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Abstract

The power conversion efficiency (PCE) of polymer solar cells (PSCs) can obviously be improved by
plasmon resonance effects of noble metal nanoparticles. However, incorporating noble metal such as
Agand Au nanoparticles (NPs) can usually accelerate the deterioration of PSCs due to the diffusion of
noble metal atoms, which would limit the potential application of plasmonic PSCs. PSCs with
ferrocenedicarboxylic acid (FDA) modified Al-doped ZnO (AZO) layer compared to pure AZO layer
can synchronously increase PCEs and ultraviolet (UV) and moisture stabilities. PSCs with Ag NPs
doped Al-doped ZnO (AZO:Ag) increased to 10.20% of PCE from 9.08% PCE of the reference PSCs
with pure AZO layer, but show inferior stability. Furthermore, PSCs with FDA modified AZO:Ag layer
obtained 10.0% of PCEs and showed superior UV durability and moisture stability. PSCs with FDA
modified AZO:Ag layer respectively maintain the original PCE values of 50% and 53% exposing UV
light for 13 h and aging for 9 months at RH 10%, which are obviously higher than 36% and 34% of the
original PCEs of PSCs with AZO:Ag layer. The results indicate that FDA modification is an effective
strategy to solve the quick deterioration of plasmonic PSCs without evidently sacrificing PCEs.

1. Introduction

In the past decades, polymer solar cells have been intensively studied due to their low-cost, flexibility, and ease
for large area manufacturing on flexible substrates [ 1, 2]. In order to enhance the performance of PSCs, many
approaches have been developed including fabricating the low gap polymer [3, 4], designing non-fullerene
acceptors [5, 6], optimizing the film nanoscale morphology [7, 8], functional modification layer [9, 10] and
introducing solvent additives [11, 12]. Recently, great achievements have been made for PSCs in past two years,
with the PCE of bulk-heterojunction over 15% [13], which are gradually approaching to PCE of commerical
application. However, further improving efficiency and stability of PSCs are still two main aims to realize the
industrial application.

Metal nanostructures have been extensively incorporated into PSCs to boost the performance because of
plasmon-optical effects [14, 15]. In general, the plasmonic resonances of nanomaterials are sorted as surface
plasmonic resonance (SPR) of grating structures and localized surface plasmonic resonance (LSPR) of NPs [16].
LSPR s defined that the collective electron charge oscillation in metal NPs and discrete nanostructures is excited
by light. LSPR effects are related to the size, shape, composition and the dielectric properties of their
surroundings [15]. LSPR effects can effectively enhance light absorption of photo-active layer by incorporating
metal NPs into hole transport layer (HTL), photo-active layer and electron transport layer (ETL), respectively
[17-19]. Furthermore, metal NPs doped into the carrier transport layer can usually reduce the serial resistance
and inhibit carrier recombination, and thus improve extraction and carrier transport abilities [20]. However,
plasmonic PSCs incorporated with Ag or Au NPs can accelerate the performance deterioration due to the
diffusion of Agand Au atoms and the wriggle and accumulation of metal NPs [21, 22]. AgAl alloy NPs
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incorporated plasmonic PSCs can obviously enhance the stability of cells, because the formed AlO, at the surface
of AgAINPs can suppress the diffusion of Ag NPs and accumulation of AgAl nanostructures [20]. However,
metal alloy NPs usually need more complicated fabrication condition, which would limit the flexibility of
application. The pure Agand Au NPs are easily synthesized using chemical method and can flexibly incorporate
into different function layer of PSCs. Although plasmon-enhanced PSCs incorporating pure noble metals NPs
have massively been reported, yet their stability has hardly been revealed [17, 18]. Therefore, investigating and
improving the stability of plasmon-enhanced PSCs based on pure Ag and Au NPs is an important and challenge
work to realize the industrial application of plasmonic PSCs.

Recently, Ferrocene derivatives has been concerned due to its superior reversibility, rapid reaction, chemical
stability [23-25]. Ferrocenecarboxylic acid, which contained ferrocene group into molecular or supra-
molecular structures is extensively used as molecular sensor and change transfer catalyzer [26, 27]. It can be
applied in coordination chemistry because of its outstanding performance such as superior redox activity, high
thermal stability and facilitated enzymatic activity [28, 29]. FDA was firstly introduced into NiO, asa HTL
interfacial modified layer of perovskite solar cells, which improved the contact characteristics and reduced
defects of the NiO, layer [30]. Furthermore, perovskite solar cells with FDA modified NiO, layer present
superior UV stability and a hysteresis-free effect, indicating that the ferrocene derivatives have potential
application to improve UV durability and PCEs of PSCs due to their many common properties between
perovskite solar cells and polymer solar cells.

