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S1. BACKPROPAGATION IN THE NONDIPOLE REGIME

In order to extract accurate information on the momentum distribution of ionized electrons at the tunnel exit, we extend
the backpropagation method [1–3] to the nondipole regime. The method involves two steps: We first propagate the quantum
wave packet forward in time until an ensemble of virtual detectors is reached. In the second step, semiclassical trajectories are
propagated backward in time until the tunnel exit is reached. To initiate the backpropagation, the outgoing flux needs to be
converted into classical trajectories when the laser field is still on. To this end, we need to find the appropriate flux associated
with the Hamiltonian. The time-dependent Schrödinger equation can be written as
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the conjugate of which is
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Multiplying Eq. (S1) by ψ∗ from the left, multiplying Eq. (S2) by ψ from the left, and doing the subtraction, we have
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According to the equation of continuity ∂

∂ t ρ +∇ ·j = 0, where ρ ≡ |ψ|2, the probability flux j is given by
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If we write the wavefunction in “polar” form as ψ =
√

ρeiS, we find
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Expressing the current density as j = ρv, we obtain the local velocity v during the pulse
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Note that the Hamiltonian we use adds a “shear” to the atomic potential, effectively changing the velocity defined in this frame
as compared to the lab frame. In order to obtain the observables in the lab frame, the following frame transform is required:

rlab = r− zA/c, (S7)
vlab = v+ zF /c− vzA/c. (S8)
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S2. THE GENERALIZED PSEUDOSPECTRAL METHOD FOR NONDIPOLE THREE-DIMENSIONAL TDSE

The Hamiltonian used in the main text [Eq. (2)] is presented in a “sheared” gauge to facilitate TDSE simulations with the
Fourier method. To check the numerical convergence of the Fourier method, we also developed the generalized pseudospectral
method to solve the three-dimensional TDSE beyond the dipole approximation using a length-gauge Hamiltonian with nondipole
corrections to order 1/c:
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with H0 = p̃2/2+V (r), H1 = r ·F (t), and H2 = z
c p̃ ·F (t), where p̃ is the corresponding canonical momentum. The part

H0 +H1 is the Hamiltonian in dipole approximation in length gauge, and can be readily solved by the time propagator based on
the second-order split-operator method [4] and the generalized pseudospectral method [5–7]. With the use of a Taylor expansion
for the time propagator of the H2 term, we can perform numerical simulations with the Hamiltonian HL in a similar framework.
More specifically, the time propagator for HL can be expressed as

U(t +∆t) = exp(−iH0∆t/2)exp(−iH1∆t/2)exp(−iH2∆t)exp(−iH1∆t/2)exp(−iH0∆t/2). (S10)

The propagation of exp(−iH0∆t/2) is done in energy space, and exp(−iH1∆t/2) is evaluated in position space. Afterwards, we
continue evaluating the exp(−iH2∆t) part in position space using a Taylor expansion
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For the system considered in the present work, we found nmax = 8 for each time step is adequate to obtain converged results.
The momentum distribution is obtained using the same technique as in [8], except that the Volkov propagator applied to the
absorbed wave packet at each time step is substituted with the nondipole version, which is calculated numerically with a similar
procedure.

S3. NONDIPOLE STRONG-FIELD APPROXIMATION

The nondipole strong-field approximation (SFA) offers the possibility to model recollision-free strong-field ionization without
the computational demanding solution of the exact time-dependent Schrödinger equation. For the calculations, we use the
Hamiltonian in length gauge, HL [Eq. (S9)], neglecting, however, the atomic potential in H0,
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The initial kinetic momentum (or velocity in a.u.) at the tunnel exit v relates to the asymptotic momentum p as
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In the modified SFA evaluated in the saddle-point approximation, the transition rate is calculated from [9–11]

WndSFA = |S̈|−αZ exp{2ImS}, (S14)

where αZ = 1+Z/
√

2Ip with Z the asymptotic charge of the remaining ion. For a short-range potential, αZ = α0 = 1. In the
nondipole version of SFA (ndSFA), the action including nondipole corrections to the order 1/c can be expressed as [12]
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The saddle point is given by
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where the saddle-point time ts = tr + iti must be complex in order to solve Eq. (S16). After solving the saddle-point equation
(S16) the photoelectron momentum distribution can be calculated directly by evaluating Eq. (S14). Reduced quantities such
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as the ionization probability PI as a function of the attoclock angle φp, as shown in Fig. 3(b) of the main text, follow from
integration over the remaining variables. However, in order to calculate observables as a function of the release time tr we have
to integrate over all momenta that belong to this given real part of the saddle-point time. To this end, it is advantageous to
perform a coordinate transformation (px, py, pz)→ (tr,k⊥, pz) with the release time tr chosen as the real part of the saddle-point
time ts, the momentum component in the polarization plane

