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S1. STRONG-FIELD APPROXIMATION

The subcycle conservation law between angular momentum and energy arises from the infinite-order continuous dynamical
symmetry present in the interaction between atoms and circularly or elliptically polarized light pulses. The subcycle conservation
law can be characterized using a correlated spectrum of angular momentum and energy (SAME) of photoelectrons produced
from strong-field ionization. The SAME in the asymptotic region can be obtained directly from the solutions of the time-
dependent Schrödinger equation (TDSE) and the SAME at the tunnel exit can be extracted using the backpropagation method
[1–4]. However, these methods fall short of a clear physical picture. To gain deeper insights into the fundamental light-matter
interactions, we employ the strong-field approximation (SFA) [5, 6], which is capable of providing closed analytical expressions
for the variables of interest. To this end, the transition amplitude between an atomic bound state and the continuum state with
photoelectron asymptotic momentum p is written as

Mp =−i
∫ +∞

−∞

⟨ψp|r ·F (t)|ψi⟩dt, (S1)

where r is the position operator, F (t) is the electric field of the laser pulse, ψi(r, t) = ψ0(r)eiIpt is the bound-state wave function
unperturbed by the laser field with Ip the ionization potential, and

ψp(r, t) = exp
{

i [p+A(t)] ·r− i
2

∫ t [
p+A(t ′)

]2 dt ′
}

(S2)

is the Volkov state (in the length gauge), where A(t) is the vector potential of the laser pulse. With a further saddle-point
approximation [7, 8], tunneling exit characteristics can be extracted within the SFA framework. Here, the saddle-point equation
(SPE) reads

1
2
[p+A(ts)]2 + Ip = 0, (S3)

where ts = tr + iti is a complex solution to the SPE, with tr the tunneling exit time and ti related to the ionization probability.
In the scenario of strong-field ionization, where the Keldysh parameter γ ≈ ωti is small, we may expand the vector potential

A(ts) in terms of small ti up to second order [3, 9–13]

A(tr + iti) =A(tr)− itiF (tr)+
1
2

t2
i Ḟ (tr)+O(t3

i ), (S4)

where Ḟ (tr) =
dF (tr)

dtr
. Insertion of the expansion into the SPE [Eq. (S3)] results in

k⊥(tr) ·F (tr) = 0, (S5)

ti =

√
k2
⊥(tr)+2Ip

F2(tr)−k⊥(tr) · Ḟ (tr)
, (S6)

where k⊥(tr) = p⊥+A(tr) is the transverse momentum at the tunnel exit with the ⊥ subscript denoting variables in the polar-
ization plane. The tunneling exit position can be obtained by

r0 = Re
∫ tr

ts
[p+A(t)]dt = Im

∫ ti

0
A(tr + it)dt =−F

2
k2
⊥+2Ip

F2 −k⊥ · Ḟ
, (S7)
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and the angular momentum at the tunnel exit is subsequently obtained by

L= r0 ×k⊥ =
Fk⊥

2
k2
⊥+2Ip

F2 −k⊥ · Ḟ
ez =

k⊥(k2
⊥+2Ip)

2(F + ω̃k⊥)
ez, (S8)

where a slowly varying envelope approximation has been applied in the last step and

ω̃ =
εω

ε2 cos2(ωt)+ sin2(ωt)
. (S9)

The energy at the tunnel exit is

E =
1
2

k2
⊥+r0 ·F (t) =

1
2

k2
⊥− F2

2
k2
⊥+2Ip

F2 −k⊥ · Ḟ
=

ω̃k3
⊥−2IpF

2(F + ω̃k⊥)
= ω̃

k⊥(k2
⊥+2Ip)

2(F + ω̃k⊥)
− Ip = ω̃Lz − Ip. (S10)

Clearly, for the elliptical polarization, the subcycle conservation law is associated with different angular frequencies throughout
the optical cycle, ranging from εω to ω/ε . For circular polarization where ε = 1, we have ω̃ = ω , the above relation reduces to

