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Abstract
The power conversion efficiency (PCE) of polymer solar cells (PSCs) can obviously be improved by
plasmon resonance effects of noblemetal nanoparticles. However, incorporating noblemetal such as
Ag andAunanoparticles (NPs) can usually accelerate the deterioration of PSCs due to the diffusion of
noblemetal atoms, whichwould limit the potential application of plasmonic PSCs. PSCswith
ferrocenedicarboxylic acid (FDA)modifiedAl-doped ZnO (AZO) layer compared to pure AZO layer
can synchronously increase PCEs and ultraviolet (UV) andmoisture stabilities. PSCswith AgNPs
dopedAl-doped ZnO (AZO:Ag) increased to 10.20%of PCE from9.08%PCEof the reference PSCs
with pure AZO layer, but show inferior stability. Furthermore, PSCswith FDAmodifiedAZO:Ag layer
obtained 10.0%of PCEs and showed superiorUVdurability andmoisture stability. PSCswith FDA
modifiedAZO:Ag layer respectivelymaintain the original PCE values of 50% and 53% exposingUV
light for 13 h and aging for 9months at RH10%,which are obviously higher than 36%and 34%of the
original PCEs of PSCswithAZO:Ag layer. The results indicate that FDAmodification is an effective
strategy to solve the quick deterioration of plasmonic PSCswithout evidently sacrificing PCEs.

1. Introduction

In the past decades, polymer solar cells have been intensively studied due to their low-cost, flexibility, and ease
for large areamanufacturing onflexible substrates [1, 2]. In order to enhance the performance of PSCs,many
approaches have been developed including fabricating the low gap polymer [3, 4], designing non-fullerene
acceptors [5, 6], optimizing the film nanoscalemorphology [7, 8], functionalmodification layer [9, 10] and
introducing solvent additives [11, 12]. Recently, great achievements have beenmade for PSCs in past two years,
with the PCEof bulk-heterojunction over 15% [13], which are gradually approaching to PCE of commerical
application.However, further improving efficiency and stability of PSCs are still twomain aims to realize the
industrial application.

Metal nanostructures have been extensively incorporated into PSCs to boost the performance because of
plasmon-optical effects [14, 15]. In general, the plasmonic resonances of nanomaterials are sorted as surface
plasmonic resonance (SPR) of grating structures and localized surface plasmonic resonance (LSPR) ofNPs [16].
LSPR is defined that the collective electron charge oscillation inmetal NPs and discrete nanostructures is excited
by light. LSPR effects are related to the size, shape, composition and the dielectric properties of their
surroundings [15]. LSPR effects can effectively enhance light absorption of photo-active layer by incorporating
metal NPs into hole transport layer (HTL), photo-active layer and electron transport layer (ETL), respectively
[17–19]. Furthermore,metal NPs doped into the carrier transport layer can usually reduce the serial resistance
and inhibit carrier recombination, and thus improve extraction and carrier transport abilities [20]. However,
plasmonic PSCs incorporatedwith Ag or AuNPs can accelerate the performance deterioration due to the
diffusion of Ag andAu atoms and thewriggle and accumulation ofmetal NPs [21, 22]. AgAl alloyNPs
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incorporated plasmonic PSCs can obviously enhance the stability of cells, because the formedAlOx at the surface
of AgAlNPs can suppress the diffusion of AgNPs and accumulation of AgAl nanostructures [20]. However,
metal alloyNPs usually needmore complicated fabrication condition, whichwould limit the flexibility of
application. The pure Ag andAuNPs are easily synthesized using chemicalmethod and can flexibly incorporate
into different function layer of PSCs. Although plasmon-enhanced PSCs incorporating pure noblemetalsNPs
havemassively been reported, yet their stability has hardly been revealed [17, 18]. Therefore, investigating and
improving the stability of plasmon-enhanced PSCs based on pure Ag andAuNPs is an important and challenge
work to realize the industrial application of plasmonic PSCs.

Recently, Ferrocene derivatives has been concerned due to its superior reversibility, rapid reaction, chemical
stability [23–25]. Ferrocenecarboxylic acid, which contained ferrocene group intomolecular or supra-
molecular structures is extensively used asmolecular sensor and change transfer catalyzer [26, 27]. It can be
applied in coordination chemistry because of its outstanding performance such as superior redox activity, high
thermal stability and facilitated enzymatic activity [28, 29]. FDAwas firstly introduced intoNiOx as aHTL
interfacialmodified layer of perovskite solar cells, which improved the contact characteristics and reduced
defects of theNiOx layer [30]. Furthermore, perovskite solar cells with FDAmodifiedNiOx layer present
superiorUV stability and a hysteresis-free effect, indicating that the ferrocene derivatives have potential
application to improveUVdurability and PCEs of PSCs due to theirmany commonproperties between
perovskite solar cells and polymer solar cells.

