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Abstract—Along with the wide deployment of infrastructures and the rapid development of virtualization techniques in cloud

computing, more and more enterprises begin to adopt cloud services, inspiring the emergence of various cloud service providers.

The goal of cloud service providers is to pursue profit maximization. To achieve this goal, cloud service providers need to have a good

understanding of the economics of cloud computing. However, the existing pricing strategies rarely consider the interaction between

user requests for services and the cloud service provider and hence cannot accurately reflect the supply and demand law of the cloud

service market. In addition, few previous pricing strategies take into account the risk involved in the pricing contract. In this article, we

first propose a dynamic pricing strategy that is developed based on the customer perceived value (CPV) and is able to accurately

capture the real situation of supply and demand in marketing. The strategy is utilized to estimate the user’s demand for cloud services.

We then design a profit maximization scheme that is developed based on the CPV-aware dynamic pricing strategy and considers the

risk in the pricing contract. The scheme is utilized to derive the optimal multiserver configuration for maximizing the profit. Extensive

simulations are carried out to verify the proposed customer perceived value and risk-aware profit maximization scheme. As compared

to two state of the art benchmarking methods, the proposed scheme gains 31.6 and 30.8 percent more profit on average, respectively.

Index Terms—Cloud computing, customer perceived value, dynamic pricing, multiserver configuration, profit maximization, risk

Ç

1 INTRODUCTION

CLOUD computing, as a new and effective commercial
model that turns the delivery of storage, computing, and

communication resources into ordinary commodities in a
pay-as-you-go manner, is being paid more and more atten-
tion by academia and industry [1]. With the rapid develop-
ment of virtualization techniques and the wide deployment
of infrastructures in cloud computing, the number and
variety of cloud service providers (e.g., Amazon EC2 [2] and
Microsoft Azure [3]) have dramatically increased. The goal
of these cloud service providers is to pursue profit maximi-
zation. Therefore, for these service providers, how to deter-
mine their cloud service prices and configure their cloud
servers for obtaining the maximum profit are of utmost
importance.

Like all the traditional businesses, the profit of a cloud ser-
vice provider is the difference between the revenue gained
by selling cloud services to customers and the monetary cost
of rental charge as well as electricity bill of servers owned by

the infrastructure providers. Either increasing the revenue
or reducing the cost can improve the profit. Thus, cloud
service providers develop a series of approaches [4], [5], [6],
[7] to raise the profit in two aspects: one is to raise the reve-
nue by setting a high selling price for cloud services while
attracting a large number of customers to buy services and
the other is to reduce operating cost for providing services.
Note that a service’s price as well as purchase amount inter-
play and thus cannot be optimized simultaneously [8]. In
this paper, we propose a dynamic pricing strategy which
takes into account the interaction between a service’s price
and purchase amount.

Unlike static pricing strategies (e.g., tiered pricing, sub-
scription based pricing, and pay-as-you-go used in real-
world cloud service providers AmazonWeb Services [9] and
GoogleApp Engine [10]) that fix the price of a service request
in advance as well as do not change the price with market
conditions [5], [7], [11], dynamic pricing strategies adjust the
service price according to customer demands. Since dynamic
pricing strategies can better cope with unpredictable cus-
tomer demands, they have been adopted by more and more
cloud service providers. Amazon has introduced a spot pric-
ing strategy [12] to adjust the price for a virtual instance at
runtime. Based on an empirical study of Amazon’s spot price
history, Xu and Li [13] proposed a market-driven dynamic
pricingmechanism to have a better understanding of the cur-
rent market demand. A genetic algorithm based dynamic
pricing strategy is developed by Macias et al. [14] to find the
optimal price for maximizing profit. Ren et al. [15] presented
a dynamic scheduling and pricing strategy for delay-tolerant

� T. Wang, J. Zhou, and G. Zhang are with the School of Computer Science
and Engineering, Nanjing University of Science and Technology, Nanjing
210094, China. E-mail: {eclipse_wt, jlzhou, gongxuan}@njust.edu.cn.

� T. Wei is with the School of Computer Science and Technology, East China
Normal University, Shanghai 200062, China. E-mail: tqwei@cs.ecnu.edu.cn.

� S. Hu is with the School of Electronics and Computer Science, University
of Southampton, SO17 1BJ, Southampton, United Kingdom.
E-mail: S.Hu@soton.ac.uk.

Manuscript received 3 Apr. 2019; revised 10 Nov. 2019; accepted 11 Nov.
2019. Date of publication 16 Dec. 2019; date of current version 20 Jan. 2020.
(Corresponding authors: Junlong Zhou and Gongxuan Zhang.)
Recommended for acceptance by J. Zhai.
Digital Object Identifier no. 10.1109/TPDS.2019.2960024

1074 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 5, MAY 2020

1045-9219� 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: East China Normal University. Downloaded on March 25,2020 at 15:18:20 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-8633-5001
https://orcid.org/0000-0001-8633-5001
https://orcid.org/0000-0001-8633-5001
https://orcid.org/0000-0001-8633-5001
https://orcid.org/0000-0001-8633-5001
https://orcid.org/0000-0002-7734-4077
https://orcid.org/0000-0002-7734-4077
https://orcid.org/0000-0002-7734-4077
https://orcid.org/0000-0002-7734-4077
https://orcid.org/0000-0002-7734-4077
https://orcid.org/0000-0002-7421-1711
https://orcid.org/0000-0002-7421-1711
https://orcid.org/0000-0002-7421-1711
https://orcid.org/0000-0002-7421-1711
https://orcid.org/0000-0002-7421-1711
mailto:eclipse_wt@njust.edu.cn
mailto:jlzhou@njust.edu.cn
mailto:gongxuan@njust.edu.cn
mailto:tqwei@cs.ecnu.edu.cn
mailto:S.Hu@soton.ac.uk


batch services to maximize long-term profit for cloud service
providers. A dynamic and optimal pricing scheme is espe-
cially designed for provisioning Sensors-as-a-Service [16].
However, all the above-mentioned dynamic pricing strate-
gies do not consider customer perceived value, which is the
fundamental of marketing activities.

The concept of customer perceived value (CPV) is first
introduced by Zaithaml et al. [17] and has been widely used
in the modeling of market activities [18], [19], [20]. CPV is
described as the customer’s overall assessment of the utility
of a product or service based on perceptions of what is
received andwhat is given [17]. It reflects theworth of a prod-
uct in the customer’s mind, and increases when customers
believe the benefits outweigh the costs. Since customers are
generally unaware of the true cost of production for the prod-
uct they buy, they will only pay for the product when their
CPV for the product is higher than the product’s selling price.
In such way, CPV impacts the purchase amount of services
and ultimately influences the cloud service provider’s profit.
In this paper, we design a CPV-aware dynamic pricing strat-
egy for service providers.

A pricing contract in cloud computing includes many
considerations, such as the user demand for a service, the
configuration of a multiserver system, the service-level
agreement, the instructions of tasks to complete the ser-
vice, the task waiting time, and etc. Due to the inherent
uncertainty in task executions, the estimated time and
monetary cost may be different from the actual ones, lead-
ing to a decreased profit or even a loss. Therefore, cloud
service providers should consider the risk induced by the
uncertainty in the pricing contract. In this paper, we study
the problem of maximizing the profit of cloud service
providers. To solve the problem, we present a CPV-based
dynamic pricing strategy which conforms to the supply
and demand law in economics and a risk-aware profit
maximization scheme that takes into account the risk in
the pricing contract. The major contributions of this paper
are summarized below.

