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Distinct role of electric field and vector potential in strong-field tunneling ionization
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Light can be described either by its field or potential, which are often interchangeable. We theoretically
investigate the distinct roles of the electric field and the vector potential of an ultrashort laser pulse in strong-field
tunneling ionization, based on their distinct central frequencies. Employing the conservation law between the
angular momentum and energy, we demonstrate that quantum tunneling dynamics is driven by the electric field,
while the subsequent classical motion in the continuum is governed by the vector potential. Our work casts new
light on the fundamental laser-matter interactions and offers a fresh perspective on the application of ultrashort
laser pulses in strong-field physics.

DOI: 10.1103/PhysRevA.111.033103

I. INTRODUCTION

An electromagnetic wave can be represented either by
its electric and magnetic fields or, alternatively, by scalar
and vector potentials. While the field and potential de-
scriptions are generally considered equivalent in classical
electromagnetism, the Aharonov-Bohm effect suggests that
the potential representation can be seen as being more funda-
mental. Recently, this interpretation has been challenged that
the Aharonov-Bohm effect can be explained without relying
on vector potentials [1–4]. Laser-matter interaction stands as a
unique ground where respective roles of the field and potential
can be studied. In particular, for a laser pulse propagating in
vacuum, the scalar potential vanishes, and within the dipole
approximation, the magnetic field can be ignored. In this
respect, the question reduces to whether laser-matter inter-
action is better described by the electric field or the vector
potential.

With the advent of ultrashort laser pulses, the study of
laser-matter interaction has progressed to a new realm. Bene-
fiting from their unique properties, such as high peak intensity
and high temporal precision, ultrashort laser pulses with only
a few oscillation periods hold tremendous potential for appli-
cations in strong-field physics. For instance, using ultrashort
laser pulses enables the ultrafast resolution of electron dy-
namics in atoms and molecules [5–7] and the extraction of
atomic and molecular structural information [8,9], as well as
the control of light-induced chemical reactions [10–13]. For
an ultrashort few-cycle pulse, the carrier-envelope phase is a
unique tunable parameter to control the pulse shape, thereby
steering electron dynamics in atoms and molecules [14,15].
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In addition to the carrier-envelope phase, the carrier fre-
quency of laser pulses is also an important characteristic
parameter. Unlike long laser pulses, ultrashort pulses exhibit
a significant difference in the carrier frequencies of their elec-
tric field and vector potential, which may influence quantum
excitation and ionization processes [16,17]. This property of
ultrashort pulses renders them an excellent platform for study-
ing the distinct roles of the electric field and vector potential
in light-matter interactions.

In this article, we focus on the role of electric field and
vector potential in strong-field tunneling ionization, a two-
stage process including an underbarrier quantum tunneling
and a subsequent classical continuum motion. Making use
of the conservation law between the angular momentum and
energy [18,19], we demonstrate that the characteristics of
photoelectrons at the tunnel exit are related to the carrier fre-
quency of the electric field, indicating that quantum tunneling
is governed by the electric field. Conversely, the dynamic in-
formation of photoelectrons in the asymptotic region is linked
to the carrier frequency of the vector potential, suggesting
that the classical continuum motion is ruled by the vector
potential. We note that our conclusions are independent of
the dimensionality of the model and the specific form of the
potential. For simplicity, we restrict our discussions to two
dimensions using a short-range potential.

This article is organized as follows. In Sec. II, we detail the
ultrashort laser pulse used in our study. In Sec. III, we depict
the two-step process of tunneling ionization. In Sec. IV, we
focus on the underbarrier tunneling process, where we show
that its dynamics is driven by the electric field. In Sec. V,
we move on to the subsequent continuum motion; we demon-
strate that it is governed by the vector potential. In Sec. VI, we
discuss the generality of our findings. In Sec. VII, we discuss
the physical origin of our findings. Conclusions are given in
Sec. VIII. Atomic units are used throughout unless specified
otherwise.
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FIG. 1. Sketch of the (a) x component and (b) y component of the vector potential (orange solid line) and electric field (green dashed line)
for the present circularly polarized laser pulse. (c) The frequency spectrum of the electric field and vector potential. The carrier frequency of
the vector potential is ωA = 0.04556 a.u., corresponding to a wavelength of 1000 nm, and that of the electric field is ωF = 5

4 ωA = 0.05695 a.u.,
corresponding to a wavelength of 800 nm.