E = ωLz − Ip, (S11)

where the conservation law has a fixed angular frequency of ω , in coincident to the photon energy.
To assess the property of the conservation law at the subcycle level, we show the SAME at the tunnel exit at different time

instances, see Figs. S1 and S2 corresponding to circular and elliptical light pulses, respectively. In the case of circular pulse as
shown in Fig. S1, the SAME consistently adheres to the same circular conservation law [Eq. (S11)] at all time instances, even in
the presence of pulse envelope. This indicates the applicability of the conservation law at the subcycle level. Interestingly, the
conservation law possess an angular frequency that is identical to the normal photons. For elliptical pulse as shown in Fig. S2,
the SAME follows straight lines as well, albeit with varying slope at different time instances. Close scrutiny reveals that the
slope varies between εω and ω/ε , in agreement with the above theoretical formulations. When the electric field peaks, the
slope is εω; while when the electric field reaches minima, the slope becomes ω/ε . This points to the fact that the conservation
law have different angular frequencies at different time instances within an optical cycle. Since tunneling ionization is a highly
nonlinear process, the ionization rate is exponentially related to the electric field strength, the time-integrated SAME thus has
roughly a slope of εω .
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FIG. S1. (a) Total electric field magnitude F of a circularly polarized laser pulse. Refer to the main text for other laser parameters. (b-d)
Correlation spectrum of angular momentum and energy (SAME) of photoelectrons at the tunnel exit ionized at different time instances. In
panels (b-d), the left subfigure shows the distribution of energy, and the lower subfigure shows the distribution of angular momentum. The red
dashed line denotes E = ωLz − Ip. Note that the color maps are normalized across different time instances.
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FIG. S2. (a) Total electric field magnitude F of an elliptically polarized laser pulse with ellipticity ε = 0.7. Refer to the main text for other
laser parameters. (b-d) Correlation spectrum of angular momentum and energy (SAME) of photoelectrons at the tunnel exit ionized at different
time instances. In panels (b-d), the left subfigure shows the distribution of energy, and the lower subfigure shows the distribution of angular
momentum. The orange dashed line denotes E = εωLz − Ip and the green dash-dotted line denotes E = (ω/ε)Lz − Ip. Note that the color
maps are normalized across different time instances.

S2. RELATIONSHIP BETWEEN ANGULAR FREQUENCY IN THE SUBCYCLE CONSERVATION LAW AND EFFECTIVE
ANGULAR FREQUENCY OF THE LASER FIELD

The existence of the subcycle conservation law is reflected through the SAME of photoelectrons, revealing a conservation
law governing the relationship between the angular momentum Lz and energy E. Under elliptically polarized laser pulses, the
conservation law is expressed as E = ω̃Lz − Ip, where ω̃ is the angular frequency of the conservation law. Remarkably, this
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eff = /
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FIG. S3. Definition of effective angular frequency ωeff. The blue line is the rotating electric field. The effective angular frequency at the field
peak is εω (marked by the orange dot), and the effective angular frequency at the field valley is ω/ε (marked by the green dot).
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angular frequency can be shown to correspond to the effective angular frequency ωeff of the laser field:

ωeff =
dϕ

dt
=

d arctan(Fy/Fx)

dt
=

rotation︷ ︸︸ ︷
d arctan

− squeezing/stretching︷︸︸︷
ε / tan(ωt)


dt︸︷︷︸

time translation

=
εω

ε2cos2 (ωt)+ sin2 (ωt)
= ω̃. (S12)

Note that the pulse envelope cancels out here, and so this observation applies to short pulses as well. Obviously, for elliptical
pulses, a squeezing or stretching operation is necessary before applying rotation, which is manifested as the ellipticity of the
pulse in Eq. (S12), or the ratio of the magnitude of the electric field in the y to that in the x direction, as shown also in Fig. S3.

The infinite-order dynamical symmetry is related to the joint time translation and rotation operation, where the rotation angle
δϕ within a small time interval δ t follows δϕ = ωeffδ t. The effective angular frequency thereby bridges these two operations.
It applies to both circularly and elliptically polarized laser pulses with envelopes.