� We propose a CPV-based dynamic pricing strategy
which takes into account the inter-relationship
between the customers and providers of cloud serv-
ices. Based on the concept of CPV, the strategy devel-
ops a calculation formula and a standard bisection
based heuristic to derive customers’ demand for cloud
services. The correctness of the proposed pricing strat-
egy and calculation formula are also validated.

� We design a risk-aware profit maximization scheme
that optimizes the cloud service provider’s profit by
configuring the multiserver system. The scheme is
developed based on our dynamic pricing strategy
and considers the risk in the pricing contract. It also
provides a simulated-annealing based heuristic to
find the numerical optimal solution to the profitmaxi-
mization problem.

� We conduct extensive simulation experiments to vali-
date the proposed scheme by i) observing the chang-
ing trend of profit in different conditions as well as
analyzing the factors affecting the profit, and ii) com-
paring the performance of the proposed scheme with
two benchmarking approaches in increasing profit.

The results demonstrate that the proposed scheme not
only follows the market supply and demand law but also
outperforms the state of the art benchmarking approaches.
Specifically, the proposed scheme can achieve 31.6 and
30.8 percent more profit on average compared to two bench-
marking approaches, respectively.

The rest of the paper is organized as follows. Section 2
introduces the system architecture and models. Section 3
presents the proposed dynamic pricing strategy and Section 4
describes the proposed profit optimization scheme. The
proposed scheme is validated in Section 5 and concluding
remarks are given in Section 6.

2 SYSTEM ARCHITECTURE AND MODEL

This section describes the cloud service provision structure
and related models used in the paper.

2.1 Cloud System Architecture

Consider a three-tier cloud service provision structure con-
sisting of three typical entities, i.e., cloud infrastructure pro-
viders, cloud service providers, and cloud customers. The
three-tier structure has been widely adopted in the literature
[1], [4], [6]. In the market formed by the three entities, the
cloud infrastructure provider owns the hardware and soft-
ware facilities, and charges the cloud service provider for
renting the infrastructure resources. The cloud service pro-
vider utilizes these resources to prepare services in the form
of virtual machines (VMs), and charges customers for proc-
essing their service requests. The cloud customer submits
service requests to the service provider and pays for the serv-
ices based on the services’ amount and quality.

2.2 Cloud Service Provider Model

Cloud service providers offer many services to their custom-
ers, e.g., infrastructure-as-a-service (IaaS), platform-as-a-ser-
vice (PaaS), and software-as-a-service (SaaS). We consider
IaaS cloud service providers in this paper. Examples of IaaS
providers include Google Compute Engine [21], Microsoft
Azure [3], and Amazon CloudFormation [22]. In IaaS, com-
puting resources are offered as VMs to support the end users
operations and the cloud service provider is responsible for
running andmaintaining the services. Owing to the cloud vir-
tualization techniques, the cloud service providers could
focus on their own business without spending energy on the
construction and maintenance of hardware platforms. We
assume that an IaaS cloud service provider solves customers’
service requests by renting a multiserver system, which is
constructed and maintained by an infrastructure vendor and
has quite flexible architecture details for deploying pricing
strategy [5]. Such a multiserver system can be in the multiple
forms of infrastructures, e.g., blade centers where each server
is a server blade [23], clusters of traditional servers where
each server is an ordinary processor [24], andmulticore server
processors where each server is a single core [25]. These
blades/processors/cores are simply called servers in this
paper for easy presentation. The serving process operates as
follows. Customers submit their service requests to the service
provider, who then runs tasks/applications on the multi-
server system to provide services for serving these requests.
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Consider a multiserver system composed of M homoge-
neous servers running at the same speed of s. The homoge-
neous multiserver model is simple yet effective and has been
widely used in the literature [1], [4], [5], [6], [20], [25]. The
multiserver is typicallymodeled as anM/M/Mqueuing sys-
tem in which service requests arrive the multiserver system
with a rate of �, wait in a first-come-first-served (FCFS)
queue with an infinite capacity when all the M servers are
busy, and get processed with a speed swhen the servers are
available. The arrival of service requests is governed by a
Poisson process and the M servers process these requests in
parallel. Note that our homogeneous multiserver model can
be extended to heterogeneous multiserver systems. Like the
method proposed in [26], we can configure a heterogeneous
cloud computing platform as multiple homogeneous multi-
server systems. Each multiserver system is deployed with
special software and is devoted to serve one type of service
requests and applications. In a multiserver system, the serv-
ers are homogenous and execute at the same speed. Each
multiserver system can be treated as an M/M/M queuing
systemwhich handles the requests following the FCFS disci-
pline. Using the configurationmethod [26], our cloud service
provider model for homogeneous servers can be readily
applied to heterogeneous cloud computing systems. Note
that the configuration method is suitable for the current real-
world cloud service providers such as Amazon EC2 [2],
Microsoft Azure [3], and Aliyun [27] since they mainly focus
on the multiserver system’s heterogeneity from few aspects
(e.g., CPU and memory). But eventually the heterogeneity
could come from various aspects such as CPU cores/
frequency, memory type/capacity, disk type/capacity, net-
work type/topology, software configurations, and etc. The
configuration method then becomes practically infeasible in
this case since it may need infinite combinations of homoge-
neous multiserver systems. Thus, the scalability of the exten-
sion method should be improved for coping with all the
possible scenarios. We leave the detailed discussion of this
aspect to futurework due to page limit.

For a customer’s request in the M/M/M queuing sys-
tem,1 the service execution time is an exponential random
variable, represented by x ¼ r=s with mean x ¼ r=s, where
r is the number of instructions to be executed for completing
the service request. Let m denote the service rate of customer
requests, which is in fact the average number of service
requests completed by a server with speed s in one unit of
time. The rate m is formulated as m ¼ 1=x ¼ s=r. Let r be the
utilization of a server, which is defined as the average per-
centage of time that the server is busy and is computed as

r ¼ �

Mm
¼ �

Mðs=rÞ ¼
�r

Ms
: (1)

Suppose Pk is the probability that k service requests are
waiting or processing in the M/M/M queuing system.
According to the queuing theory [29], Pk is derived as

Pk ¼
P0

ðMrÞk
k! ; k 4 M

P0
MMrk

M! ; k > M

8<
: ; (2)

where P0 is the probability of a queue with no tasks and is
expressed as

P0 ¼
XM�1

k¼0

ðMrÞk
k!

þ ðMrÞM
M!

� 1

1� r

 !�1

: (3)

Let Pb denote the probability that a newly submitted service
request waits in the queue when all the servers are busy,
and it is formulated as

Pb ¼
X1
k¼M

Pk ¼ PM

1� r
; (4)

where PM is the probability of having M service requests in
the system and it can be obtained using Eq. (2).

For a newly arrived service request, let W and fW ðtÞ be
the service’s waiting time and corresponding probability
density function (PDF) [5], respectively. Then fW ðtÞ is

fW ðtÞ ¼ ð1� PbÞuðtÞ þMmPMe�ð1�rÞMmt; (5)

where uðtÞ is a unit impulse function and is expressed as

uzðtÞ ¼
z; 0 4 t 4 1

z

0; t > 1
z

(
; (6)

and uðtÞ ¼ limz!1uzðtÞ holds. Note that uzðtÞ is in fact a PDF
of an arbitrary random variable, thus can be treated as the
PDF of random variable r in the following [5]. The function
uzðtÞ satisfies two properties, i.e.,Z 1

0

uzðtÞ dt ¼ 1 (7)

Z 1

0

tuzðtÞ dt ¼ z

Z 1=z

0

t dt ¼ 1

2z
: (8)

Given these, the cumulative distribution function of W is
derived as FW ðtÞ ¼ 1� PM

1�r
e�Mmð1�rÞt.

