin. It is initialized to T min

(line 1) and will be updated as each selection is made
(line 13). Algorithm 6 also iteratively compares the value of
MTTF ðCminÞ and MTTF ðCmaxÞ. If core Cmax can be used to
help core Cmin, i.e., MTTF ðCminÞ < MTTF ðCmaxÞ, the algo-
rithm first computes the increase in MTTFT for each candi-
date task ti 2 T temp if ti is replicated on core Cmax (lines 2-5).
The task leading to the maximum increase in MTTFT is
identified (lines 6-9) and is allowed to be replicated if dead-
lines are satisfied (line 10). The task set of cores Cmin and

1794 IEEE TRANSACTIONS ON COMPUTERS, VOL. 68, NO. 12, DECEMBER 2019



Cmax and their frequency setups Fmin and Fmax are then
updated (line 11). The new MTTF of both cores after task
replication can be derived using Eq. (21) (line 12). Finally,
the algorithm exits when no cores are available to help core
Cmin (lines 14-15).

Algorithm 5. LMF ReassignðT ; C;FÞ
1 T temp ¼ T min;
2 whileMTTF ðCminÞ < MTTF ðCmaxÞ do
3 for i ¼ 1 to sizeðT tempÞ do
4 DMTTFP ðtiÞ ¼ MTTFP ðT min � ti; Cmin;Fmin � fiÞ �MTTFP

ðT min; Cmin;FminÞ;
5 if i ¼ 1 then
6 DMTTFmax

P ¼ DMTTFP ðtiÞ, i ¼ 1;

7 if DMTTFP ðtiÞ > DMTTFmax
P then

8 DMTTFmax
P ¼ DMTTFP ðtiÞ, i ¼ i;

9 if Task deadline constraint holds for 8tj 2 T max þ ti then
10 T min ¼ T min � ti, T max ¼ T max þ ti, Fmin ¼ Fmin � fi,

Fmax ¼ Fmax þ fi;

11 calculateMTTF ðCminÞ andMTTF ðCmaxÞ by Eq. (21);
12 T temp ¼ T temp � ti;
13 if T temp ¼ ; then
14 break;

Algorithm 6. LMF ReplicateðT ; C;FÞ
1 T temp ¼ T min;

2 whileMTTF ðCminÞ < MTTF ðCmaxÞ do
3 for i ¼ 1 to sizeðT tempÞ do
4 calculate Ri and Rrep

i using Eqs. (2) and (3), respectively;
5 DMTTFT ðtiÞ ¼ MTTFT ðT min; Cmin;FminÞjRðtiÞ¼R

rep
i

�MTTFT

ðT min; Cmin;FminÞjRðtiÞ¼Ri
;

6 if i ¼ 1 then
7 DMTTFmax

T ¼ DMTTFT ðtiÞ, i ¼ 1;

8 if DMTTFT ðtiÞ > DMTTFmax
T then

9 DMTTFmax
T ¼ DMTTFT ðtiÞ, i ¼ i;

10 if Task deadline constraint holds for 8tj 2 T max þ ti then
11 Ri ¼ Rrep

i , T max ¼ T max þ ti, Fmax ¼ Fmax þ fi;

12 calculateMTTF ðCminÞ andMTTF ðCmaxÞ using Eq. (21);
13 T temp ¼ T temp � ti;
14 if T temp ¼ ; then
15 break;

7 EVALUATION

We validate the efficacy of HAOF through two sets of experi-
ments. The first set of experiments is implemented on a real-
world hardware platform using benchmark tasks while the
second set of experiments is conducted in a simulation envi-
ronment using synthetic tasks. In the two sets of experi-
ments, we use the MTTF improvements to demonstrate the
effectiveness of HAOF in increasing availability. This is
because that maximizing system availability is equivalent to
maximizing system MTTF in the presence of both transient
and permanent faults, as discussed in Section 4.1.

In the first set of experiments, we use a heterogenousmulti-
core, Nvidia’s Jetson Tegra X2 (TX2) board [43], as the hard-
ware platform. The TX2 board belongs to the so-called
performance-heterogeneous MPSoC where cores have the
same functionality (i.e., same instruction set architecture (ISA))

but different power-performance characteristics. Thus the
MPSoC of the TX2 board actually can meet the homogeneity
requirement considered in our framework as tasks do have the
same number of execution cycles on both types of cores. The
major difference between a strictly homogeneous MPSoC and
a performance-heterogeneous MPSoC is the power-perfor-
mance characteristics. For example, increasing the supply volt-
age by the same amount on different cores results in the same
rise of power consumption, but results in different power con-
sumption changes for performance-heterogeneous cores.

In HAOF, core power consumption impacts MTTFP since
the LTR modeling tool [26] needs the temperature profiles of
cores, which are calculated by HotSpot [44] based on the core
power consumption. The power consumption of a core is cal-
culated as a function of core frequency and utilization. Thus,
the calculation of power consumptions of cores on the board
are independent and the heterogeneous power-performance
characteristics of TX2 has no impact on the deployment of
HAOF in the experiments. Note that we do not use the GPU
but only use the CPUs of the board in the experiment. As dis-
cussed above, we can conclude that our validation of HAOF
on TX2 is sound. To further validate the performance of
HAOF, we also use simulated homogeneous MPSoCs in the
second set of experiments. The details of the two sets of experi-
ments are presented in Sections 7.1 and 7.2, respectively.

