
0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2988906, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. Y, ZZZZ 1

Specification-Driven Conformance Checking for
Virtual/Silicon Devices using Mutation Testing

Haifeng Gu, Jianning Zhang, Mingsong Chen, Senior Member, IEEE , Tongquan Wei, Member, IEEE ,
Li Lei, Member, IEEE , and Fei Xie, Member, IEEE

Abstract—Modern software systems, either system or application software, are increasingly being developed on top of virtualized
software platforms. They may simply intend to execute on virtual machines or they may be expected to port to physical machines
eventually. In either case, the devices, virtual or silicon, in the target virtual or physical machines are expected to conform to the
specifications based on which the software systems have been developed. Non-conformance of these devices to the specifications can
cause catastrophic failures of the software systems. In this paper, we propose a mutation-based framework for effective and efficient
conformance checking between virtual/silicon device implementations and their specifications. Based on our defined mutation
operators, device specifications can be automatically instrumented with weak mutant-killing constraints to model potential erroneous
device behaviors. To kill all feasible mutants, our approach adopts a cooperative symbolic execution mechanism that can efficiently
automate the test case generation and conformance checking for virtual/silicon devices. By symbolically executing the instrumented
specifications with virtual/silicon device traces obtained from the cooperative execution, our method can accurately measure whether
the designs have been sufficiently validated and report the inconsistencies between device specifications and implementations.
Comprehensive experiments on two industrial network adapters and their virtual devices demonstrate the effectiveness of our
proposed approach in conformance checking for both virtual and silicon devices.

Index Terms—Conformance Checking, Mutation Testing, Virtual Prototype, Silicon Device, Specification.

F

1 INTRODUCTION

V IRTUALIZATION has not only been a revolutionary technique
in deploying software systems, but also begun to play a

crucial role in speeding up software development [1]. Software
systems are increasingly being developed on top of virtualized
system platforms, that is, emulating real silicon devices (e.g.,
buses, accelerators, network adapters) within a virtual machine
(VM). These software systems may intend to execute just on these
VMs or they may eventually be ported to the physical machines
emulated by these virtual platforms. To ensure these software
systems correctly execute in the targeted deployment platforms,
virtual or silicon, it must be established that the virtual or silicon
devices with which the software systems interact indeed conform
to their specifications; otherwise, the software systems can fail
catastrophically as they execute on these devices.

To ensure these devices conform to their specifications, two
key challenges need to be addressed. The first challenge is the
lack of automated testing approaches that can sufficiently validate
whether all the desired functionalities modeled in specifications
are correctly implemented in virtual/silicon devices. Although
traditional testing approaches can potentially achieve expected
functional coverage for virtual devices, such coverage information
cannot fully reflect the real interactions between hardware and

• Haifeng Gu, Jianning Zhang, Mingsong Chen and Tongquan Wei are
with the MoE Engineering Research Center of Software/Hardware Co-
design Technology and Application, East China Normal University, Shang-
hai, 200062, China (email: {hfgu, jnzhang, mschen}@sei.ecnu.edu.cn,
tqwei@cs.ecnu.edu.cn). Mingsong Chen is also with the Shanghai Institute
of Intelligent Science and Technology, Tongji University. Li Lei is with Intel
Labs, Hillsboro, OR 97124, USA (email: li.lei@intel.com). Fei Xie is with
the Department of Computer Science, Portland State University, Portland,
OR 97207, USA (email: xie@pdx.edu).

software components. The situation becomes even worse when
dealing with the black-box silicon devices. The second challenge
is the lack of effective conformance checking tools to identify
design inconsistencies between different abstraction layers. If
virtual and silicon devices do not always conform to each other,
drivers developed on the virtual system platforms often cannot
readily work on silicon devices. The silicon device errors or
driver bugs eclipsed by incorrect virtual devices may cause serious
problems, e.g., system crashes and blue screens [2], [3].

As the de-facto device interface specification language, Sys-
temRDL [4] has been widely adopted in virtual/silicon device
design to model their register structures. However, the current
version of SystemRDL does not support the behavioral modeling
of register accesses. As an alternative, an executable version of
SystemRDL, namely xSystemRDL, has been proposed in [5] by
extending both the syntax and semantics of SystemRDL. Based on
the C programming language, xSystemRDL specifications allow
designers to specify high-level register access behaviors over the
defined registers. Since xSystemRDL can accurately specify hard-
ware/software interactions in terms of register accesses, it can be
used as a golden reference model for the purpose of conformance
checking both virtual and silicon devices. In [5], a framework
has been proposed to automatically translate xSystemRDL into a
Formal Device Model (FDM) that has complete formal semantics
and is amenable to symbolic analysis.

In this paper, we propose a novel mutation-driven framework
that can automatically generate effective test cases for the con-
formance checking between high-level specifications (i.e., FDMs)
and low-level implementations (i.e., virtual and silicon devices).
Our approach is different from traditional mutation testing ap-
proaches that kill only one mutant for each mutated program.
Instead, inspired by [6], we instrument all the generated Mutant-

Authorized licensed use limited to: East China Normal University. Downloaded on April 23,2020 at 00:26:54 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2988906, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. Y, ZZZZ 2

Killing Constraints (MKCs) within a single FDM to automatically
guide the test case generation by symbolic execution. This paper
makes the following three major contributions:

1) We propose a set of mutation operators for the FDMs
generated from xSystemRDL specifications. The mutants
generated from these operators enable the modeling of
implementation inconsistencies that lead to erroneous
system behaviors.

2) Based on the weak MKCs instrumented in FDMs, we de-
velop a cooperative execution mechanism that can guide
the efficient test case generation by synchronizing the
symbolic executions of FDMs and concrete executions
of device implementations.

3) We propose a novel conformance checking method based
on mutant killing and symbolic execution, which enables
effective identification of bugs/inconsistencies in imple-
mentations and quick measurement of testing adequacy.

Experimental results show that our approach can not only ef-
fectively uncover bugs from both virtual devices excerpted from
the open source machine virtual platform QEMU [7] and cor-
responded silicon devices widely used in industry, but also can
achieve better test coverage than state-of-the-art methods with less
testing efforts.

The rest of this paper is organized as follows. Section 2
introduces background on mutation testing, symbolic execution
and conformance checking for computer system designs. Sec-
tion 3 details our mutation-driven conformance checking method.
Section 4 presents experimental results on two industrial network
adapters. Finally, Section 5 concludes this paper.

2 RELATED WORKS

To enable the conformance checking between different abstraction
layers of computer systems, various specification-driven methods
have been investigated [8], [9]. For example, Bombieri et al. [10]
presented an event-based approach that supports the equivalence
checking between Transaction Level Modeling (TLM) and Reg-
ister Transfer Level (RTL) designs. By checking the activation
order of corresponding Property Specification Language-based as-
sertions in both TLM and RTL designs, Chen et al. [11] proposed
an approach that can enhance the observability of conformance
checking. Based on timed automata, Herber et al. [12] introduced
a conformance testing method to check the consistency between
abstract models and SystemC implementations. However, none of
the above approaches enable the conformance checking for virtual
and silicon devices.

As a promising program analysis technique, symbolic execu-
tion has been widely used in the testing of software and hardware
components. For example, SAGE [13] and S2E [14] are two
popular testing tools based on symbolic execution for software
systems that intensively interact with external environments. By
combining the dynamic symbolic execution and constraint solving
techniques, the tools KLEE [15], CUTE [16] and CRETE [17] can
automatically generate high-quality test cases for both hardware
and software designs. In [18], Guo et al. proposed a promising
testing approach that can convert multi-task PLC programs into C
code for the test case generation based on KLEE. However, so far
most symbolic execution techniques focus on testing rather than
conformance checking.

By seeding artificial defects into programs, mutation testing
can be used to assess and improve the quality of a given test

suite based on the number of killed (identified) mutants [19],
[20], [21]. In [44], Ammann et al. proposed a way of computing
the size of the minimal mutant set for mutant set minimiza-
tion with respect to a specific test set. To reduce the test data
generation time, various automated mutation testing approaches
have been proposed. For example, Papadakis and Malevris [22]
proposed a novel approach that conjoins program transforma-
tion and dynamic symbolic execution techniques to automati-
cally generate mutation-based test cases. By reducing the killing
mutants’ problem into a branch-coverage one, they combined
symbolic execution, concolic execution, and evolutionary testing
methods to produce test cases according to the weak mutation
testing criterion in [23]. In [6], Zhang et al. proposed a mutation
testing approach called PexMutator. By transforming a program
into an instrumented meta-program that contains mutant-killing
constraints, PexMutator adopts dynamic symbolic execution to
automate the test case generation to kill instrumented mutants.
Although these approaches can generate high-quality test inputs,
few of them consider the mutation testing for specific design
features of virtual/silicon devices.

Along with the prosperity of virtualization techniques and
tools (e.g., QEMU [7], VMWare, VirtualBox and Xen), the use
of virtual devices in place of physical hardware is increasing
in computer system design and testing, since they have better
observability and controllability [24], [25], [26]. For example,
SimTester [27], SIMEXPLORER [28] and SDRacer [29] are
promising frameworks that can facilitate the testing and debug-
ging of interrupt-driven embedded software. Instead of running
software directly on real hardware devices, these approaches em-
ploy virtual platforms that can precisely control execution events
and observe runtime context at critical code locations. However,
all these methods focus on embedded software rather than the
underlying host devices. To check the correctness of manually
developed virtual devices, Yu et al. [30] proposed a novel frame-
work for testing virtual devices within a full system simulator.
By using physical devices to eliminate the need for manual test
oracles, their approach can detect more faults than random testing.
However, their approach does not consider conformance checking
and cannot be directly applied on silicon devices due to limited
observability.

