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Visualization of subcycle nonadiabatic-nondipole coupling in strong-field ionization
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Light-matter interaction involves the transfer of both energy and linear momentum to matter. In the context of
strong-field tunneling ionization, they are manifested as nonadiabatic and nondipole effects, respectively, which
have been shown to interact on the subcycle scale. In this work we propose two experimentally feasible protocols
for direct visualization of the subcycle interplay between nonadiabatic and nondipole tunneling effects. These
protocols hinge on the intersection of the average linear momentum transferred to the released photoelectron at a
specific photoemission angle, with the magnitude of this intersection serving as an indicator of the coupling
strength. In addition, by defining the instantaneous effective angular frequency of the laser field, we have
formulated analytical expressions that provide a quantitative description of the coupling effect. Our results
provide a clear and intuitive approach to visualizing the impact of the subcycle nonadiabatic-nondipole coupling
effects, thereby enhancing our comprehension of the time-resolved tunneling process through which light imparts
both energy and linear momentum to electrons.
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I. INTRODUCTION

Light possesses both energy and linear momentum. In
the process of strong-field ionization, these properties are
imparted from light to matter. The energy from the light
liberates the bound electron, ejecting it into the continuum
and resulting in ionization. Once the ionization potential is
surmounted, the residual absorbed energy is evident in the
photoelectron momentum distribution (PMD), manifested as
a nonzero radius perpendicular to the laser propagation direc-
tion. The transfer of energy is commonly addressed within
the framework of dipole approximation, which is a typical
practice in the study of strong-field ionization. However, this
approximation results in a symmetric distribution of the PMD
along the light propagation direction, which does not account
for the transfer of linear momentum of light to matter. To fully
capture linear momentum transfer, it is necessary to extend
beyond the dipole approximation and incorporate nondipole
effects of higher-order multipole interactions [1–4].

In the context of strong-field tunneling ionization, the
transfer of light energy and linear momentum is manifested
as nonadiabatic and nondipole effects, respectively, both of
which have attracted significant interest and have become
central subjects of ongoing research discussions. The periodic
oscillation of the laser field, rather than being static, leads to
the transfer of light energy to the ionized electron during the
tunneling process, known as nonadiabatic effects [5–7]. The
degree of nonadiabaticity during tunneling can be character-
ized by the Keldysh parameter γ = ω

F

√
2Ip, where ω is the

laser angular frequency, F is the laser electric field amplitude,
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and Ip is the ionization potential of the atom or molecule
being ionized. When γ → 0, tunneling ionization can be
deemed adiabatic; when γ ∼ 1, it indicates ionization in the
nonadiabatic tunneling regime. Nonadiabatic effects during
the tunneling process plays an important role in strong-field
ionization [7–12]. In adiabatic tunneling, the initial transverse
momentum of the ionized electron is centered at zero [13,14].
Conversely, in nonadiabatic tunneling, the bound electron
tunnels with a transverse momentum that is centered around
a nonzero value, and the tunneling occurs closer to the nu-
cleus compared to the adiabatic case [7]. In the presence
of an elliptically polarized laser field, nonadiabatic correc-
tions to the initial transverse momentum of the electron can
significantly influence the photoelectron angular distribution
[15–17]. With circularly polarized laser, nonadiabatic effects
facilitate selective depletion of electrons from p orbitals that
are counterrotating with respect to the laser [18,19]. In 2018
direct evidence for nonadiabatic effects was provided ex-
perimentally, and the effective angular frequency has been
introduced to quantify their impact [20]. In essence, nonadi-
abatic effects intertwine with various strong-field ionization
phenomena by altering the position, momentum, and energy
of the electron at the tunnel exit.

The dispersion relation of a photon, given by p = E/c,
where p is the photon momentum, E is its energy, and c is
the light speed in vacuum, indicates that the photon linear
momentum is very small, making its effects less noticeable
compared to energy absorption. However, advances in detec-
tion technology have recently enabled the clear identification
of even these minute linear momentum transfers induced by
nondipole effects. In 2011 the linear momentum transfer along
the laser propagation direction was first experimentally ob-
served during the ionization of argon and neon atoms with
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circularly polarized laser fields [21]. Following this, a transfer
of linear momentum in the opposite direction was identified
in strong-field ionization using linearly polarized laser fields,
which was attributed to the interplay between the magnetic
field and the Coulomb potential [22]. Additionally, the sub-
cycle transfer of linear momentum in strong-field tunneling
ionization was investigated experimentally [23]. The precision
of the measurement has since been significantly enhanced
through the use of two counterpropagating laser pulses, which
clearly determined the zero point in the linear momentum dis-
tribution [24]. Concurrently, a number of theoretical studies
have been carried out to dissect this linear momentum transfer.
The linear momentum transfer during the under-barrier mo-
tion in tunneling ionization has been studied [25]. It has been
further analyzed under both single-photon and tunneling ion-
ization [26]. These findings have gained experimental support
[24,27,28]. Remarkably, linear momentum transfer in double
ionization has also been investigated in both the single-photon
[29] and tunneling limits [30]. In addition, the relationship
between linear momentum transfer and the minimum number
of photons required to reach the ionization threshold has been
investigated [31]. Moreover, individual contributions of elec-
tric quadrupole and magnetic dipole interactions have been
successfully separated [32–34]. Furthermore, in the case of
above-threshold ionization, the energy conservation is influ-
enced by nondipole effects, which are evident as a common
offset of Up/c to the ATI rings against the laser propagation
direction [35–37], where Up is the ponderomotive potential.

The energy and momentum of a photon are intrinsically
linked, which naturally leads to the coupling of nonadia-
batic and nondipole effects during the process of strong-field
tunneling ionization. Recently, a theoretical framework for
subcycle linear momentum transfer has been developed
[38], illustrating that these effects interact on the subcy-
cle timescale. In this study we propose two experimentally
feasible protocols designed to directly visualize the subcy-
cle nonadiabatic-nondipole coupling in strong-field tunneling
ionization.

The paper is organized as follows: Sec. II provides a brief
overview of the theoretical approaches. Section III describes
the schemes for shaping the laser fields to visualize the cou-
pling effects. Section IV validates the proposed tailored laser
fields by demonstrating the minimum distance of the electron
to the ionic core during its continuum motion. Section V
presents the characterization of coupling effects in linear mo-
mentum transfer, along with the derivation of their analytical
expressions. Conclusions are given in Sec. VI. Atomic units
(a.u.) are used unless stated otherwise.