2.3 Service Level Agreement Model

To ensure the customer satisfaction, we need to stipulate a
service-level agreement (SLA) between service providers and
customers on the price and the service quality. A widely-
used SLAmodel [30] defining the service charge for a service
request with execution requirement r and response time R is
adopted in the paper. That is

Cðr;RÞ ¼
ar; if 0 4 R 4 cr

s0

ar� gðR� cr
s0
Þ; if cr

s0
< R < ða

g
þ c

s0
Þr;

0; if R 5 ða
g
þ c

s0
Þr

8><
>:

(9)
where a is the service charge per unit amount of service as
well as g is a coefficient indicating the compensation strength
because of low service quality. c is a constant related to the
SLA and s0 is the expected service processing speed of cus-
tomers. From Eq. (7), it is clear that the service is charged
based on the service response timeR. Specifically, the service
charge function is defined as follows. (i) If the response time
R is shorter than cr

s0
, indicating a high quality of service is pro-

vided since the service request is processed at the expected
speed of customers, then the service charge to a customer is1. Simple examples of the queuing system can be found in [28].
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ar which is linearly proportional to the task execution
requirement. (ii) If the response time R is between the inter-
val ½cr=s0; ða=g þ c=s0Þr�, indicating a low quality of service
is provided since the processing time of the service request
exceeds the time at the expected speed, then the charge
decreases as the response time R increases. (iii) If R is longer
than ða

g
þ c

s0
Þr, then the service is provided as free since the

request is waiting too long in the queue.
The response time R of a service request is calculated as

the sum of the waiting time W and the processing time r=s,
that is, R ¼ W þ r=s. Substituting R ¼ W þ r=s into Eq. (7),
the service charge function can be rewritten as

Cðr;WÞ ¼

ar; if 0 4 W 4 ð c
s0
� 1

sÞr
ðaþ cg

s0
� g

sÞr� gW; if ð c
s0
� 1

sÞr < W

4 ða
g
þ c

s0
� 1

sÞr
0; if W > ða

g
þ c

s0
� 1

sÞr

8>>><
>>>:

:

(10)

Since the PDF of r and W are given in Eqs. (5) and (6), the
expectation of the service charge can be readily derived. As
shown in Eq. (8), the charge to a service request is decided
by parameters a, g, c, r, W , s. In this paper, we focus on
homogeneous multiserver systems and thus do not con-
sider the server heterogeneity in the pricing model (i.e.,
charge function). However, our model can be extended to
heterogeneous multiserver systems using the method [26].
The architecture of heterogeneous multiserver systems pre-
sented in [26] indicates that the parameters considered in
our pricing model are sufficient but need different settings
to capture the server heterogeneity. For example, our pric-
ing model should allow the instruction related parameters
of a service request to be changed with the service type
and the server speed and size to be changed with the
server type.

The user satisfaction of a service is evaluated from two
aspects: quality of service (QoS) and price of service (PoS).
QoS is a subjective concept that is introduced to describe the
discrepancy between users’ expectations on how the service
request should be served and users’ perceptions on how
the service is actually performed. The expectation is built on
the established price. Obviously, the higher the PoS is, the
higher the expectation would be. For a given established
price, if the perception (actual) performance surpasses the
expectation performance, the QoS is then deemed as high,
and vice verse. Given above, the user’s QoS satisfaction for a
service,UQoS, is formulated as [31]

UQoS ¼ 1; if Pact5Pexp

e� j ðPact�PexpÞ=Pexp j ; if Pact < Pexp

�
; (11)

where Pact is the actual performance and holds for Pact ¼ W ,
and Pexp is the expectation performance and holds for
Pexp ¼ ð c

s0
� 1

sÞr. Substituting Pact ¼ W and Pexp ¼ ð c
s0
� 1

sÞr
into Eq. (9), UQoS is then re-written as

UQoSðr;WÞ ¼
1; if 0 4 W 4 ð c

s0
� 1

sÞr
e
ðc=s0�1=sÞr�W
ðc=s0�1=sÞr ; if W > ð c

s0
� 1

sÞr

8<
: :

(12)

The PoS satisfaction of a user for a service,UPoS, defined as
the comparison between the expected price and the actual
price, is formulated as [31]

UPoS ¼ eðCexp�CactÞ=Cexp ; (13)

where Cexp andCact represent user’s expected price and serv-
ice’s actual price, respectively. Clearly, if the actual price Cact

is equal to the expected priceCexp, the default PoS satisfaction
UPoS is set to 1, indicating that the price doesnot impact the
total satisfaction. IfCact is higher thanCexp, the user would be
disappointed by the high price, thus UPoS is less than 1 and
decreases with the increasing actual price. If Cact is lower
than Cexp, the user would be delighted by the low price, thus
UPoS is greater than 1 and increases as the actual price
decreases. The PoS (i.e., the charge of service) is determined
byW and r. As the three modes of PoS defined in Eq. (8), the
PoS satisfaction UPoS needs to consider the three cases. (i)
Cexp ¼ Cact ¼ ar, (ii)Cact ¼ ðaþ cg

s0
� g

sÞr� gW andCexp ¼ ar,

and (iii) Cact ¼ 0 and Cexp ¼ ar. Substituting the values of
Cact andCexp into Eq. (11),UPoS is then formulated as

UPoSðr;WÞ ¼

1; if 0 4 W 4
�

c
s0
� 1

s

�
r;

e
g
a

�
1
sþW

r � c
s0

�
; if

�
c
s0
� 1

s

�
r < W

4
�

a
g
þ c

s0
� 1

s

�
e; if W >

�
a
g
þ c

s0
� 1

s

�
r

8>>>>>>>><
>>>>>>>>:

:

(14)

The user satisfaction Usat of a service is defined as the
product of QoS satisfaction and PoS satisfaction, i.e.,

Usat ¼ UQoSðr;W Þ � UPoSðr;W Þ ¼
1; if 0 4 W 4

�
c
s0
� 1

s

�
r

e
1þg

a

�
1
s� c

s0

�
þ
�
g
a� 1

c=s0�1=s

�
W
r
; if

�
c
s0
� 1

s

�
r < W

4
�

a
g
þ c

s0
� 1

s

�

e
2� W�

c
s0
�1
s

�
r; if W >

�
a
g
þ c

s0
� 1

s

�
r

8>>>>>>>>>><
>>>>>>>>>>:

;

(15)

where UQoSðr;W Þ and UPoSðr;W Þ are given in Eqs. (9) and
(12), respectively.