To enable the conformance checking between virtual proto-
types and silicon devices, various methods have been investigated
[5], [31], [32], [33]. For example, Lei et al. [31] introduced a con-
formance checking method that can symbolically execute virtual
devices with the same driver request sequences to silicon devices.
By extending SystemRDL as a golden reference model, Gu et al.
[5] presented a specification-driven symbolic execution approach
to check whether the virtual/silicon devices exhibit unexpected be-
haviors that are not modeled in their given specification. Although
the above approaches can efficiently identify inconsistencies in
device implementations, few of them consider the quality of
conformance checking in terms of testing efficiency. To the best
of our knowledge, our approach is the first attempt that utilizes
mutated specifications to specify the potential erroneous behaviors
and automatically generate effective test inputs to validate the
conformance of both virtual and silicon devices.

3 OUR CONFORMANCE CHECKING APPROACH

As a promising approach to evaluate and improve the quality of
test cases, mutation testing [19], [34], [42] tries to distinguish the

Authorized licensed use limited to: East China Normal University. Downloaded on April 23,2020 at 00:26:54 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2988906, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. Y, ZZZZ 3

original program under test from its various faulty variants (a.k.a.,
mutants). A test case can kill a mutant if its executions on the
mutant and its original program can produce different results (i.e.,
final states). The quality of test cases can be judged by the number
of mutants killed by the test cases. This idea can be naturally
borrowed in conformance checking between specifications and
implementations of virtual/silicon devices. During conformance
checking, we can consider the implementation inconsistencies as
special implementation-level mutations caused by improper design
refinement, which can be reflected by corresponding mutants in
the specification level. The test cases aiming to kill such mutants
can be used to check whether the functional scenario of the
specification is correctly implemented in virtual/silicon devices.

Specification Implementation
read(a,b);
MutantCheck((a+b)!=(a-b));
b=a+b;
return b;

read(a,b);
b=a-b;
return b;

Fig. 1. A motivating example of mutation-based conformance checking

Figure 1 presents an example to explain this idea. The left
part of the figure gives the specification of a design, which
tries to return the addition of two input registers (i.e., a and
b). In this example, we assume that the statement “b=a+b;” is
implemented with “b=a-b;” by mistake as shown in the right
part. When the inputs of both a and b equal 0, it is hard to
identify the inconsistency. To avoid this, we add an MKC (the
conditional statement wrapped in MutantCheck()) to guide the test
case generation. If an FDM test case (e.g., a = 1, b = 1) can
trigger the MutantCheck() function, it should satisfy the wrapped
MKC (i.e., (a+b)! = (a−b)). If the implementation is incorrectly
implemented as such, the generated FDM test case can be used to
differentiate between the specification and implementation for the
addition operation. It is worth noting that the instrumented MKCs
do not change any behaviors of the original specification since
they are conditional checks rather than assignments.

Formal Device Model

Inconsistency
Reports

Conformance CheckerMutant Generator Test Case Generator

Traces

Instrumented Formal Device Model

Virtual/Silicon Device Synchronization

Mutation
Operators

Fig. 2. Workflow of our conformance checking approach

Figure 2 shows the workflow of our approach, which includes
three major components: mutant generator, test case generator
and conformance checker. In our approach, we use FDM that
is automatically generated from xSystemRDL as the golden
reference specification for device implementation. Based on the
given mutation operators (see Section 3.1), our mutant generator
can automatically instrument a given FDM with MKCs. Unlike
traditional mutation testing that generates one program for each
mutant, our approach encodes each mutant using an MKC and
instruments all the MKCs within the given FDM. Based on sym-

bolic execution, our test case generator (see Section 3.2) tries to
kill all the specified mutants by covering the true branches of their
conditional statements. Note that to directly operate devices our
approach manages interface registers by proper synchronization
without resorting to device drivers. By symbolically running the
collected traces generated from device testing on the instrumented
FDM, our conformance checker (see Section 3.3) can report
the inconsistency based on our defined conformance rules. The
following subsections will introduce our approach in detail.

3.1 Mutant-Killing-Constraint Generation and Instru-
mentation

Mutation operators play an important role in mutation testing,
since their rules can be used to enable the automated mutant
generation. To adequately conduct conformance checking, it is
required to generate a rich set of mutants to explore all potential
inconsistencies. However, in most cases increasing the types of
mutation operators does not lead to additional benefits but wasted
time and resources [19], [34]. To accommodate our conformance
checking purpose, our approach focuses on six selected mutation
operators related to interface registers as shown in Table 1. It is
important to note that these six mutation operators are by no means
the “golden” ones rather they are considered as a set of pratically
useful operators [34] for the mutation testing of traditional soft-
ware. In practice, our approach welcomes other types of mutation
operators, which can be easily integrated into our framework to
strengthen the detection capability of new inconsistencies.

As shown in the first column of Table 1, the top four mutation
operators come from the sub-set of mutation operators (i.e., ABS,
AOR, LCR, ROR and UOI) proposed by Offutt et al. [34].
Our approach does not consider the operator Absolute Value
Insertion (i.e., ABS), since negative values are not involved in
dealing with interface registers. Moreover, since the assignments
of reserved registers and register read operations are important
for interface registers, we create two new mutation operators to
model the possible errors. Column 2 presents the rules for the
mutations. Each rule consists of two parts delimited by “→”,
where the left part denotes the correct design in a specification
and the right part indicates the potential errors. By default, RO =
{<,<=,>,>=,==, ! =}, LC = {&, |,̂ }, AO = {+,−,∗,/,%},
and UO = {∼}. For example, by using the Arithmetic Operator
Replication (AOR) operator we can replace the arithmetic operator
α with a new one β, e.g., replacing a + b with a− b. For the
last two rows, RRVR tries to assign each reserved register reg
with a special value defined within D = {0xffffffff, 0x00000000,
0x84218421}, and RRAI tries to assign each read register with a
specific value from VAL = {0xffffffff}. The values in D and VAL
indicate the most common corner cases that can potentially cause
inconsistencies between FDMs and virtual/silicon devices. Note
that both D and VAL can be extended or redefined for different
testing purposes. Since FDMs are automatically translated from
xSystemRDL specifications, the reserved register information (i.e.,
RSV in RRVR) can be collected during the translation process for
the following MKC generation. The register-read-access operation
can be figured out during the FDM parsing, where the values of
registers are returned within return statements.

Instead of using strong mutant killing for test generation which
is intractable in practice [35], our approach adopts the weak muta-
tion testing [6], [36] to improve the probability of mutant killing.
In our approach, the test case generation is guided by killing

Authorized licensed use limited to: East China Normal University. Downloaded on April 23,2020 at 00:26:54 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2988906, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. Y, ZZZZ 4

TABLE 1
Mutant-Killing-Constraint Generation using Our Mutation Operators

Mutation Operators Mutation Rules MKC Generation Rules MKC Generation Examples

ROR
(Relational Operator Repl.)

∀α. α ∈ RO, reg1 α reg2 →
∀β. (β ∈ RO)∧ (β! = α), reg1 β reg2

∀α. α ∈ RO, reg1 α reg2 → MutantCheck(((a < b) && !(a >= b))
∀β. (β ∈ RO)∧ (β! = α), (!(reg1 α reg2)∧ (reg1 β reg2)) || (!(a < b) && (a >= b)));

∨ ((reg1 α reg2)∧!(reg1 β reg2)) if(a < b) . . .
LCR ∀α. α ∈ LC, reg1 α reg2 → ∀α. α ∈ LC, reg1 α reg2 → MutantCheck((a&b)! = (a|b));

(Logical Connector Repl.) ∀β. (β ∈ LC)∧ (β! = α), reg1 β reg2 ∀β. (β ∈ LC)∧ (β! = α), (reg1 α reg2)! = (reg1 β reg2) c = a&b;
AOR ∀α. α ∈ AO, reg1 α reg2 → ∀α. α ∈ AO, reg1 α reg2 → MutantCheck((a+b)! = (a−b));

(Arithmetic Operator Repl.) ∀β. (β ∈ AO)∧ (β! = α), reg1 β reg2 ∀β. (β ∈ AO)∧ (β! = α), (reg1 α reg2)! = (reg1 β reg2) c = a+b;
UOI reg →∀µ. µ ∈UO, µ (reg) reg →∀µ. µ ∈UO, reg ! = µ (reg) MutantCheck(∼ a+1! =∼ (∼ a)+1);

(Unary Operator Insertion) b =∼ a+1;

RRVR
(Reserved Register Val. Repl.)

∀reg. reg ∈ RSV, e ∈ EXP, reg = e
→ ∀υ. υ ∈ D, reg = υ

∀reg. reg ∈ RSV, e ∈ EXP, reg = e →
∀υ. υ ∈ D, (reg == υ)∧!(reg == e)

MutantCheck(r == 0x f f f f f f f f
&& r! = 0x00000010);

r = 0x00000010; //r is a reserved reg.
RRAI ∀reg. reg ∈ RR, return reg; → ∀reg. reg ∈ RR return reg;→ MutantCheck(reg! = 0x f f f f f f f f);

(Register Read Access Insert.) ∀υ. υ ∈VAL, return υ; ∀υ. υ ∈VAL, reg! = υ; return reg; //register read

the specification mutants generated by our mutation operators,
which model a set of potential inconsistencies implemented in
virtual/silicon devices. Based on the same interface registers, a
generated test case involving a sequence of device requests can be
used for conformance checking. Let S and Mspec denote an FDM-
based specification and a mutant of S on statement st (the other
parts of S and MSpec are the same), respectively. A test input t
can weakly kill Mspec if the following two criteria can be satisfied:
i) for reachability, t must trigger st on both S and Mspec; and ii)
for necessity, the internal states of M and MSpec must be different
immediately after executing st. Our approach does not require the
sufficiency, which implies that the final states of S and Mspec after
executing t are different.