k⊥ = (p+ReA(ts)) · (ImAy(ts)ex− ImAx(ts)ey)/
√

(ImAx(ts))2 +(ImAy(ts))2 (S17)

and the z-component of the final momentum pz. The probability density in these variables is accordingly given by
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The subcycle time-resolved linear momentum transfer shown in Fig. 2 of the main text can now be obtained as the average of
the initial velocity in the light propagation direction
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Expansion of the vector potential A(tr + iti) in powers of ti [3, 13–16],
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allows to simplify the ndSFA and to gain additional insights. Inserting into Eq. (S16) and keeping the terms up to the second
order in ti results in

v(tr) ·F (tr) = 0, (S21)

which is the termination criterion we use for the backpropagating trajectories, and
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The ionization rate [Eq. (S14)] depends exponentially on the argument
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with an effective field F̃(tr) =
√

F2(tr)−v⊥(tr) · Ḟ (tr) and on the nonexponential prefactor

|S̈|−αZ ≈ |− i(1+ pz/c)tiF̃2|−αZ

≈
[(

1+
pz

c

)(
v2
⊥+ p2

z +2
pz

c

(
p ·A+

A2

2

)
+2Ip

)
F̃2
]−αZ/2

. (S24)

Eq. (S23) can be further simplified
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while Eq. (S24) can be accordingly approximated by
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Hence, we arrive at
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The Jacobian in Eq. (S18) reads after the expansion of the vector potential in ti (S20)∣∣∣∣det
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To this order, it does not depend on pz and, thus, has no influence in the transfer of longitudinal momentum. We therefore neglect
this factor in the following.

In Eq. (S27), we introduce the partial average 〈vz(tr,v⊥)〉 that is obtained by integration over pz for fixed release time tr and
the perpendicular component of the velocity v⊥
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with the corresponding asymptotic linear momentum
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When focusing on the temporal dynamics only, one can additionally average over the perpendicular velocity v⊥ and hence obtain
for a fixed release time tr the average linear momentum transfer at the tunnel exit 〈vz(tr)〉.

The effective field F̃ =
√

F2−v⊥ · Ḟ including the time derivative of the field, Ḟ , accounts for nonadiabatic effects. Con-
sequently, v⊥ is centered at nonzero values in Eqs. (S29) and (S30). Approximating the nonadiabatic correction to the lowest
order in Ḟ in the exponent
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where the first-order term in v⊥ shifts the center of the v⊥ distribution from zero to a finite value. To obtain an explicit value,
we have also neglected the momentum in the laser propagation direction, which would provide only a minimal contribution to
the shift in v⊥. Inserting the explicit expression for the laser field and assuming a flat envelope of the pulse yields
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which closely resembles the result of the Perelomov–Popov–Terent’ev (PPT) theory [17–23]. This nonadiabatic effect generates
a subcycle modulation of the center of v⊥ as well as v2

⊥, which further results in a subcycle nonadiabatic modulation of the
nondipole effect in Eq. (S31). If we approximate Eq. (S31) with a Gaussian distribution in v⊥, it is easy to show that
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Distinct contributions to the linear momentum at the tunnel exit [Eq. (S29)] can be studied at different levels of approximation.
If we ignore the contribution from the nonexponential prefactor (αZ = 0),
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For ε . 1 as in a typical attoclock setup, Eq. (S34) can be further approximated by
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Obviously, the nonadiabaticity of strong-field tunneling ionization introduces a 2ω subcycle modulation of the nondipole transfer
of photon momentum at the tunnel exit, in agreement with what is found in the main text. Note that for the present laser
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ε2I2

p

9A2
0

(
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)
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2
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(1− ε) < 0, hence the modulation phase agrees with that presented in the main text as well.

The temporal average of 〈vz(tr)〉, however, is larger than Ip/3c. The inclusion of the prefactor with αZ > 0 generates the
downward shift in qualitative agreement with the results determined by the backpropagation method (black dashed line in Fig. 2
of the main text).