II. THEORETICAL FRAMEWORK

In this section we provide a brief overview of the back-
ground of the nonadiabatic-nondipole coupling effects as well
as the numerical methods and analytical approaches employed
in our study. These include (a) the solution of the three-
dimensional time-dependent Schrödinger equation (TDSE),
which serves as a fundamental tool for describing the quan-
tum dynamics of the system; (b) the nondipole saddle-point
approximation (ndSPA), an advanced method that incorpo-
rates both nondipole and nonadiabatic effects, allowing it to

capture the nonadiabatic-nondipole coupling phenomena in
an analytical manner; (c) the nondipole Ammosov-Delone-
Krainov (ndADK) theory, which is applicable in the adiabatic
limit and does not account for nonadiabatic-nondipole cou-
pling. By comparing the outcomes of these different methods,
we can effectively distinguish the influence of coupling ef-
fects. The TDSE solution is utilized to confirm the accuracy
and relevance of the approximations made within the ndSPA
framework.

A. Nonadiabatic-nondipole coupling

Tunneling ionization can be conceptualized as a two-stage
process, encompassing quantum tunneling through the poten-
tial barrier and the subsequent classical motion of the released
electron in the continuum. Accordingly, the asymptotic linear
momentum transfer along the laser propagation direction (êz)
can be apportioned into two distinct contributions [38]:

〈pz〉 = 〈vz〉 + �E

c
(1)

for direct ionization where electron rescattering is absent,
where 〈pz〉 and 〈vz〉 represent the average linear momentum
transfer in the asymptotic region and at the tunnel exit, respec-
tively, and �E denotes the energy absorption of the electron
in the continuum motion. In our present study, electron rescat-
tering is avoided in our specifically tailored laser fields. Since
there is no laser field component in the propagation direc-
tion, the Coulomb-laser coupling is absent, making the effect
of the Coulomb interaction on the linear momentum transfer
negligible [38]. Therefore, the influence of Coulomb potential
is not considered in the following analytical derivation of the
linear momentum transfer. In Eq. (1) the first term

〈vz〉 = 2Ip + 〈v2
⊥〉

6c
(1 − δ), (2)

reflecting the linear momentum accumulated during the quan-
tum tunneling stage, where the subscript ⊥ denotes quantities
within the polarization plane, v⊥ stands for the initial trans-
verse momentum at the tunnel exit, and δ = (2αZF )/(2Ip)3/2

with αZ = 1 + Z/
√

2Ip and Z = 1 the asymptotic charge of
the residual ion. The second term �E/c accounts for the
linear momentum transfer accumulated during the motion of
the released electron in the continuum and is expressed as

�E

c
= 〈p2

⊥〉 − 〈v2
⊥〉

2c
, (3)

where p⊥ is the component of the asymptotic momentum
within the polarization plane. Given the relation p⊥ = v⊥ −
A, where A denotes the vector potential of the laser field.
Equation (3) can then be rewritten as

�E

c
= 〈A2〉

2c
− 〈v⊥〉 · A

c
. (4)

Note further

〈v2
⊥〉 = 〈v⊥〉2 + F

2
√

2Ip
, (5)
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the final linear momentum transfer, as given in Eq. (1), can
then be reorganized into

〈pz〉 = 〈pz〉(A) + 〈pz〉(NA)

= (1 − δ)

(
Ip

3c
+ F

12c
√

2Ip

)
+ 〈A2〉

2c︸ ︷︷ ︸
A

+ (1 − δ)
〈v⊥〉2

6c
− 〈v⊥〉 · A

c︸ ︷︷ ︸
NA

, (6)

which comprises two contributions, i.e., from pure adia-
batic tunneling 〈pz〉(A) and from coupling to nonadiabatic
effects 〈pz〉(NA). When nonadiabaticity is absent, we have
〈v⊥〉 = 0, and 〈pz〉(NA) vanishes. Therefore, the nonadiabatic
term, 〈pz〉(NA), arises from nonadiabatic-nondipole coupling.
Although the initial transverse momentum induced by nona-
diabaticity, 〈v⊥〉, is typically not large, its impact is amplified
when coupled with the vector potential, as evident in the
last term of Eq. (6), −〈v⊥〉 · A/c. This behavior makes the
nonadiabatic-nondipole coupling experimentally discernible
in the asymptotic PMD. However, a direct observation of such
coupling has remained elusive.

In this study we propose two experimentally feasible proto-
cols designed to directly visualize the subcycle nonadiabatic-
nondipole coupling in strong-field tunneling ionization. We
also provide analytical expressions to quantify the strength
of the coupling effect. Our approach hinges on the separate
manipulation of 〈pz〉(A) and 〈pz〉(NA). This is possible by inde-
pendently varying the degree of nonadiabaticity while keeping
the vector potential fixed. The degree of nonadiabaticity can
be controlled by tailoring the instantaneous effective angular
frequency of the laser field [11,20]. Importantly, there is a
direct relationship between the coupling strength and the de-
gree of nonadiabaticity. Consequently, the linear momentum
transfer 〈pz〉 is governed by the coupling strength.

B. Time-dependent Schrödinger equation

We solve the three-dimensional TDSE to numerically
simulate strong-field ionization of the helium atom. Earlier
studies [39] have shown that electron correlation is negligible
for the helium atom in the attoclock setting, and thus we stick
with the single-active-electron approximation. The nondipole
Hamiltonian is given by [24,34,38,40]

H = 1

2

[
p + A(t ) + êz

c

(
p · A(t ) + A2(t )

2

)]2

+ V
(

r − z

c
A(t )

)
(7)

with the Coulomb potential

V (r) = −1 + e−r2/2√
r2 + a0

. (8)

The soft-core parameter a0 = 0.14328 is adjusted to match
the experimental ground-state energy E0 = −Ip = −0.90357
a.u. of helium.