7.1 Experiments on the Tegra Chip

This section first describes the hardware, benchmark tasks,
parameter settings, and the existing approaches used for
comparison in our experiments on the Tegra chip, then ana-
lyzes the experimental results in detail.

7.1.1 Experimental Setup

We select the Nvidia’s Jetson TX2 board [43] that targets at
edge computing such as robotics and medical devices as the
hardware platform. This TX2 board contains two Den-
ver [45] cores and four ARM Cortex-A57 cores. All these
cores can be active simultaneously, but all Denver (ARM)
cores must work at the same voltage and frequency. Except
for the primary ARM core, core 0, all cores can be powered
on and off dynamically. TX2 is shipped with an operating
system based on Ubuntu 16.04 LTS and is capable of execut-
ing some widely used benchmarks. However, the operating
system must be executed at core 0. We also implement our
framework and execute it on core 0. Since all Denver (ARM)
cores must work at the same voltage and frequency, we
only activate one Denver core and one ARM core to execute
tasks and power off other cores, and the activated Denver
core and ARM core can run at their own core frequencies.
As a low-power chip, both Denver cores and ARM cores
support multiple frequencies. In our experiments, we set
the regular core frequency to 1.11 GHz and the core fre-
quency for full-speed execution is 2.04 GHz. Thermal sen-
sors are deployed to sample temperatures of the CPU, GPU,
and other components. Since the default interface only pro-
vides one CPU temperature for all CPU cores, we assume
Denver cores and ARM cores have the same temperature.

For the operating system configuration, we use the
“userspace” governor mode instead of the “tegraquiet” gov-
ernor mode provided by Nvidia to dynamically power on
and off cores and scale core frequencies based on their

ZHOU ET AL.: IMPROVING AVAILABILITY OF MULTICORE REAL-TIME SYSTEMS SUFFERING BOTH PERMANENT AND TRANSIENT... 1795



workloads. With this implementation, the operating system
does not automatically migrate tasks between cores, scale
core frequencies, and power on and off cores. Therefore,
dynamic resource management is achieved with our heuris-
tic algorithms and would not be impacted by default strate-
gies in the operating system. Note that we do not inject
software errors in TX2 and we do not measure MTTFT on
the board directly. Instead, we use our new analytical
method to estimate MTTFT based on the execution of tasks
on the board. This approach to estimating MTTFT is accept-
able since (i) the validity of the expression has been justified
in Theorem 1 and (ii) all different resource management
methods use the sameMTTFT evaluation formula.

We choose ten representative tasks from MiBench bench-
mark suites [32] (see Table 2). We measure the execution
times of these tasks on TX2’s Denver and ARM cores at
2.04 GHz. Based on the execution times, we map the tasks to
ARM core or Denver core to balance the workload between
cores. For different real-time requirements, we assume tasks’
deadlines and periods are in the ranges of 500 ms–600 ms,
600 ms–700 ms, 700 ms–800 ms, and 800 ms–900 ms. More-
over, to consider the characteristic of task periods, facilitate
the implementation of fault tolerance mechanisms, and con-
trol the runtime of the proposed scheme and comparative
schemes, we jealously choose the periods of tasks under
these limited time bounds.

Taking the temperatures (simulated offline by the ther-
mal modeling tool HotSpot [44] and measured online by the
thermal sensor on the TX2 board) as input and considering
the four failure mechanisms (i.e., EM, TDDB, SM, and TC),
the system-level LTR modeling tool [26] is used to derive
the MTTF due to permanent faults, MTTFP . During the cal-
culation of MTTFP , default settings are used for the
tool [26]. The MTTF due to transient faults MTTFT and the
core MTTF in the presence of permanent and transient
faultsMTTF ðCjÞ are calculated using formulas Eqs. (16) and
(21), respectively. For the calculation of MTTFT , we use the
parameter values �0 ¼ 1:0� 10�6 and a ¼ 3 [15].

If a permanent failure is repaired by replacing the faulty
chip, MTTRP could be minutes or hours if all the mainte-
nance management systems are in place [46], [47]. If a chip
has some spare cores (e.g., cores not turned on due to the
dark-silicon concern [31]), a permanent fault can be repaired
by re-mapping tasks from the faulty core to the spare cores.
Compared to the time cost of chip replacement, the time
cost of task re-mapping would be much lower and hence

MTTRP could be on the order of micro seconds [48]. Tran-
sient faults are tolerated by executing the replication of
faulty tasks. Thus, MTTRT is the same as the task execution
time which is typically in the order of micro seconds (see
Table 2). Clearly, MTTRP could be several orders of magni-
tudes larger than MTTRT in the case of replacing the faulty
chip. To include all the above mentioned cases, we empiri-
cally set the MTTR ratio � ¼ MTTRP=MTTRT to 10, 100,
1000, and 10000. Note that we do not focus on developing
recovery methods and we only mention these recovery
methods for the purpose of quantifying MTTR.

To examine the effectiveness of HAOF in increasing
MTTF (and hence availability), we compare HAOF with the
following algorithms under a given initial task and fre-
quency assignment [7]: our offline approach (denoted by
OFA), Random Algorithm (RA) where replication or
speedup is randomly assigned to tasks, Full Speed Algo-
rithm (FSA) where every task is executed at the maximum
frequency, and Full Replication Algorithm (FRA) where
every task has a recovery task. For fair comparison, the
same settings are adopted for all the algorithms. In addition
to the comparison, we also measure the runtime overhead
of HAOF executing benchmark tasks.