In this work, FDA andAgNPswere together integrated into AZO electron transport layer to commonly
improve PCEs and stability of PSCs. The stability of PSCswith FDA-modifiedAZO:Ag layer was significantly
increased compared to cells withAZO:Ag layer, suggesting that FDAmodification is an effectivemethod to
enhance the stability of plasmonic PSCs.

2. Experimental section

The indium tin oxide (ITO) deposited on glass substrates with sheet resistance of 10Ω/,werewashed in
sequencewith detergent, deionizedwater, acetone and isopropyl alcohol by using ultrasonic wave cleaning each
cleaning progress for 20 min, then blow driedwith nitrogen gas and immersed in ultraviolet ozone for 20 min.
The electron transfer layers withAZO, AZO:Ag, FDAmodifiedAZOand FDAmodifiedAZO:Agwere
fabricated, respectively. According to the published literature [31], 4 mmol of Zinc acetate
(Zn(CH3CO2)2·2H2O) and 0.02 mmol of aluminumnitrate (Al(NO3)3·9H2O)weremixed together in 10 ml
of ethanol and stirred for 4 h at 60 °C.AZO:Ag solutionwere prepared as follow: (1)firstly,mixed 0.1 mmol of
AgNO3, 25 ml of ethylene glycol and 0.5 g of PVP-10 togetherwith stirred for 1 h at 120 °C. (2)Then, themixed
solutionwas centrifuged several times and the sediments were dispersed into ethanol to obtain the silver colloid.
(3)The optimized AZO:Ag solutionwas obtained by adding Ag colloid (0.13 mmol ml−1) into sol-gel AZO
solution (0.4 mmol ml−1)with themolar ratio of 1:6, which is corresponding to themass ratio of 0.36 wt%. The
AZOwith andwithout AgNPs solutions were spin-coated onto ITOfilmswith 4000 rpmand put in drying oven
at 150 °C for 30 min to form 20 nmAZOandAZO:Ag thinfilms, respectively. Then FDA solutionwas spin-
coated ontoAZOandAZO:Ag layer with 3000 rpm to form amodified layer. Themolecular structure of FDA is
shown infigure 1(a). FDApowders (purchased fromSinopharmChemical Reagent), were dissolved in
chlorobenzenewith a concentration of 0.1 mgml−1, then stirred at room temperature for 24 h. Figures 1(b) and
(c) display themolecular structures of PTB7-Th (purchased from1-Material INC) and PC71BM (purchased
fromSolenne BV). PTB7-Th (5 mg) and PC71BM (7.5 mg)with a 1:1.5 weight ratio were added into 1 ml
chlorobenzene/1, 8-diiodooctane (97:3, v/v) solvent and stirred at room temperature for 24 h. The PTB7-Th:
PC71BMblended solutionwas deposited ontoAZO surface at 1000 rpm for 13 s in nitrogen-filled glove box to
form the active layer with 80 nm thickness. ThenMoO3 of 7 nm thickness andAgAlfilmwith 100 nmwere
deposited by thermal evaporation, respectively. A typical structure of PSCswith
Glass/ITO/AZO:Ag/FDA/PTB7-Th:PC71BM/MoO3/AgAl is shown in figure 1(d). The aperture area with a
mask is 0.09 cm2.

The surfacemorphologies of samples were investigated byfield-emission scanning electronmicroscopy
(SEM)with amodel ofHitachi S-4800. The current density-voltage (J–V ) characteristics of cells weremeasured
with a SourceMeter (Keithley 2440) together using aNewport solar simulator (AM1.5 G illumination of
100 mW cm−2) calibratedwith a standard silicon reference cell. The incident-photon-to-current conversion
efficiencies (IPCEs) of cells weremeasuredwith aNewportOptical PowerMeter 2936-Rover. The dark current
density-voltage characteristics of cells weremeasured using aAutolab PGSTAT302 N electrochemical
workstation. The absorption spectra of samples were recorded by aHitachi U-3900UV/vis spectrophotometer.
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3. Results and discussion