II. ULTRASHORT LASER PULSE

To elucidate the findings, we first introduce ultrashort laser
pulses, where the vector potential can be expressed as the
product of the carrier wave and an envelope function. Under
the dipole approximation, the vector potential of an ultrashort
circularly polarized laser pulse can be defined in the x-y po-
larization plane as

A(t ) = A0 cos4

(
ωAt

4

)
[cos(ωAt )êx + sin(ωAt )êy], (1)

where A0 is the amplitude of the vector potential correspond-
ing to a laser intensity of 8×1014 W/cm2, ωA is the carrier
frequency of the vector potential corresponding to a wave-
length of 1000 nm, and the total pulse duration involves two
cycles. The Keldysh parameter is γ = 0.57, indicating ioniza-
tion in the tunneling regime. The corresponding electric field
F(t ) = −Ȧ(t ) is

F(t ) = F0 cos3

(
ωAt

4

)[
sin

(
5

4
ωAt

)
êx − cos

(
5

4
ωAt

)
êy

]

= F0 cos3

(
ωFt

5

)
[sin(ωFt )êx − cos(ωFt )êy], (2)

where F0 = A0ωA is the amplitude of the electric field and
ωF = 5

4ωA is the carrier frequency of the electric field cor-
responding to a wavelength of 800 nm.

We select this specific form for the ultrashort laser pulse for
two primary reasons. First, by defining the laser pulse through
the vector potential A(t ), we ensure that it vanishes at the
pulse conclusion. Second, this form allows the electric field
to be expressed as the product of an envelope function and a
monochromatic carrier wave, similar to the vector potential.
The benefits of this approach are clear: the carrier frequencies
associated with the electric field and the vector potential can
be clearly differentiated and maintain a specific relationship.
Under the modulation of the envelope function, the vector
potential completes two oscillations within the pulse duration,
whereas the electric field completes 2.5 oscillations.

Consequently, the central frequency of the electric field
is 5

4 times that of the vector potential, as illustrated in Fig. 1.
These distinctive properties will be manifested in measurable
physical quantities, thereby providing a foundation for
discerning the separate contributions of the electric field and
vector potential to tunneling ionization.

III. TWO-STEP TUNNELING IONIZATION

Tunneling ionization of atoms and molecules upon inter-
action with intense lasers is the basis of many strong-field
phenomena, which can be divided into two steps: the quantum
tunneling process of the electron under the potential barrier
and the subsequent classical motion of the electron in the
continuum, as sketched in Fig. 2. The information of these
two processes will be imprinted on the tunneling exit charac-
teristics and asymptotic photoelectron momentum distribution
(PMD), respectively.

FIG. 2. Schematic diagram of the tunneling ionization process.
It is divided into two steps. The first step is quantum tunneling, that
is, the laser field bends the Coulomb potential to form a potential
barrier and the electron moves under the potential barrier from the
saddle-point time ts to the ionization time tr , as shown by the green
arrow. The second step is the classical motion of the electron starting
from the ionization time tr , indicated by the orange arrow.
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In order to accurately obtain the PMD, we numerically
solve the time-dependent Schrödinger equation (TDSE)

i
∂

∂t
ψ (r, t ) =

{
1

2
[p̂ + A(t )]2 + V (r)

}
ψ (r, t ), (3)

where p̂ is the momentum operator. For the purpose of exclud-
ing the influence of the long-range Coulomb potential on the
asymptotic momentum, a short-range potential is used,

V (r) = −(e−100r + e−r2/2)/
√

r2 + a, (4)

where a = 0.01745 is the soft-core parameter tuned to match
the ionization potential of the helium atom. The TDSE simu-
lation is carried out on a two-dimensional grid with a grid step
of �x = 0.2 a.u. and 2048 grid points in each direction, and a
time step of �t = 0.02 a.u. The ground-state wave function
is obtained by the imaginary-time propagation method and
the evolution of the wave function in the laser field is car-
ried out using the split-operator Fourier method. An absorber
of the form 1/[1 + exp{(r − r0)/d}], where r0 = 189.8 and
d = 4 a.u., is placed around the center of the simulation box
to damp the outgoing wave packet in order to avoid reflections
from the grid border.

The asymptotic momentum distribution is obtained by
accumulatively projecting the absorbed wave function onto
the Volkov state at each time step [20,21]. In addition, we
employ the backpropagation method [7,22–26] to extract the
tunneling exit characteristics, which includes three steps: the
electron wave function is first evolved quantum mechanically
by solving the TDSE, then the quantum flux passing through
the virtual detectors [27–30] placed around the atom are
converted into classical trajectories, and finally the classical
trajectories are backpropagated along the time axis until a
tunneling criterion [24] is satisfied. This hybrid quantum-
classical approach has been widely used in various studies,
such as exploring the subcycle linear momentum transfer
[31], probing backscattering time [32], reconciling conflicts
in tunneling time delay [33], and investigating the tunneling
dynamics of atomic p orbitals [34–36], as a proven effective
method to obtain tunneling exit information.