7.1.2 Experimental Results

Fig. 5 shows the MTTF (day) of Denver and ARM cores on
the Jetson TX2 board achieved by algorithms HAOF, OFA,
RA, FSA, and FRA when executing benchmark tasks with
different periods under a given initial task and frequency
assignment [7]. In this set of experiments, we randomly set
the periods of tasks in the range of [500 ms, 600 ms],
[600 ms, 700 ms], [700 ms, 800 ms], or [800 ms, 900 ms]. We
set the MTTR ratio � to 10, 100, 1000, and 10000. The experi-
mental results clearly show that our approach HAOF
always results in larger MTTF improvements of Denver and
ARM cores compared to RA, FSA, and FRA.

When the task periods are in the range of [500 ms,
600 ms], the core MTTFs achieved by HAOF are 4.15 times,
4.54 times, 4.38 times, and 4.27 times higher than that of
OFA, RA, FSA, and FRA on average, respectively. When the
task periods are in the range of [600 ms, 700 ms], the core
MTTFs achieved by HAOF are 4.04 times, 4.39 times, 4.23
times, and 5.40 times higher than that of OFA, RA, FSA, and
FRA on average, respectively. When the task periods are in
the range of [700 ms, 800 ms], the core MTTFs achieved by
HAOF are 4.02 times, 4.43 times, 4.25 times, 5.51 times
higher than that of OFA, RA, FSA, and FRA on average,
respectively. When the task periods are in the range of
[800 ms, 900 ms], the core MTTFs achieved by HAOF are
6.64 times, 9.17 times, 9.01 times, and 5.16 times higher than
that of OFA, RA, FSA, and FRA on average, respectively.

As compared to OFA, RA, FSA, and FRA, the higher
MTTF of cores achieved by HAOF comes from HAOF’s bet-
ter tradeoff between SER and LTR and hence leads to over-
all high system reliability. High MTTF of individual cores
does not necessarily guarantee high system MTTF since sys-
tem MTTF is determined by the minimum MTTF of all
cores. Unlike OFA, RA, FSA, and FRA, HAOF uses an
online approach to balance the MTTF of Denver and ARM
cores, thereby achieving a higher system MTTF. Let
MTTFsys;1, MTTFsys;2, MTTFsys;3, MTTFsys;4, and MTTFsys;5

TABLE 2
Execution Time (ms) of Ten Benchmark Tasks

Benchmark Execution Time Execution Time Mapping

Task on ARM Core on Denver Core to

crc 75 30 ARM
dijkstra 64 47 Denver
jpeg 33 24 ARM
qsort 69 49 Denver
stringsearch 3 2 Denver
susan 78 52 ARM
blowfish 55 26 Denver
patricia 16 12 Denver
bitcount 210 124 Denver
sha 72 40 ARM

1796 IEEE TRANSACTIONS ON COMPUTERS, VOL. 68, NO. 12, DECEMBER 2019



denote the system MTTF of Denver and ARM cores
achieved by HAOF, OFA, RA, FSA, and FRA, respectively.

Then, I 1;2 ¼
MTTFsys;1�MTTFsys;2

MTTFsys;2
, I 1;3 ¼

MTTFsys;1�MTTFsys;3
MTTFsys;3

,

I 1;4 ¼
MTTFsys;1�MTTFsys;4

MTTFsys;4
, and I1;5 ¼

MTTFsys;1�MTTFsys;5
MTTFsys;5

denote

the system MTTF improvement achieved by HAOF over
OFA, RA, FSA, and FRA, respectively.

Table 3 lists the average system MTTF improvements (�)
achieved by HAOF over OFA, RA, FSA, and FRA. The sys-
tem MTTF is calculated as the minimum of the MTTFs of
Denver and ARM cores. For each task period range, the
improvements are averaged over four MTTR ratios (i.e.,
� ¼ 10; 100; 1000; 10000). As demonstrated in the table, the
improvements are all positive and hence the system MTTF
achieved by HAOF is the highest among the five methods,
regardless of which task period range and MTTR ratio are
adopted. For example, in the case that task periods are in
the range of [800 ms, 900 ms], the average system MTTF
improvements achieved by HAOF over OFA, RA, FSA, and
FRA are about 4.72 times, 6.80 times, 6.73 times, and 5.35
times, respectively.

To investigate the impact of hyper-period length on the
time overhead of HAOF, we measure the CPU runtime of
HAOF executing benchmark tasks with varying hyper-peri-
ods on the Jetson TX2 board. Table 4 summarizes the col-
lected data. In this experiment, the MTTR ratio � is set to 10.
As can be seen in the table, the runtime overhead of HAOF is
negligible (i.e., 0.001s) when the hyper-period length is small
(i.e., 1s). However, with the increase of hyper-period length,
the runtime overhead of HAOF becomes non-negligible and
even unacceptable as compared to the time duration between

Fig. 5. The MTTF (day) of Denver and ARM cores on the Jetson TX2 board when executing benchmark tasks with different periods using schemes
HAOF, OFA, RA, FSA, and FRA, where � ¼ 10 for (a), (e), (i), (m), � ¼ 100 for (b), (f), (j), (n), � ¼ 1000 for (c), (g), (k), (o), and � ¼ 10000 for
(d), (h), (l), (p).