Nonadiabatic tunneling effects may leave their mark on the experimentally observable asymptotic linear momentum transfer
〈pz〉. From Eq. (S30), it is easy to show

〈pz(tr)〉= A2(tr)/2c−〈v⊥(tr)〉 ·A(tr)/c+ 〈vz(tr)〉. (S36)

Interestingly, the nonadiabaticity-induced subcycle variation in 〈v⊥(tr)〉 not only leads to modulations of the linear momentum
transfer at the tunnel exit but also is amplified in 〈pz〉 by its coupling to the vector potential. Provided the linear momentum
resolution suffices, a decomposition of different contributions to the angular variation shown in Fig. 3 of the main text could
indeed be pursued. It may even be possible to isolate the contribution of 〈vz(tr)〉 by removing the contribution of 〈v⊥(tr)〉 ·
A(tr)/c using, e.g., a standard SFA theory. For extracting 〈vz(tr)〉 from 〈pz(φp)〉 (Fig. S1), we transform the angular dependence
of the asymptotic linear momentum transfer 〈pz(φp)〉 to the time axis using the linear mapping between time and angle in the
elliptical coordinate [24] and obtain 〈pz(tr)〉 for the central cycle (blue line), from which different contributions can be isolated.
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FIG. S1. Different contributions to the nonadiabatic modulation in linear momentum transfer for a sine-like pulse φCEP = π/2 calculated by
ndSFA and SFA.

S4. ELLIPTICITY DEPENDENCE OF 〈pz〉

The longitudinal momentum transfer 〈pz(φp)〉 features a characteristic dependence on the attoclock angle φp. However, the
exact quantity is strongly dependent on the ellipticity of the ultrashort pulse. For ε well below ε = 1, 〈pz(φp)〉 features a
pronounced minimum as discussed in the main text (Fig. S2). However, as ε → 1 (circular polarization) the minimum becomes
rapidly shallow and eventually turns into a shallow minimum determined by the pulse envelope.
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FIG. S2. Ellipticity dependence of 〈pz(φp)〉 for a cosine-like pulse φCEP = 0 calculated by ndSFA.

S5. WAVELENGTH SCALING OF 〈pz〉

In order for the nondipole transfer of linear momentum to be detected more easily, performing attoclock experiments with
midinfrared laser sources is a promising route. Here, we study the wavelength dependence of the final longitudinal momentum
transfer while keeping the intensity fixed, as shown in Fig. S3. Clearly, as the wavelength increases, the nondipole effect
gets larger and becomes more obvious [panel (a)]. Plotting the angle-integrated final linear momentum as a function of the
wavelength, we find a quadratic increase of 〈pz〉 with the wavelength [panel (b)] and the intercept is close to but not identical to
Ip/3c, consistent with Eq. (5) of the main text.

The ionization probability peaks near but not exactly at the minimum of the linear momentum transfer, therefore
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ε2A2
0

2c
=

Ip
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+

ε2F2
0

8π2c3 λ
2. (S37)

As a result, the slope is slightly larger than ε2F2
0 /8π2c3, which is confirmed by our results.
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FIG. S3. Final longitudinal momentum for different laser wavelengths in (a) angle-resolved and (b) angle-integrated manner for a cosine-like
pulse φCEP = 0 calculated by TDSE.



S7

S6. INTENSITY AND DURATION DEPENDENCE OF 〈vz〉

The intensity dependence of the linear momentum transfer at the tunnel exit 〈vz〉 is shown in Fig. S4, featuring an intensity
dependence of the linear momentum transfer at the tunnel exit. The modulation depth decreases as the laser intensity increases,
because the Keldysh parameter decreases, meaning the tunneling becomes more adiabatic. The most important aspect here is that
the modulation is in phase for different laser intensities, which ensures that such observation survives focal volume averaging.

3T/4 T/2 T/4 0 T/4 T/2 3T/4
tr

1.4
1.6
1.8
2.0
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3.0

v z
 (a
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×10 3

3.0 × 1014 W/cm2
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5.0 × 1014 W/cm2

6.0 × 1014 W/cm2

7.0 × 1014 W/cm2

8.0 × 1014 W/cm2

9.0 × 1014 W/cm2

Ip/3c

FIG. S4. Dependence of the linear momentum transfer 〈vz〉 at the tunnel exit on the laser intensity for a sine-like pulse φCEP = π/2 calculated
by ndSFA.

The length of the pulse is found not to be a critical parameter. The variation between different laser cycles results from their
relative laser intensity (or field strength) within the respective time window. When the number of cycles increases for a given
peak intensity, as shown in Fig. S5, the difference between different cycles decreases. Certainly, the modulation depth is larger
for short pulses at both tails due to the lower intensity and larger Keldysh parameter. However, the ionization probability in
the tails is low and does not contribute much to the main ionization peaks. Therefore, the exact pulse duration is not a critical
parameter for an experimental verification of the nonadiabatic nondipole effect.
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FIG. S5. Dependence of the linear momentum transfer 〈vz〉 at the tunnel exit on the number of laser cycles for a sine-like pulse φCEP = π/2
calculated by ndSFA.
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