Similar to [6], our approach adopts the MKCs to efficiently en-
able weak mutant killing, thus facilitating the symbolic execution-
based test case generation. Instead of generating one specification
for each mutant, our approach encodes each mutant using an MKC
and instruments them within the target FDM. Note that all these
MKCs only contain conditional statements, which will not alter
the semantics of original specifications. In this way, if an MKC
is satisfied by a test input, the test case can be used to kill the
corresponding mutant.

The third and fourth columns of Table 1 present the rules
and examples for the MKC generation, respectively. Similar to
the notation “→” used in the second column, the rules for MKC
generation in column 3 also have two parts. The left part denotes
the specification constructs, while the right part denotes the gen-
erated conditional statements wrapped in MutantCheck() function.
Note that one mutation operator may lead to the generation of
multiple MKCs. For example, since AO = {+,−,∗,/,%} has five
elements, when dealing with the statement c = a+b, four MKCs
will be generated as follows: MutantCheck((a+ b)! = (a− b)),
MutantCheck((a+b)! = (a∗b)), MutantCheck((a+b)! = (a/b)),
and MutantCheck((a+ b)! = (a%b)). In the fourth column, each
example consists of two parts. The bottom part in bold font
denotes some snippet of an FDM specification, which matches
the left part of mutation rules. Correspondingly, we instrument
the generated MKC immediately before the bold text. Due to
the limited space, we only present one possible mutation for
each operator in column 4. If the conditional statement within
MutantCheck() holds, the specification and its mutant can be
differentiated. As an example for the operator AOR, to satisfy
the constraint we can generate some values for a and b (e.g.,
a=1, b=3) that can differentiate the statement “c = a+b;” from its

mutant “c = a−b;”.
Based on the rules introduced in Table 1, Listing 1 presents

an FDM excerpt of the e1000 network adapter with instrumented
MKCs. To facilitate the illustration, the names of some registers
and macros are modified here. In this example, there are three
MKCs (lines 5, 16, and 21) generated by the operators LCR,
LCR, and UOI, respectively. Note that the function MutantCheck()
has two parameters, where the first one is a conditional statement
denoting the MKC and the second one denotes the indices of
mutants. By default, the index of a mutant is 0, if the second
parameter is not specified.

1 uint32_t runInterfaceFunction(DeviceState* dev, uint32_t
accType, uint32_t val, uint64_t addr){

2 if(accType == FDM_REG_WRITE){ //register write operation
3 switch(addr){
4 case TCTL_ADDR:
5 MutantCheck((val&0x3ffffff)!=(val|0x3ffffff),1);
6 dev->rega.val=val&0x3ffffff;
7 accFlag=TCTL_ADDR; break;
8 case IMC_ADDR:
9 dev->regb.val=val; accFlag=IMC_ADDR; break;

10 ...}
11 }else{...} // register read operation
12 }
13 void runDevice(DeviceState* dev){
14 switch(accFlag){
15 case TCTL_ADDR:
16 MutantCheck((dev->a&TCTL_EN)!=(dev->a|TCTL_EN),2);
17 if((dev->rega.val&TCTL_EN)==0)
18 return;
19 ...
20 case IMC_ADDR:
21 MutantCheck(∼(dev->regb.val))!=∼(∼(dev->regb.val)),3);
22 uint32_t tmp=∼(dev->regb.val);
23 ...
24 }
25 }

Listing 1. An FDM excerpt with instrumented MKCs

3.2 Mutant-Driven Test Case Generation

3.2.1 Notations

Interface registers act as the inputs and outputs of devices exposed
by device designers. They can be used to feed driver requests and
monitor the states of devices. Our test case generation method is
based on FDMs which focus on modeling the interface register
access behaviors of devices. Note that the usages of interface
registers are typically defined at the early stage of the design,
i.e., the access behaviors of interface registers in FDMs should
be consistently conformed in both virtual and silicon devices.

Authorized licensed use limited to: East China Normal University. Downloaded on April 23,2020 at 00:26:54 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2988906, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. Y, ZZZZ 5

Therefore, the test cases generated from FDMs can be directly
used to check the conformance between FDMs and virtual/silicon
devices via interface registers. Definition 3.1 and Definition 3.2
give the formal definition of test cases generated from FDMs.

Definition 3.1. A test case τ generated from an FDM is a
sequence of device requests in the form of τ = req0→ req1→
. . .→ reqn (n ≥ 0). Each device request reqi in τ is a triple
(accType,regAddr,val) indicating an interface register access
operation, where accType ∈ {R,W} denotes read or write
type of reqi, regAddr denotes the target register address, and
val denotes the value going to be written to regAddr when
accType =W . The length of τ is |τ|= n+1.

For example, the device request sequence τ = (W,0x8,0x0)→
(W,0x3818,0x1010101) → (W,0x10,0x0) → (W,0xb8,0x0) →
(W,0xc4,0x0)→ (W,0x400,0x2020202) is a generated test case
for some FDM, which has a length of 6. Note that τ is in an
abstract form, which is device independent.

Definition 3.2. Let τ = req0 → req1 → . . .→ reqn (n ≥ 0) be a
test case. A test segment tsi of τ is a sub-sequence of τ, where
|tsi| ≤ |τ|. A continuous test segment sequence of τ in the form
of ts0 → ts1 → . . .→ tsk (k ≤ n) has the same device request
sequence as τ such that ∑

k
i=0 |tsi|= n+1.

Let ts0 = (W,0x8,0x0) → (W,0x3818,0x1010101), ts1 =
(W,0x10,0x0) → (W,0xb8,0x0), and ts2 = (W,0xc4,0x0) →
(W,0x400,0x2020202) be three test segments of τ with a length
of 2, respectively. τ can be considered as a continuous sequence
of ts0, ts1 and ts2, i.e., τ = ts0→ ts1→ ts2.

To enable device conformance checking, when running an in-
strumented FDM with a given test case, for each device request we
need to record the corresponding runtime information including
the device state update and the set of MKCs traversed during
the test execution. Definition 3.3 formalizes such information that
needs to be collected.

Definition 3.3. Let S be the set of interface register states of a
virtual/silicon device d, where each state denotes specific value
assignments of its interface registers. Let s0 ∈ S be an initial
state of d. The trace of d based on s0 and τ is a sequence ρ =

s0
(req0, µ0)−−−−−→ s1

(req1, µ1)−−−−−→ . . .sn
(reqn, µn)−−−−−→ sn+1, where si+1 denotes

the device state after executing reqi from si and µi denotes the
MKC triggered by reqi.

To generate a device request to trigger one MKC m from
current state si, we need to figure out a test segment tsi =
reqi0 → reqi1 → . . .→ reqik such that we can get m ∈

⋃k
j=0 µi j,

where si
(reqi0, µi0)−−−−−→ si+1

(reqi1, µi1)−−−−−→ . . .si+k
(reqik , µik)−−−−−→ si+k+1 is the

trace segment. We say that tsi can trigger m from si. To enable
the investigation of complex functional scenarios, Definition 3.4
defines a new test generation method involving the continuous
killing of multiple mutants within a test case execution.

Definition 3.4. Let IM be the set of instrumented MKCs of an
FDM f , and let mc =< mi,0,mi,1, . . . ,mi,k > (mi, j ∈ IM, k ≥ 0,
0 ≤ j ≤ k) be a combination of k + 1 MKCs. A test case τ

can cover mc if there exists an initial FDM state s0 and a
continuous test segment sequence τ = ts0 → ts1 → . . .→ tsk

for f such that ts j can trigger mi, j within the trace of f based
on s0 and τ. We use Mx to denote the test cases generated to
cover all the combinations of x MKCs in IM.

3.2.2 Synchronization-based Test Case Generation

Since FDMs focus on the modeling of access behaviors of partial
interface registers on an abstract level, it cannot be executed like
virtual or silicon devices. Therefore, it is impossible to directly
generate test cases based on FDMs. According to Definition 3.4,
to enable test case generation for Mx we need to figure out the
concrete device state for each device request and the continuous
test segments to trigger the given combination of MKCs.

State Recorder

Virtual
/Silicon
Device

Request Replayer

Test Case Generator

Modified
KLEE

State Loader

OS Kernel

M
e

m
o

ry M
ap

p
e

d
 I/O

Req

Instrumented
FDM

Fig. 3. Test case generation based on FDM-device synchronization

Figure 3 presents our FDM-device synchronization mechanism
that enables the test case generation for Mx. In our approach, the
test case generator runs on the guest operating systems (OS) of
a VM communicating with the underlying virtual/silicon device
via our request replayer and state recorder modules. In Linux,
such two modules can be implemented based on the Linux
Kernel analysis framework Kprobes which provides a means of
communication between kernel space and user space. By using
symbolic execution engine based on modified KLEE, our test
case generator can automate the test case generation for Mx by
periodically conducting the following two steps in a synchronous
manner: i) use state loader to update the abstract device state of
the instrumented FDM with the concrete state of corresponding
virtual/silicon device; and then ii) generate one device request req
using symbolic execution trying to trigger one MKC mu and use
request replayer to feed it to the virtual/silicon device. Within
each synchronization, we use state recorder to save interface
register values of the virtual/silicon device before and after the
device request execution. Meanwhile, state recorder also saves
the information of both req and mu. Our approach assumes 100
milliseconds for the delay of virtual/silicon device executions.
Note that our FDM-device synchronization mechanism enables
the test generation from FDM and test execution on virtual/silicon
device at the same time. Since our approach operates on interface
registers directly based on the memory mapped I/O mechanism, to
avoid the interference from other network applications, we unload
all the correlated device drivers from the guest OS.

3.2.3 FDM Harness for Test Case Generation

Our approach adopts FDMs as our device specifications, which
provide a template to model the access behaviors of interface
registers [5]. To enable the symbolic execution based test case
generation, an FDM should have a harness. Listing 2 shows
the harness of an instrumented FDM f for the generation of
device requests to trigger MKCs. Note that all the device FDMs
have the same harness. After updating interface registers of f
in line 3, lines 4-12 iteratively search for device requests for
MKCs not yet covered. According to Definition 3.1, the harness
defines three variables acc, addr and val indicating the three key
elements of a device request, which are made symbolic using
the function klee make symbolic for device request generation.