In this work, FDA and Ag NPs were together integrated into AZO electron transport layer to commonly
improve PCEs and stability of PSCs. The stability of PSCs with FDA-modified AZO:Ag layer was significantly
increased compared to cells with AZO:Ag layer, suggesting that FDA modification is an effective method to
enhance the stability of plasmonic PSCs.

2. Experimental section

The indium tin oxide (ITO) deposited on glass substrates with sheet resistance of 10 2/C] were washed in
sequence with detergent, deionized water, acetone and isopropyl alcohol by using ultrasonic wave cleaning each
cleaning progress for 20 min, then blow dried with nitrogen gas and immersed in ultraviolet ozone for 20 min.
The electron transfer layers with AZO, AZO:Ag, FDA modified AZO and FDA modified AZO:Ag were
fabricated, respectively. According to the published literature [31], 4 mmol of Zinc acetate

(Zn(CH;COy); - 2H,0) and 0.02 mmol of aluminum nitrate (AI(NOs;); - 9H,0) were mixed together in 10 ml
of ethanol and stirred for 4 h at 60 °C. AZO:Ag solution were prepared as follow: (1) firstly, mixed 0.1 mmol of
AgNO3, 25 ml of ethylene glycol and 0.5 g of PVP-10 together with stirred for 1 hat 120 °C. (2) Then, the mixed
solution was centrifuged several times and the sediments were dispersed into ethanol to obtain the silver colloid.
(3) The optimized AZO:Ag solution was obtained by adding Ag colloid (0.13 mmol ml~") into sol-gel AZO
solution (0.4 mmol ml~") with the molar ratio of 1:6, which is corresponding to the mass ratio of 0.36 wt%. The
AZO with and without Ag NPs solutions were spin-coated onto ITO films with 4000 rpm and put in drying oven
at 150 °C for 30 min to form 20 nm AZO and AZO:Ag thin films, respectively. Then FDA solution was spin-
coated onto AZO and AZO:Ag layer with 3000 rpm to form a modified layer. The molecular structure of FDA is
shown in figure 1(a). FDA powders (purchased from Sinopharm Chemical Reagent), were dissolved in
chlorobenzene with a concentration of 0.1 mg ml~', then stirred at room temperature for 24 h. Figures 1(b) and
(c) display the molecular structures of PTB7-Th (purchased from 1-Material INC) and PC71BM (purchased
from Solenne BV). PTB7-Th (5 mg) and PC71BM (7.5 mg) with a 1:1.5 weight ratio were added into 1 ml
chlorobenzene/1, 8-diiodooctane (97:3, v/v) solvent and stirred at room temperature for 24 h. The PTB7-Th:
PC71BM blended solution was deposited onto AZO surface at 1000 rpm for 13 s in nitrogen-filled glove box to
form the active layer with 80 nm thickness. Then MoO; of 7 nm thickness and AgAl film with 100 nm were
deposited by thermal evaporation, respectively. A typical structure of PSCs with
Glass/ITO/AZO:Ag/FDA/PTB7-Th:PC71BM/Mo0O;/AgAl is shown in figure 1(d). The aperture area with a
maskis 0.09 cm”.

The surface morphologies of samples were investigated by field-emission scanning electron microscopy
(SEM) with a model of Hitachi S-4800. The current density-voltage (J-V') characteristics of cells were measured
with a SourceMeter (Keithley 2440) together using a Newport solar simulator (AM 1.5 G illumination of
100 mW cm ) calibrated with a standard silicon reference cell. The incident-photon-to-current conversion
efficiencies (IPCEs) of cells were measured with a Newport Optical Power Meter 2936-Rover. The dark current
density-voltage characteristics of cells were measured using a Autolab PGSTAT 302 N electrochemical
workstation. The absorption spectra of samples were recorded by a Hitachi U-3900 UV /vis spectrophotometer.
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Figure 1. Molecular structures of (a) FDA, (b) PTB7-Th, and (c) PC71BM. (d) Structure diagram of PSCs with FDA modified AZO:Ag.