3 DYNAMIC PRICING STRATEGY

This section introduces the proposed dynamic pricing strat-
egy for cloud service providers in detail. Since the strategy is
designed based on CPV, in this section we first describe how
to use the SERVQUAL score to model the CPV and hence
estimate the user’s demand for services, followed by a vali-
dation of the correctness of the SERVQUAL model and the
proposed user demand function. Considering that using the
analytical method to directly compute user service demand
is challenging, we also provide a heuristic algorithm to
obtain user demand based on CPV.
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3.1 SERVQUAL Score to Model CPV

SERVQUAL [32] is a research instrument designed for cap-
turing consumer’s expectations and perceptions of a service
from multiple dimensions that represent service quality.
The fundamental of SERVQUAL is the gap model [33] that
service quality is determined by the difference between the
level of service perceived by users and the level of service
expected by users. Based on the gap model, SERVQUAL
score (represented by SQS) is utilized to model the CPV for
a service, and is expressed as

SQS ¼
Xn
s¼1

wsðPecs � ExpsÞ; (16)

SQSpriceðrÞ ¼ SQSpriceðr;W Þ ¼ Pecprice � Expprice

¼ Cðr;W Þ � ar ¼
Z � c

s0
�1
s

�
0

ðar� arÞ dt

þ
Z �a

gþ c
s0
�1
s

�
�

c
s0
�1
s

� fW ðtÞ
  

cg

s0
� g

s

!
r� gt

�
dtþ

Z 1�
a
gþ c

s0
�1
s

��arfW ðtÞ dt

¼
Z �a

gþ c
s0
�1
s

�
�

c
s0
�1
s

�
 
cg

s0
� g

s

!
rMmPMe�ð1�rÞMmt dt

�
Z �a

gþ c
s0
�1
s

�
�

c
s0
�1
s

� MmPMgte�ð1�rÞMmt dt

�
Z 1�

a
gþ c

s0
�1
s

� arMmPMe�ð1�rÞMmt dt

¼ PMr

r� 1

 
cg

s0
� g

s

! 
e�ð1�rÞMmðagþ c

s0
�1
sÞr � e�ð1�rÞMmð cs0�

1
sÞr
!

� PMg

r� 1
�
 
ð1þ ð1� rÞMm

 
a

g
þ c

s0
� 1

s

!
r

!
e�ð1�rÞMm

�
a
gþ c

s0
�1
s

�
r

�
 
1þ ð1� rÞMm

 
c

s0
� 1

s

!
r

!
e�ð1�rÞMm

�
c
s0
�1
s

�
r

!

þ arPM

r� 1
e
�ð1�rÞMm

�
a
gþ c

s0
�1
s

�
r
:

(17)

SQSprice ¼ SQSpriceðrÞ ¼
Z 1

0

1

r
e�

z
rSQSpriceðzÞdz

¼ PM

ðr� 1Þr

 
1

ðrþ ð1� rÞMmða
g
þ c

s0
� 1

sÞÞ2

� 1

ðrþ ð1� rÞMmð c
s0
� 1

sÞÞ2
!

�
 
cg

s0
� g

s

!

� PMg

ðr� 1Þr

 
rþ ð1� rÞMm

 
a

g
þ c

s0
� 1

s

!

� 1�
1
r þ ð1� rÞMm

�
a
g
þ c

s0
� 1

s

��2 � ðrþ ð1� rÞMm

 
c

s0
� 1

s

!

� 1

ð1r þ ð1� rÞMmð c
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þ c
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� 1

sÞ
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(18)

SQSwaiting�timeðrÞ ¼ SQSwaiting�timeðr;WÞ

¼ Pecwaiting�time � Expwaiting�time ¼ W �
 

c

s0
� 1

s

!
r

¼
Z 1

0

 
t�

 
c

s0
� 1

s

!
r

!
fW ðtÞ dt

¼
Z 1

0

tMmPMe�ð1�rÞMmt dt�
 

c

s0
� 1

s

!
r �
Z 1

0

fW ðtÞ dt

¼ PM

ð1� rÞ2Mm
� PM

1� r
� ð1� PbÞ

 
c

s0
� 1

s

!
r:

(19)

SQSwaiting�time ¼ SQSwaiting�timeðrÞ
¼
Z 1

0

1

r
e�

z
rSQSwaiting�timeðzÞ dz

¼ PM

ð1� rÞ2Mm
� PM

1� r
� ð1� PbÞ

 
c

s0
� 1

s

!
r:

(20)

where n is the number of the service’s attributes, ws is the
weight of the service’s sth attribute, Pecs is the perception
for the attribute, andExps is the expectation for the attribute.

In this paper, we consider two most important attributes
(i.e., price andwaiting-time) of a service and treat their impor-
tance as equal. In such a case, we have n ¼ 2, w1 ¼ w2 ¼ 0:5,
Pec1 ¼ Pecprice, Exp1 ¼ Expprice, Pec2 ¼ Pecwaiting�time, and
Exp2 ¼ Expwaiting�time. For the price attribute, the perception
Pecprice is the service charge Cðr;WÞ given in Eq. (8) and the
expectation Expprice is ar while for the waiting time attribute,
the perception Pecwaiting�time is W and the expectation
Expwaiting�time is ð c

s0
� 1

sÞr. Using the gap model, we can derive
the SQSwith respect to price andwaiting time attributes (rep-
resented by SQSprice and SQSwaiting�time) as in Eqs. (3.1)-(14).
(See the top of this page.) Note that the derived SQSprice and
SQSwaiting�time are with different units. To consider the two
attributes together, we need to normalize the value of the two
variables. Let SQS

0
price and SQS

0
waiting�time represent the nor-

malized SQSprice and SQSwaiting�time obtained by the maxi-
mum-minimum normalization method [34], respectively.
Then, the SERVQUAL score SQS can be calculated as

SQS ¼ 0:5� SQS
0
price þ 0:5� SQS

0
waiting�time: (21)

We adopt a user demand function [35] which indicates that
the user’s demand for services is linear with the CPV (quan-
tified by SQS). That is

DCPVðSQSÞ ¼ cþ f� SQS; (22)

where c and f ðc;f > 0Þ are constants representing the
basic demand and potential market demand. Note that the
calculation of SQS is independent of the user demand func-
tion used here.

3.2 Validate SERVQUAL Model and Demand
Function

To validate the SERVQUAL model and user demand func-
tion, we carry out several simulations to evaluate SQSprice,
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SQSwaiting�time, and DCPV for different service arrival rates
(�). In the simulations, c is set to 15 and f is set to 20 as in
[35]. The normalized results of SQSwaiting�time and SQSprice
are summarized in Fig. 1a. From the figure, we can clearly
observe that with the increase in the number of arrival serv-
ices, SQSwaiting�time and SQSprice both remain the same when
the service number is less than 11 and then
SQSwaiting�time=SQSprice significantly increases/decreases
when the service number is larger than 11. This observation
is in line with the SLA model that when users’ waiting time
exceeds a threshold, the service provider will reduce the ser-
vice charge/price to compensate for the latency. The results
of DCPV are summarized in Fig. 1b. It can be easily observed
from the figure that with the increase in the number of arrival
services,DCPV remains the same when the service number is
less than 11. When the service number is larger than 11,
DCPV increases first and then decreases. This observation is
in line with the phenomenon in the cloud service market that
when users’ waiting time exceeds a threshold, the user ser-
vice demand will increase first due to the compensation and
then decrease due to the intolerable waiting time. The two
observations discussed above show the correctness of the
SERVQUALmodel and user demand function.

3.3 Derive User Demand Based on CPV

Using Eqs. (21)-(22) to compute DCPVðSQSÞ directly is chal-
lenging due to the complexity of SQSprice and SQSwaiting�time.
However, by using the standard bisection (SB) method, we
can easily find a numerical solution of DCPVðSQSÞ. There-
fore, we develop a SB-based algorithm to obtain the user
demand DCPVðSQSÞ. The details of our algorithm are given
in Algorithm 1. The algorithm works as follows. It first

defines a function Y ¼ cþ f� SQS� � and finds a mono-
tone interval ½�low; �high� such that Y ð�lowÞ > 0 and
Y ð�highÞ < 0 hold (line 1). It then iteratively divides the inter-
val in two by computing themid point �mid ¼ ð�low þ �highÞ=2
of the interval and the value of function Y at that point if
Y ð�lowÞ � Y ð�highÞ > " holds for an arbitrarily small positive
number " (lines 2-9). In each round of iteration, the searching
interval ½�low; �high� and the mid point �mid are updated.
When the iteration stops, the algorithm selects the updated
mid point as theDCPVðSQSÞ (lines 10-11).