TABLE 3
Average System MTTF Improvements (�) Achieved by

HAOF over OFA, RA, FSA, and FRA

I1;2 I1;3 I1;4 I1;5
Benchmarks

(�) (�) (�) (�)

Task Periods: 500-600ms 3.90 4.34 4.05 3.45
Task Periods: 600-700ms 3.85 4.18 3.90 5.56
Task Periods: 700-800ms 3.77 4.26 3.91 5.58
Task Periods: 800-900ms 4.72 6.80 6.73 5.35

ZHOU ET AL.: IMPROVING AVAILABILITY OF MULTICORE REAL-TIME SYSTEMS SUFFERING BOTH PERMANENT AND TRANSIENT... 1797



two consecutive invocation of HAOF. For example, when the
hyper-period length is 10000s, the runtime overhead of
HAOF can be up to 5.152s.

7.2 Simulation-Based Experiments

Readers can observe the restrictions of conducting experi-
ments on the TX2 board that (i) all Denver (ARM) cores must
work at the same voltage and frequency, thus we can only
select two cores (one Denver core and one ARM core) to let
them run at their own frequencies, and (ii) the default inter-
face of the board only provides one CPU temperature for all
CPU cores, thus we need to assume Denver and ARM cores
have the same temperature. To fully validate our framework,
we also conduct extensive simulations that remove the afore-
mentioned restrictions. The setups and results of simulation-
based experiments are described below.

7.2.1 Simulation Setup

The simulations are implemented in C++ and run on a desk-
top PC equippedwith a 3.3 GHz Intel Core i5 CPU and 16 GB

RAM. Similar to [49], we perform the simulations using 3
MPSoC systems which consist of 2, 4, and 8 homogeneous
cores, respectively. Themodel of these homogeneous cores is
built by extracting the parameters from the ARM Cortex A8
core [50]. That is, the base supply voltage/frequency of each
core is assumed to be 1.2V/1.5 GHz. For dynamic voltage/
frequency scaling, five different frequency values between
0.8 GHz to 1.5 GHz are used. We develop a task generator
that produces synthetic tasks according to the characteristics
of benchmarks from the Embedded System Synthesis Bench-
mark Suite [51]. Three synthetic task sets, represented by T 1,
T 2, T 3, are constructed in thisway. The three task sets consist
of 10, 20, 40 tasks and are executed on the three simulated
MPSoC systems, respectively.

In the simulation based experiments, we obtain the tem-
perature profile using HotSpot [44] and derive the MTTF
due to permanent faults, MTTFP , using the LTR modeling
tool [26]. HotSpot takes the processor floorplan and power
traces as inputs. We adopt the default floorplan of the ARM
Cortex A8 core with 1� 2, 2� 2, and 2� 4 core arrange-
ments. The thermal resistance and capacitance of Cortex A8
core are set to 1:83C=W and 112.2mJ=C [52], respectively.
The core power traces are derived using the calculation
method proposed in [7]. The method models the power of a
core as a function of the core’s frequency and utilization,
i.e., Powðf; UÞ ¼ PowactðfÞ � U þ PowothðfÞ, where PowactðfÞ
is the core’s active power at frequency f and PowothðfÞ is
the core’s power that is independent of core utilization U
but related to core frequency f [7]. The efficacy of this
power model has been validated in [7]. Simulation results
show that the power model leads to only about 1 percent

TABLE 4
The Runtime Overhead of HAOF Executing Benchmark

Tasks with Varying Hyper-Periods

Length of Hyper-period (s) Runtime Overhead (s)

10000 5.152
1000 1.160
100 0.026
10 0.005
1 0.001

Fig. 6. The system MTTF (year) of simulated MPSoCs when executing synthetic tasks with varying periods using schemes HAOF, OFA, RA, FSA,
and FRA.

1798 IEEE TRANSACTIONS ON COMPUTERS, VOL. 68, NO. 12, DECEMBER 2019



average error and less than 2 percent maximum error in
MTTFP [7]. Using the floorplan and power consumption
profiles as inputs, HotSpot computes the core temperatures
based on the lumped RC thermal model. The RC model is a
practical model to estimate the temperature of processors.
In this model, the temperature is formulated as a function
of core’s power consumption, thermal resistance and capac-
itance, and ambient temperature [53]. The RC model and
the tool HotSpot have been widely adopted in literature
(e.g., [5], [18], [52], [54], [55], [56]). For more details of the
RC model and HotSpot, readers can refer to [44], [53]. Tak-
ing the core temperature profiles generated by HotSpot as
input and using the default parameters, we obtain the
MTTFP results by the LTR modeling tool [26]. We adopt the
parameter values �0 ¼ 1:0� 10�8 and a ¼ 3 [15] for the cal-
culation of MTTFT and set � ¼ MTTRP=MTTRT to 10 for
the calculation of core MTTF. The task vulnerability r takes
the value in the range of (0,1] at random as in [42].