IV. UNDERBARRIER QUANTUM TUNNELING

The correlated spectrum of angular momentum and energy
(SAME) [18] is a valuable tool for evaluating the properties
of photoelectrons, which is promising towards distinguishing
the contribution of the electric field and vector potential of
ultrashort laser pulses to tunneling ionization processes.

We begin by examining the properties of photoelectrons
at the tunnel exit. As depicted in Fig. 3(a), the SAME for
photoelectrons at the tunnel exit upon interaction with the ul-
trashort circularly polarized laser pulse is reconstructed using
backpropagation. Remarkably, the SAME exhibits a narrow
linear distribution, leading to the conservation law [18,19]

E = ωLz − Ip, (5)

with ω the slope of the SAME and Ip the ionization potential.
For the present ultrashort laser pulse, the SAME of the pho-
toelectron at the tunnel exit has a slope ω = ωF in Fig. 3(a).
This indicates that the characteristics of photoelectrons at the
tunnel exit are determined by the carrier frequency of the

FIG. 3. Correlated spectra of angular momentum and energy
(SAME) of photoelectrons at the tunnel exit under the interaction
with the ultrashort laser pulse obtained by (a) backpropagation and
(b) SPANE. The SAME obtained by the SPA method for infinitely
long circularly polarized laser pulses for (c) ω = ωF and (d) ω = ωA.
The orange solid lines denote E = ωALz − Ip and the green dashed
lines denote E = ωF Lz − Ip.

electric field. It should be noted that the SAME retrieved
from backpropagation exhibits a slight downward shift and
curvature with respect to Eq. (5) due to the attractive potential
of the parent ion [18].

In order to gain a deeper understanding of this behavior,
we employ the saddle-point approximate with nonadiabatic
expansion (SPANE) [7,24,37–40] within the framework of
strong-field approximation (SFA) [41,42] to obtain the SAME
for the ultrashort laser pulse, as shown in Fig. 3(b). Within this
framework, the relationship between the energy and angular
momentum of the photoelectron at the tunnel exit can be
derived analytically, giving

E = ωF Lz − Ip, (6)

where the frequency of the electric field ωF comes into play
instead of that of the vector potential ωA. Theoretical details
are given in Appendix B. This suggests that the quantum
tunneling dynamics is driven by the electric field, not the
vector potential.

For an infinitely long laser pulse, the frequencies of the
electric field and the vector potential are identical, which
we denote as ω. We employ the saddle-point approximation
(SPA) [43,44] to obtain the SAME under infinitely long laser
pulses with frequencies ω = ωF and ω = ωA, as shown in
Figs. 3(c) and 3(d), respectively. It is evident that, when the
frequency ω = ωF is applied in SPA, the SAME [Fig. 3(c)]
aligns with that obtained by backpropagation [Fig. 3(a)],
which further strengthens the notion that it is the electric field
that drives the quantum tunneling dynamics.

The transverse momentum distribution at the tunnel exit
is a recognized indicator of nonadiabaticity during tunneling,
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FIG. 4. Transverse momentum distribution at the tunnel exit. The
blue solid line is obtained by backpropagation, the red solid line is
obtained by SPANE, and the green and orange dashed lines are ob-
tained by the SPA method, with frequencies ωF and ωA, respectively.
The green and orange dotted lines represent the peak transverse mo-
mentum corresponding to the frequencies ωF and ωA, respectively.

which in turn depends on the laser frequency and thus can also
be used to discern the contributions of the electric field and
vector potential to the tunneling process. Figure 4 illustrates
such a transverse momentum distribution. As anticipated, the
distribution varies under infinitely long circularly polarized
laser pulses of different frequencies. A higher laser frequency
results in a larger Keldysh parameter, which in turn enhances
the nonadiabatic effect, resulting in a greater offset of the
transverse momentum distribution from zero. Specifically, the
distribution for ω = ωF (green dashed line) shifts to the right
compared to that for ω = ωA (orange dashed line), as obtained
from the SPA. This offset lays the basis for identifying the
frequency contributions of ultrashort pulses to physical pro-
cesses. In the context of ultrashort circularly polarized laser
pulses, the peak of the transverse momentum distribution of
photoelectrons, as determined by backpropagation (blue solid
line) and SPANE (red solid line), is located near ωF Ip

3F0
(green

dotted line) [Eq. (B12)]. It demonstrates that the transverse
momentum distribution of photoelectrons at the tunnel exit is
associated with the electric-field frequency of the ultrashort
laser pulse, thereby reaffirming that quantum tunneling dy-
namics is governed by the electric field.