Algorithm 1. The SB-Based Method to Derive User
Demand

1: define a function Y ¼ cþ f� SQS� � and find a
monotone interval ½�low; �high� such that Y ð�lowÞ > 0
and Y ð�highÞ < 0;

2: while Y ð�lowÞ � Y ð�highÞ > " do
3: �mid ¼ ð�low þ �highÞ=2;
4: if Y ð�midÞ < 0 then
5: �high ¼ �mid;
6: else
7: �low ¼ �mid;
8: break;
9: calculate Y ð�lowÞ and Y ð�highÞ;
10: �mid ¼ ð�low þ �highÞ=2;
11: DCPVðSQSÞ ¼ �mid;

4 PROFIT OPTIMIZATION SCHEME

In this section, we describe the proposed profit optimization
scheme in detail. Specifically, we first show the method to
calculate the cloud service provider’s profit, then discuss the
optimal multiserver configuration for maximizing the profit,
and finally present the heuristic algorithm to obtain the max-
imumprofit considering the risk in the pricing contract.

4.1 Calculate the Cloud Service Provider’s Profit

The profit of a cloud service provider is generated from the
gap between the revenue earned by purchasing services to
customers and the monetary cost of processing customers’
service requests. Below, we describe the methods to esti-
mate the revenue, cost, and profit in detail.

Revenue. To estimate the revenue R of a cloud service
provider, we first need to know the expected charge Cexp to
a service request. The Cexp is calculated as follows [4]:

CðrÞ ¼ Cðr;WÞ ¼
Z 1

�1
fW ðtÞCðr; tÞ dt (23)

Cexp ¼ CðrÞ ¼
Z 1

0

frðzÞCðzÞdz; (24)

where fW ðtÞ is the PDF of waiting time W given in Eq. (5),
frðzÞ is the impulse function given in Eq. (6), and
Cðr;WÞ=Cðr; tÞ is given in Eq. (8). Using Eq. (2.3) and the opti-
mal setting of parameter g (i.e., g ¼ a=ðc=s0 � 1=sÞ [4]),Cexp is
derived as

Cexp ¼ � Pbar

ð2ðMs� �rÞð c
s0
� 1

sÞ þ 1ÞððMs� �rÞð c
s0
� 1

sÞ þ 1Þ
þ ar ¼ CðM;sÞ:

(25)

Fig. 1. SQSprice, SQSwaiting-time, and DCPV for different service arrival
rates (�).
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Clearly, Cexp can be described as a function of the number
and speed of servers (i.e.,M and s).

The total revenue of a cloud service provider is the prod-
uct of the expected charge to a service request and the user
demand for this service, i.e.,

Revenue ¼ CðM; sÞ �DCPV; (26)

where DCPV is the user demand for this service based on
customer perceived value.

Cost. The cost of a cloud service provider contains two
parts: themoney paid to rent cloud computing infrastructure
and the electricity expense to maintain the operation of the
computing infrastructure. The cost model is a commonly
accepted model that has been widely used in the litera-
ture [1], [4], [5], [6], [20], [26]. Suppose d is the fee paid by the
provider to rent a server during a sale period T . For renting a
multiserver system composed of M servers during the
period T , the provider then needs to pay

Rent ¼ Md � T: (27)

Electricity fee is a significant expense for today’s data cen-
ters and can be calculated as the product of servers’ energy
consumption and electricity price. The energy consumption
of a server can be modeled at different levels of abstraction.
In this paper, we consider server’s energy consumption at
the abstraction level of digital CMOS circuit. Let ET repre-
sent the energy consumption of the M servers during the
sale period T . Then, using the CMOS-level power model
introduced in [5],ET can be calculated as

ET ¼ M � ðPowdyn � rþ PowstaÞ � T; (28)

where r is the server utilization, Powdyn is the dynamic
power dissipation, and Powsta is the static power dissipa-
tion. Assuming CT is the price of the energy consumed by
servers during the period T , the electricity bill is derived as

Bill ¼ ET � CT ¼ M � ðPowdyn � rþ PowstaÞ � T � CT :

(29)

Increasing server utilization is helpful to serve more requests
and hence bring more revenue, but it also leads to a higher
electricity bill. The service provider obtains more profit only
when the extra revenue is greater than the additional electric-
ity bill.

Profit. The cloud service provider’s profit during a sale
period T is derived as the revenue minus the expenses
including the rental cost and electricity cost, i.e.,

Profit ¼ Revenue�Rent�Bill; (30)

where Revenue, Rent, and Bill are given in Eqs. (23), (24),
and (26), respectively. Substituting these into Eq. (27), we
can rewrite Profit as a function, represented by GðM; sÞ, of
the multiserver configurationM and s. That is

Profit ¼ CðM; sÞ �DCPV �Md � T
�MðPowdyn � rþ PowstaÞ � CT � T ¼ GðM; sÞ:

(31)

4.2 Derive the Optimal Setup to Maximize the Profit

As introduced in Section 2.2, PM is the probability of having
exact M service requests in the system and can be derived
using Eq. (2) as

PM ¼ P0
ðMrÞM
M!

:

By applying Taylor series expansions
PM�1

k¼0 ðMrÞk=k! � eMr

and M! � ffiffiffiffiffiffiffiffiffiffiffi
2pM

p ðMe ÞM , PM is then approximately expressed

as

PM � 1� rffiffiffiffiffiffiffiffiffiffiffi
2pM

p ð1� rÞðer�1

r
ÞM þ 1

:

Substituting the approximate PM and the Pb given in Eq. (4)
into CðM; sÞ, we can derive

CðM; sÞ � ar
�
1� 1�

2ðMs� �rÞð c
s0
� 1

sÞ þ 1
�

� 1�ðMs� �rÞð c
s0
� 1

sÞ þ 1
� � 1� ffiffiffiffiffiffiffiffiffiffiffi

2pM
p ð1� rÞðererÞM þ 1

� �:
For the sake of easy representation, we let

f1 ¼
ffiffiffiffiffiffiffiffiffiffiffi
2pM

p
ð1� rÞðer=erÞM þ 1;

f2 ¼ 2ðMs� �rÞ c

s0
� 1

s

� 	
þ 1;

f3 ¼ ðMs� �rÞ c

s0
� 1

s

� 	
þ 1:

CðM; sÞ is then rewritten as

CðM; sÞ ¼ ar 1� 1

f1 þ f2 þ f3

� 	
:

From Eq. (1) we can deduce that Mr ¼ DCPVr
s . Substitut-

ing it into CðM; sÞ and GðM; sÞ, then we can find the optimal
M for maximizing profit by calculating the partial deriva-
tive of GðM; sÞwith respect toM. That is

@G

@M
¼ DCPV

@C

@M
� ðdþ Psta � CT Þ � T:

The partial derivatives used for calculating @G
@M are

@C

@M
¼ ar

ðf1 � f2 � f3Þ2
 

@f1
@M

� f2 � f3 þ @f2
@M

� f1 � f3 þ @f3
@M

� f1 � f2
!
;

@f1
@M

¼
ffiffiffiffiffiffi
2p

p  
1

2
ffiffiffiffiffi
M

p ð1� rÞCþ rffiffiffiffiffi
M

p Cþ
ffiffiffiffiffi
M

p
ð1� rÞ2C

!
;