Two simulation based experiments are carried out to val-
idate our framework. First, to verify the effectiveness of
HAOF in improving system MTTF (and hence availability),
we compare HAOF with our offline approach OFA and
peer algorithms RA, FSA, FRA under a given initial task
and frequency assignment [7] and a given MTTR ratio (i.e.,
� ¼ MTTRP=MTTRT ¼ 10). To explore the impact of initial
task and frequency assignment on HAOF, we compare
HAOF with OFA, RA, FSA, and FRA under different initial
assignments: Computing-Performance-Aware Task and
Frequency Assignment (CTFA) [54], Power-Aware Task
and Frequency Assignment (PTFA) [57], and Reliability-
Driven Task and Frequency Assignment (RTFA) [22].

7.2.2 Simulation Results

Fig. 6 shows the MTTF of three simulated MPSoC systems
when executing synthetic tasks with varying periods using
schemesHAOF, OFA, RA, FSA, and FRA. Clearly, the results
indicate that no matter which MPSoC and task period range
are adopted, HAOF always outperform OFA, RA, FSA, and
FRA in terms of improving system MTTF. For example, in
the case of tasks with periods in the range of [600 ms, 700 ms]
executing on the 8-core system, the system MTTF achieved
byHAOF is 51.4, 106.3, 85.4, and 90.8 percent higher that that
of OFA, RA, FSA, and FRA, respectively.

Fig. 7 presents the MTTF of 4-core system achieved by
HAOF, OFA, RA, FSA, and FRA when executing tasks with
a fixed period range [600 ms, 700 ms] but with different ini-
tial task and frequency assignments including CTFA [54],
PTFA [57], and RTFA [22]. It is easy to observe from the
figure that regardless of which initial task and frequency

assignment is adopted, HAOF always achieves the highest
system MTTF. For example, in the case of adopting CTFA
[57], HAOF outperforms OFA, RA, FSA, and FRA by 51.1,
102.4, 80.9, and 77.1 percent, respectively. The results dem-
onstrate that the efficacy of HAOF in improving system
MTTF (and hence availability) is independent of the initial
task and frequency assignment. Similar results and the
same conclusion can be derived for other cases of task peri-
ods and simulated multi-cores, and thus are omitted.

8 CONCLUSION

This paper addresses the reliability concern of real-time
embedded systems considering both permanent and tran-
sient faults. We introduce a novel analytical approach to cal-
culate the MTTF due to transient faults, and formulate a
max-min problem to optimize the availability of multicore
real-time systems. We propose a hybrid framework that
consists of an offline stage and an online stage to solve the
problem. A task replication and frequency selection strategy
is designed for offline use and two task reassignment/repli-
cation strategies are developed for online use. These strate-
gies are used to increase the mean time to first failure and
hence prolong system availability. We conduct extensive
experiments with benchmarks on a hardware platform and
synthetic tasks in a simulation environment. The results
demonstrate that, with a variety of setups, our framework is
effective in improving the MTTF (and hence availability) of
multicore systems compared to representative methods.

ACKNOWLEDGMENTS

This work was partially supported by National Natural
Science Foundation of China (Grant Nos. 61802185 and
61872185), Natural Science Foundation of Jiangsu Province
(Grant No. BK20180470), the Fundamental Research Funds
for the Central Universities (Grant No. 30919011233), Shang-
hai Municipal Natural Science Foundation (Grant No.
16ZR1409000), and U.S. NSF (Grant No. CNS-1319904).

REFERENCES

[1] J. Srinivasan, et al., “The impact of technology scaling on
lifetime reliability,” in Proc. Int. Conf. Depend. Syst. Netw., 2004,
pp. 177–186.

[2] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers, “Exploiting
structural duplication for lifetime reliability enhancement,” in
Proc. 32nd Int. Symp. Comput. Architecture, 2005, pp. 520–531.

[3] “Failure mechanisms and models for semiconductor devices,” Joint
Electron Device Engineering Council, Tech. Rep. JEP 122-B, 2003.

[4] M. Ciappa, et al., “Lifetime prediction and design of reliability
tests for high-power devices in automotive applications,” IEEE
Trans. Device Mater. Rel., vol. 3, no. 4, pp. 191–196, Dec. 2003.

[5] T. Chantem, X. S. Hu, and R. P. Dick, “Temperature-aware
scheduling and assignment for hard real-time applications on
MPSoCs,” IEEE Trans. VLSI Syst., vol. 19, no. 10, pp. 1884–1897,
Oct. 2011.

[6] H. Zhang, L. Bauer, M. A. Kochte, E. Schneider, H. Wunderlich,
and J. Henkel, “Aging resilience and fault tolerance in runtime
reconfigurable architectures,” IEEE Trans. Comput., vol. 66, no. 6,
pp. 957–970, Jun. 2017.

[7] Y. Ma, T. Chantem, R. P. Dick, and X. S. Hu, “Improving system-
level lifetime reliability of multicore soft real-time systems,” IEEE
Trans. VLSI Syst., vol. 25, no. 6, pp. 1895–1905, Jun. 2017.

[8] T. Wei, P. Mishra, K. Wu, and H. Liang, “Fixed-priority allocation
and scheduling for energy-efficient fault tolerance in hard real-
time multiprocessor systems,” IEEE Trans. Parallel Distrib. Syst.,
vol. 19, no. 11, pp. 1511–1526, Nov. 2008.

Fig. 7. The MTTF (year) of 4-core system achieved by HAOF, OFA, RA,
FSA, and FRA using various initial task and frequency assignments
CTFA [54], PTFA [57], and RTFA [22].