Under circularly polarized laser pulses, the effective angular frequency ωeff corresponds to the angular frequency ω of the laser
field, essentially equating the angular frequency in the conservation law with that of the photon. Under elliptically polarized
laser pulses, the effective angular frequency ωeff exhibits a time dependence, which in turn results in a time-varying angular
frequency associated with the conservation law. Through the definition of effective angular frequency Eq. (S12), we can obtain
ωeff(t) at different moments t within the elliptically polarized laser pulse. The results are shown in Fig. S3. When the laser field
is at its peak (marked by the orange dot), the effective angular frequency is smaller than the angular frequency of the laser field,
the electric field of the elliptically polarized laser pulses is stretched relative to the circularly polarized laser pulses. When the
electric field is at its valley (marked by the green dot), the effective angular frequency is greater than the angular frequency of the
laser field, the electric field of the elliptically polarized laser pulses is squeezed relative to the circularly polarized laser pulses.

Although the subcycle conservation law applies to elliptically polarized light pulses, there is a limited range of its applicability.
In particular, the conservation law fails for near linear polarization. On the one hand, strong backscattering for near linear
polarization would kill the generally isotropic photoelectron momentum distribution. On the other hand, in the limiting case
of linear polarization, the rotation operation loses its meaning, where the angular frequency is a binary value of either 0 or ∞.
Therefore, the applicability of the subcycle conservation law is limited to pulse with a sufficiently large ellipticity, say, ε > 0.3.

S3. PHASE RETRIEVAL AND SUBCYCLE CONSERVATION LAW IN THE ASYMPTOTIC REGION

To uncover the property of the subcycle conservation law in the asymptotic region, we need to construct the SAME from the
asymptotic photoelectron momentum distribution. While energy is easily obtained from the momentum distribution, the evalua-
tion of angular momentum is nontrivial since its information is encoded in the phase structure of the photoelectron momentum
distribution. To retrieve the phase information, one would naturally consider to design an approach which brings together two
exact replicas of the same original pattern where the phase information can be decoded from the interference pattern originating
from the two replicas. This is exactly what we do here in this study. We employ two time-delayed counter-rotating circularly
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FIG. S4. (a) Photoelectron momentum distribution resulting from the ionization of hydrogen atoms by the time-delayed counter-rotating
circularly polarized laser pulse after focal volume averaging. (b) Yield at different ATI orders corresponding to the black dotted line in panel
(a). (c) Phase g extracted from the vortex structure.
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FIG. S5. (a) Momentum and (b) phase distribution of electron wave packets ionized by a circularly polarized laser pulse obtained by direct
numerical evaluation of Eq. (S1). (c) Phase distribution extracted through the vortex structure. The distributions are shown in polar coordinate.

polarized light pulses to induce interferences in the photoelectron momentum distribution known as electron vortices [14–17],
with the total field defined by

A(t) = A0 cos4
(

ωt
2N

)(cos(ωt)
sin(ωt)

)
+A0 cos4

[
ω(t − τ)

2N

](
cos[ω(t − τ)]
−sin[ω(t − τ)]

)
, (S13)

where τ is the time delay between the two circular pulses.
Shown in Fig. S4(a) is the photoelectron momentum distribution obtained using SFA resulting from the ionization of hydrogen

atoms by the time-delayed counter-rotating circularly polarized pulse, where clear electron vortex structures are visible. Each
individual circular pulse has a wavelength of 400 nm and an optical cycle number N = 10. The peak-to-peak time delay between
the two pulses is τ = 11T . In addition, we have performed focal volume averaging, where a total of 15 different intensities are
calculated in the range of I = 2.0 ∼ 3.4×1013 W/cm2 and the results are summed with a weight given by (I0 +2I)