@f2
@M

¼ 2s

 
c

s0
� 1

s

!
;
@f3
@M

¼ s

 
c

s0
� 1

s

!
;C ¼ ðer=erÞM:

Similarly, we can find the optimal s for maximizing profit
by calculating the partial derivative of GðM; sÞ with respect
to s. That is

@G

@s
¼ DCPV

@C

@s
�DCPVr�ða� 1Þsa�2 � CT � T:
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The partial derivatives used for calculating @G
@s are

@C

@s
¼ ar

ðf1f2f3Þ2
 
@f1
@s

f2f3 þ @f2
@s

f1f3 þ @f3
@s

f1f2

!
;

@f1
@s

¼
ffiffiffiffiffiffiffiffiffiffiffi
2pM

p �
rþMð1� rÞ2� @C

@s
;
@C

@s
¼ M

s
ð1� rÞC;

@f2
@s

¼ 2

 
Mc

s0
�DCPVr

s2

!
;
@f3
@s

¼ Mc

s0
�DCPVr

s2
:

Once the partial derivatives of GðM; sÞ given in Eq. (4.1)
with regard to M and s are obtained, we can compute and
derive the optimal solutions to maximizing profit by setting
these partial derivatives equal to 0.

4.3 Risk-Aware Profit Maximization

Although finding an optimal configuration ofM and s is help-
ful to maximize the profit, the pricing contract still involves
some risk for the cloud service provider. Specifically, due to
the inherent uncertainty in the probability distribution of
waiting times and the number of task instructions, the esti-
mated distributions of time and cost may be different from
the actual ones, leading to a decreased profit or even a loss. To
make the studied problem more realistic, we formally define
the risk based on loss and take into account the risk by adding
it as a part of the optimization objective. The definitions of
LOSS, RISK, and Risk-aware Profit are described as below.

� Definition 1: LOSS. For the ith running of a specific
service, let M�

i and s�i represent the actual number of
servers and the actual operating speed of servers,
respectively. When the cloud service provider gener-
ates a contract with his/her predicted configuration
M and s, the loss of profit is then derived as

LOSSi ¼ GðM�
i ; s

�
i Þ �GðM; sÞ; (32)

where G is the function to calculate the profit.
� Definition 2: RISK. For the ith running of a specific

service, the risk of a service provider is defined as
the average of profit loss over the previous i� 1 runs
of this service. That is

RISKi ¼
Pi�1

j¼1 LOSSj

i� 1
: (33)

� Definition 3: Risk-aware Profit. Considering the risk,
the profit gained by providing a service is derived as

Profitriski ¼ GðM; sÞ þRISKi: (34)

We summarize the basic steps needed to compute the risk-
aware profit inAlgorithm 2.After introducing the risk-related
concepts and how to estimate the risk-aware profit, we then
present the risk-aware profitmaximization problem, followed
by our approach to the profitmaximization problem.

In this paper, we aim at maximizing the profit of the
cloud service provider with the consideration of the risk in
pricing contract by determining the optimal number of serv-
ers, operating speed of servers, and price of services. We
assume that the cloud service provider optimizes his/her

decisions at the beginning of each scheduling interval. The
problem is formulated as

Max : Profitriski ¼ GðM; sÞ þRISKi: (35)

From Eqs. (28)-(31) we can see that the key of solving the
maximization problem is to find the optimal point of
GðM; sÞ. Solving the optimization function GðM; sÞ analyti-
cally requires that M and s are continuous variables and
needs to introduce a closed-form expression for approximat-
ing the function [4], [5], [6]. However, considering that M
and s of actual systems are discrete variables and the error
caused by closed-form approximation is non-negligible, ana-
lytically solving the function is not feasible. Although we
cannot solve the function analytically, we still can carry out
extensive experiments to plot out GðM; sÞ under varying
configurations for checking the existence of optimal solution
to GðM; sÞ as in [4], [6]. Fig. 2 presents the values of GðM; sÞ
under six different configurations. All the figures of GðM; sÞ
show that there must be an optimal point where the profit is
maximized. Note that the experiment results here are not
meant to be comprehensive but just to demonstrate that the
optimal point exists. Based on this observation, we then use
a heuristic algorithm to find a numerical optimal solution.

Algorithm 2. Calculate the Risk-Aware Profit

1: if i ¼ 1 then
2: LOSSi ¼ 0;
3: RISKi ¼ 0;
4: calculate Profitriski using Eq. (30);
5: else
6: j ¼ 1;
7: LOSStotal ¼ 0;
8: while j 4 i� 1 do
9: LOSSj ¼ GðM�

j ; s
�
j Þ �GðM; sÞ;

10: LOSStotal ¼ LOSStotal þ LOSSj;
11: jþþ;
12: calculate RISKj using Eq. (29);
13: calculate Profitriski using Eq. (30);

To find the numerical optimal solution, we first need to
discretize the solution space. Under the discretized solution
space, the simplest way to find the optimal solution is using
brute force search, which is however not suitable because of
its high time complexity. To overcome this shortcoming, we
propose a discrete simulated annealing (SA)-based heuristic
algorithm. The SA [36] is motivated by an analogy to physi-
cal annealing in solids. It is a probabilistic technique for
approximating the global optimum of a given function. It
can avoid being trapped at local optima by introducing a
diversification mechanism (also called restart strategy). The
details of our heuristic algorithm are given in Algorithm 3.

The algorithm begins with an initial solution obtained by
assuming the multiserver configuration with the maximum
capacity is utilized (lines 1-5). Note that the effectiveness of
the algorithm is independent of the initial solution selection.
Any arbitrary valid initial solution can be also used here. It
then initializes the “temperature” of this solution as a high
value, sets the Boltzmann constant k, the cooling rate CR, the
iteration number iteratornum, and the changing steps (stepM
and steps) of multiserver size and speed, and generates a
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random constant $thresh from the range of (0,1] (lines 6-10).
The “temperature” will gradually decrease during the simu-
lated annealing process. At each temperature, the algorithm
performs a certain amount of iterations and considers the
neighbor solutions. Once a new solution is obtained (lines 13-
18), its profit (represented by Profitnext) is calculated using
Eq. (4.1) and compared to that (represented by Profitcur) of
the current solution (lines 19-20). If DProfit ¼ Profitnext�
Profitopt > 0, indicating the new solution can bring a higher
profit, the new solution is accepted (lines 21-25). Otherwise,
the new solution is a worse one and the algorithm then choo-
ses to either keep the current solution (lines 31-33) or accept
the new one with a probability (lines 26-30), in order to avoid
getting stuck in local optima. During the simulated annealing
process (i.e., the optimal solution searching process), the
“temperature” is reduced using a cooling coefficient (line 34).
After a large amount of iterations for searching the optimal
solution, if the profits of neighbor solutions become very close

(i.e., jProfitnext � Profitcurj < "where " is an arbitrarily small
positive number), the outer while-loop is terminated and the
global optimal solution is found (lines 35-36).

Fig. 3 shows the searching process of the optimal solution
using Algorithm 3. The blue points in the figure are the local
optimal solutions obtained during the search and the red
point (M ¼ 20:78; s ¼ 2:995; Profit ¼ 202:4) is the final solu-
tion found by Algorithm 3. From the figure we can deduce
that the algorithm can not only avoid falling into local optima
but also find a solution that is very close to the global optimal
solution.