V. CLASSICAL CONTINUUM MOTION

Now we turn to the asymptotic PMD, from which we
identify the contribution of the electric field and vector po-
tential to the second step of tunneling ionization, i.e., the
classical continuum motion. Figure 5 presents the SAME in
the asymptotic region calculated using (a) TDSE, (b) SFA,
(c) SPA, and (d) SPANE after the conclusion of the ultrashort
laser pulse. In contrast to the simple conservation law between
the angular momentum and energy at the tunnel exit [Eq. (5)],
their relation in the asymptotic region is more complicated:

Lz = 1

ωA

[
4

5 − √
Up/E

(Ip + E0) + 4

3
(Up + E − E0)

]
, (7)

FIG. 5. Correlated spectra of angular momentum and energy
(SAME) of photoelectrons after the interaction with the ultrashort
laser pulse obtained by (a) TDSE, (b) SFA, (c) SPA, and (d) SPANE.
The insets in the lower row illustrate the SAME at the pulse center
(t = t0). The orange solid lines denote Eq. (7), whereas the green
dashed lines represent Eq. (7) where ωA is replaced with ωF .

where E0 = E (1 − √
Up/E )2 is the initial energy at the tunnel

exit and Up = A2
0/2 is the ponderomotive energy. Theoretical

details are given in Appendix B. It is clear from Fig. 5 that
the SAME derived from all methods closely follows Eq. (7)
(orange solid lines), with the frequency corresponding to
the vector potential ωA. Conversely, using the frequency of
the electric field ωF leads to significant discrepancies (green
dashed lines). This indicates that the information carried by
the photoelectrons in the asymptotic region is determined
by the frequency of the vector potential. We note that the
broadened distribution of the SAME is attributed to varying
laser amplitude at different time instances. As illustrated in
the insets of panels (c) and (d), the SAME, when sliced at the
pulse peak (t = t0), aligns perfectly with the orange solid lines
given by Eq. (7).

In addition, we shown in Fig. 6 the asymptotic PMD ob-
tained from TDSE sliced at the maximum emission angle θmax

(blue solid line) and that from SPANE sliced at the pulse
center t0 (red solid line), which agree well with each other.
They also correspond well with the results obtained with long
pulses from SPA using the frequency of the vector potential
ωA (orange dashed line) rather than that of the electric field
ωF (green dashed line). In addition, the peak position in the
PMD can be divided into two components, corresponding to
the two stages of tunneling ionization. The first component
is the initial transverse momentum, determined by the carrier
frequency of the electric field ωF Ip

3F0
, and the second compo-

nent is the vector potential corresponding to a frequency of
ωA. These observations suggest that the classical continuum
motion is ruled by the vector potential.
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FIG. 6. Asymptotic photoelectron momentum distribution. The
blue solid line is obtained by TDSE sliced at the maximum emission
angle θmax, the red solid line is obtained by SPANE sliced at the
pulse center t0, and the green and orange dashed lines are obtained by
SPA for long pulses with frequencies ωF and ωA, respectively. The
green and orange dotted lines represent the sum of the average initial
transverse momentum ωF Ip

3F0
and the vector potential corresponding to

the frequencies ωF and ωA, respectively.

VI. GENERALITY

It is important to note that our findings are general and
not limited to specific laser parameters. To verify this, we
present the SAME at different laser intensities and wave-
lengths in Figs. 7 and 8, for the tunnel exit and asymptotic
region, respectively. The results were obtained using the
SPANE method and we have verified that the time-dependent
Schrödinger equation or backpropagation leads to the same

conclusions, although the corresponding figures are omitted
for brevity.

At the tunnel exit, the relation E = ωF Lz − Ip [Eq. (6)]
the SAME follows remains unchanged with varying intensity
when the wavelength is kept fixed [Fig. 7(a)], confirming that
tunneling dynamics are governed by the electric field. When
the wavelength is varied at fixed intensity, the slope of the
SAME changes, but the relationship between angular momen-
tum and energy is preserved [Fig. 7(b)]. This shows that our
conclusions are independent of the Keldysh parameter.