The surfacemorphologies of AZO:Ag andAZOfilms are shown infigure 2(a). Thefilm of AZO is very uniform
without impurities. Thewhite island-shaped nanostructures observed inAZO:Ag composite surface are AgNPs
islands due to its high conductivity. The absorption spectra of PTB7-Th:PC71BMfilmswith different electron
transport layers are shown infigure 2(b). The enhanced absorption difference of photoactive layers withAZO:Ag
and FDAmodifiedAZO:Ag compared to pure AZOat thewavelength range of 400 nm to 650 nmare shown in
figure 2(c). Themaximumabsorption enhancement of photoactive layers withAZO:Ag and FDAmodified
AZO:Ag are respectively 8.5% and 5.7%due to LSPR effects. The relative weak absorption enhancement of
PTB7-Th:PC71BMfilm onto FDAmodifiedAZO:Ag compared toAZO:Ag, indicates that FDAmodifiedAg
NPs canweaken LSPR effect of AgNPs due to their coordinated interaction [18, 25]. Figures 2(d) and (e) show
absorption spectra of AZO:Ag and FDAmodifiedAZO:Agwith different annealing temperature, respectively.
The gradually enhanced absorption intensities with increasing annealing temperature indicate that the shape,
accumulation and surroundings changes of AgNPs [15, 18]. In themeantime, the lower absorption intensity of
FDAmodifiedAZO:Ag compared toAZO:Agfilms annealed at 150 °C in thewavelength range between 400 nm
to 700 nm, as shown infigure 2(f), is consistent with the observed result of the lower absorption enhancement of
PTB7-Th:PC71BMfilm onto FDAmodifiedAZO:Ag, which further support the presumption that FDA
modifiedAgNPs canweaken LSPR effect. The absorption integral values between 420 nmand 700 nmof FDA
modifiedAZO:Ag andAZO:Agfilmswith different temperature are shown in the inset offigure 2(f). Although
the integral values of FDAmodifiedAZO:Ag is obviously lower than that of AZO:Ag, the similar linear
increasing trend is observedwhen annealing temperature increase from60 °C to 150 °C.However, FDA
modifiedAZO:Ag film shows quickly increasing trendwith further increasing to 200 °C,which is possibly
attributed to the reduced coordinated interaction between FDA andAg atoms and improve the LSPR
effects [25].

To investigate the integrated effects of plasmonic AgNPs incorporation and FDAmodification in the AZO
layer on the performance of PSCs, four different cells were fabricated, respectively. The detailed parameters and
the structure of these cells are shown in table 1. Typical J–V curves of cells with four different ETLs are shown in
figure 3. PSCswith aAZO:Ag layer achieved a PCE=10.2%with a Jsc=19.5 mA cm−2,Voc=792 mV,
FF=66.1%,which is 13.4%higher than the PCE of the PSCs (9.08%)with pure AZOfilm. The higher Jsc and FF
contribute to the enhanced PCEs of PSCswithAZO:Ag layer, which is primarily ascribed to LSPR effects and

Figure 1.Molecular structures of (a) FDA, (b)PTB7-Th, and (c)PC71BM. (d) Structure diagramof PSCswith FDAmodified AZO:Ag.
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reduced resistance due toAgNPs incorporation [20]. PSCswith FDAmodifiedAZO layer achieve a
PCE=9.66%with a Jsc=19.0 mA cm−2,Voc=790 mV, FF=64.3%,which is 6.3%higher than the PCEof
PSCs (9.08%)with pure AZOfilm. The improved PCE of cells with FDAmodifiedAZO is primarily due to
excellent conductivity and outstanding contact properties [30]. PSCs based on FDAmodifiedAZO:Ag layer
exhibit anVoc of 792 mV, a Jsc of 19.3 mA cm−2, a FF of 65.4%with a corresponding PCEof 10.0%, which is

Figure 2. (a) SEM image of AZO:Agfilm onto glass/ITO substrate. The inset SEM image of AZO films. (b)UV–vis absorption spectra
of PTB7-Th:PC71BMphotoactivefilmswith different AZO, FDAmodified AZO, AZO:Ag and FDAmodifiedAZO:Ag layers on the
glass substrates. (c)Enhanced absorption difference of photoactive layers withAZO:Ag/AZO andFDAmodifiedAZO:Ag/AZO.
Absorption spectra of AZO:Ag (d) and FDAmodified AZO:Ag (e)films annealed for 30 min at different temperature. Inset:
magnifying spectra range from390 nm to 650 nm. (f)Absorption spectra of FDAmodifiedAZO:Ag andAZO:Ag films annealed at
150 °C. Inset: absorption spectra integral values of FDAmodifiedAZO:Ag andAZO:Agfilms under different temperature in the
wavelength range of 420 to 700 nm.