3. Results and discussion

The surface morphologies of AZO:Ag and AZO films are shown in figure 2(a). The film of AZO is very uniform
without impurities. The white island-shaped nanostructures observed in AZO:Ag composite surface are Ag NPs
islands due to its high conductivity. The absorption spectra of PTB7-Th:PC71BM films with different electron
transport layers are shown in figure 2(b). The enhanced absorption difference of photoactive layers with AZO:Ag
and FDA modified AZO:Ag compared to pure AZO at the wavelength range of 400 nm to 650 nm are shown in
figure 2(c). The maximum absorption enhancement of photoactive layers with AZO:Ag and FDA modified
AZO:Agare respectively 8.5% and 5.7% due to LSPR effects. The relative weak absorption enhancement of
PTB7-Th:PC71BM film onto FDA modified AZO:Ag compared to AZO:Ag, indicates that FDA modified Ag
NPs can weaken LSPR effect of Ag NPs due to their coordinated interaction [18, 25]. Figures 2(d) and (e) show
absorption spectra of AZO:Ag and FDA modified AZO:Ag with different annealing temperature, respectively.
The gradually enhanced absorption intensities with increasing annealing temperature indicate that the shape,
accumulation and surroundings changes of Ag NPs [15, 18]. In the meantime, the lower absorption intensity of
FDA modified AZO:Ag compared to AZO:Ag films annealed at 150 °C in the wavelength range between 400 nm
to 700 nm, as shown in figure 2(f), is consistent with the observed result of the lower absorption enhancement of
PTB7-Th:PC71BM film onto FDA modified AZO:Ag, which further support the presumption that FDA
modified Ag NPs can weaken LSPR effect. The absorption integral values between 420 nm and 700 nm of FDA
modified AZO:Ag and AZO:Ag films with different temperature are shown in the inset of figure 2(f). Although
the integral values of FDA modified AZO:Ag is obviously lower than that of AZO:Ag, the similar linear
increasing trend is observed when annealing temperature increase from 60 °C to 150 °C. However, FDA
modified AZO:Ag film shows quickly increasing trend with further increasing to 200 °C, which is possibly
attributed to the reduced coordinated interaction between FDA and Ag atoms and improve the LSPR

effects [25].

To investigate the integrated effects of plasmonic Ag NPs incorporation and FDA modification in the AZO
layer on the performance of PSCs, four different cells were fabricated, respectively. The detailed parameters and
the structure of these cells are shown in table 1. Typical J-V curves of cells with four different ETLs are shown in
figure 3. PSCs with a AZO:Ag layer achieved a PCE = 10.2% withaJ, = 19.5mA cm™ 2, V. = 792 mV,

FF = 66.1%, which is 13.4% higher than the PCE of the PSCs (9.08%) with pure AZO film. The higher J,. and FF
contribute to the enhanced PCEs of PSCs with AZO:Ag layer, which is primarily ascribed to LSPR effects and
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Figure 2. (a) SEM image of AZO:Ag film onto glass/ITO substrate. The inset SEM image of AZO films. (b) UV-vis absorption spectra
of PTB7-Th:PC71BM photoactive films with different AZO, FDA modified AZO, AZO:Ag and FDA modified AZO:Ag layers on the
glass substrates. (¢) Enhanced absorption difference of photoactive layers with AZO:Ag/AZO and FDA modified AZO:Ag/AZO.
Absorption spectra of AZO:Ag (d) and FDA modified AZO:Ag (e) films annealed for 30 min at different temperature. Inset:
magnifying spectra range from 390 nm to 650 nm. (f) Absorption spectra of FDA modified AZO:Ag and AZO:Ag films annealed at
150 °C. Inset: absorption spectra integral values of FDA modified AZO:Ag and AZO:Ag films under different temperature in the
wavelength range 0f 420 to 700 nm.

Table 1. Performance of PSCs with structure of ITO/ETLs/PTB7-Th:PC71BM/Mo005/AgAl. R, is derived
from J-V curves at V..

ETLs Voe (mV) Joc (mA cm™?) EF (%) PCE (%) R, (Q.cm?)
AZO 785 + 3 17.7 £ 0.3 64.5+ 1.3 8.97 £ 0.20 423
AZO:Ag 793 £ 3 19.1 £ 0.4 66.1 £ 1.1 9.99 + 0.30 31.2
AZO with FDA 785 + 3 18.6 + 0.4 64.8 + 1.4 9.47 + 0.30 36.4
AZO:Agwith FDA 789 + 3 19.0 + 0.3 65.5 + 1.2 9.85 + 0.20 31.6

reduced resistance due to Ag NPs incorporation [20]. PSCs with FDA modified AZO layer achieve a