In the asymptotic region, similarly, the slope of the SAME
is consistently determined by the frequency of the vector po-
tential, regardless of variations in intensity, wavelength, or the
Keldysh parameter (Fig. 8). This illustrates that the continuum
motion of the photoelectrons after tunneling is governed by
the vector potential and further supports the universality of
our findings.

Additionally, we have verified that our conclusions are
gauge invariant for both TDSE and SPANE calculations, im-
plying that one cannot directly infer the effects of the electric
field or vector potential on photoelectron dynamics from the
interaction terms. See Appendix C for details.

Furthermore, our conclusions are independent of the di-
mensionality of the model used. As shown in Appendix D,
the present findings hold valid for three-dimensional models
as well.

VII. DISCUSSIONS

Our insights into the roles of the electric field and vec-
tor potential in tunneling ionization can be explained with
straightforward physical reasoning. For the classical contin-
uum motion, the asymptotic momentum can be expressed as

FIG. 7. Correlated spectra of angular momentum and energy (SAME) of photoelectrons at the tunnel exit under the interaction with the
ultrashort laser pulse of different parameters. In row (a), the wavelength of the vector potential is held constant at 1000 nm, while the peak
intensity is varied. In row (b), the peak intensity is kept constant at 8×1014 W/cm2, while the wavelength of the vector potential is varied.
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FIG. 8. Correlated spectra of angular momentum and energy (SAME) of photoelectrons in the asymptotic region under the interaction with
the ultrashort laser pulse of different parameters. In row (a), the wavelength of the vector potential is held constant at 1000 nm, while the peak
intensity is varied. In row (b), the peak intensity is kept constant at 8×1014 W/cm2, while the wavelength of the vector potential is varied.

p = k⊥ − ∫ ∞
tr

F(t )dt = k⊥ − A(tr ), where k⊥ represents the
initial momentum at the tunnel exit, which is typically very
small. Since the integration of the electric field is performed
over real time (as depicted in Fig. 2), this results in the vector
potential. Consequently, the asymptotic momentum is con-
nected to the vector potential. In contrast, during the quantum
tunneling phase, only imaginary time elapses (as shown in
Fig. 2) and it is the electric field that remains the dominant
factor.

Remarkably, the frequency ratio of ωF
ωA

= 5
4 is essentially

the maximal achievable ratio in our present study. This is
because the total optical cycle N = 2 corresponds to a single-
cycle pulse when measured at its full width at half maximum,
where the distinction of the electric field and vector potential
is optimal. Furthermore, it is worth noting that the conser-
vation law between angular momentum and energy has been
proposed for experimental verification using electron vortices
[18]. Therefore, our findings could be experimentally vali-
dated by monitoring the slope of the asymptotic SAME as the
pulse duration is varied. In addition, the SAME at the tunnel
exit can be inferred from that in the asymptotic region by
accounting for the energy and photon absorption during the
continuum motion [18].

VIII. CONCLUSION

In conclusion, our study has elucidated the distinct roles of
the electric field and vector potential in strong-field tunneling
ionization. By employing ultrashort laser pulses, where the
carrier frequencies of the electric field and the vector potential
differ, we have been able to differentiate their individual con-
tributions. Leveraging the conservation law between angular
momentum and energy, we have demonstrated that quantum
tunneling is driven by the electric field, while the subsequent

classical motion in the continuum is directed by the vector
potential. Our findings shed new light on the fundamental
interactions between light and matter, providing a novel per-
spective on the utilization of ultrashort laser pulses in the
realm of strong-field physics.
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APPENDIX A: SADDLE-POINT APPROXIMATION
FOR LONG PULSES

According to the strong-field approximation (SFA) in the
length gauge [41,42], the transition amplitude between an
atomic bound state and the continuum state with photoelec-
tron asymptotic momentum p is given by

MSFA
p = −i

∫ +∞

−∞
〈ψp(r, t )|r · F(t )|ψ0(r, t )〉dt, (A1)

where ψ0(r, t ) = ψ0(r)eiIpt is the initial bound-state wave
function unperturbed by the laser field with Ip standing for
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the ionization potential and

ψp(r, t ) = exp

{
i[p + A(t )] · r − i

2

∫ t

[p + A(t ′)]2dt ′
}

(A2)

is the Volkov state. Through the application of saddle-point
approximation (SPA), the transition amplitude is obtained by
[43,44]

MSPA
p =

∑
ts

exp(iSs)

{[p + A(ts)] · F(ts)}α/2 , (A3)

with the phase

Ss = −
∫ tr

ts

{
1

2
[p + A(t )]2 + Ip

}
dt, (A4)

and α = 1 + Z/
√

2Ip with Z = 1 the asymptotic charge. The
saddle-point times ts are identified according to the saddle-
point equation

1
2 [p + A(ts)]2 + Ip = 0, (A5)

where ts = tr + iti must be a complex number to satisfy the
saddle-point equation, with tr the tunneling exit time and ti
relating to the ionization probability.