√
I0 − I/I5/2

[18, 19], where I0 = 3.4×1013 W/cm2 is the peak intensity.
To retrieve the phase information from the electron vortex structure, we write down the amplitude of ionization by one

individual circular pulse as Mp ∝ R(p)exp(ig(ϕ)), where R(p) is a real function of the electron momentum and g(ϕ) stands for
an angular phase distribution [20]. Thereby, the electron wave packet ionized by the two time-delayed counter-rotated circularly
polarized laser pulses can be approximated as

Ψ = R(p)exp(−iEpτ)exp(ig(ϕ))+R(p)exp(iIpτ)exp(−ig(ϕ)), (S14)

where Ep = p2/2. The vortex structure can then be expressed as

|Ψ|2 = 2R(p)
{

1+ cos [(Ep + Ip)τ −2g(ϕ)]
}
. (S15)

Evidently, the angular distribution exhibits cosine oscillations at specific energies, see Fig. S4(b). At oscillation valleys, the
phase g(ϕ) satisfies (Ep + Ip)τ − 2g(ϕ) = (2n + 1)π with n ∈ Z. Hence, the phase of the electronic wave packet can be
extracted from the minima of the oscillations. An additional fit to the phase g(ϕ) leads to an well-defined expression of g(ϕ), as
shown in Fig. S4(c). Repeating the procedure for all energies, we can construct the momentum-resolved phase distribution, as
shown in Fig. S5(c). In order to check the accuracy of the extracted phase, we directly calculate the momentum-resolved phase
distribution by numerically evaluating Eq. (S1), and the resulting distribution is depicted in Fig. S5(b). Clearly, the retrieved
phase distribution agrees well with direct numerical results, which means the present phase retrieval procedure is reliable. It is
worth noting that the extracted phase is only accurate near the ATI peaks, as shown in Fig. S5(a), marked by the black dotted
lines.

With the reliably retrieved phase distribution of the photoelectron momentum distribution, the angular momentum distribution
in the asymptotic region can be obtained by applying the angular momentum operator L̂z = −i ∂

∂ϕ
to the complex amplitude of

photoelectron wave packet in the momentum space. The SAME in the asymptotic region can be subsequently constructed, as
shown in Fig. 4(b) of the main text. Remarkably, the conservation law in the asymptotic region follows slightly differently from
that at the tunnel exit in the form of

E = ωLz − Ip −Up, (S16)
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with an additional ponderomotive term −Up.
In order to pinpoint the physical origin of the change in the conservation law from the tunnel exit to the asymptotic region,

we assume that the electron is ionized at time instant tr and then moves in the remaining laser field F (t), ignoring the Coulomb
interaction of the parent ion on the electron. The equation of motion is expressed as

r̈(t) =−F (t), (S17)

the velocity of the electron can be written as

k(t) = k0 −
∫ t

tr
F (t ′)dt ′ = k0 −A(tr)+A(t), (S18)

where k0 = k⊥(tr) is the initial velocity of the electron at the tunnel exit [Eq. (S5)], and the corresponding final velocity of the
electron is

k f = k0 −A(tr) = k⊥(tr)−A(tr). (S19)

The position of the electron is

r = r0 +
∫ t

tr
k(t ′)dt ′ = r0 +

∫ t

tr

[
k0 −A(tr)+A(t ′)

]
dt ′ = r0 +[k0 −A(tr)] (t − tr)−R(tr)+R(t), (S20)

where R(t) =
∫ t A(t ′)dt ′ is the quiver representation of the laser field and r0 is the initial position at the tunnel exit [Eq. (S7)].

The final position of the electron is thus

r f = r0 +[k⊥(tr)−A(tr)] (t f − tr)−R(tr). (S21)
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FIG. S6. (a) Photoelectron momentum distribution resulting from the ionization of hydrogen atoms by the time-delayed counter-rotating
circularly polarized laser pulse after focal volume averaging. (b-d) Correlated spectrum of angular momentum and energy at different emission
angles. The red dashed line denotes E = ωLz − Ip −Up.
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Therefore, the angular momentum of the electron at the end of the laser field is

L= r f ×k f =
{
r0 +[k⊥(tr)−A(tr)] (t f − tr)−R(tr)