The TDSE is solved numerically on a spatial grid with
1024 points in each dimension, using a spatial step of �x =
0.2 a.u. and a time step of �t = 0.02 a.u. The time evolution
is carried out using the split-operator Fourier method, which
is applicable since the space operator and the momentum
operator in the nondipole Hamiltonian [Eq. (7)] are separated.
To prevent reflections of the wave function at the grid bor-
der, we implement an absorbing boundary, taking the form
1/[1 + exp{(r − r0)/d}], where r0 = 87.4 and d = 4 a.u. As
the electron wave packet approaches r0, it is attenuated by the
mask function. In the calculations, we perform absorption on
the wave function every 0.2 a.u. in time, and we have tested
that the results are converged with respect to this time span
as well as other grid parameters. The final PMD WTDSE(p)
is obtained by cumulatively projecting the absorbed wave
function onto the nondipole Volkov state [31,41]

ψp(t ) = exp

[
ip · r − i

∫ t 1

2
π2(τ )dτ

]
, (9)

where π(t ) = p + A(t ) + (êz/c)[p · A(t ) + A2(t )/2]. The av-
erage linear momentum transfer at the end of laser field is
given by

〈pz〉 =
∫

W (p)pz d p∫
W (p) d p

, (10)

where the ionization rate W (p) = WTDSE(p).

C. Nondipole saddle-point approximation

We delve into an analytical investigation of the subcy-
cle nonadiabatic-nondipole coupling using the framework
of nondipole strong-field approximation (ndSFA). Here we
disregard the minor influence of the Coulomb potential on
the linear momentum transfer. Through the application of
nondipole saddle-point approximation (ndSPA), the tunneling
ionization rate is given by [42–44]

WndSPA(p) = ∣∣S̈∣∣−αZ exp{−2ImS}, (11)

where the nondipole action is given by the expres-
sion S = − ∫ tr

ts
({p + A(t ) + (êz/c)[p · A(t ) + A2(t )/2]}2/2 +

Ip)dt . The complex saddle-point time ts = tr + iti is obtained
by solving the saddle-point equation

1

2

[
p + A(ts) + êz

c

(
p · A(ts) + 1

2
A2(ts)

)]2

+ Ip = 0, (12)

where tr = Re ts represents the ionization time and ti = Im ts
is related to the tunneling ionization rate.

Rearranging the imaginary part of the saddle-point equa-
tion [Eq. (12)] gives

i
(

1 + pz

c

)
[k⊥ · ImA(ts)] = 0, (13)

where k⊥ = p⊥ + ReA(ts). Therefore, by choosing the auxil-
iary momentum k⊥ as [7,38]

k⊥ = [p + ReA(ts)] · −ImAy(ts)êx + ImAx(ts)êy√
[ImAx(ts)]2 + [ImAy(ts)]2

, (14)

the imaginary part of the saddle-point equation [Eq. (13)]
is fulfilled automatically. Thereby, the search for the
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saddle-point time in the full complex plane is reduced to a
one-dimensional root-finding problem for the real part of the
saddle-point equation. This approach, using the (tr, k⊥, pz )
coordinate system, greatly enhances computational efficiency
in the ndSPA calculations. It is important to account for the
Jacobian of the coordinate transformation when calculating
the ionization rate:

W̃ndSPA(tr, k⊥, pz ) =
∣∣∣∣det

∂ (px, py, pz )

∂ (tr, k⊥, pz )

∣∣∣∣WndSPA(p), (15)

which is then substituted into Eq. (10) to calculate the average
linear momentum transfer.

D. Nondipole Ammosov-Delone-Krainov theory

The ndSPA approach fully includes nonadiabatic tunneling
effects, making it a suitable tool for analyzing nonadiabatic-
nondipole coupling. To provide a comparative analysis, an
approach that excludes nonadiabaticity is essential. We derive
the adiabatic limit of ndSPA, termed as ndADK, to serve this
purpose. We first expand the vector potential A(ts) up to the
first order in the small imaginary time ti (corresponding to a
small Keldysh parameter γ ≈ ωti),

A(ts = tr + iti ) ≈ A(tr ) − itiF(tr ). (16)

This expansion omits higher-order terms related to the electric
field derivatives, under the assumption that the intense laser
field can be considered quasistatic during adiabatic tunneling.
Substituting this approximation into the saddle-point equa-
tion [Eq. (12)] and retaining terms up to ti yields the imaginary
part of the equation

−iti
(

1 + pz

c

)
[k⊥ · F(tr )] = 0, (17)

where the auxiliary momentum k⊥ = p⊥ + A(tr ) is equivalent
to the transverse momentum at the tunnel exit v⊥, differing
from the definition used in ndSPA. Its value is given by

k⊥ = [p + A(tr )] · Fy(tr )êx − Fx(tr )êy

F (tr )
, (18)

which ensures that the imaginary part of the saddle-point
equation [Eq. (17)] is always satisfied. Organizing the real part
of the saddle-point equation results in

ti =
√

2Ip + k2
⊥ + p2

z − pz

c

(
p2

⊥ − k2
⊥
)(

1 + pz

c

)
F 2(tr )

. (19)

Substituting Eq. (19) into Eq. (11) for the ionization rate, we
obtain

Im S = Ipti + 1

2
Re
∫ ti

0

×
{

p + A(ts) + êz

c

[
p · A(ts) + 1

2
A2(ts)

]}2

dt

=
[
2Ip + k2

⊥ + p2
z − pz

c

(
p2

⊥ − k2
⊥
)]3/2

3F
√

1 + pz

c

(20)

and

|S̈|−αZ =
∣∣∣i(1 + pz

c

)
tiF

2(tr )
∣∣∣−αZ

=
[(

1 + pz

c

)(
2Ip + k2

⊥ + p2
z−

pz

c

(
p2

⊥−k2
⊥
))

F 2
]−αZ /2

.

(21)

The ndADK ionization rate is thus given by

WndADK(p)

≈
[(

1 + pz

c

)(
2Ip + k2

⊥ + p2
z − pz

c

(
p2

⊥ − k2
⊥
))

F 2
]−αZ /2

× exp

⎧⎪⎨
⎪⎩−2

[
2Ip + k2

⊥ + p2
z − pz

c

(
p2

⊥ − k2
⊥
)]3/2

3F
√

1 + pz

c

⎫⎪⎬
⎪⎭,

(22)

which reduces to the typical dipole ADK theory for c → ∞.
Since the calculations are performed within the (tr, k⊥, pz )
coordinate system, the Jacobian of the transformation must
be considered:∣∣∣∣det

∂ (px, py, pz )

∂ (tr, k⊥, pz )

∣∣∣∣ ≈
∣∣∣∣k⊥[Fx(tr )Ḟy(tr ) − Ḟx(tr )Fy(tr )]

F 2(tr )
+F (tr )

∣∣∣∣.
(23)

Likewise, we can obtain the average linear momentum trans-
fer by substituting the ionization rate [Eq. (22)] together with
the Jacobian factor [Eq. (23)] into Eq. (10).