Authorized licensed use limited to: East China Normal University. Downloaded on April 23,2020 at 00:26:54 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2988906, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. Y, ZZZZ 6

According to [5], each FDM iteration needs to deal with two
functions runInterfaceFunction() and runDevice(), where runIn-
terfaceFunction() specifies interface register access behaviors and
runDevice() updates the device state accordingly. Since these two
functions are the main parts to describe device behaviors, our
approach instruments them with MKCs for test case generation.
As an example, Listing 1 shows the instrumented functions, which
will be used in explaining our mutant-driven test case generation
approach. The function terminateState() in line 11 is a special
function defined in our modified KLEE, which acts like a barrier
for the symbolic search. If at the end of this barrier none of
the execution paths encounters an uncovered MKC, the while-
loop will be unrolled again to search for uncovered MKCs with
longer execution paths. Otherwise, the terminateState() function
will select one execution path with specific strategy (see lines 27-
34 in Algorithm 2) for device request generation. If the while-loop
is unrolled twice and still cannot find any new uncovered MKC,
terminateState() will randomly generate one device request from
the explored execution paths. Then, terminateState() will feed the
generated device request to the corresponding device.

1 int main(int argc, char *argv[]){
2 struct DevState dev; int cnt=0;
3 getDevState(&dev);
4 while(cnt<2){
5 uint32_t acc,val; uint64_t addr; cnt++;
6 klee_make_symbolic(&acc,sizeof(acc),"accessType");
7 klee_make_symbolic(&addr,sizeof(addr),"regAddr");
8 klee_make_symbolic(&val,sizeof(val),"value");
9 runInterfaceFunction(&dev, acc, val, addr);

10 runDevice(&dev);
11 terminateState();}
12 ...
13 }

Listing 2. FDM Harness for Test Case Generation

Figure 4 shows an example of M1 test generation for the
FDM modeled in both Listing 1 and Listing 2. For the ease of
explanation, we only present the programming constructs that
correspond to the plaintext in Listing 1. In this figure, each FDM
programming construct (node) is labeled with an ID, and we use
mx to indicate the xth MKC. Note that a conditional statement
wrapped in mutantCheck() is only for test case generation. During
symbolic execution, if an execution path triggering an uncovered
MKC is selected for device request generation, the MKC will
be incorporated in the corresponding path constraint by KLEE.
Otherwise, the mutantCheck() will be skipped.

if(A)

switch(addr)

getDevState(&dev)

m2

m3

A

!A
terminateState()

A C

A B A B
m2: A B G

A B G

A B F

m3: A C E

m1 if(F)

A B !F

A: [accType==FDM_REG_WRITE] B: [addr==TCTL_ADDR] C: [addr==IMC_ADDR]

D: [((val&0x3ffffff)!=(val|0x3ffffff))] E: [~(dev->regb.val)!=~(~dev->regb.val)]

F: [(dev->rega.val&TCTL_EN)==0] G: [(dev->rega.val&TCTL_EN)!=(dev->rega.val|TCTL_EN)]

m1: A B D

A B F

A B !F

A B

A C

A C

A B A B A B

A B !F

A B F

A
A

1

2

3
4 5 6

8

7

!A
!A

A C E
A C E

Fig. 4. An illustration of M1 test case generation for FDM in Listing 1

Figure 4 shows a simplified test case generation process for
MKCs m1, m2 and m3. For simplicity, we assume that each
generated device request kills only one MKC. In this case, since
each test case involves only one device request, the test case
generation process only needs to invoke the symbolic execution
of the harness for three times. We use three different colors
to indicate different symbolic executions. At the beginning of
M1 test case generation, our approach parses the FDM to fig-
ure out the set mutComCov={< m1 >,< m2 >,< m3 >} of all
combinations of MKCs. Our approach uses a set tList to save
the execution constraints for test case generation. In the first
symbolic execution (in red color), when reaching node 2, the
current execution path (state) ρ forks two execution paths (i.e.,
ρ1 = 1 → 2 → . . . , ρ = 1 → 2 → 3). Since we omit the part
between node 2 and node 8, in this example ρ1 will not be
discussed. Assuming that ρ has a high priority, ρ1 will be saved
temporarily. When our symbolic execution hits the node 3, ρ will
be forked again into two execution paths (i.e., ρ = 1→ 2→ 3→
4, ρ2 = 1→ 2→ 3→ 7). Assuming that ρ has a higher priority,
ρ2 will also be saved for future analysis. When the search of ρ

hits node 4, it will check mutComCov to find whether m1 has
been triggered. Since < m1 > is in mutComCov, our approach
will update tList = {m1 : A∧B∧D} assuming that A∧B∧D is
satisfiable. After that, ρ will hit m2 at node 5. By checking mut-
ComCov, we will update tList = {m1 : A∧B∧D,m2 : A∧B∧G}
assuming that A∧ B∧G is satisfiable. When ρ hits node 6, it
will fork two execution paths (i.e., ρ = 1→ 2→ 3→ 4→ 5→
6→ 8, ρ3 = 1→ 2→ 3→ 4→ 5→ 6→ . . .). Assuming that
ρ has a high priority, ρ3 will not be discussed due to lack of
successive nodes. Thereafter, ρ will hit node 8, where it will be
suspended temporarily. After that ρ2 will be explored. When ρ2
hits node 7, after checking mutComCov, tList will be updated
to {m1 : A∧B∧D,m2 : A∧B∧G,m3 : A∧C∧E}. When all the
active execution paths finish the exploration, the terminateState()
will terminate the first symbolic execution and select m1 from
tList to generate a test case and send the device request to its
corresponding device. Meanwhile, tList will be cleared, and mut-
ComCov will become {< m2 >,< m3 >}. Similarly, the second
symbolic execution explores the harness function in the same way.
The only difference is that m1 : A∧B∧D will not be added to tList,
since < m1 > is not in mutComCov. In this case, a device request
for m2 will be generated. In the last round, m3 will be handled in
the same manner.

3.2.4 Implementation of Test Case Generation
Instead of giving the details of the special functions (e.g., ter-
minateState()) newly defined in KLEE, Algorithm 1 details our
test case generation approach as a whole from a global view.
At the beginning, line 2 parses the given FDM to compute the
set of all the instrumented MKCs. Line 3 resets the device.
Since the generation of device requests highly depends on current
device states, inevitably the symbolic execution may get stuck
at local search without generating device requests to trigger new
MKCs. Therefore, we introduce two random search mechanisms
to avoid these scenarios. Our approach allows random device
requests if no effective device requests can be generated. If there
exist rstBound (default value is 5) continuous random device
requests, our approach will reset the device once (lines 32-34).
If there are rndRunCnt (default value is 1000) continuous random
device requests generated after an effective device request, the
whole test case generation process will abort (line 6, lines 26-

Authorized licensed use limited to: East China Normal University. Downloaded on April 23,2020 at 00:26:54 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2988906, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. Y, ZZZZ 7

Algorithm 1: Our Test Case Generation Algorithm for Mk

Input: i) f dm, an instrumented FDM ;
ii) dev, corresponding virtual (silicon) device;

iii) k, # of mutants in a combination of Mk;
iv) rndBound, # of max random tries for killing a new mutant;
v) rstBound, # of continuous random tries for reset;

Output: Trace (test case) set TCS for killing k-mutation-combinations
TestCaseGeneration(f dm, dev, k, rndBound, rstBound) begin1

mutSet = ParseFDM(f dm);2
ResetDevice(dev);3
rndRunCnt=0, reqCnt=0;4
reqEventSeq.Clear();5
while rndRunCnt < rndBound do6

curSta = GetRegState(dev);7
executionState = ExploreState(f dm, curSta, mutSet, k);8
if executionState != NULL then9

muID = executionState.idMKC;10
req = DeviceRequestGen(executionState);11
SendRequestToDevice(req);12
nxtSta = GetRegState(dev);13
killedMutSeq.Append(muID);14
if reqCnt == k then15

reqCnt=0;16
mutComCov.Add(killedMutSeq);17
TCS.Add(reqEventSeq);18
reqEventSeq.Clear();19
killedMutSeq.Clear();20

end21
else22

reqCnt++;23
reqEventSeq.Append(<24
req,curSta,nxtSta,muID >);

end25
rndRunCnt = 0;26

end27
else28

RandomRun(dev);29
rndRunCnt += 1;30

end31
if rndRunCnt % rstBound == 0 then32

ResetDevice(dev);33
end34

end35
return TCS;36

end37

31). Line 4 initializes the values of counters for random runs
and generated device requests. Since Mk test cases contain at
least k request events, we use reqEventSeq to save the sequence
for a test case. Line 5 resets reqEventSeq for a new test case
generation. Note that an Mk test case may involve multiple device
requests. To enable conformance checking, our approach saves
all the information of a generated device request in the form
of < req,curState,nxtSta,muID > indicating the device request,
current device state, next device state, and the ID of triggered
mutant by req, respectively. We call such a record an event of
the device request. Within an FDM-device synchronization, Line
7 initializes the interface registers using the device state. Line 8
resorts to ExploreState() function (see Algorithm 2) to conduct
the symbolic execution. It will obtain a most suitable execution
state that can be used to generate a device request for a yet-to-
cover MKC. If such an execution state exists, lines 10-14 will
generate the device request and feed it to the device to obtain the
new device state for next device request generation. Since an Mk

test case is a sequence of device requests, line 14 updates a global
variable killedMutSeq to indicate such a sequence searched so far.
If the sequence saved in killedMutSeq can trigger a combination
of k MKCs, lines 15-21 will update the k-MKC combination
coverage information in mutComCov, save the generated test case,

and clear the data structures for a new test case generation. Finally,
the algorithm returns all the generated Mk test cases.