}
× [k⊥(tr)−A(tr)] = [r0 −R(tr)]× [k⊥(tr)−A(tr)] . (S22)

For long circular pulses, we have

L=

(
−F

2
k2
⊥+2Ip

F2 −k⊥ · Ḟ
− F

ω2

)
× (k⊥−A) =

[
k2
⊥+2Ip

2(F0 +ωk⊥)
+

A0

ω

]
(k⊥+A0) êz. (S23)

The energy of the electron at the end of the laser field is

E =
1
2
(k⊥+A0)

2 =
1
2
(k⊥+A0)

2 +ωLz −ωLz = ωLz −
[

ω(k2
⊥+2Ip)

2(F0 +ωk⊥)
+A0

]
(k⊥+A0)+

1
2
(k⊥+A0)

2

= ωLz −
[

ω(k2
⊥+2Ip)

F0 +ωk⊥
+A0 − k⊥

]
(k⊥+A0)

2
= ωLz −

ω(A2
0 +2Ip)

F0 +ωk⊥

(k⊥+A0)

2
= ωLz − Ip −Up. (S24)

We proceed to investigate the property of the conservation law at the subcycle level, i.e., at different emission angles in the
asymptotic region, see Fig. S6. Evidently, the SAME adheres to the same conservation law at different emission angles, or at
different time instances within an optical cycle.

We stress that, unlike previous studies [20, 21], where ad hoc assumptions regarding the phase g(ϕ) are made, our phase
retrieval procedure is free from assumptions. Therefore, the present study provides unambiguous support for the existence of the
conservation law at the subcycle level, both at the tunnel exit and in the asymptotic region.

S4. INFLUENCE OF COULOMB POTENTIAL

Comparing Figs. 2(a1) and 2(b1) of the main text, we find that the SAME in Fig. 2(b1), obtained from SFA, adheres closely
to the conservation law [eq. (S11)], while that in Fig. 2(a1), obtained from backpropagation, has a slight downward offset and
curvature with respect to the conservation law. Both effects are due to the influence of the Coulomb potential of the parent ion.
To elucidate this point, we show in Fig. S7 a comparison of the SAME obtained from different methods, where Fig. S7(a) is
obtained from backpropagation of the full helium single-active-electron potential [22]

V (r) =−Zc +a1e−a2r +a3re−a4r +a5e−a6r

r
, (S25)

where Zc = 1.0, a1 = 1.231, a2 = 0.662, a3 = −1.325, a4 = 1.236, a5 = −0.231, a6 = 0.480; Fig. S7(b) is obtained from
backpropagation of a short-range potential of the form

V (r) =−e−100r + e−r2/2
√

r2 +a
, (S26)
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FIG. S7. Correlated spectrum of angular momentum and energy (SAME) of photoelectrons at the tunnel exit obtained from (a) backpropagation
of the helium potential, (b) backpropagation of the short-range potential, and (c) SFA.
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where the soft-core parameter a is tuned so that the ionization potential matches that of the helium atom; and Fig. S7(c) is
obtained from SFA which takes full account of the pulse envelope. Comparing Figs. S7(a) and S7(b), it is clear that the offset is
smaller for the short-range potential. Needless to say, the short-range potential still differs from a zero-range potential as in the
case of SFA. That is why the SAME in Fig. S7(b) still has a small offset, while that from SFA as in Fig. S7(c) has zero offset. In
addition, the SAME obtained from SFA in Fig. S7(c) fully accounts for the pulse envelope, so the curvature in Figs. S7(a) and
S7(b) also arises from the influence of the Coulomb potential.

S5. TRAJECTORY ANALYSIS
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FIG. S8. (a) The angular momentum and energy of a typical electron trajectory during continuum motion in the laser field. (b) A zoomin
of panel (a). (c) Evolution of the angular momentum ωLz and energy E of the electron trajectory until the end of the laser field. The red
dot and purple dot are the angular momentum and energy corresponding to the photoelectron at the tunnel exit and in the asymptotic region,
respectively. The difference between the red line and the purple line is that their intercepts are different, while their slopes are both ω .
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The conservation laws are different for at the tunnel exit and in the asymptotic region. For circular polarization, it is E =
ωLz − Ip at the tunnel exit, while it is E = ωLz − Ip −Up in the asymptotic region.