III. CHOICE OF LASER FIELD

In this section we present two distinct categories of laser
fields, crafted for the explicit purpose of directly visualizing
the subcycle nonadiabatic-nondipole coupling effects. These
laser fields are selected for their two essential features:

(1) The instantaneous vector potential is deliberately
maintained at a specific value. This strategy ensures that the
contribution to the linear momentum transfer from adiabatic
tunneling processes remains consistent, providing a stable
baseline for observation.

(2) The degree of coupling effects is independently ad-
justable. This is achieved by precisely controlling the effective
angular frequency of the laser field using a tailored laser
field. This tunability allows for the systematic exploration
of how nonadiabatic-nondipole coupling influences the linear
momentum transfer.

By fulfilling these conditions, we ensure that any observed
variations in the linear momentum transfer are attributable
solely to nonadiabatic-nondipole coupling, thereby enabling a
clear and unambiguous analysis of these effects in strong-field
ionization.

A. Elliptically polarized laser field

In order to visualize the coupling effects, we need to
independently adjust the nonadiabaticity through the in-
stantaneous effective angular frequency while keeping the
amplitude of the instantaneous vector potential fixed at a cer-
tain angle. In this sense, elliptically polarized (EP) laser fields
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serve as great candidates, where we keep the field strength
along the x direction fixed while varying the intensity along
the y direction. Thus, we introduce the first category of laser
fields utilized in our study to implement the idea: EP fields
with varying ellipticity. Specifically, we have selected a set of
laser fields with ellipticities ε = 0.86, 1.0, 1.4, as depicted in
Fig. 1. The vector potential for these fields is defined by

AEP(t ) = A0 cos(ωt )êx + εA0 sin(ωt )êy, (24)

and the corresponding electric field is given by

FEP(t ) = F0 sin(ωt )êx − εF0 cos(ωt )êy. (25)

These laser fields are characterized by an angular frequency
of ω = 0.057 a.u. (corresponding to a wavelength of λ =
800 nm) and an electric field amplitude of F0 = 0.079 a.u.
For each ellipticity ε, the amplitude of the negative vector
potential maintains a fixed value in the êx direction while
it varies in the êy direction. The temporal envelope of the
vector potential of the laser pulse is shaped by the function
cos4(ωt/2N ) over a total of N = 15 cycles. In the case of the
long pulse under consideration, the influence of the envelope
on the overall dynamics is negligible, and therefore, we have
not explicitly included it in the mathematical expressions for
the vector potential and electric field of the laser. Our anal-
ysis has confirmed that whether the coupling features can be
observed is independent of the specific pulse duration.

The EP fields can be obtained experimentally with the
setup as in Ref. [11]. An amplified Ti:sapphire femtosecond
laser system can be used to generate the laser pulses. Their
ellipticity is controlled by inserting a wire grid polarizer be-
fore a λ/4 wave plate, which is fixed with its fast axis along
the x direction. Before each experimental data acquisition, the
total input pulse intensity is adjusted, and a second wire grid
polarizer is used to ensure that the x component of the pulse
intensity remains constant at different ellipticities.

At the specific time t = π/ω as indicated by black dashed
lines in Fig. 1, the vector potential stays as A = −A0êx across
all three laser fields, while their respective electric fields dif-
fer. Considering that the adiabatic term 〈pz〉(A) in the linear
momentum transfer [Eq. (6)] is primarily associated with the
vector potential and minimally affected by the electric field,
the values of this adiabatic term remain nearly identical across
the different ellipticities of the laser fields studied. This con-
sistency in the adiabatic term allows us to isolate and examine
the variations in nonadiabatic-nondipole coupling effects as a
function of ellipticity.

We now turn to the nonadiabatic-nondipole coupling term
〈pz〉(NA) in Eq. (6). When the electron gets ionized at t = π/ω,
the electric field is given by F = εF0êy, the corresponding
vector potential is A = −A0êx, and the electron eventually
emits along the êx direction. At this specific time, the initial
transverse momentum v⊥ at the tunnel exit and the instan-
taneous vector potential A are antiparallel. We introduce the
instantaneous effective angular frequency ωeff [20,45,46]

ωeff = ∂

∂t
arctan

(
Fy

Fx

)
(26)

evaluated at the angle φ = arctan(−Ay/−Ax ), which, in the
absence of the Coulomb potential, is approximately equal to

the photoemission angle φp = arctan(py/px ). The instanta-
neous effective angular frequency ωeff serves to quantitatively
describe the nonadiabatic effects, as shown in Fig. 1(c). A
higher ωeff signifies a greater instantaneous frequency of the
electric field, corresponding to more pronounced nonadiabatic
effects, and in turn more pronounced nonadiabatic-nondipole
coupling.

Interestingly, by redefining the initial transverse momen-
tum, k⊥ or v⊥, in terms of the effective angular frequency ωeff ,
we can derive a closed form of the nonadiabatic-nondipole
coupling term 〈pz〉(NA), which is governed by ωeff , as we will
show later. This allows us to establish a direct link between the
linear momentum transfer and the coupling effects through the
effective angular frequency ωeff .