Algorithm 2: Algorithm for ExecutionState Selection
Input: i) f dm, an instrumented FDM ;

ii) curState, starting state of registers;
iii) mutSet, set of all MKCs;
iv) k, # of mutants in a combination of Mk;

Output: selExecState, an execution state triggering a new MKC
ExploreState(f dm, curState, mutSet, k) begin1

availMKC = mutSet, socre[mutSet.Size()+1] = 0;2
selExecState = NULL, tList.Clear();3
if killedMutSeq.Size() == k−1 then4

visited.Clear();5
for i from 0 to mutComCov.Size()-1 do6

if killedMutSeq.Equals(mutComCov[i].SubSeq(k−1))7
then

visited.Add(mutComCov[i][k−1]);8
end9

end10
availMKC = availMKC - visited;11

end12
ES = SymbolicExecute(f dm, curState);13
for i from 0 to ES.Size()-1 do14

es = ES[i];15
MKC = es.TraversedMKC();16
for j from 0 to MKC.Size()-1 do17

if MKC[j] ∈ availMKC then18
if SAT(es.pathConstr∧MKC[j].constr) then19

es.idMKC = MKC[j].ID;20
availMKC -= MKC[j];21
tList += es; break;22

end23
end24

end25
end26
for i from 0 to mutComCov.Size()-1 do27

for j from 1 to k do28
score[mutComCov[i][j]]++;29

end30
end31
if !tList.IsEmpty() then32

selExecState = Sort(tList, score);33
end34
return selExecState;35

end36

Algorithm 2 details the symbolic execution-based exploration
process for a best candidate to trigger a new MKC. As shown
in lines 1-2, we use availMKC, score, selExecState, and tList
to denote the MKCs that need to be checked, the score of each
MKC based on the statistics of mutComCov, the selected execution
state triggering an uncovered MKC, and the candidate execution
states for test case generation, respectively. Lines 4-12 figure out
possible uncovered MKCs for current device request generation.
If the device request is not the last one in an Mk test case, all
the MKCs will be explored. Otherwise, if the combination of
killMutSeq and an MKC has been covered in mutComCov, lines
6-10 will ignore the MKC. Note that lines 6-10 iteratively compare
killMutSeq with the explored MKC combinations in mutComCov.
At line 7, if killMutSeq with a length of k− 1 is a prefix of
mutComCov[i], line 8 will record the last MKC of mutComCov[i]
in visited. Line 11 figures out unexplored MKCs which can lead to
new k-MKC combinations, and save them in availMKC. After the
full symbolic execution on the given FDM with a start state, line
13 collects all the execution states and saves them in ES. Similar
to the tList construction process illustrated in Figure 4, lines 14-
26 construct a candidate execution state list based on uncovered
MKCs. Line 16 collects all the MKCs that are satisfiable at current

Authorized licensed use limited to: East China Normal University. Downloaded on April 23,2020 at 00:26:54 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2988906, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. Y, ZZZZ 8

execution state. As shown at line 18, if an MKC collected in line
16 is in availMKC, an execution state indicated by es together
with the MKC will be considered as a candidate. If this MKC
combined with the path constraints of es is satisfiable, line 22 will
add it into tList. Lines 27-31 update the scores of MKCs, and lines
32-34 select one execution state from tList with the lowest MKC
score. Finally, line 35 returns the selected state if it exists.

3.3 Symbolic Execution-based Conformance Checking
Our approach conducts the conformance checking between FDMs
and virtual/silicon devices based on the symbolic execution of
instrumented FDMs (see Section 3.1) using the traces collected
from virtual/silicon devices. Since the usages of interface registers
are the same across different layers of device design (i.e., FDMs,
virtual/silicon devices), the collected traces from virtual/silicon
devices (see Algorithm 1) can be directly applied to FDMs.

According to Algorithm 1, each collected trace is a se-
quence of events, where each event is in the form of <
req,curSta,nxtSta,muID > indicating the incoming device re-
quest, current state, next state and the ID of investigating mutant,
respectively. Assume that the state of an FDM f is initialized
with curSta. When we symbolically execute f with req, if the
corresponding device implementation dev conforms to f , the next
state of f should be consistent with nxtSta. However, if the next
state of f is consistent with nxtSta, it does not mean that the
implementation is correctly designed. As an example shown in
Figure 1, if the inputs of a and b are all 0, the next states of
both given specification and implementation are consistent, which
results in a false positive during conformance checking. To avoid
such kinds of false positives, our conformance checking requires
that the MKC with index muID should also be checked during the
symbolic execution.

3.3.1 Formal Definitions
Both FDMs and virtual/silicon devices consist of two kinds of
registers: i) interface registers that explicitly reflect the interac-
tions with other software/hardware components; and ii) internal
registers used for internal calculations that are not observable.
Assume that RI and RN are the set of interface registers and
internal registers, respectively. Definition 3.5 and Definition 3.6
present the formal definitions on checked states of devices and
instrumented FDMs, respectively.
Definition 3.5. After execution of a device request req, the state

of a device is denoted as S = {SI ,SN}, where SI and SN

denote the assignments to RI and RN due to the execution of
req, respectively. The checked state of a device is denoted as
CS =< IDµ,{SI ,SN}> where IDµ is the index of investigating
MKC associated with req.

Definition 3.6. Let p be a symbolic execution path of an instru-
mented FDM f d when dealing with a device request. At the
end of symbolic execution of p, the state of f d is denoted as
F = {FI ,FN}, where FI and FN are the final assignments to
RI and RN , respectively. The checked state of f d under p is
denoted as CFp =< IDSµ,{FI ,FN}>, where IDSµ is the index
set of all MKCs triggered along with p.

In symbolic execution, the register values of concrete FD-
M/device states are all concrete, while the registers are assigned
with symbolic values for symbolic FDM/device states. As an
abstraction, a symbolic FDM/device state can be treated as a set of

concrete FDM/device states. To facilitate the definition, the states
of FDMs and virtual/silicon devices are all considered as symbolic
states. Similar to the conformance checking approaches proposed
in [31], [5], we use Symb(S) and Symb(F) to denote the sets of
concrete states for S and F , respectively. Note that unlike existing
approaches, our method takes mutant-killing information into
account. Definition 3.7 and Definition 3.8 define the conformance
between FDMs and device implementations considering only one
device request.

Definition 3.7. A checked state of virtual/silicon devices CS =<
IDµ,{SI ,SN} > and a checked state of corresponding FDM
CFp =< IDSµ,{FI ,FN} > are consistent to each other if both
of Symb({SI ,SN})∩ Symb({FI ,FN}) 6= /0 and IDµ ∈ IDSµ are
satisfied.

Definition 3.8. Let f d be an instrumented FDM and d be its
implementation. After synchronizing the state of f d with the
state of d, both designs are executed with a same device
request req. Let CS be the checked state of d after executing
req. Let P be the set of all possible execution paths of f d
during the symbolic execution of req. For the device request
req, d conforms to f d if there exist p ∈ P such that CS is
consistent to CFp.

3.3.2 Implementations

Unlike the harness presented in Listing 2 that is used for test case
generation, Listing 3 presents the FDM harness for conformance
checking. By replacing the condition statements in the while-loop
and switch-case constructs with a symbolic condition choice(),
our approach can reflect the real hardware behaviors by executing
functions runInterfaceFunction() and runDevice() (see details in
Listing 1) in a non-deterministic manner.

1 int main(int argc, char *argv[]){
2 struct DevState dev;
3 uint32_t acc,val;
4 uint64_t addr;
5 while(choice()){
6 switch(choice()){
7 case 0 :
8 runInterfaceFunction(&dev, acc, val, addr);
9 break;

10 case 1:
11 runDevice(&dev);
12 break;
13 ...}
14 }
15 ...
16 }
17 static inline int choice(){
18 ...
19 make_symbolic(&i, sizeof(i), "choice");
20 return i;}

Listing 3. Harness of FDM for Conformance Checking

According to Definition 3.8, our approach can check the
conformance between FDMs and devices under a given device
request. While analyzing traces collected from our mutant-driven
testing, we check each request in a trace one by one. If an
inconsistency is detected between the device and its FDM under
a request, our approach will not be terminated immediately. This
is because we use an FDM-device synchronization mechanism
to perform the test generation and execution. In this way, the
conformance between the FDM and device for each device request
is independent.

Authorized licensed use limited to: East China Normal University. Downloaded on April 23,2020 at 00:26:54 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2988906, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. Y, ZZZZ 9

Algorithm 3 details our conformance checking approach by
running a collected device trace on the corresponding instru-
mented FDM. By parsing the trace file, line 4 figures out all the
collected device information for a given device request. To reduce
symbolic execution complexities, our approach adopts the method
proposed in [5], [31], which synchronizes the FDM state to its
corresponding device state after each device request. Based on a
new device state according to curSta and a given device request
req, line 5 fully explores all the possible execution paths and save
them in a set execPaths. Then, lines 6-11 iteratively check whether
there exists an execution path whose checked state is consistent
with < muID,nxtSta > according to Definition 3.7. If the device
does not conform to the FDM for req as shown in line 12, line 13
will record the inconsistency.