Rearranging Eq. (A5) gives its imaginary part

ik⊥ · ImA(ts) = 0, (A6)

where k⊥ = p + ReA(ts). By defining the auxiliary momen-
tum k⊥ as

k⊥ = −ImAy(ts)êx + ImAx(ts)êy√
[ImAx(ts)]2 + [ImAy(ts)]2

k⊥, (A7)

the imaginary part of the saddle-point equation [Eq. (A6)] is
fulfilled automatically. In the (tr , k⊥) coordinate system, it
suffices to find the solution to the real part of the saddle-point
equation, leading to a substantial increase in computational
efficiency compared to searching for the complex saddle-point
times across the full complex plane. Furthermore, when cal-
culating the ionization rate, the Jacobian factor of coordinate
transformation needs to be taken into account.

For an infinitely long circularly polarized laser pulse, the
carrier frequency of the electric field and the vector potential
are identical. So the vector potential can be defined as

A(t ) = A0[cos(ωt )êx + sin(ωt )êy] (A8)

and the corresponding electric field F(t ) = −Ȧ(t ) is

F(t ) = F0[sin(ωt )êx − cos(ωt )êy]. (A9)

Solving Eq. (A5) results in

tr = 1

ω

[
arctan

(
py

px

)
+ π

]
, (A10)

ti = 1

ω
arccosh

(
E + Ip + Up

A0 p

)
, (A11)

where the energy E = p2/2, the asymptotic momentum p =√
p2

x + p2
y, and the ponderomotive energy Up = A2

0/2. Thus

the transition probability, up to exponential precision, is

WSPA = exp{−2 ImSs}

= exp

{
2

E + Ip + Up

ω

[(
1 − A2

0 p2

(E + Ip + Up)2

) 1
2

− arccosh

(
E + Ip + Up

A0 p

)]}
. (A12)

The information of photoelectrons at the tunnel exit can be
extracted through the SPA method. The tunneling exit position
is given as

r0 = Re
∫ tr

ts

[p + A(t )]dt = Im
∫ ti

0
A(tr + it )dt

= E + Ip + Up − A0 p

ωp2
(pyêx − px êy) (A13)

and the initial momentum at the tunnel exit is

k⊥ = p + A(tr ) =
(

1 − A0

p

)
p. (A14)

Therefore, the angular momentum at the tunnel exit is subse-
quently obtained by

L = r0 × k⊥ =
(

1 − A0

p

)
E + Ip + Up − A0 p

ω
êz (A15)

and the energy at the tunnel exit is

E = 1

2
k2
⊥ + r0 · F(tr ) =

(
1 − A0

p

)
(E + Up − A0 p) − A0Ip

p

= ωLz − Ip, (A16)

i.e., the conservation law of the angular momentum and en-
ergy at the tunnel exit.

APPENDIX B: SADDLE-POINT APPROXIMATE WITH
NONADIABATIC EXPANSION FOR SHORT PULSES

In order to intuitively obtain the observable information
of photoelectrons in the case of ultrashort laser pulses, we
use saddle-point approximation with nonadiabatic expansion
(SPANE) [7,24,37–40] and expand the vector potential A(ts)
in terms of small ti (or small Keldysh parameter γ correspond-
ing to the tunneling scenario) up to the second order,

A(tr + iti ) = A(tr ) − itiF(tr ) + 1
2 t2

i Ḟ(tr ) + O
(
t3
i

)
, (B1)

where Ḟ(tr ) = dF(tr )
dtr

. Inserting Eq. (B1) into the saddle-point
equation [Eq. (A5)], we can get

k⊥(tr ) · F(tr ) = 0, (B2)

ti =
√

k2
⊥(tr ) + 2Ip

F 2(tr ) − k⊥(tr ) · Ḟ(tr )
, (B3)

where F (tr ) =
√

F 2
x (tr ) + F 2

y (tr ) is the instantaneous electric-

field magnitude and k⊥(tr ) = p + A(tr ) is the initial trans-
verse momentum at the tunnel exit. Since k⊥ · F(tr ) = 0
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[Eq. (B2)], we define

k⊥ = k⊥ · Fy(tr )êx − Fx(tr )êy

F (tr )
(B4)

to ensure that the imaginary part of the saddle-point equa-
tion is always satisfied.