B. Corotating and counterrotating two-color circularly
polarized laser field

Besides the EP fields, any laser field that meets features
1 and 2 listed at the beginning of Sec. III can fulfill our
requirements. The corotating (CoRTC) and counterrotating
two-color (CRTC) circularly polarized laser fields naturally
satisfy feature 1, where the vector potential amplitudes in the
êx direction can be kept equal. Additionally, the instantaneous
effective angular frequency is influenced by the amplitude
ratio of the frequency-doubled laser field with respect to the
fundamental one. Hence, we introduce the second category of
laser fields consisting of CoRTC and CRTC fields, defined by
the vector potential

ATC(t ) = A0

[
cos(ωt ) + η

2
cos(2ωt )

]
êx

+ A0

[
sin(ωt ) + ε

η

2
sin(2ωt )

]
êy (27)

and the corresponding electric field

FTC(t ) = F0[sin(ωt ) + η sin(2ωt )]êx

− F0[cos(ωt ) + εη cos(2ωt )]êy, (28)

with a fundamental angular frequency ω = 0.057 a.u. (corre-
sponding to a wavelength of λ = 800 nm), an electric field
amplitude F0 = 0.084, a field amplitude ratio η = 0.1, and an
ellipticity ε = ±1 (ε = 1 for the CoRTC field and ε = −1 for
the CRTC field). The laser fields here have the same duration
as the first category of EP laser fields.

The CoRTC and CRTC fields have been employed in
various experiments [20,47–50]. A 250 µm β-barium borate
crystal can be used to frequency double a 800 nm laser pulse
to obtain the two-color laser fields. The fundamental and the
second harmonic are separated by a dielectric beam splitter.
The two laser pulses are configured with either the same
or opposite helicity, then recombined and focused to form a
CoRTC or CRTC field.

At the specific time t = 0 as indicated by black dashed
lines in Fig. 2, the vector potentials for the CoRTC and CRTC
fields are both A = A0êx, suggesting that the adiabatic con-
tribution in their respective linear momentum transfers is the
same. Additionally, the initial transverse momentum v⊥ at
the tunnel exit and the vector potential A are antiparallel at
this specific time t = 0. Similar to the previous EP fields,
the mapping between 〈pz〉 and the coupling effects can be
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FIG. 1. Sketch of the elliptically polarized (EP) laser fields, in-
cluding (a) the electric field F(t ), (b) the negative vector potential
−A(t ), and (c) the effective angular frequency ωeff as a function of
φ for ellipticities ε = 0.86 (blue curves), ε = 1.0 (orange curves),
and ε = 1.4 (green curves). The black dashed curves in all panels
correspond to the same time t = π/ω and angle φ = 0.

mediated by the effective angular frequency ωeff , as shown
in Fig. 2(c).

IV. CONTINUUM MOTION OF RELEASED ELECTRONS

In order to clearly visualize nonadiabatic-nondipole cou-
pling, it is important to craft the laser fields where rescattering
is avoided. To this end, we employ the classical-trajectory
Monte Carlo (CTMC) method, with initial conditions derived
from ndADK, to compute the ionization rates of electrons
emitted at various times with different initial velocities. Ad-
ditionally, we track their minimum distances from the atomic
core during the continuum motion. The motion of the released
electron in the presence of the laser field is governed by
the Newtonian equations of motion. This calculation aims to
validate the approach of considering only the direct ionization
process in adiabatic tunneling scenarios. The validity of this
approach in nonadiabatic tunneling is further supported by the
consistency between ndSPA and TDSE calculations presented
in Sec. V.

Figure 3 presents the ionization rate for electrons driven
by EP fields in column (1), and their minimum distance rmin

from the core during the continuum motion in column (2)
for ε = 0.86 [row (a)] and ε = 1.4 [row (b)]. The data pre-
sented in column (2) represent log10(rmin). The blue-white
region, indicating rmin ≈ 0, signifies that electrons with initial
conditions in this area are likely to return to the core during
their motion. Conversely, the yellow-green regions correspond
to rmin ≈ Ip/F , suggesting that these electrons, once driven
away by the laser fields, do not return to the core. The black
lines represent the strength of the instantaneous electric field.
Here v⊥ < 0 and v⊥ > 0 denote that the initial transverse
momentum is aligned parallel or antiparallel to the instanta-
neous vector potential, respectively. The observations from

FIG. 2. Sketch of the corotating (CoRTC, purple curves) and
counterrotating two-color (CRTC, red curves) circularly polarized
laser fields, including (a) the electric field F(t ), (b) the negative
vector potential −A(t ), and (c) the effective angular frequency ωeff

as a function of φ. The black dashed curves in all panels correspond
to the same time t = 0 and angle φ = π .

Fig. 3 indicate that in regions of high ionization probability,
electrons do not return to the core, justifying the focus on
direct ionization in our study due to the low likelihood of
rescattering.

Similarly, Fig. 4 displays the ionization rates for electrons
in CoRTC [row (a)] and CRTC [row (b)] fields in column
(1), and their minimum distance rmin from the core in column
(2). These results further demonstrate that the likelihood of an
ionized electron returning to the core under the influence of
these laser fields is very low.

Thus, the findings from both figures confirm that it is
reasonable to concentrate on the direct ionization process for
all laser field configurations studied, as the probability of
rescattering events is minimal. This conclusion supports the
use of Eq. (6) for calculating linear momentum transfer in EP,
CoRTC, and CRTC fields.

V. VISUALIZATION OF SUBCYCLE
NONADIABATIC-NONDIPOLE COUPLING

In this section we examine the characteristics of coupling
effects by comparing the linear momentum transfer as a func-
tion of the photoemission angle across two categories of laser
fields, highlighting the appearance of an intersection for the
average linear momentum transfer at a specific angle. Addi-
tionally, we introduce the effective angular frequency of the
laser field as a metric to gauge the strength of nonadiabatic-
nondipole coupling on linear momentum transfer.

Employing TDSE, ndSPA, and ndADK, we illustrate the
average linear momentum transfer 〈pz〉 as a function of
the photoemission angle φp = arctan(py/px ) in EP fields
in Fig. 5. Results present in Fig. 5(a) are obtained using
TDSE and ndSPA that fully include nonadiabatic tunneling
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FIG. 3. The ionization rate [column (1)] and the minimum dis-
tance between the ionized electron and core [column (2)] calculated
by the classical-trajectory Monte Carlo (CTMC) method with the
initial conditions prepared by ndADK in the EP laser field with
ellipticities ε = 0.86 [row (a)] and ε = 1.4 [row (b)]. In column (2),
the black curves denote the magnitude of instantaneous electric field
and the data are presented in the logarithmic scale.

effects and thus include nonadiabatic-nondipole coupling,
while those shown in Fig. 5(b) are obtained using ndADK
that neglect nonadiabatic effects and thus coupling effects
are absent. From the figure, we have two observations. First,
for all ellipticities studied, ε = 0.86, 1.0, 1.4, values of 〈pz〉
in Fig. 5(a) surpass those in Fig. 5(b), indicating a pos-
itive contribution of coupling effects on 〈pz〉. Second, a
pronounced intersection in the average linear momentum oc-
curs around φp = 0 in Fig. 5(a) when nonadiabatic-nondipole
coupling is included, as indicated by the shaded area, but
this intersection is absent in Fig. 5(b). Given that the
variation in 〈pz〉 is on the order of 10−3, which aligns
with the resolution capable in experimental setups [24],
the intersection is indeed detectable. This level of preci-
sion provides a feasible basis for observing the coupling
effects under investigation, confirming the practical rele-
vance of the intersection as a diagnostic tool in experimental
contexts.