Algorithm 3: Our Conformance Checking Approach
Input: i) f dm, an instrumented FDM;

ii) trace, a trace generated by Algorithm 1;
ConformanceChecking(f dm, trace) begin1

for i from 0 to trace.size()-1 do2
mis = T RUE;3
< req,curSta,nxtSta,muID > = trace.At(i);4
execPaths = SymbolicExecute(f dm, curSta, req);5
while !execPaths.IsEmpty() do6

ep = execPaths.Remove(0);7
if !CheckStMut(ep, nxtSta, muID) then8

mis = FALSE; break;9
end10

end11
if mis == T RUE then12

RecordMisInfo(trace.At(i));13
end14

end15
end16

4 PERFORMANCE EVALUATION

To evaluate the effectiveness of our approach, we conducted the
experiments with two industrial network adapters (i.e., e1000
Gigabit NIC and eepro100 Megabit NIC developed by Intel).
These two adapters have both virtual and silicon versions, where
their virtual prototypes can be obtained from the virtual machine
QEMU (version 0.15). Note that e1000 is the default network
adapter of QEMU. We modified the open-source C mutation
testing tool Milu [37], which can parse FDM specifications and
instrument MKCs automatically based on the given mutation
operators. We also modified the symbolic execution tool KLEE
(version 1.4.0) and incorporated our test generation, test execution
and trace comparison approaches in it to enable the conformance
checking between FDM specifications and device implementa-
tions. Note that KLEE can record the line number information
of symbolically executed code. It can be used to compute the
code and mutant coverage of FDMs. To collect the coverage
information of virtual devices using the generated test cases,
we use the GCC’s coverage testing tool GCOV and LCOV. All
the experiments were conducted on an Ubuntu Desktop (version
12.04) with 3.2GHz AMD processors and 16GB RAM.

Table 2 presents the experimental settings for the two network
adapters. Column 1 gives the name of the design. Based on Intel
developers’ manuals [38], [39], we constructed the FDMs for the
two adapters. Columns 2-3 present the Lines of Code (LoC) infor-
mation for the FDMs and their instrumented versions, respectively,
while column 4 gives the number of generated MKCs based on

TABLE 2
Settings of Intel Network Adapters

Devices FDM iFDM # of VP Selective Captured
(LoC) (LoC) MKCs (LoC) Size (Bytes)

e1000 473 588 115 1731 1224
eepro100 525 646 121 2115 74

our proposed mutation operators. For the ease of comparison,
we do consider header files when calculating LoC information of
both FDMs and virtual prototypes. Note that FDMs are high-level
abstractions of devices that only take partial interface registers of
the investigated network adapters into account. In this experiment,
we only investigate 26 interface registers (20 non-reserved and
6 reserved) for the e1000, and 13 interface registers (12 non-
reserved and 1 reserved) for eepro100. All these registers are
among the most frequently used registers in their virtual prototype
counterparts. Column 5 presents the LoC information for the
virtual prototypes obtained from QEMU. Instead of monitoring all
the register updates, when collecting execution traces from virtual
and silicon devices, we only record a subset of interface registers
which are relevant to the selected registers used in modeling
FDMs. Column 6 shows the total address range of such monitored
interface registers.

FDM Specification

Virtual Prototype (VP)

Silicon Device (SD)

Conformance
Checking for VP

Coverage Analysis
for VP

Conformance
Checking for SD

No
Coverage

Test Cases Traces

Fig. 5. Conformance checking relations of three different design layers

As shown in Figure 5, our experiment involves three different
design layers: FDM specifications, virtual prototypes, and silicon
devices. The arcs on the left side indicate the implementation
validation using the test cases generated by our mutation-driven
approach, while the arcs on the right side denote the conformance
checking by symbolically executing the implementation traces
stimulated by our generated test cases on FDM specifications. Our
experiment tries to answer the following three questions.
RQ1: How is the quality of the test cases generated by our
proposed mutation-driven approach?
RQ2: Can our approach really reduce the overall conformance
checking time, thus shortening the time-to-market?
RQ3: How effective is our approach in detecting the inconsisten-
cies between FDM specifications and device implementations?

4.1 Adequacy Analysis of Generated Test Cases

To demonstrate the quality of generated test cases, we investigated
all the mutation operators as proposed in Section 3.1 for the
test case generation of the two network adapters. For each FDM
instrumented with automatically generated MKCs, we generated

Authorized licensed use limited to: East China Normal University. Downloaded on April 23,2020 at 00:26:54 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2988906, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. Y, ZZZZ 10

a set of test cases for the validation of its corresponding virtual
prototype. Note that we did not check the testing adequacy for
silicon devices because of their limited observability.

TABLE 3
Mutant Killing Information of Test Case Generation

Mutation e1000 FDM eepro100 FDM
Methods Total Succ. Fail. Total Succ. Fail.

M1 115 112 3 121 83 38
M2 13225 12700 525 14641 7074 7567

Table 3 presents the mutant killing information for the test
generation from FDM specifications. Column 1 presents different
test case generation strategies. According to Definition 3.4, we
use the notation Mx to denote the strategy where each generated
test case involves the killing of a combination of x mutants. Col-
umn 2 has three sub-columns, which indicate the mutant killing
information for the e1000 FDM. The first sub-column denotes the
number of all generated mutant combinations that are used for test
case generation. Note that the number of mutation combinations
increases exponentially along with the increase of x. For example,
the number of M2’s combinations is the square of the number of
M1’s combination. To achieve a reasonable conformance checking
time, this experiment does not check the case where x > 2. Since
there exist mutants that contradict each other, the second and
third sub-columns present the number of mutant combinations
that are successfully and unsuccessfully killed using our test case
generation approach, respectively. For each successfully killed
mutant combination, our approach generates one test case for the
validation of virtual/silicon devices. Similarly, the third column
shows the mutant-killing information of the test case generation
for eepro100 FDM.

Virtual Device Bugs Detected. For the e1000 virtual device,
when applying the 12700 test cases generated by M2, we detected
device bugs that have not been identified by the command-based
test cases used in [5], [31]. We found that the guest Linux
operating system running on QEMU often got stuck with infinite
loops. We analyzed the virtual prototype’s source code based on
the reports in [40], [41], and figured out the two bugs: i) due to the
missing of a break statement, the while-loop for data transmission
cannot terminate; and ii) if the value of the variable “bytes”
becomes 0 without proper checking, the condition of some while-
loop for processing transmit descriptors will always be true. For
the completeness of the conformance checking, all the following
experiments are based on the e1000 virtual device with the two
detected bugs fixed.

TABLE 4
Time and Coverage Information of Virtual Devices Testing

Devices Test Cases Time Line Func. Branch
Cov. (%) Cov. (%) Cov. (%)

e1000

Com [5] 25m 79.9 81.4 55.8
M1 5m 75.5 90.7 47.5
M2 6h53m 88.0 95.3 66.0

M1+M2 6h57m 88.0 95.3 66.0
M1+M2+Com 7h20m 88.0 95.3 66.0

eepro100

Com [5] 15m 68.8 73.8 42.2
M1 1m20s 71.2 73.8 47.3
M2 1h20m 71.2 73.8 47.7

M1+M2 1h22m 71.2 73.8 47.7
M1+M2+Com 1h40m 71.2 73.8 47.7

To show the strength of our approach, we compared our
approach with the work presented in [5], which runs virtual

prototypes using a set of frequently-used network commands
(e.g., scp, ifconfig) with the help of device drivers. Since the
device requests in this case are derived from network commands
rather than FDMs, the conformance checking method proposed
in [5] lacks the controllability of error exploration, whereas our
approach is more targeted. Note that during the early stage of
computer system design when drivers are not ready, our approach
is more suitable for testing purpose. Table 4 presents the testing
results for the two virtual prototypes as indicated in column 1.
Column 2 presents the methods used for test case generation,
where Com denotes the command-based approach proposed in [5]
and the notation “+” denotes the union of test case sets generated
by different methods. Column 3 gives the overall testing time
including both test case generation time and test execution time.
Note that the test case generation time for Com is 0. The last three
columns report the line coverage, function coverage and branch
coverage for different test case sets, respectively.

From Table 4, we can observe that M1 spends much less test-
ing time than Com. This is because Com executes more than one
million device requests for each design, while M1 only generates
and executes 112 device requests for e1000 and 83 device requests
for eepro100, though the majority of testing efforts involving M1
and M2 are spent on test case generation. However, from eepro100
we can observe that M1 outperforms Com for better coverage
in all listed categories. Even for e1000, M1 can achieve better
function coverage than Com. Therefore, if the testing time is a
major concern of validation under the time-to-market pressure, M1
could be a reasonable choice. Since M2 generates more test cases
than M1 to cover various complicated mutation combinations
(see Table 3), it can achieve better coverage results than M1. By
comparing all the results of M2, M1+M2 and M1+M2+Com, we
can infer that M2 achieves the highest coverage. In other words,
M2 can explore more potential inconsistent scenarios than M1
and Com. Note that the two FDMs only consider a limited number
of interface registers. If more registers are investigated in FDM
modeling, our approach (M1 and M2) can obtain better coverage
results than the ones presented in Table 4.

4.2 Performance Analysis of Conformance Checking

Although M2 needs longer overall testing time than Com assuming
that the commands are all collected in advance, it does not indicate
that the conformance checking time of M2 is longer as well.
When collecting execution traces of device implementations, each
test case may involve at most 4 device requests. As an example
for e1000 FDM, since there are 12700 test cases generated for
conformance checking, the conformance checking will deal with
12700× 4 = 50800 device requests at most. However, when
adopting Com for conformance checking, the implementation
traces collected from commands may be extremely long [5]. For
example, the command scp for transferring a large file may consist
of thousands of or millions of events depending on the file size.
For the Com method presented in Table 4, the test cases of both
NIC designs consists of more than one million events.

Figure 6 compares the conformance checking time for e1000
NIC and eepro100 NIC based on the virtual/silicon device traces
collected using different testing approaches, respectively. It can be
observed that our approaches (i.e., M1, M2, M1+M2) outperform
Com by several orders of magnitude in terms of conformance
checking time. As an example of eepro100 NIC, the conformance
checking time using Com is 99.95 hours, while our M1 + M2

Authorized licensed use limited to: East China Normal University. Downloaded on April 23,2020 at 00:26:54 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2988906, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. Y, ZZZZ 11

approach just needs 0.78 hours. The reason of this significant
improvement is because our approach can generate a succinct set
of shorter and well-targeted test cases, while the implementation
traces generated by Com contains a large set of random but
redundant device requests.