Thereby, the imaginary part of the phase Ss

ImSs = Ipti + 1

2
Re

∫ ti

0
[p + A(tr + it )]2dt

≈ (k2
⊥ + 2Ip)3/2

3
√

F 2(tr ) − k⊥ · Ḟ(tr )
, (B5)

leading to the tunneling ionization probability (exponential
precision)

WSPANE = exp {−2 ImSs}

= exp

{
− 2(k2

⊥ + 2Ip)3/2

3
√

F 2(tr ) − k⊥ · Ḟ(tr )

}
, (B6)

the tunneling exit position

r0 = Re
∫ tr

ts

[p + A(t )]dt = Im
∫ ti

0
A(tr + it )dt

= −F
2

k2
⊥ + 2Ip

F 2 − k⊥ · Ḟ
, (B7)

the angular momentum at the tunnel exit

L = r0 × k⊥ = Fk⊥(k2
⊥ + 2Ip)

2(F 2 − k⊥ · Ḟ )
êz, (B8)

and the energy at the tunnel exit

E = 1

2
k2
⊥ + r0 · F(tr ) = 1

2
k2
⊥ − F 2

2

k2
⊥ + 2Ip

F 2 − k⊥ · Ḟ

= −k⊥ · Ḟ(k2
⊥ + 2Ip)

2(F 2 − k⊥ · Ḟ )
− Ip. (B9)

For a circularly polarized laser pulse with an arbitrary
envelope f (t ), the electric field is described as

F(t ) = F0 f (t )[sin(ωFt )êx − cos(ωFt )êy], (B10)

resulting in −k⊥ · Ḟ = ωF Fk⊥. Under this condition, the re-
lation between the angular momentum [Eq. (B8)] and energy
[Eq. (B9)] at the tunnel exit is always linear, expressed as

E = ωF Lz − Ip. (6)

This is a general law whose slope is the frequency of
the electric field. This suggests that the quantum underbar-
rier tunneling process is driven by the electric field of the
light pulse.

Now, we look closely at the tunneling ionization proba-
bility WSPANE as a function of k⊥, from which we obtain the
average initial transverse momentum 〈k⊥〉. Substituting the
electric field of the ultrashort laser pulses into Eq. (B6) yields

〈k⊥(tr )〉 ≈ ωF Ip

3F (tr )
. (B11)

This is consistent with the results of infinitely long circularly
polarized laser pulses [31], when the carrier frequency of the

electric field ωF of the ultrashort pulse is used. This indicates
that the transverse momentum distribution of the photoelec-
trons at the tunnel exit is determined by the electric field rather
than the vector potential. Since tunneling ionization is a highly
nonlinear process, the ionization rate depends exponentially
on the electric-field strength. Therefore, we focus on the time
instance tr = t0 corresponding to the laser field peak, so the
peak position of the transverse momentum distribution is
approximately

〈k⊥(t0)〉 ≈ ωF Ip

3F0
. (B12)

Since the asymptotic momentum p of the photoelectron re-
lates to the initial momentum by p = k⊥ − A(tr ), where k⊥
and A(tr ) are antiparallel to each other, the peak position of
the asymptotic momentum distribution is approximately

〈p(t0)〉 ≈ 〈k⊥(t0)〉 + A0 = ωF Ip

3F0
+ A0 = ωF Ip

3F0
+ F0

ωA
.

(B13)

Note that A0 = F0/ωA, which is related to the carrier fre-
quency of the vector potential.

To construct the dominant SAME in the asymptotic region,
we focused solely on ionization that occurs at the peak of the
laser pulse (tr = t0). For a N-cycle circularly polarized laser
pulse, the vector potential is

A(t ) = A0 cos4

(
ωAt

2N

)
[cos(ωAt )êx + sin(ωAt )êy]. (B14)

At the end of the laser field, the position is calculated by

r =
∫ t f

tr=0
dt{p + A(t )} + r0 − α, (B15)

where t f = Nπ/ωA and α = (1/2)
∫ t f

−t f
A(t )dt . Therefore, the

angular momentum at the end of the laser field is

L = r × p = êz

ωA

[
A0 + k⊥

A0 + k⊥
(
1 + 1

N2

)(
Ip + 1

2
k2
⊥

)