5 NUMERICAL RESULTS

In this paper, we consider the scenario that a cloud service
provider rents a multiserver system to serve the requests
submitted by cloud users. Such a multiserver system could
be in the multiple forms of infrastructures, e.g., blade centers
[23], clusters of traditional servers [24], and multicore server
processors [25]. The cloud service provider charges users for
processing their service requests based on the services
amount and quality. To represent this scenario, we need to
simulate a multiserver system and estimate the service
demand of users. In the experiment, we assume that themul-
tiserver system is in the form of multicore server processors,
and thus we use several up-to-date multiprocessors (i.e.,
Intel Xeon Skylake-Platinum 8153 [37], Intel KNL-Xeon Phi
7250 [38], NVIDIA-V100 [39], IBM Power7-BladeCenter
PS704 [40]) to simulate the multiserver system. The parame-
ters used to estimate the electricity cost and renting cost of
this multiserver system as well as the parameters related to
service requests are listed in Table 1. The values of these
parameters (such as the multiserver size M, the multiserver
speed s, and the user service demand DCPV) adopted in the
experiments are either extracted from actual system (i.e.,

Fig. 2. The values ofGðM; sÞ under varying configurations.

Fig. 3. An illustration of the process of searching the optimal solution
using Algorithm 3.
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Intel Xeon Skylake-Platinum 8153, Intel KNL-Xeon Phi 7250,
NVIDIA-V100, IBM Power7-BladeCenter PS704) or widely
accepted in the literature (e.g., [4], [5]). The values ofM and s
used in the experiments also satisfy the constraint of server
utilization, i.e., 0 < r ¼ �

Mm
¼ �

Mðs=rÞ ¼ �r
Ms < 1. Thus, our

parameter settings should be realistic and acceptable.
In this section, three sets of simulation experiments are

conducted to validate the proposed scheme from different
perspectives. In the first set of experiments, we observe the
changing trends of user demand and profit under varying
multiserver configurations. This experiment is to show how
the user demand and profit are affected by multiserver con-
figurations. In the second set of experiments, we find the opti-
mal configuration ofmultiserver speed and size aswell as the
corresponding profit under different user demands [41]. This
experiment is to show how the optimal multiserver configu-
ration and profit are affected by user demands. In the third
set of experiments, we compare the proposed profit maximi-
zation schemewith two benchmarkingmethods. This experi-
ment is to show the effectiveness of the proposed scheme in
increasing profit. All the simulation experiments are imple-
mented on a laptop equipped with 2.2 GHz Intel i7 six-core
processor and 16GBDDR4memory, and running a Unix ver-
sion ofMatlab x64.

5.1 User Demand and Profit

In this set of experiments, we conduct a series of numerical
calculations to show the user demand and profit under the
varying configurations of the server size M and the server
speed s, which take the value from f10; 15; 20; 25; 30; 35; 40;
45; 50; 55; 60; 65; 70g and f1; 1:25; 1:5; 1:75; 2:0; 2:25g, respec-
tively. To derive the user demand and profit, we use the
parameters s0, r, a, and c as presented in Table 1.

Fig. 4a shows that no matter which processing speed s is
adopted by the multiserver system, the user demand for
services first quickly increases to a peak, then gradually
decreases, and finally keeps constant, as the multiserver size
M grows from 10 to 70. The reason why the user demand
quickly increases first is that adding more servers can attract
more users by providing a higher computing performance.
However, when the user demand becomes high, the multi-
server systemmay not be able to timely process these service
requests. In this case, users have to wait and their CPVs
become low, which in turn decreases the demand of users
for service. Note that the user demand would eventually
remain a constant. This is because there is always a certain
service demand in the market that is stable and not affected
by external factors.

Algorithm 3. The Discrete SA-Based Heuristic to
Maximize the Profit

Input:DCPVðSQSÞ, r, ½Mmin;Mmax�, ½smin; smax�;
Output: optimal server size Mopt, optimal server speed sopt,
and maximal profit Profitopt;
1: discretize ½Mmin;Mmax� and ½smin; smax�;
2: select node ðMmax; smaxÞ as start node ðM; sÞ;
3: Mcur ¼ Mmax, scur ¼ smax;

// the initial point;
4: calculate Profitcur ¼ GðMcur; scurÞ using Eq. (4.1);
5: initializeMopt ¼ 0, sopt ¼ 0, Profitopt ¼ 0;
6: set temperature ¼ 2000;

// the initial temperature;
7: set k ¼ Boltzmann constant;
8: set CR ¼ 0:99; // the cooling rate;
9: set iteratornum ¼ 10000, stepM ¼ 1, steps ¼ 0:1;
10: generate a random constant from the range of (0,1] using

$thresh ¼ Randð0; 1Þ;
11: while true do
12: for i ¼ 0; i < iteratornum; iþþ do
13: while true do
14: derive two variables by$M ¼ RandðintÞ and

$s ¼ RandðdoubleÞ;
15: Mnext ¼ Mcur þ stepM �Mcur �$M ;
16: snext ¼ scur þ steps � scur �$s;
17: ifðMnext 2 ½Mmin;Mmax�&& snext 2 ½smin; smax�Þ then
18: Break;
19: derive Profitnext ¼ GðMnext; snextÞ by Eq. (4.1);
20: DProfit ¼ Profitnext � Profitcur;
21: if DProfit > 0 then
22: Mopt ¼ Mnext; sopt ¼ snext;
23: Profitopt ¼ Profitnext;

//keep the new solution;
24: Mcur ¼ Mnext; scur ¼ snext;

//the new point;
25: Profitcur ¼ Profitnext;

26: else if expð DProfit
temperature�kÞ > $thresh then

27: Mcur ¼ Mnext; scur ¼ snext;
28: Profitcur ¼ Profitnext;

//accept new point with a probability;
29: Mopt ¼ Mnext; sopt ¼ snext;
30: Profitopt ¼ Profitnext;
31: else
32: Mopt ¼ Mcur; sopt ¼ scur;
33: Profitopt ¼ Profitcur;

//keep the current solution;
34: temperature ¼ temperature� CR;
35: if jProfitnext � Profitcurj < " then
36: Break;

TABLE 1
Definition of Main Notations Used in the Experiment

Notation Definition Value

s0 the customer’s expected service processing speed 1 billion instructions per second [4]
c a constant coefficient 3 [4]
r the expected number of instructions to complete a service 1 billion instructions [4]
a the service charge per unit amount of service 15 cents per billion instructions [4]
d the fee of renting a server during a sale period 1.5 cents per second [4]
� the processor dependent coefficient 9.4192 [4]
a a constant coefficient 2 [4]
Powsta the static power dissipation 2Watts per second [5]
CT the price of the energy consumed by the servers during a sale period 0.1 cents perWatt� second [5]
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Similarly, we can observe fromFig. 4b that nomatterwhich
processing speed s is adopted by the multiserver system, the
cloud service provider’s profit also first rapidly increases to a
peak, then gradually decreases, and finally keeps stable, as
the multiserver size M grows from 10 to 70. The initial
increase of profit is due to the extra revenue gained by the
increased demand, which is much higher than the additional
cost of using the newly added severs. However, with the con-
tinuous increase of server size, the extra revenue may not be
able to afford the additional cost and the user demand will
decrease, leading to a reduced profit. Finally, the profit tends
to be stable when the user demand becomes a constant.

From Figs. 4a and 4b, we can also find that when themulti-
server size is small (i.e., 10 	 M 	 20), increasing service
processing speed is effective in attracting more user demands
and hence obtaining a higher profit. But when themultiserver
size becomes larger (i.e.,M > 20), increasing service process-
ing speed cannot ensure more user demands and larger prof-
its. This is because that high server speed and large server size
both lead to a high cost of operating the multiserver system.