ZHOU ET AL.: IMPROVING AVAILABILITY OF MULTICORE REAL-TIME SYSTEMS SUFFERING BOTH PERMANENT AND TRANSIENT... 1799



[9] D. Zhu, R. Melhem, and D. Mosse, “The effects of energy manage-
ment on reliability in real-time embedded systems,” in Proc. IEEE/
ACM Int. Conf. Comput. Aided Des., 2004, pp. 35–40.

[10] S. Aminzadeh and A. Ejlali, “A comparative study of system-level
energy management methods for fault-tolerant hard real-time
systems,” IEEE Trans. Comput., vol. 60, no. 9, pp. 1288–1299,
Sep. 2011.

[11] L. Huang, F. Yuan, and Q. Xu, “On task allocation and scheduling
for lifetime extension of platform-based MPSoC designs,” IEEE
Trans. Parallel Distrib. Syst., vol. 22, no. 12, pp. 2088–2099,
Dec. 2011.

[12] H. Amrouch, et al., “Towards interdependencies of aging mecha-
nisms,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided Des., 2014,
pp. 478–485.

[13] L. A. R. Duque, J. M. M. Diaz, and C. Yang, “Improving MPSoC
reliability through adapting runtime task schedule based on time-
correlated fault behavior,” in Proc. Design Autom. Test Europe Conf.
Exhib., 2015, pp. 818–823.

[14] T. Chantem, Y. Xiang, X. S. Hu, and R. P. Dick, “Enhancing multi-
core reliability through wear compensation in online assignment
and scheduling,” in Proc. Des. Autom. Test Europe Conf. Exhibit.,
2013, pp. 1373–1378.

[15] B. Zhao, H. Aydin, and D. Zhu, “Onmaximizing reliability of real-
time embedded applications under hard energy constraint,” IEEE
Trans. Industrial Informat., vol. 6, no. 3, pp. 316–328, Aug. 2010.

[16] L. Rozo and C. Yang, “Improving MPSoC reliability through
adapting runtime application schedule based on time-correlated
fault behavior,” in Proc. Des. Autom. Test Europe Conf. Exhibit.,
2015, pp. 818–823.

[17] M. A. Haque, H. Aydin, and D. Zhu, “On reliability management
of energy-aware real-time systems through task replication,”
IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 3, pp. 813–825,
Mar. 2017.

[18] J. Zhou and T. Wei, “Stochastic thermal-aware real-time task
scheduling with considerations of soft errors,” J. Syst. Softw.,
vol. 102, pp. 123–133, 2015.

[19] P. Axer, M. Sebastian, and R. Ernst, “Reliability analysis for
MPSoCs with mixed-critical, hard real-time constraints,” in Proc.
9th IEEE/ACM/IFIP Int. Conf. Hardware/Softw. Codes. Syst. Synthe-
sis, 2011, pp. 149–158.

[20] C. Chou and R. Marculescu, “FARM fault-aware resource
management in NoC,” in Proc. Des. Autom. Test Europe Conf., 2011,
pp. 1–6.

[21] J. Huang, J. O. Blech, A. Raabe, C. Buckl, and A. Knoll, “Analysis
and optimization of fault-tolerant task scheduling on multiproces-
sor embedded systems,” in Proc. 9th IEEE/ACM/IFIP Int. Conf.
Hardware/Softw. Codes. Syst. Synthesis, 2011, pp. 247–256.

[22] A. Das, A. Kumar, B. Veeravalli, C. Bolchini, and A. Miele,
“Combined DVFS and mapping exploration for lifetime and soft-
error susceptibility improvement in MPSoCs,” in Proc. Des. Autom.
Test Europe Conf. Exhibit., 2014, pp. 1–6.

[23] T. Kim, Z. Sun, H. Chen, H. Wang, and S. X. D. Tan, “Energy and
lifetime optimizations for dark silicon many core microprocessor
considering both hard and soft errors,” IEEE Trans. Very Large
Scale Integration Syst., vol. 25, no. 9, pp. 2561–2574, Sep. 2017.

[24] Y. Ma, T. Chantem, R. P. Dick, S. Wang, and X. S. Hu, “An on-line
framework for improving reliability of real-time systems on Big-
Little type MPSoCs,” in Proc. Des. Autom. Test Europe Conf. Exhibit.,
2017, pp. 446–451.

[25] H. Aliee, M. Glaß, F. Reimann, and J. Teich, “Automatic success
tree-based reliability analysis for the consideration of transient
and permanent faults,” in Proc. Des. Autom. Test Europe Conf.
Exhibit., 2013, pp. 1621–1626.

[26] Y. Xiang, T. Chantem, R. P. Dick, X. S. Hu, and S. Li, “System-level
reliability modeling for MPSoCs,” in Proc. IEEE/ACM/IFIP Int.
Conf. Hardware/Softw. Codes. Syst. Synthesis, 2010, pp. 297–306.

[27] J. Zhou, X. S. Hu, Y. Ma, and T. Wei, “Balancing lifetime and soft-
error reliability to improve system availability,” in Proc. 21st Asia
South Pacific Des. Autom. Conf., 2016, pp. 685–690.

[28] M. Salehi, et al., “DRVS: Power-efficient reliability management
through dynamic redundancy and voltage scaling under var-
iations,” in Proc. IEEE/ACM Int. Symp. Low Power Electron. Des.,
2015, pp. 225–230.