Our prior analysis confirms that the adiabatic contribu-
tion 〈pz〉(A)(φp = 0) is nearly identical across the three EP
fields. In the adiabatic tunneling scenario, the coupling term
〈pz〉(NA)(φp = 0) vanishes, resulting in the absence of the
intersection. However, in nonadiabatic tunneling, the coupling
term 〈pz〉(NA)(φp = 0) varies in strength across the three EP
fields, leading to the formation of the intersection at φp = 0.
Not surprisingly, the appearance of the intersection and the
observation of nonadiabatic-nondipole coupling can be traced
back to the initial conditions of the tunneled electrons. Shown

FIG. 4. The ionization rate [column (1)] and the minimum dis-
tance between the ionized electron and core [column (2)] calculated
by the classical-trajectory Monte Carlo (CTMC) method with the ini-
tial conditions prepared by ndADK in the CoRTC field [row (a)] and
the CRTC field [row (b)]. In column (2), the black curves denote the
magnitude of instantaneous electric field and the data are presented
in the logarithmic scale.

in Fig. 7 are the initial conditions prepared by the ndADK
[row (a)] and ndSPA [row (b)] methods in the EP laser field
with ellipticities ε = 0.86 [column (1)] and ε = 1.4 [column
(2)]. The blue solid curves represent the average initial trans-
verse momentum 〈v⊥〉 as a function of ionization time tr .
Clearly, under adiabatic tunneling, 〈v⊥〉 vanishes at all times,
while for nonadiabatic tunneling, 〈v⊥〉 has a finite value which
modulates with time.

Remarkably, the appearance of Figs. 5(a) and 7(b) re-
sembles that of Fig. 1(c). This clearly indicates that the
nonadiabatic-nondipole coupling is directly related to the ef-
fective angular frequency ωeff . This motivates us to derive an
analytical expression for 〈pz〉(φp = 0) as a function of ωeff ,
represented by dotted curves in Fig. 5. When the Coulomb
potential is absent, φp = 0 corresponds to t = π/ω within a
single optical cycle. With these in mind, we find that the initial
transverse momentum at t = π/ω is along the êx direction,
with a magnitude given by [11]

v⊥(t = π/ω) =
√

2Ip

6
γi +

√
2Ip

6

(
1

9
− 17ε2

60

)
γ 3

i , (29)

where the effective Keldysh parameter γi = ωeff
F

√
2Ip with

the instantaneous field strength F (t = π/ω) = εF0 and the
instantaneous effective angular frequency

ωeff

(
t = π

ω

)
= ω

ε
. (30)
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FIG. 5. Asymptotic linear momentum transfer 〈pz〉 as a function
of the photoemission angle φp for (a) nonadiabatic and (b) adia-
batic tunneling calculated by TDSE (solid curves), ndSPA (dashed
curves), and ndADK (dash-dotted curves). The average linear mo-
mentum transfer 〈pz〉 around φp = 0 can be expressed analytically
by Eq. (32) (dotted curves). The shaded area in panel (a) is a clear
indicator of nonadiabatic-nondipole coupling.

Thereby, we may obtain the linear momentum transfer at the
tunnel exit

〈v⊥〉(φp = 0) = a1ωeff + a2ω
3
eff , (31)

where a1 and a2 are given in Table I. It is further substituted
for Eq. (6) to obtain the asymptotic linear momentum transfer

〈pz〉(φp = 0) = 〈pz〉(A)(φp = 0) + 〈pz〉(NA)(φp = 0)

= (1 − δ)

(
Ip

3c
+ εF0

12c
√

2Ip

)
+ A2

0

2c︸ ︷︷ ︸
A

+ b1ωeff + b2ω
2
eff + b3ω

3
eff + b4ω

4
eff + b6ω

6
eff︸ ︷︷ ︸

NA

,

(32)

where δ = (2αZεF0)/(2Ip)3/2, b1 = A0
c a1, b2 = 1−δ

6c a2
1, b3 =

A0
c a2, b4 = 1−δ

3c a1a2, and b6 = 1−δ
6c a2

2. Clearly, the linear mo-
mentum transfer has a positive correlation to the effective
angular frequency ωeff , up to order 6.

The dotted lines in Fig. 5(a) represent the sum of adiabatic
and nonadiabatic contributions to the average linear momen-
tum transfer 〈pz〉(A)(φp = 0) + 〈pz〉(NA)(φp = 0) [Eq. (32)],
corresponding to nonadiabatic tunneling, which agree very
well with full TDSE and ndSPA calculations at φp = 0. In
Fig. 5(b), the dotted lines denote the adiabatic contribution
〈pz〉(A)(φp = 0) alone, where the intersection is clearly absent.

FIG. 6. Asymptotic linear momentum transfer 〈pz〉 as a function
of the photoemission angle φp for (a) nonadiabatic and (b) adia-
batic tunneling calculated by TDSE (solid curves), ndSPA (dashed
curves), and ndADK (dash-dotted curves). The average linear mo-
mentum transfer 〈pz〉 around φp = π can be expressed analytically
by Eq. (A9) (dotted curves). The shaded area in panel (a) is a clear
indicator of nonadiabatic-nondipole coupling.