Table 1.Performance of PSCswith structure of ITO/ETLs/PTB7-Th:PC71BM/MoO3/AgAl. Rs is derived
from J–V curves at Voc.

ETLs Voc (mV) Jsc (mA cm−2) FF (%) PCE (%) Rs (Ω.cm
2)

AZO 785±3 17.7±0.3 64.5±1.3 8.97±0.20 42.3

AZO:Ag 793±3 19.1±0.4 66.1±1.1 9.99±0.30 31.2

AZOwith FDA 785±3 18.6±0.4 64.8±1.4 9.47±0.30 36.4

AZO:Agwith FDA 789±3 19.0±0.3 65.5±1.2 9.85±0.20 31.6
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obviously higher than PCEs of cells withAZOand FDAmodifiedAZO layers. The average PCEof PSCswith
FDAmodifiedAZO:Ag is 9.85%,which is slightly lower than average PCE (9.99%) of PSCswithAZO:Ag layer,
indicating that FDAmodifiedAgNPs can slightly limit the function of plasmon-enhanced PSCswithAZO:Ag
layer.

In order to investigate the reason of the improved Jsc of plasmonic PSCs, the IPCE curves of different PSCs
are shown infigure 4(a). The IPCE of PSCswith AZO:Ag layer is clearly higher than that of cells with pure AZO
layer in thewavelength region of 350–720 nm. The difference of IPCE values between PSCswithAZO:Ag and
pure AZO is shown infigure 4(b). The enhancedΔIPCE curve roughlymatches with the improved absorption
spectra profiles of PTB7-Th:PC71BMonto theAZO:Ag films, indicating that LSPR effects of AgNPs help to
enhance IPCE values. However, the average values of theΔAbs obtained from the absorption spectra is lower
than theΔIPCE, indicating the improved IPCE is partly attributed to the LSPR of AgNPs. The reduced serial
resistance and improved contact properties can also contribute to PCEs of plasmonic PSCs [22].

To further confirm the reasons of the Jsc enhancement, themaximum exciton generation rates (Gmax) and
photocurrent density (Jph) against the effective voltage (Veff)were determined [20]. Figure 5 presents plots of Jph
versusVeff for the devices with four different ETLs. Here, Jph can be defined as Jph=Jl–Jd, where Jl and Jd are the
current densities under light and in the dark, respectively.Veff is determined asVeff=V0–Va, whereV0 is the
voltagewhen Jph=0 andVa is the applied bias voltage. Jph was found to increase linearly withVeff in the low-Veff

range and tend to saturate gradually at highVeff. The saturated Jph at large reverse bias is the saturation current
density (Jsat), which is primarily limited by the total amount of absorbed incident photons [20]. Additionally,
Gmax can be calculated using the equation Jsat=qGmaxL, where q is the electronic charge and L is the thickness of
the active layer with 80 nm. Fromfigure 5,Gmax values of PSCs can be determined as 1.48×1028 m−3·s−1

(Jsat=189 Am−2), 1.72×1028 m−3·s−1 (Jsat=220 Am−2), 1.61×1028 m−3·s−1 (Jsat=206 Am−2) and
1.71×1028 m−3·s−1 (Jsat=219 Am−2) for cells with structure of AZO,AZO:Ag, FDA-modifiedAZOand
FDA-modifiedAZO:Ag layers, respectively. The noticeable enhancements in Jsat andGmax support optical
absorption enhancement of the photoactive layer for cells with FDAmodifiedAZOand FDAmodifiedAZO:Ag
[20]. The [P(E, T)] is defined as Jph/Jsat, whichmeans carrier transport and collection probabilities [22]. The

Figure 3. J–Vcharacteristics of PSCswith different ETLs under AM1.5 G illumination of 100 mW cm−2.

Figure 4. (a) IPCE curves of different type of PSCs. (b)Comparison of enhanced IPCEs of AZO:Ag cells withAZOcells with absorption
variations: (red line) IPCE enhancement factors,ΔIPCE/IPCEref (ΔIPCE=IPCEplasmonic−IPCEref), and (black line) absorption
enhancement factors,ΔAbs/Absref (ΔAbs=Absplasmonic−Absref).
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values of P(E, T) for PSCswithAZO, FDAmodifiedAZO,AZO:Ag and FDAmodifiedAZO:Ag are 87.2%,
90.3%, 93.4% and 93.6%, respectively. The P(E, T) of cells with FDAmodifiedAZO is obviously increased to
90.3% than that (87.2%) of cells with pure AZO, indicating that FDAmodification inAZO layer can improve
electron transport and collection probabilities. The P(E, T) value of cells with AZO:Ag is significantly higher
than that of cells with pure AZO, suggesting that dopingAgNPs into AZOhelps to improve electron transport
and collection probabilities. However, FDAmodifiedAZO:Ag compared toAZO:Ag layer cannot further
improve its P(E, T) value, indicating that the strategy of dopingAgNPs into AZO layer has enough role to
improve the contact property and increase the conductivity of electron transport layer, which is further
supported from the similar Rs values and fill factor (FF) of cells with FDAmodifiedAZO:Ag andAZO:Ag, as
shown in table 1 [32].