(a) Intel e1000 NIC (b) Intel eepro100 NIC

Fig. 6. Comparison of conformance checking time w/ different methods

To show the sufficiency of our conformance checking ap-
proach, Table 5 compares our approach with Com [5] in terms
of mutant coverage (i.e., mutant killing ratio) and line coverage
of FDMs. In this table, we investigated both traces collected from
virtual/silicon devices for the two NIC designs. Based on both
results of Table 5 and Figure 6, we can find that our approach
can achieve better mutant and line coverages than Com with much
fewer conformance checking efforts. This is mainly because the
test case generation used in our approach is well-directed by the
mutations.

TABLE 5
Mutant and Line Coverages of FDMs

Mutation Mutant Coverage / Line Coverage (%)
Methods e1000-VP e1000-SD eepro100-VP eepro100-SD
Com [5] 39.13/63.40 41.74/58.49 64.46/76.59 63.64/83.33

M1 96.52/97.74 93.04/90.94 66.94/84.92 67.77/84.92
M2 96.52/98.49 94.78/92.83 66.94/84.52 67.77/84.92

M1+M2 96.52/98.49 94.78/92.83 66.94/84.92 67.77/84.92

4.3 Identified Inconsistencies
To show the effectiveness of our approach in detecting inconsisten-
cies, we stimulated both virtual and silicon devices of the two NIC
designs using the test cases generated by M1 and M2, respectively.
We identified inconsistencies between FDMs and virtual/silicon
devices by symbolically executing the instrumented FDMs with
the collected traces. Table 6 presents the identified inconsistency
results, where the notation M1/M2/Com denotes the number of
inconsistencies identified by M1, M2 and Com, respectively. From
this table, we can find that all the three methods can identify the
same number of distinct inconsistencies. We further checked the
inconsistency records, and found that the sets of inconsistencies
identified by the three methods are the same. It means that
with much less conformance checking efforts (see Figure 6) our
approach can identify the same inconsistencies as Com [5].

Our approach assumes that the FDM is the golden reference
model for device specification, i.e., the FDM covers all allowed
behaviors of the device and any inconsistency with the FDM is
a violation of the device specification. So the insufficiency in the
modeling of FDM is not within our consideration. Towards this
end, our conformance checking will not cause false positives, i.e.,
that an allowed device behavior is classified as not allowed. On the
other hand, our conformance checking may have false negatives,

TABLE 6
Inconsistencies Identified from Virtual/Silicon Devices

Type Description e1000 Bug # eepro100 Bug #
SD VP SD VP

E1 Update reserved SD registers 3/3/3 0/0/0 0/0/0 0/0/0
E2 Update reserved VP registers 0/0/0 1/1/1 0/0/0 0/0/0
E3 Generate unnecessary interrupts 0/0/0 1/1/1 0/0/0 0/0/0
E4 Fail to update necessary registers 0/0/0 1/1/1 0/0/0 1/1/1
E5 Write incorrect values to registers 0/0/0 3/3/3 0/0/0 0/0/0

i.e., that not all inconsistencies with the FDM are detected. This
is because our approach is testing based by nature; therefore, does
not entail complete coverage of all device behaviors.

Table 7 presents an inconsistency example for e1000 that is
caused by a device request that tries to write the register MDIC
at address 0x20 with a value 0x1420000. Our framework can
detect the inconsistency where the register ICR at address 0xC0 in
virtual device has a value of 0x80000200, while the ICR register
in the FDM specification has a value of 0x0. According to the
specification, if the 29th bit1 of MDIC is set to 1, it will cause
an interrupt indicated by the 9th bit of ICR. Moreover, the highest
bit of ICR should have a value of 0, since it is a reserved bit
in the specification. When the input for MDIC is 0x14200000,
its 29th bit equals 0. In this case, no interrupt will be invoked.
However, we can find that in the virtual device the 9th bit of
ICR equals 1. Therefore, based on this inconsistency our approach
can find an error from the virtual device. Table 7 only shows the
scenario with a specific write value. In fact, there exist a large
number of errors of the same type as the one shown in Table 7.
When adopting the Com [5] method, 1859224 device requests
were generated, and 0.17% of them can be use to detect errors of
this type. However, among all the 25512 device requests generated
by our M1+M2 method, 8.47% of them can detect such kind of
errors. We can find that our approach has a higher chance to trigger
the inconsistencies between specifications and implementations.
This is mainly because our test cases are more targeted under
the guidance of MKCs. It is important to note that, although the
generated device requests by our approach M1+M2 are far fewer
than the ones generated by Com, our approach can detect same
types of inconsistencies as Com as shown in Table 6.

TABLE 7
An Example of Register Value Inconsistency

Request Write MDIC (addr=0x20) with value: 0x14200000

Inconsistent Info.
Value in Value in

Virtual Device Specification
ICR (addr=0xC0) 0x80000200 0x00000000

5 CONCLUSIONS AND FUTURE WORK

This paper presented a mutation-driven conformance checking
framework that enables the effective exploration of inconsistencies
between device specifications and implementations. Based on our
proposed mutation operators and cooperative symbolic execution
method, our framework can automatically generate effective test
cases to check various error-prone functional scenarios for the
implementations (i.e., virtual/silicon devices). By symbolically
executing virtual/silicon device traces triggered by the test cases

1. The lowest bit of the address is the 0th bit.

Authorized licensed use limited to: East China Normal University. Downloaded on April 23,2020 at 00:26:54 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2988906, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. Y, ZZZZ 12

generated from the specifications instrumented with weak MKCs,
our approach can report the validation adequacy information as
well as the bugs caused by inconsistent implementations. Exper-
imental results using two industrial network adapters show that
our approach can not only identify real bugs and inconsistencies
in both virtual devices excerpted from QEMU and their silicon
counterparts, but also generate a succinct set of tests that achieves
better coverage than state-of-the-art methods.

Since mutation operators play an important role in the effec-
tiveness and efficiency of mutation testing, in the future we plan to
investigate more new mutation operators to enhance the capability
of our approach in detecting more inconsistencies between FDMs
and virtual/silicon devices. Moreover, to improve the overall
conformance checking performance, how to reduce the complexity
of symbolic execution-based test case generation and how to
optimize mutation reduction strategies [43] while satisfying the
checking sufficiency are also interesting topics that are worthy of
further study.

ACKNOWLEDGMENTS

This work received financial support in part from National
Key Research and Development Program of China (Grant #:
2018YFB2101300), Natural Science Foundation of China (Grant
#: 61872147), and National Science Foundation (Grant #:
1908571). Mingsong Chen is the corresponding author.

REFERENCES

[1] O. Bringmann, W. Ecker, A. Gerstlauer, A. Goyal, D. Mueller-
Gritschneder, P. Sasidharan and S. Singh, “The next generation of virtual
prototyping: ultra-fast yet accurate simulation of HW/SW systems,” in
Proceedings of Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2015, pp. 1698–1707.

[2] M. M. Swift, M. Annamalai, B. N. Bershad and H. M. Levy, “Recovering
device drivers,” in Proceedings of USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2004, pp. 1–16.

[3] P. Mishra, R. Morad, A. Ziv and S. Ray, “Post-silicon validation in the
SoC era: A tutorial introduction,” IET Computers & Digital Techniques,
vol. 34, no. 3, pp. 68–92, 2017.

[4] SystemRDL 1.0 Standard, http://www.accellera.org/downloads/standards
/systemrdl.

[5] H. Gu, M. Chen, T. Wei, L. Lei and F. Xie, “Specification-driven
automated conformance checking for virtual prototype and post-silicon
designs,” in Proceedings of Design Automation Conference (DAC), 2018,
pp. 93:1–93:6.

[6] L. Zhang, T. Xie, L. Zhang, N. Tillmann, J. Halleux and H. Mei,
“Test generation via Dynamic Symbolic Execution for mutation testing”,
in Proceedings of International Conference on Software Maintenance
(ICSM), 2010, pp. 1–10.

[7] F. Bellard, “QEMU, a fast and portable dynamic translator,” in
Proceedings of USENIX Annual Technical Conference (ATC), 2005, pp.
41–46.

[8] M. Chen, X. Qin, H. Koo and P. Mishra, “System-Level Validation: High-
Level Modeling and Directed Test Generation Techniques,” Springer,
2013.

[9] J. Li, F. Xie, T. Ball, V. Levin, C. McGarvey, “Formalizing hard-
ware/software interface specifications,” in Proceedings of International
Conference on Automated Software Engineering (ASE), 2011, pp. 143–
152.

[10] N. Bombieri, F. Fummi, G. Pravadelli and J. Marques-Silva, “Towards
equivalence checking between TLM and RTL models,” in Proceedings of
International Conference on Formal Methods and Models for Co-Design
(MEMOCODE), 2007, pp. 113–122.

[11] M. Chen and P. Mishra, “Assertion-based functional consistency check-
ing between TLM and RTL models,” in Proceedings of International
Conference on VLSI Design, 2013, pp. 320–325.

[12] P. Herber, M. Pockrandt, and S. Glesner, “Automated conformance
evaluation of SystemC designs using timed automata,” in Proceedings of
IEEE European Test Symposium (ETS), 2010, pp. 188–193.

[13] P. Godefroid, M. Y. Levin and D. A. Molnar, “SAGE: whitebox fuzzing
for security testing,” Communications of the ACM, vol. 55, no. 3, pp.
40–44, 2012.

[14] V. Chipounov, V. Kuznetsov and G. Candea, “S2E: a platform for in-vivo
multi-path analysis of software systems,” in Proceedings of International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2011, pp. 265–278.