The analysis presented indicates that the intersection mag-
nitude in the average linear momentum transfer can serve
as a visual indicator of the nonadiabatic-nondipole coupling
strength. To delve deeper into this relationship, we examine
the correlation between the intersection magnitude in linear
momentum transfer �〈pz〉, which is the difference between
the average linear momentum transfers for two distinct ellip-
ticities, and the intersection magnitude in the effective angular
frequency �ωeff , both assessed at φp = 0 in EP laser fields.
Without loss of generality, we set one of the ellipticities as the
reciprocal of the other, so that �ωeff can be expressed as

�ωeff (ε) = ωeff (ε) − ωeff

(
1

ε

)
, (33)

and �〈pz〉 is given by

�〈pz〉(ε) = 〈pz〉(ε) − 〈pz〉
(

1

ε

)
. (34)

These variables are thereby studied as a function of ε, as
shown in Figs. 9(a1) and 9(b1), respectively. As ε increases
and gets closer to 1, ε gets closer to 1/ε, and thus �ωeff

decreases, as is clear from Fig. 9(a1), where the solid line
is the numerical result and the dashed line represents the
analytical value with ωeff (ε) given by Eq. (30). Interestingly,
the same trend shows up for �〈pz〉, as illustrated in Fig. 9(b1),
where the solid line denotes the numerical value obtained
from ndSPA while the dashed line stands for the analytical

TABLE I. Analytical coefficients a1 and a2 for the average initial transverse momentum v⊥ in elliptically polarized (EP) laser fields and
corotating (CoRTC) and counterrotating two-color (CRTC) circularly polarized laser fields around the photoemission angle φp = 0 (EP fields)
and φp = π (CoRTC and CRTC fields).

EP (φp = 0) CoRTC (φp = π ) CRTC (φp = π )

a1
Ip

3A0ω
− 17

90

I2
p

A3
0ω

1
3(1+η)

Ip

A0ω

1
3(1−η)

Ip

A0ω

a2
2
27

I2
p

A3
0ω3

−31−210η−447η2−248η3

270(1+2η)3 (1+η)3

I2
p

A3
0ω3

−31+354η+465η2−248η3

270(1+2η)3 (1−η)3

I2
p

A3
0ω3

063113-8



VISUALIZATION OF SUBCYCLE … PHYSICAL REVIEW A 110, 063113 (2024)

FIG. 7. The initial conditions prepared by the ndADK [row (a)]
and ndSPA [row (b)] methods in the EP laser field with ellipticities
ε = 0.86 [column (1)] and ε = 1.4 [column (2)]. The blue solid
curves represent the average initial transverse momentum 〈v⊥〉 as a
function of ionization time tr .

result with 〈pz〉(ε) given by Eq. (32). Clearly, the analytical
result for the intersection magnitude in 〈pz〉 largely reproduces
the numerical one, both of which have a positive correlation
with that in the effective angular frequency. Therefore, it
can be concluded that �ωeff can be used to characterize the
nonadiabatic-nondipole coupling strength.

Similar to the observations for EP fields, the intersection in
the average linear momentum transfer at φp = π , induced by
the nonadiabatic-nondipole coupling effects, is also evident
for CoRTC and CRTC fields in Fig. 6(a) when compared to
the adiabatic tunneling scenario in Fig. 6(b), which can be
traced back to the initial tunneling conditions of the electrons,
as shown in Fig. 8. The derivation of the analytical expression
for the linear momentum transfer at φp = π is provided in the
Appendix, with results summarized in Table I. The magnitude
of the intersection is on the level of 10−3, within the detectable
range of experimental measurements.

For CoRTC and CRTC fields, the positive correlation be-
tween the average linear momentum transfer and the effective
angular frequency is also evident in Figs. 9(a2) and 9(b2).
In this laser setup, the intersection magnitude in the average
linear momentum is defined as the difference in 〈pz〉 between
CRTC and CoRTC fields, evaluated at φp = π . The similar
definition applies for the intersection magnitude in the effec-
tive angular frequency. Hence, �ωeff is given by

�ωeff (η) = ωeff (ε = −1, η) − ωeff (ε = 1, η), (35)

while �〈pz〉 can be expressed as

�〈pz〉(η) = 〈pz〉(ε = −1, η) − 〈pz〉(ε = 1, η). (36)

FIG. 8. The initial conditions prepared by the ndADK [row (a)]
and ndSPA [row (b)] methods in the CoRTC field [column (1)] and
the CRTC field [column (2)]. The blue solid curves represent the
average initial transverse momentum 〈v⊥〉 as a function of ionization
time tr .

These variables are thereby studied as a function of η, as
shown in Figs. 9(a2) and 9(b2), respectively. As η increases,
the ratio of the 2ω field over the ω field increases, leading
to a higher effective angular frequency for the CRTC field
and a lower effective angular frequency for the CoRTC field.
Thereby, the difference between them enlarges, leading to
the increasing trend of �ωeff as shown in Fig. 9(a2). Not
surprisingly, the trend of �〈pz〉 follows that of �ωeff , as clear
from Fig. 9(b2) for both numerical and analytical results,
in the latter of which ωeff and 〈pz〉 are given by Eqs. (A1)
and (A9), respectively. Therefore, intersection magnitude in
the average linear momentum transfer can serve as a visual
indicator of the nonadiabatic-nondipole coupling strength for
CoCRTC and CRTC laser fields as well.

VI. CONCLUSIONS

In conclusion, we introduce two experimentally feasible
protocols that facilitate the direct visualization of subcycle
nonadiabatic-nondipole coupling effects, which have until
now been elusive. We demonstrate the correlation between
energy transfer and linear momentum transfer through the in-
terplay of nonadiabatic and nondipole effects. By comparing
the linear momentum transfer under nonadiabatic conditions,
as calculated by ndSPA which includes coupling effects, with
that under adiabatic conditions, as determined by ndADK
where such effects are negligible, we can visually discern the
impact of nonadiabatic-nondipole coupling on linear momen-
tum transfer. This is evident in the form of a pronounced
intersection in the average linear momentum transfer at a
specific photoemission angle. The results from TDSE closely
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FIG. 9. Column (1): Intersection magnitude for the effective an-
gular frequency �ωeff [panel (a1)] and the average linear momentum
transfer �〈pz〉 [panel (b1)] as a function of the ellipticity ε at φp = 0
for the EP laser field. Column (2): Intersection magnitude for the
effective angular frequency �ωeff [panel (a2)] and the average linear
momentum transfer �〈pz〉 [panel (b2)] as a function of the field
ratio η at φp = π for the CoRTC and CRTC laser fields. The solid
lines represent the numerical results, while dashed lines denote the
analytical results of the intersection magnitude.

match those from ndSPA, validating the accuracy of the
ndSPA method.