PCE = 9.66% witha J,. = 19.0mA cm™ 2, V. = 790 mV, FF = 64.3%, which is 6.3% higher than the PCE of
PSCs (9.08%) with pure AZO film. The improved PCE of cells with FDA modified AZO is primarily due to
excellent conductivity and outstanding contact properties [30]. PSCs based on FDA modified AZO:Ag layer
exhibit an V,.0f792 mV,aJ,.0f19.3 mA cm 2, aFF of 65.4% with a corresponding PCE of 10.0%, which is
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Figure 4. (a) IPCE curves of different type of PSCs. (b) Comparison of enhanced IPCEs of AZO:Ag cells with AZO cells with absorption
variations: (red line) IPCE enhancement factors, AIPCE/IPCE, ¢ (AIPCE = IPCE,jasmonic — IPCE,cf), and (black line) absorption
enhancement factors, AAbs/Abs,er (AAbs = Absyjasmonic — Absef).

obviously higher than PCEs of cells with AZO and FDA modified AZO layers. The average PCE of PSCs with
FDA modified AZO:Ag is 9.85%, which is slightly lower than average PCE (9.99%) of PSCs with AZO:Ag layer,
indicating that FDA modified Ag NPs can slightly limit the function of plasmon-enhanced PSCs with AZO:Ag
layer.

In order to investigate the reason of the improved J. of plasmonic PSCs, the IPCE curves of different PSCs
are shown in figure 4(a). The IPCE of PSCs with AZO:Aglayer is clearly higher than that of cells with pure AZO
layer in the wavelength region of 350—720 nm. The difference of IPCE values between PSCs with AZO:Agand
pure AZO is shown in figure 4(b). The enhanced AIPCE curve roughly matches with the improved absorption
spectra profiles of PTB7-Th:PC,;BM onto the AZO:Ag films, indicating that LSPR effects of Ag NPs help to
enhance IPCE values. However, the average values of the AAbs obtained from the absorption spectra is lower
than the ATIPCE, indicating the improved IPCE is partly attributed to the LSPR of Ag NPs. The reduced serial
resistance and improved contact properties can also contribute to PCEs of plasmonic PSCs [22].

To further confirm the reasons of the J;. enhancement, the maximum exciton generation rates (Gy,,) and
photocurrent density (J,,,) against the effective voltage (V¢) were determined [20]. Figure 5 presents plots of J,,
versus Vg for the devices with four different ETLs. Here, J,,, can be defined as J,1, = Ji—J4, where Jyand J4 are the
current densities under light and in the dark, respectively. V.gis determined as Vg = V-V, where Vj is the
voltage when J,, = 0and V,, is the applied bias voltage. J,1, was found to increase linearly with Vg in the low- Vg
range and tend to saturate gradually at high V. The saturated J,,;, at large reverse bias is the saturation current
density (Ji,.), which is primarily limited by the total amount of absorbed incident photons [20]. Additionally,
Guax can be calculated using the equation J,; = qGaL, where g is the electronic charge and L is the thickness of
the active layer with 80 nm. From figure 5, Gy, values of PSCs can be determined as 1.48 X 10m™> . s7!
UJur = 189AM 2),1.72 x 10¥m™> - s ' (Joe = 220 Am 2),1.61 x 102¥m™> - s (Jo,u = 206 Am %) and
1.71 x 102 m ™ - 57" (Joue = 219 A m™?) for cells with structure of AZO, AZO:Ag, FDA-modified AZO and
FDA-modified AZO:Ag layers, respectively. The noticeable enhancements in /g, and G, support optical
absorption enhancement of the photoactive layer for cells with FDA modified AZO and FDA modified AZO:Ag
[20]. The [P(E, T)] is defined as J,,/Jsar» which means carrier transport and collection probabilities [22]. The
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values of P(E, T) for PSCs with AZO, FDA modified AZO, AZO:Ag and FDA modified AZO:Agare 87.2%,
90.3%, 93.4% and 93.6%, respectively. The P(E, T) of cells with FDA modified AZO is obviously increased to
90.3% than that (87.2%) of cells with pure AZO, indicating that FDA modification in AZO layer can improve
electron transport and collection probabilities. The P(E, T) value of cells with AZO:Ag is significantly higher
than that of cells with pure AZO, suggesting that doping Ag NPs into AZO helps to improve electron transport
and collection probabilities. However, FDA modified AZO:Ag compared to AZO:Ag layer cannot further
improve its P(E, T) value, indicating that the strategy of doping Ag NPs into AZO layer has enough role to
improve the contact property and increase the conductivity of electron transport layer, which is further
supported from the similar Rs values and fill factor (FF) of cells with FDA modified AZO:Ag and AZO:Ag, as
shownin table 1 [32].