[15] C. Cadar, D. Dunbar and D. R. Engler, “KLEE: Unassisted and automatic
generation of high-coverage tests for complex systems programs,” in
Proceedings of USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2008, pp. 209–224.

[16] K. Sen, D. Marinov and G. Agha, “CUTE: a concolic unit testing engine
for C,” in Proceedings of Joint Meeting on Foundations of Software
Engineering (ESEC/FSE), 2005, pp. 263–272.

[17] B. Chen, C. Havlicek, Z. Yang, K. Cong, R. Kannavara and F. Xie,
“CRETE: A versatile binary-level concolic testing framework,” in
Proceedings of International Conference on Fundamental Approaches
to Software Engineering (FASE), 2018, pp. 281–298.

[18] S. Guo, M. Wu, and C. Wang, “Symbolic execution of programmable
logic controller code,” in Proceedings of Joint Meeting on Foundations
of Software Engineering (ESEC/FSE), 2017, pp. 326–336.

[19] A. Offutt, G. Rothermel and C. Zapf, “An experimental evaluation
of selective mutation,” in Proceedings of International Conference on
Software Engineering (ICSE), 1993, pp. 100–107.

[20] M. Papadakis, D. Shin, S. Yoo and D. Bae, “Are mutation scores
correlated with real fault detection? A large scale empirical study on
the relationship between mutants and real faults,” in Proceedings of
International Conference on Software Engineering (ICSE), 2018, pp.
537–548.

[21] M. Papadakis, M. Kintis, J. Zhang, Y. Jia, Y. L. Traon and M. Harman,
“Mutation Testing Advances: An Analysis and Survey,” Advances in
Computers, vol. 112, pp. 275–378, 2019.

[22] M. Papadakis and N. Malevris, “Automatic Mutation Test Case Genera-
tion via Dynamic Symbolic Execution,” in Proceedings of International
Symposium on Software Reliability Engineering (ISSRE), 2010, pp. 121–
130.

[23] M. Papadakis and N. Malevris, “Automatically performing weak muta-
tion with the aid of symbolic execution, concolic testing and search-based
testing,” Software Quality Journal, vol. 19 no. 4, pp. 691–723, 2011.

[24] M. J. Renzelmann, A. Kadav and M. M. Swift, “SymDrive: Testing
drivers without devices,” in Proceedings of USENIX Symposium on
Operating Systems Design and Implementation (OSDI), 2012, pp. 279–
292.

[25] T. Yu, “An observable and controllable testing framework for modern
systems,” in Proceedings of International Conference on Software
Maintenance (ICSE), 2013, pp. 1377–1380.

[26] L. G. Murillo, R. L. Buecs, R. Leupers, and G. Ascheid, “MPSoC
Software Debugging on Virtual Platforms via Execution Control with
Event Graphs,” ACM Transactions on Embedded Computing Systems
(TECS), vol. 16, no. 1, 7, 2016.

[27] T. Yu, W. Srisa-an and G. Rothermel, “SimTester: a controllable and
observable testing framework for embedded systems,” in Proceedings of
ACM SIGPLAN/SIGOPS conference on Virtual Execution Environments
(VEE), 2012, pp. 51–62.

[28] T. Yu, W. Srisa-an and G. Rothermel, “An automated framework to
support testing for process-level race conditions,” Software Testing,
Verification & Reliability, vol. 27. no. 4-5, pp. 1-26, 2017.

[29] Y. Wang, L. Wang, T. Yu, J. Zhao and X. Li, “Automatic detection and
validation of race conditions in interrupt-driven embedded software,”
in Proceedings of International Symposium on Software Testing and
Analysis (ISSTA), 2017, pp. 113–124.

[30] T. Yu, X. Qu and M. B. Cohen, “VDTest: an automated framework
to support testing for virtual devices,” in Proceedings of International
Conference on Software Maintenance (ICSM), 2016, pp. 583–594.

[31] L. Lei, F. Xie, and K. Cong, “Post-silicon conformance checking with
virtual prototypes,” in Proceedings of Design Automation Conference
(DAC), 2013, pp. 29:1–29:6.

[32] K. Cong, F. Xie and L. Lei, “Symbolic Execution of Virtual Devices,”
in Proceedings of International Conference on Quality Software (QSIC),
2013, pp. 1–10.

[33] K. Cong, F. Xie and L. Lei, “Automatic concolic test generation
with virtual prototypes for post-silicon validation,” in Proceedings of
International Conference on Computer-Aided Design (ICCAD), 2013,
pp.303–310.

[34] A. Offutt, A. Lee, G. Rothermel, R. Untch, and C. Zapf, “An Experimen-
tal Determination of Sufficient Mutant Operators,” ACM Transactions on
Software Engineering and Methodology, vol. 5, no. 2, 118, 1996.

Authorized licensed use limited to: East China Normal University. Downloaded on April 23,2020 at 00:26:54 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2988906, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. Y, ZZZZ 13

[35] R. DeMillo and A. Offutt, “Constraint-based automatic test data gener-
ation,” IEEE Transactions on Software Engineering, vol. 17, no. 9, pp.
900–910, 1991.

[36] W. Howden, “Weak Mutation Testing and Completeness of Test Sets,”
IEEE Transactions on Software Engineering, vol. 8, no. 4, pp. 371–379,
1982.

[37] “Milu”, https://github.com/yuejia/Milu.
[38] “PCI/PCI-X Family of Gigabit Ethernet Controllers Software Devel-

oper’s Manual”, https://www.intel.com/content/dam/doc/manual/pci-pci-
x-family-gbe-controllers-software-dev-manual.pdf.

[39] “Intel 8255x 10/100 Mbps Ethernet Controller Family Software Devel-
oper Manual”, https://www.intel.com/content/dam/doc/manual/8255x-
10-100-mbps-ethernet-controller-software-dev-manual.pdf.

[40] “e1000: eliminate infinite loops on out-of-bounds transfer start,” https://
lists.gnu.org/archive/html/qemu-devel/2016-01/msg03454.html.

[41] “e1000: Avoid infinite loop in processing transmit descriptor
(CVE-2015-6815),” https://lists.gnu.org/archive/html/qemu-devel/2015-
09/msg03983.html.

[42] R. H. Untch, A. J. Offutt and M. J. Harrold, “Mutation analysis
using mutant schemata,” in Proceedings of International Symposium on
Software Testing and Analysis (ISSTA), 1993, pp. 139–148

[43] R. Gopinath, I. Ahmed, M. A. Alipour, C. Jensen and A. Groce, “Mu-
tation Reduction Strategies Considered Harmful,” IEEE Transactions on
Reliability, vol. 66, no. 3, pp. 854–874, 2017.

[44] P. Ammann, M. E. Delamaro and J. Offutt, “Establishing Theoretical
Minimal Sets of Mutants,” in IEEE International Conference on Software
Testing, Verification, and Validation (ICST), 2014, pp. 21–30.

[45] H. Agrawal, R. A. DeMillo, B. Hathaway, W. Hsu, W. Hsu, E.W. Krauser,
R.J. Martin, A. P. Mathur, E. Spafford, “Design of Mutant Operators for
the C Programming Language,” Techreport, Purdue University, 1989.

Haifeng Gu received the BE degree from the
Department of Computer Science and Tech-
nology, Sichuan Normal University, Chengdu,
China, in 2013. He is currently working toward
the PhD degree in the Department of Embed-
ded Software and System, East China Normal
University, Shanghai, China. His research inter-
ests include the area of hardware/software co-
validation, symbolic execution, statistical model
checking, and software testing.

Jianning Zhang received the BE degree from
the Software Engineering Institute, East China
Normal University, in 2018. He is currently work-
ing toward the PhD degree in the Department
of Embedded Software and System, East China
Normal University, Shanghai, China. His re-
search interests include the area of computer
architecture, design automation of embedded
systems, and software engineering.

Mingsong Chen (M’08–SM’17) received the
B.S. and M.E. degrees from Department of
Computer Science and Technology, Nanjing
University, Nanjing, China, in 2003 and 2006
respectively, and the Ph.D. degree in Com-
puter Engineering from the University of Florida,
Gainesville, in 2010. He is currently a Professor
with the Software Engineering Institute at East
China Normal University. His research interests
are in the area of cloud computing, design au-
tomation of cyber-physical systems, parallel and

distributed systems, and formal verification techniques. He is an As-
sociate Editor of IET Computers & Digital Techniques, and Journal of
Circuits, Systems and Computers.

Tongquan Wei (S’06-M’11) received his Ph.D.
degree in Electrical Engineering from Michigan
Technological University in 2009. He is currently
an Associate Professor in the School of Com-
puter Science and Technology at the East China
Normal University. His research interests are
in the areas of green and reliable embedded
computing, cyber-physical systems, parallel and
distributed systems, and cloud computing. He
serves as a Regional Editor for Journal of Cir-
cuits, Systems, and Computers since 2012. He

also served as Guest Editors for several special sections of IEEE TII and
ACM TECS.

Li Lei received the Ph.D. degree in Computer
Science from Portland State University in 2015.
He is currently a Research Scientist at Security
and Privacy Research, Intel Labs. His research
interests are primarily in the areas of computer
security, system design and validation, and soft-
ware engineering. He is currently focusing on
building secure and reliable computer systems
with Intel hardware supports as well as semi-
formal methods.

Fei Xie received the Ph.D. degree in Computer
Science from the University of Texas at Austin in
2004. He is currently a professor in the Depart-
ment of Computer Science, Portland State Uni-
versity. His research interests are primarily in the
areas of embedded systems, software engineer-
ing, and formal methods. He is particularly in-
terested in development of formal method based
techniques and tools for building safe, secure,
and reliable software and embedded systems.

Authorized licensed use limited to: East China Normal University. Downloaded on April 23,2020 at 00:26:54 UTC from IEEE Xplore. Restrictions apply.