5.2 Optimal Multiserver Configuration and Profit

In this set of experiments, we carry out a series of numerical
computations in order to first find the optimal server speed

and the corresponding maximum profit for varying user
demands and multiserver sizes, then find the optimal multi-
server size and the corresponding maximum profit for vary-
ing user demands and server speeds, and finally find the
optimal multiserver size and server speed under the given
user demands.

Fig. 5 shows the optimal server speed and the corre-
sponding maximum profit when varying the multiserver
size and user service demand. The server size takes the value
from f10; 20; 30; 40; 50; 60; 70; 80g2 and the user service
demand takes the value from f34:73; 30:23; 25:17; 19:7g. The
values of parameters s0, r, a, c, z, a, Psta, d, C

T are consistent
with those in Table 1. As can be seen from Fig. 5a, for a given
service demand, the optimal server speed decreases with the
increase in the size of the multiserver system. This is because
when the required computing capability for completing a
given amount of service requests is fixed, increasing the

Fig. 4. User demand and profit.

Fig. 5. Optimal speed and profit under varying multiserver sizes and user demands.

2. This setup could cover most of parameters of the aforementioned
up-to-date multiprocessors. However, it doesnot include the case of NVI-
DIA-V100 (i.e., 5,120 cores) since such a large server size is not common in
real-world cloud service providers. For example, the server size used by
Amazon EC2 [2],MicrosoftAzure [3], Aliyun [27], andHuaweiCloud [42]
are in the rang of [1, 96], [1, 64], [1, 104], and [1, 64], respectively.
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multiserver size necessitates the decreased server speed.
Fig. 5b presents the corresponding maximum profit when
increasing the multiserver size and user service demand.
Clearly, larger user demands can bring higher profit for
cloud service providers. From the figure we can also observe
that the profit is affected by the multiserver size under a cer-
tain user demand. Specifically, when the multiserver size is
small and the server speed is high, renting more servers is
able to increase the profit. When the multiserver size
becomes greater further and exceeds a threshold, the profit
decreases. This is because that to maintain a steady comput-
ing capability for the given user demand, the server speed
necessarily decreases with the increase of multiserver size.
In the case of small multiserver size and high server speed,
the saved energy cost derived by lowering the server speed
is greater than the extra cost of renting more servers. How-
ever, when the multiserver size becomes large and the server
speed drops to a certain level, the increased renting cost sur-
passes the saved energy cost, leading to a decreased profit.

Fig. 6 presents the optimal multiserver size and the corre-
sponding maximum profit when varying the server speed
and user service demand. The server speed takes the value
from f1; 1:25; 1:5; 1:75; 2; 2:25; 2:5; 2:75; 3:0; 3:25; 3:5g and the
user service demand takes the value from f19:7; 25:17; 30:23;
34:73g. To derive the results, we use the parameters as same
in Table 1. From Figs. 6a and 6b, we can observe that with the
increase of server speed, i) the optimal multiserver size
becomes smaller, which is due to that increasing the server
speed necessitates the smaller multiserver size under a cer-
tain user demand, and ii) the profit gradually decreases,
which is because that the high energy cost of using fast server
speed leads to the decrease of profit.

Table 2 presents the optimal multiserver size, optimal
server speed, and maximum profit under varying user

demands. The user demand varies from 9 to 27 in the step of
2. As can be seen from the table, the optimal multiserver size
M is monotonically increasing with the increase of user
demandsDCPV. The reason is that higher user demand needs
a greater computing capacity.

5.3 Performance Comparison

In this set of experiments, we compare our CPV-based and
risk-aware profit maximization scheme with two state of the
art benchmarking methods COMCPM [4] and OMCPM [5]
under the same experimental settings. The two benchmark-
ing methods both consider the service-level agreement as
well as customer satisfaction, and derive an optimal multi-
server configuration and service price for maximizing profit.
Compared with COMCPM and OMCPM, our scheme is
based on the CPV that reflects users willingness to purchase
cloud services and takes into account the risk involving in
the pricing contract. In the experiments, we vary the user
demands and find the optimal multiserver configuration (M
and s) and the corresponding profit for each user demand.
We use the same values of parameters such as s0, r, a, c, z, a,
Psta, d, C

T as in Table 1. The two benchmarking methods
COMCPM andOMCPMare briefly described below.

� COMCOM [4] is a profit maximization scheme that
specially considers the customer satisfaction in
cloud. The scheme operates as follows. It first defines
the concept of customer satisfaction leveraged from
economics and develops a formula to measure the
customer satisfaction in cloud. Based on the affection
of customer satisfaction on server’s workload, it then
analyzes the interaction between the market demand
and the customer satisfaction as well as calculates
the service arrival rate. Finally, it solves the profit

Fig. 6. Optimal multiserver size and profit under varying server speeds and user demands.

TABLE 2
The Maximum Profit and the Corresponding Multiserver Configuration

Demand (DCPV) 9 11 13 15 17 19 21 23 25 27

Optimal size 12 13 14 15 16 17 18 19 20 21
Optimal speed 1 1.1 1.2 1.3 1.35 1.38 1.43 1.44 1.45 1.46
Maximum profit 106.20 135.60 156.56 181.17 206.22 231.45 255.97 281.56 306.92 332.25
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maximization problem for cloud service providers
by finding out the optimal configuration of servers.
In COMCOM, the optimal configuration of servers is
obtained using a discrete hill climbing algorithm.

� OMCPM [5] is a profit maximization scheme that
treats a multiserver system as an M/M/M queuing
model as well as considers two server speed and
power consumption models. The scheme works as
follows. It first derives the probability density func-
tion (PDF) of the waiting time of a newly arrived ser-
vice request and calculates the expected service
charge to a service request. Based on the PDF and
expected service charge of service requests, it then
gets the expected net business gain (i.e., profit) in
one unit of time and obtain the optimal configuration
of server size and server speed numerically.

Table 3 compares the profit achieved by the proposed
scheme with that of COMCPM [4]. It is clear that the pro-
posed scheme outperforms COMCPM in terms of increas-
ing the cloud service provider’s profit. The improvement
of profit achieved by the proposed scheme over COMCPM
is 31.6 percent on average, and can be up to 34.9 percent.
We can also derive a similar conclusion from Table 4 that
the profit of the proposed scheme is greater than that of
OMCPM [5]. Specifically, the profit improvement achieved
by the proposed scheme over OMCPM is 30.8 percent on
average, and can be up to 33.7 percent. The higher profit
achieved by the proposed scheme benefits from not only
the optimal configuration of servers (i.e., the server size M
and the server speed s) but also the more user service
demands captured by the scheme. In addition, the pro-
posed scheme also considers the risk involving in the pric-
ing contract to avoid the loss caused by the risk. This is

helpful for the cloud service provider to gain a higher
profit.

6 CONCLUSION

In this paper, we consider customer perceptive value and
risk in solving the optimal multiserver configuration prob-
lem for maximizing the cloud service provider’s profit. Spe-
cifically, we propose a method to model the customer
perceptive value and hence estimate the user demand for
cloud services. Based on the estimated user demand, we
study the optimal multiserver configuration problem for
profit maximization and show how to derive the analytical
optimal solution. Furthermore, we develop a simulated
annealing based algorithm to find the numerical optimal
solution when considering the risk in the pricing contract. To
validate the effectiveness of the proposed scheme, we ana-
lyze the changing trend of profit derived by the proposed
scheme under different configurations and compare the pro-
posed scheme with two benchmarking approaches. The
results reveal that the proposed scheme not only follows the
supply and demand law of the cloud service market but also
increases the profit by up to 34.9 percent when compared to
the two benchmarking approaches.
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