Plasmonic PSCswith pure Ag andAuNPs usually accelerate the deterioration, whichwould reduce the value
of the practical application [20, 21]. The photoactive layer and interfacial layers can accelerate degradation under
the exposure ofUV, oxygen andmoisture. The oxygen andmoisture effects can bewell overcome by the superior
encapsulation technology [33]. However, the degradation induced byUV irradiation cannot be completely
avoided even usingUV filtermethod. UV irradiation can induce numerous deep trap states, which leading to
charge recombination andmore quickly degrade the active layer [30]. Therefore, UVdurability is an special
important parameter for polymer solar cells [34]. AUV-induced acceleration degradation of devices of four
types of PSCswithout encapsulation under an air environment with a relative humidity of (RH) of 40%was used
to evaluateUV stability. Normalized PCEof PSCswith different ETLs underUV exposure with RH40%are
shown infigure 6(a). The cells with AZO:Ag and pure AZOwere quickly decreased and respectively reached 30%
and 36%of the original PCE values underUV exposure for 13 h, indicating that dopingAgNPs can promote the
deterioration of cells, which is consistent with the previous reported results [20, 21]. However, the PCEs of PSCs
with FDAmodifiedAZO and FDAmodifiedAZO:Ag keep similar UV stability and remain about 50%of the
initial PCE value, indicating that FDAmodification have obvious role to improveUV stability. The varied
absorption spectra of the photoactive layer withAZOand FDAmodifiedAZO substrates with different time of
UV exposure are shown infigure 6(b). There are three obvious peaks located in 470 nm, 645 nmand 710 nm,
respectively. The relative absorption of the peak in 710 nmwasmore quickly weaken and gradually blue-shifted
to 703 nmwith increasingUV exposure time, which is attributed to the broken of conjugated bonds of PTB7-Th
polymer reducing the electron delocalized state [35]. However, the degradation of the PTB7-Th polymer onto
FDAmodifiedAZO:Ag layer can be obviously suppressed, which further support that FDAhas function of
improvingUV stability of PSCs. Figure 6(c) shows PCEs of unencapsulated PSCswith different ETLs as a
function of aging time under RH10%condition. PSCswith FDAmodifiedAZO:Ag and FDAmodifiedAZO
show similar degradation trend andwere decreased to about 53%of the original PCEs ageing for 9months,
which are superior PCEs of PSCswithAZO:Ag (35%) and pure AZO layer (47%). These results indicate that
FDAmodification have dual functions to improvemoisture andUV resistance of plasmonic PSCs.

AgNPs doped into carrier transport layers have been demonstrated to obviously improve the PCEs of PSCs
[21, 36, 37], the diffusion of Ag atoms can usually speed up the deterioration of cells duringUV exposure,
because the carrier transport layer would be producemore vacancies under the interaction ofUV light [34].
Ferrocene derivatives can always interact with noblemetal such as Au andAgNPs, which can stabilize noble
metal NPs [25, 38]. Although the deepmechanism of improving the stability of plasmonic PSCswould be
further investigated in future, FDAmodification is an effective strategy to solve the stability of plasmonic PSCs.

Figure 5. Jph–Veff characteristics of PSCswith different electron transport layers.
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4. Conclusions

The PCEof PSCswith FDA-modifiedAZO reached 9.66%,which is clearly higher than that of the cells with pure
AZO (9.08%), suggesting that FDAmodified electron transport layer is an efficient way to promote PCEs of
PSCs. Cells with FDAmodifiedAZO:Ag can further increase to PCE of 10.0%because of AgNPs LSPR effects.
PSCswith FDAmodifiedAZO:Ag andAZO layers show similarUV andmoisture stability, which are obviously
superior that of PSCswithAZO:Ag andAZO layer, indicating that FDAmodification is an effective strategy to
solve the stability of plasmonic PSCs. Considering the commonproperties between perovskite solar cells and
polymer solar cells, the similar strategywould be increased the stability of plasmonic perovskite solar cells.
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