The detection of nonadiabatic-nondipole coupling effects
is pivotally dependent on the choice of laser fields. First, the
vector potential at a specific emission time should be consis-
tent across multiple laser fields to ensure that the adiabatic
term in Eq. (6) remains unchanged. Second, the effective an-
gular frequencies of these laser fields should vary. With these
conditions, the intersection in 〈pz〉 emerges as the effective
angular frequency varies, thereby highlighting the character-
istics of the coupling effects. Remarkably, a more pronounced
intersection indicates stronger coupling, while its absence
suggests the absence of a coupling term. This phenomenon
is observable in both EP laser fields with different ellipticities
and in CoRTC and CRTC laser fields.

Additionally, we have derived the linear momentum
transfer related to coupling effects as a function of the in-
stantaneous effective angular frequency. Our work provides a
means to observe subcycle nonadiabatic-nondipole coupling
effects in linear momentum transfer, offering an intuitive
understanding of the dynamics between energy and linear
momentum transfer, thereby paving the pathway towards un-
raveling the complex interactions in strong-field ionization
processes.
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APPENDIX: LINEAR MOMENTUM TRANSFER
AS A FUNCTION OF EFFECTIVE ANGULAR FREQUENCY

IN CORTC AND CRTC LASER FIELDS

Similar to the case of EP laser fields, and the appearance of
the average linear momentum transfer as shown in Fig. 6(a)
for CoRTC and CRTC fields resembles that of the effective
angular frequency presented in Fig. 2(c) as well, suggest-
ing a direct connection between the nonadiabatic-nondipole
coupling and the effective angular frequency. The effective
angular frequency ωeff at t = 0 is given by

ωeff (t = 0) = ∂

∂t
arctan

(
Fy

Fx

)∣∣∣∣
t=0

= ω
1 + 2η

1 + εη
. (A1)

The nondipole tunneling effects have negligible impact on
the PMD within the laser polarization plane [51]. Therefore,
the initial transverse momentum v⊥(φp = π ) can be derived
within the dipole approximation. Accordingly, the ionization
rate is given as, up to exponential accuracy,

WSPA(p) = exp(−2Im SD), (A2)

where SD = − ∫ tr
ts

{[p + A(t )]2/2 + Ip}dt . Taking the CoRTC
field as an example,

SD =
{(

p2

2
+ Ip + Up

)
t + A0

2ω
{2py[1 − cos(ωt )]

+ px sin(ωt )[2 + η cos(ωt )]

+ ηpy sin2(ωt )} + A2
0

6ω
η sin(3ωt )

}∣∣∣∣ts
tr

, (A3)

where Up = [(1 + η2/4)A2
0]/2, and thus

ImSD =
{(

p2

2
+ Ip + Up

)
ti + A0

2ω
[2py sin(ωtr ) sinh(ωti )

+ 2px cos(ωtr ) sinh(ωti )

+ η

2
px cos(2ωtr ) sinh(2ωti )

+ 2ηpy cos(ωtr ) cosh(ωti ) sin(ωtr ) sinh(ωti )]

+ A2
0

6ω
η cos(3ωtr ) sinh(3ωti )

}
. (A4)

At tr = 0, Eq. (A4) can be simplified as

ImSD =
{(

p2

2
+ Ip + Up

)
ti

+ A0

2ω
px

[
2 sinh(ωti ) + η

2
sinh(2ωti )

]
+ A2

0

6ω
η sinh(3ωti )

}
. (A5)

By requiring ∂{ImSD}/∂ p = 0, the most probable asymp-
totic momentum p can be given as py = pz = 0 and
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px = −(A0/2){[2 sinh(ωti ) + (η/2) sin(2ωti )]/(ωti )}. There-
fore, the corresponding initial transverse momentum is along
the −êx direction with a magnitude given by

v⊥(tr = 0) = px + Ax

= A0

2

[
−2 sinh(ωti ) + (η/2) sin(2ωti)

ωti
+ (2+η)

]
.

(A6)

Obviously, the initial momentum v⊥ and the vector potential
A are antiparallel at tr = 0.

Subsequently, we establish the link between the initial
transverse momentum and the effective angular frequency, ul-
timately deriving the linear momentum transfer as a function
of the effective angular frequency. To this end, the tunneling
time ti can be expanded in powers of the instantaneous effec-
tive Keldysh parameter γi = ωeff

√
2Ip/F (tr ),

ωti = aγi + bγ 2
i + dγ 3

i + O
(
γ 4

i

)
. (A7)

By solving the equation ∂{ImSD}/∂ti = 0, we can obtain
a = (1 + η)/(1 + 2η), b = 0, and c = [(−2 − 11η −
8η2)/18](1 + η)/(1 + 2η)3. Substitution of them into
Eq. (A6) yields the initial transverse momentum

〈v⊥〉(φp = π ) ≈ v⊥(tr = 0) = a1ωeff + a2ω
3
eff , (A8)

where the coefficients a1 and a2 are given in Table I. Likewise,
we also derive the analytical coefficients for the CRTC field,
which are also summarized in Table I.

Therefore, the asymptotic linear momentum transfer 〈pz〉
at φp = π can be written as

〈pz〉(φp = π )

= 〈pz〉(A)(φp = π ) + 〈pz〉(NA)(φp = π )

= (1 − δ)

(
Ip

3c
+ F0(1 + εη)

12c
√

2Ip

)
+ A2

0

2c

(
2 + η

2

)2

︸ ︷︷ ︸
A

+ b1ωeff + b2ω
2
eff + b3ω

3
eff + b4ω

4
eff + b6ω

6
eff︸ ︷︷ ︸

NA

, (A9)

where δ = [2αZF0(1 + εη)]/(2Ip)3/2. The expressions for b1

through b6 have the same form as those in the case of EP
fields, i.e., b1 = 2+η

2
A0
c a1, b2 = 1−δ

6c a2
1, b3 = 2+η

2
A0
c a2, b4 =

1−δ
3c a1a2, and b6 = 1−δ

6c a2
2. Note that ε = 1 corresponds to

the CoRTC field (purple dotted lines in Fig. 6) and ε = −1
corresponds to the CRTC field (red dotted lines in Fig. 6).
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