+
(

1 + 2N2 − 5 − 3 cos(Nπ )

2N4 − 10N2 + 8

)(
A2

0 + A0k⊥
)]

= êz

ωA

[
1√

Up/E + (1 − √
Up/E )

(
1 + 1

N2

) (Ip + E0)

+
(

1 + 2N2 − 5 − 3 cos(Nπ )

2N4 − 10N2 + 8

)
(Up + E − E0)

]
,

(B16)

where E is the asymptotic energy and E0 is the energy at the
tunnel exit given by

E0 = 1
2 k2

⊥ = 1
2 (p − A0)2 = 1

2 (
√

2E − √
2Up)2

= E (1 − √
Up/E )2. (B17)
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FIG. 9. Correlated spectra of angular momentum and energy
(SAME) of photoelectrons (1) at the tunnel exit and (2) in the asymp-
totic region obtained using the SPANE method in both (a) length
gauge (LG) and (b) velocity gauge (VG).

For the present ultrashort pulse with N = 2, Eq. (B16) is
reduced to

Lz
N→2= 1

ωA

[
4

5 − √
Up/E

(Ip + E0) + 4

3
(Up + E − E0)

]
,

(7)

where the frequency of the vector potential ωA comes into
play. These findings indicate that the dynamic behavior of
photoelectrons in the asymptotic region is controlled by the
vector potential instead of the electric field.

For infinitely long pulses with N → ∞, Eq. (B16) is re-
duced to

Lz
N→∞= 1

ωA
(E + Ip + Up), (B18)

giving the SAME in the asymptotic region for long pulses

E = ωALz − Ip − Up, (B19)

where ωA = ωF = ω for infinitely long pulses.

APPENDIX C: GAUGE INVARIANCE

It is well established that it is preserved when the full
Hamiltonian is used, as confirmed by TDSE simulations. This
is also true for our study. To further verify the gauge invari-
ance for the SPANE method, we have compared the results in
both length gauge (LG) and velocity gauge (VG). In LG, the

FIG. 10. Correlated spectra of angular momentum and energy
(SAME) of photoelectrons (a) at the tunnel exit and (b) in the asymp-
totic region under the interaction of a three-dimensional model atom
with the ultrashort laser pulse obtained using the SPANE method.

ionization amplitude is given by

MLG
p =

∑
ts

exp(iSs)

{[p + A(ts)] · F(ts)}α/2 , (C1)

while, in VG, the ionization amplitude is

MVG
p =

∑
ts

exp(iSs)

{[p + A(ts)] · F(ts)}1/2

p · A(ts) + A2(ts)/2

(p2 + 2Ip)α
.

(C2)

The phase is the same in both gauges:

Ss = −
∫ tr

ts

{
1

2
[p + A(t )]2 + Ip

}
dt . (C3)

Using the SPANE method in both LG and VG, we have
calculated the SAME of photoelectrons at the tunnel exit
and in the asymptotic region. The results, shown in Fig. 9,
demonstrate that both gauges yield nearly identical outcomes.
This confirms the gauge invariance of our conclusions, which
holds for both TDSE and SPANE calculations.

Therefore, our conclusion that tunneling dynamics are
driven by the electric field, while the subsequent continuum
motion is governed by the vector potential, remains valid
regardless of the gauge choice. This implies that one cannot
directly infer the effects of the electric field or vector potential
on photoelectron dynamics from the interaction terms (i.e.,
r · F in LG and p · A + A2/2 in VG) in ultrashort laser pulses.

APPENDIX D: MODEL DIMENSIONALITY

The goal of the present work is to conceptually distin-
guish the roles of the electric field and vector potential in
tunneling ionization dynamics. We demonstrate these roles
using the minimal requirements of two dimensions for circular
polarization. That said, we find it a good double check to
perform a three-dimensional study, as shown in Fig. 10. The
results demonstrate that our conclusions are independent of
the dimensionality of the model.
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Maxwell, R. Moszyński, L. Ortmann, J. A. Pérez-Hernández,
A. Picón, E. Pisanty, J. Prauzner-Bechcicki et al., Symphony
on strong field approximation, Rep. Prog. Phys. 82, 116001
(2019).

[43] A. Nayak, M. Dumergue, S. Kühn, S. Mondal, T. Csizmadia,
N. Harshitha, M. Füle, M. U. Kahaly, B. Farkas, B. Major,
V. Szaszkó-Bogár, P. Földi, S. Majorosi, N. Tsatrafyllis, E.
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