We employ a trajectory analysis to demonstrate how the relationship between the angular momentum and energy evolves after
tunneling. To this end, we pick a typical electron trajectory, which is launched from the center of the pulse with a vanishing
initial velocity, and monitor its angular momentum and energy during its continuum excursion in the absence of the Coulomb
potential of the parent ion until it reaches the detector in the asymptotic region.

Shown in Fig. S8(a) is the SAME of this typical electron trajectory while Fig. S8(b) is its zoomin at a local region, and
shown in Fig. S8(c) is the time evolution of ωLz and E after electron release until the end of the laser pulse. Not surprisingly,
the relationship between the angular momentum and energy satisfies E = ωLz − Ip at the tunnel exit while it satisfies E =
ωLz − Ip −Up in the asymptotic region. During its continuum excursion, interestingly, ωLz −E gradually changes from Ip to
Ip +Up, and the respective relationship between ωLz and E in the SAME stays essentially with a near-constant slope that is
still close to ω (photon exchange during excursion), and the relationship gradually changes until reaching the detector in the
asymptotic region.

S6. LEFT CIRCULAR POLARIZATION

For circular polarization, the main text has focused on right circular polarization with ε = +1. For left circular polarization
with ε =−1, the conservation law changes to

E =−ωLz − Ip (S27)

at the tunnel exit, as shown in Fig. S9. Therefore, a more universal expression for the conservation law under circular polarization
would be

E = sgn(ε)ωLz − Ip. (S28)

We note that the conservation law in the case of elliptical polarization

E = ω̃(t)Lz − Ip (S29)

is universal and applicable to both right and left elliptical polarizations, since the effective angular frequency

ω̃(t) =
εω

ε2 cos2(ωt)+ sin2(ωt)
(S30)

could be positive or negative, depending if the laser is right or left elliptically polarized. It also correctly reduces to Eq. (S28)
for both right and left circular polarizations.
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FIG. S9. Correlated spectrum of angular momentum and energy (SAME) at the tunnel exit for photoelectrons originating from ionization of
the helium atom exposed to left circularly polarized laser pulses at a wavelength of 800 nm and a peak intensity of 8.0×1014 W/cm2. Panel
(a) presents the results obtained from backpropagation and panel (b) depicts the results of SFA. The slope is denoted by k = −ω (red dashed
line).



S10

[1] H. Ni, U. Saalmann, and J.-M. Rost, Tunneling ionization time resolved by backpropagation, Phys. Rev. Lett. 117, 023002 (2016).
[2] H. Ni, U. Saalmann, and J.-M. Rost, Tunneling exit characteristics from classical backpropagation of an ionized electron wave packet,

Phys. Rev. A 97, 013426 (2018).
[3] H. Ni, N. Eicke, C. Ruiz, J. Cai, F. Oppermann, N. I. Shvetsov-Shilovski, and L.-W. Pi, Tunneling criteria and a nonadiabatic term for

strong-field ionization, Phys. Rev. A 98, 013411 (2018).
[4] C. Hofmann, A. Bray, W. Koch, H. Ni, and N. I. Shvetsov-Shilovski, Quantum battles in attoscience: tunnelling, Eur. Phys. J. D 75, 208

(2021).
[5] S. V. Popruzhenko, J. Phys. B 47, 204001 (2014).
[6] K. Amini, J. Biegert, F. Calegari, A. Chacón, M. F. Ciappina, A. Dauphin, D. K. Efimov, C. Figueira de Morisson Faria, K. Giergiel,

P. Gniewek, A. S. Landsman, M. Lesiuk, M. Mandrysz, A. S. Maxwell, R. Moszyński, L. Ortmann, J. Antonio Pérez-Hernández, A. Picón,
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