[29] C. L. Liu and J. W. Layland, “Scheduling algorithms for multipro-
gramming in a hard-real-time environment,” J. ACM, vol. 20,
no. 1, pp. 46–61, 1973.

[30] H. Pham, System Software Reliability, London, U.K.: Springer, 2007.

[31] F. Kriebel, M. Shafique, S. Rehman, S. Garg, and J. Henkel,
“Variability and reliability awareness in the age of dark silicon,”
IEEE Des. Test, vol. 33, no. 2, pp. 59–67, Apr. 2016.

[32] Electrical Engineering and Computer Science Department,
University of Michigan, Mibench, 2016. [Online]. Available:
http://vhosts.eecs.umich.edu/mibench, Accessed on: Jun. 2016

[33] Alpha 21264, “Alpha 21264 microprocessor,” 2010. [Online].
Available: https://en.wikipedia.org/wiki/Alpha_21264

[34] Y. Ma, T. Chantem, X. S. Hu, and R. P. Dick, “Improving life-
time of multicore soft real-time systems through global utiliza-
tion control,” in Proc. 25th Edition Great Lakes Symp. VLSI, 2015,
pp. 79–82.

[35] H. Aliee, “Reliability analysis and optimization of embedded sys-
tems using stochastic logic and importance measures,” Friedrich-
Alexander-Universitt Erlangen-Nrnberg, 2017. [Online]. Available:
https://opus4.kobv.de/opus4-fau/frontdoor/index/index/
docId/8718

[36] F. Zhang and A. Burns, “Schedulability analysis for real-time sys-
tems with EDF scheduling,” IEEE Trans. Comput., vol. 58, no. 9,
pp. 1250–1258, Sep. 2009.

[37] N. Guan and W. Yi, “General and efficient response time analysis
for EDF scheduling,” in Proc. Des. Autom. Test Europe Conf.
Exhibit., pp. 1–6, 2014.

[38] J. A. Stankovic, et al., Deadline Scheduling for Real-Time Systems:
1514 EDF and Related Algorithms. Berlin, Germany: Springer, 2012.

[39] X. Li, S. V. Adve, P. Bose, and J. A. Rivers, “Online estimation of
architectural vulnerability factor for soft errors,” in Proc. Int.
Symp. Comput. Archit., 2008, pp. 341–352.

[40] V. Sridharan and D. R. Kaeli, “Using hardware vulnerability
factors to enhance AVF analysis,” in Proc. 37th Annu. Int. Symp.
Comput. Archit., 2010, pp. 461–472.

[41] T. Siddiqua and S. Gurumurthi, “Balancing soft error coverage
with lifetime reliability in redundantly multithreaded process-
ors,” in Proc. IEEE Int. Symp. Modeling Anal. Simul. Comput. Tele-
commun. Syst., 2009, pp. 1–12.

[42] J. Zhou, X. Zhou, J. Sun, T. Wei, M. Chen, S. Hu, and X. S. Hu,
“Resource management for improving soft-error and lifetime reli-
ability of real-time MPSoCs,” IEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst., 2019, in press, doi 10.1109/TCAD.2018.2883993.

[43] Nvidia, “Jetson tegra X2,” [Online]. Available: https://developer.
nvidia.com/embedded/buy/jetson-tx2

[44] HotSpot 5.0. University of Virginia, 2009. [Online]. Available:
http://lava.cs.virginia.edu/HotSpot

[45] Nvidia, “Nvidia Jetson TX2 delivers twice the intelligence to
the edge,” 2017. [Online]. Available: https://devblogs.nvidia.
com/parallelforall/jetson-tx2-delivers-twice-intelligence-edge/

[46] KPILibrary, “Mean time to repair,” [Online]. Available: http://
kpilibrary.com/kpis/mean-time-to-repair-mttr

[47] Reliability Analytics Blog, “Maintainability theory,” [Online].
Available: http://www.reliabilityanalytics.com/blog/2011/09/
03/maintainability-theory/

[48] S. Bertozzi 1, A. Acquaviva 1, D. Bertozzi, and A. Poggiali,
“Supporting task migration in multi-processor systems-on-chip: a
feasibility study,” in Proc. Des. Autom. Test Europe Conf. Exhibit.,
2006, pp. 1–6.

[49] A. Das, A. Kumar, and B. Veeravalli, “Reliability-driven task map-
ping for lifetime extension of networks-on-chip based multipro-
cessor systems,” in Proc. Des. Autom. Test Europe Conf. Exhibit.,
2013, pp. 689–694.

[50] ARM, “Cortex A8 processor,” [Online]. Available: https://
developer.arm.com/products/processors/cortex-a/cortex-a8

[51] E3S, “Embedded system synthesis benchmark suite,” 2009.
[Online]. Available: http://ziyang.eecs.umich.edu/dickrp/e3s/

[52] R. Jayaseelan and T. Mitra, “Temperature aware task sequencing
and voltage scaling,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided
Des., 2008, pp. 618–623.

[53] K. Skadron,M. Stan, K. Sankaranarayanan,W.Huang, S. Velusamy,
and D. Tarjan, “Temperature-aware microarchitecture: Modeling
and implementation,” ACM Trans. Archit. Code Optimization, vol. 1,
no. 1, pp. 94–125, 2004.