Plasmonic PSCs with pure Ag and Au NPs usually accelerate the deterioration, which would reduce the value
of the practical application [20, 21]. The photoactive layer and interfacial layers can accelerate degradation under
the exposure of UV, oxygen and moisture. The oxygen and moisture effects can be well overcome by the superior
encapsulation technology [33]. However, the degradation induced by UV irradiation cannot be completely
avoided even using UV filter method. UV irradiation can induce numerous deep trap states, which leading to
charge recombination and more quickly degrade the active layer [30]. Therefore, UV durability is an special
important parameter for polymer solar cells [34]. A UV-induced acceleration degradation of devices of four
types of PSCs without encapsulation under an air environment with a relative humidity of (RH) of 40% was used
to evaluate UV stability. Normalized PCE of PSCs with different ETLs under UV exposure with RH 40% are
shown in figure 6(a). The cells with AZO:Ag and pure AZO were quickly decreased and respectively reached 30%
and 36% of the original PCE values under UV exposure for 13 h, indicating that doping Ag NPs can promote the
deterioration of cells, which is consistent with the previous reported results [20, 21]. However, the PCEs of PSCs
with FDA modified AZO and FDA modified AZO:Ag keep similar UV stability and remain about 50% of the
initial PCE value, indicating that FDA modification have obvious role to improve UV stability. The varied
absorption spectra of the photoactive layer with AZO and FDA modified AZO substrates with different time of
UV exposure are shown in figure 6(b). There are three obvious peaks located in 470 nm, 645 nm and 710 nm,
respectively. The relative absorption of the peak in 710 nm was more quickly weaken and gradually blue-shifted
to 703 nm with increasing UV exposure time, which is attributed to the broken of conjugated bonds of PTB7-Th
polymer reducing the electron delocalized state [35]. However, the degradation of the PTB7-Th polymer onto
FDA modified AZO:Ag layer can be obviously suppressed, which further support that FDA has function of
improving UV stability of PSCs. Figure 6(c) shows PCEs of unencapsulated PSCs with different ETLs as a
function of aging time under RH 10% condition. PSCs with FDA modified AZO:Ag and FDA modified AZO
show similar degradation trend and were decreased to about 53% of the original PCEs ageing for 9 months,
which are superior PCEs of PSCs with AZO:Ag (35%) and pure AZO layer (47%). These results indicate that
FDA modification have dual functions to improve moisture and UV resistance of plasmonic PSCs.

Ag NPs doped into carrier transport layers have been demonstrated to obviously improve the PCEs of PSCs
[21, 36, 37], the diffusion of Agatoms can usually speed up the deterioration of cells during UV exposure,
because the carrier transport layer would be produce more vacancies under the interaction of UV light [34].
Ferrocene derivatives can always interact with noble metal such as Au and Ag NPs, which can stabilize noble
metal NPs [25, 38]. Although the deep mechanism of improving the stability of plasmonic PSCs would be
further investigated in future, FDA modification is an effective strategy to solve the stability of plasmonic PSCs.
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Figure 6. (a) Normalized PCE of PSCs with different ETLs under ultraviolet exposure with RH 40% in air. (b) The varied absorption
spectra of PTB7-Th:PC;;BM active layer onto Glass/ITO/AZO, Glass/ITO/AZO with FDA under UV exposure time ranging from 0
to 20 min (c) Normalized PCEs of inverted PSCs with different ETLs as a function of aging time with RH 10%.

4. Conclusions

The PCE of PSCs with FDA-modified AZO reached 9.66%, which is clearly higher than that of the cells with pure
AZO (9.08%), suggesting that FDA modified electron transport layer is an efficient way to promote PCEs of
PSCs. Cells with FDA modified AZO:Ag can further increase to PCE of 10.0% because of Ag NPs LSPR effects.
PSCs with FDA modified AZO:Agand AZO layers show similar UV and moisture stability, which are obviously
superior that of PSCs with AZO:Agand AZO layer, indicating that FDA modification is an effective strategy to
solve the stability of plasmonic PSCs. Considering the common properties between perovskite solar cells and
polymer solar cells, the similar strategy would be increased the stability of plasmonic perovskite solar cells.
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