[54] S. Sha, W. Wen, M. Fan, S. Ren, and G. Quan, “Performance maxi-
mization via frequency oscillation on temperature constrained
multi-core processors,” in Proc. 45th Int. Conf. Parallel Process.,
2016, pp. 526–535.

[55] S. Wang and J. Chen, “Thermal-aware lifetime reliability in multi-
core systems,” in Proc. 11th Int. Symp. Quality Electron. Des., 2010,
pp. 399–405.

1800 IEEE TRANSACTIONS ON COMPUTERS, VOL. 68, NO. 12, DECEMBER 2019

http://vhosts.eecs.umich.edu/mibench
https://en.wikipedia.org/wiki/Alpha_21264
https://opus4.kobv.de/opus4-fau/frontdoor/index/index/docId/8718
https://opus4.kobv.de/opus4-fau/frontdoor/index/index/docId/8718
http://dx.doi.org/10.1109/TCAD.2018.2883993
https://developer.nvidia.com/embedded/buy/jetson-tx2
https://developer.nvidia.com/embedded/buy/jetson-tx2
http://lava.cs.virginia.edu/HotSpot
https://devblogs.nvidia.com/parallelforall/jetson-tx2-delivers-twice-intelligence-edge/
https://devblogs.nvidia.com/parallelforall/jetson-tx2-delivers-twice-intelligence-edge/
http://kpilibrary.com/kpis/mean-time-to-repair-mttr
http://kpilibrary.com/kpis/mean-time-to-repair-mttr
http://www.reliabilityanalytics.com/blog/2011/09/03/maintainability-theory/
http://www.reliabilityanalytics.com/blog/2011/09/03/maintainability-theory/
https://developer.arm.com/products/processors/cortex-a/cortex-a8
https://developer.arm.com/products/processors/cortex-a/cortex-a8
http://ziyang.eecs.umich.edu/dickrp/e3s/


[56] J. Zhou, T. Wei, M. Chen, J. Yan, and X. Hu, “Thermal-aware task
scheduling for energy minimization in heterogeneous real-time
MPSoC systems,” IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst., vol. 35, no. 8, pp. 1269–1282, Aug. 2016.

[57] Y. Ge and Q. Qiu, “Task allocation for minimum system power in
a homogenous multicore processor,” in Proc. Int. Conf. Green Com-
put., 2010, pp. 299–306.

Junlong Zhou (S’15-M’17) received the PhD
degree in computer science from East China Nor-
mal University, Shanghai, China, in 2017. He was
a visiting scholar with the University of Notre
Dame, Notre Dame, IN, during 2014-2015. He is
currently an assistant professor with the Nanjing
University of Science and Technology, Nanjing,
China. His research interests include embedded
systems and cyber-physical systems. He is a
member of the IEEE.

Xiaobo Sharon Hu (S’85-M’89-SM’02-F’16)
received the BS degree from Tianjin University,
Tianjin, China, theMSdegree from thePolytechnic
Institute of New York, Brooklyn, NY, and the PhD
degree from Purdue University, West Lafayette,
IN. She is currently a professor with the Depart-
ment of Computer Science and Engineering, Uni-
versity of Notre Dame, Notre Dame, IN. She has
authored or co-authored more than 300 papers.
Her current research interests include real-time
embedded systems, low-power system design,
and computing with emerging technologies. She is
a fellow of the IEEE.

Yue Ma (S’16) received the bachelor’s degree
from the Chengdu University of Technology,
Chengdu, China, in 2010, and the master’s
degree from the University of Electronic Science
and Technology of China, Chengdu, China, in
2013. He is currently working toward the PhD
degree with the University of Notre Dame, Notre
Dame, IN. His current research interests include
the areas of high performance computing, and
multiprocessor systems-on-chip. He is a student
member of the IEEE.

Jin Sun (M’17) received the BS and MS degrees
in computer science from the Nanjing University of
Science and Technology, Nanjing, China, in 2004
and 2006, respectively, and the PhD degree in
electrical and computer engineering from the Uni-
versity of Arizona, in 2011. He is currently an asso-
ciate professor with the Nanjing University of
Science and Technology, Nanjing, China. His
research interests include integrated circuit model-
ing and analysis and computer-aided design. He is
amember of the IEEE.

Tongquan Wei (M’11-SM’19) received the PhD
degree in electrical engineering from Michigan
Technological University, in 2009. He is currently
an associate professor with the Department of
Computer Science and Technology, East China
Normal University. His research interests include
the areas of internet of things, edge computing,
and design automation of intelligent systems and
cyber physical systems (CPS). He is a senior
member of the IEEE.

Shiyan Hu (SM’10) received the PhD degree in
computer engineering fromTexas A&MUniversity,
in 2008. He is an associate professor at Michigan
Technological University. He has been a visiting
professor at IBM Research (Austin) in 2010, and a
visiting professor at Stanford University from 2015
to 2016. His research interests include Cyber-
Physical Systems, Computer-Aided Design of
VLSI Circuits, and Embedded Systems. He is a fel-
low of the IET. He is a senior member of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

ZHOU ET AL.: IMPROVING AVAILABILITY OF MULTICORE REAL-TIME SYSTEMS SUFFERING BOTH PERMANENT AND TRANSIENT... 1801



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


