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Modification of the saddle-point equation for strong-field ionization from atomic p orbitals
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The saddle-point approximation (SPA) within the framework of strong-field approximation is extensively
applied in strong-field physics because it offers clear physical insight into intense light-matter interactions. In
this study, we introduce an m-resolved saddle-point approximation (m-SPA), where m is the magnetic quantum
number, to analyze the ionization dynamics of atoms initially in p orbitals subjected to an intense laser field.
Our results reveal that m influences not only the prefactor of the ionization rate but also the saddle-point
equation itself, an effect overlooked in prior studies. The accuracy of the m-SPA method is validated through
comparisons with the backpropagation method and the strong-field approximation, showing its superiority over
the conventional SPA approach. By employing the m-SPA approach, we are able to extract more accurate
distributions of the initial tunneling exit energy and position, thereby allowing for a more precise determination
of the asymptotic photoelectron characteristics. Additionally, we extend the conservation law for angular
momentum and energy of photoelectrons from s orbitals to p orbitals and from circularly polarized to elliptically
polarized laser fields, both at the tunnel exit and in the asymptotic region. This work facilitates future research
on strong-field ionization from arbitrary atomic orbitals.
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I. INTRODUCTION

Strong-field ionization (SFI) in intense laser fields serves
as a fundamental starting point for the in-depth exploration of
strong-field physics [1–4]. In the context of SFI for atoms,
the initial atomic orbitals play a crucial role [5–11]. For
simplicity, however, it has been common practice to assume
that photoelectrons ionize from the ground-state s orbital in
rare gases [12–14]. This simplification overlooks the fact that,
with the exception of helium, the outer atomic orbitals of
rare gases are actually p orbitals, where the bound electrons
circulate either clockwise or counterclockwise, depending on
their magnetic quantum number m [15,16]. When exposed to
circularly polarized laser fields, these orbitals exhibit either
corotating or counterrotating behavior relative to the laser
field. For right circularly polarized laser fields, as used in
the present study, p+ orbitals corotate, while p− orbitals
counterrotate with respect to the laser field. It has been pre-
dicted theoretically that the ionization rate for photoelectrons
initially counterrotating with respect to the laser field is signif-
icantly higher than for the corotating ones [17,18], a finding
that was experimentally confirmed by preparing bound elec-
trons in initial p orbitals [16,19]. Furthermore, it has been
demonstrated that photoelectrons from the p± orbitals ex-
hibit distinct angular distribution offsets, attributable to the
deformation of these orbitals under the influence of the laser
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field [20]. The interaction between diverse initial atomic
orbitals and various laser fields, such as intense circularly
polarized (CP) fields, elliptically polarized (EP) fields, and
two-color fields, has been a focal point of research [15,20,21].

The quantum transition amplitude for the electron from
a bound state to a continuum state, under the influence of
a strong laser pulse, can be described by the theory of
strong-field approximation (SFA) [22–26], which is typically
expressed as the time integral of a rapidly oscillating function.
With a further saddle-point approximation (SPA) [27–31], this
transition can be represented in terms of electron trajectories
known as quantum orbits [32], facilitating transparent inter-
pretation of SFI with the language of trajectories. Within the
framework of SPA, the transition amplitude is approximated
as the product of an exponential integrand evaluated at the
saddle-point times and a prefactor. The same approach has
been applied to atomic p orbitals [9,27,29], where the influ-
ence of the magnetic quantum number m has been assumed
to be encapsulated solely within the prefactor. The exponen-
tial integrand and, consequently, the associated saddle-point
equation (SPE) are presumed to be independent of m.

In this study, we demonstrate that the SPE must be mod-
ified to incorporate the magnetic quantum number m for p
orbitals to accurately depict the SFI of these orbitals. We
introduce an m-resolved saddle-point approximation (m-SPA)
method to investigate the ionization dynamics of electrons
from p orbitals in strong CP and EP laser fields. The reliability
and accuracy of this method are confirmed through compar-
isons with results from the backpropagation method [33–36]
and the SFA. In the m-SPA method, the phase associated with
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the quantum number m in the transition amplitude is incorpo-
rated into the phase of the exponential integrand, effectively
introducing the influence of m into the SPE. This approach
leads to a more nuanced understanding of the dynamics of
photoelectrons originating from p± orbitals, both at the tunnel
exit and in the asymptotic region. Relative to corotating p+
photoelectrons, counterrotating p− photoelectrons are found
to be closer to the nucleus at the tunnel exit and have higher
tunneling exit energy, which the conventional SPA fails to
predict. This allows us to obtain more precise asymptotic
dynamics information, including asymptotic momentum and
angular momentum. Recently, a subcycle conservation law for
angular momentum and energy in SFI was established [37,38],
demonstrated through the correlated spectrum of angular mo-
mentum and energy (SAME) of photoelectrons at the tunnel
exit and in the asymptotic region. With m-SPA, we extend the
conservation law to p± orbitals in CP and EP fields, enhancing
our understanding of the underlying physical processes in SFI.

This article is organized as follows. In Sec. II, we provide
a summary of the theoretical methods utilized in this study,
including the backpropagation method, the SFA, the SPA,
and the m-SPA. In Sec. III, we perform an in-depth analysis
of the SAME and dynamical information of photoelectrons
from p± orbitals at the tunnel exit under both CP and EP
fields. In Sec. IV, we present the SAME and photoelectron
characteristics in the asymptotic region. The conclusion is
outlined in Sec. V. Atomic units are used throughout unless
stated otherwise.

II. THEORETICAL FRAMEWORK

In this section, we briefly overview the numerical simu-
lation and analytical calculation methods (backpropagation,
SFA, SPA, and m-SPA) that are employed to study the ioniza-
tion dynamics of Ne atoms initially in the 2p orbital subjected
to intense CP and EP laser fields. In this study, we utilize a
laser pulse with the vector potential

A(t ) = A0 cos4

(
ωt

2N

)
[cos(ωt )êx + ε sin(ωt )êy] (1)

and the corresponding electric field F(t ) = −Ȧ(t ), where A0

is the amplitude of the vector potential, ω is the central angular
frequency, ε is the ellipticity, and N = 10 is the total number
of cycles.

A. The backpropagation method

The backpropagation method [33–36] is a hybrid quantum-
classical approach widely applied to retrieve the dynamical
characteristics of electrons at the tunnel exit. It involves
three steps, including quantum forward propagation using the
time-dependent Schrödinger equation (TDSE), transcription
of ionized quantum wave packets into classical trajectories,
and backpropagation of these classical trajectories along the
time axis until a certain stopping criterion is met, which de-
fines the tunnel exit.

We solve the two-dimensional TDSE within the single-
active-electron approximation and dipole approximation to
analyze the SFI of Ne. The Hamiltonian in the length gauge is

given by

H = 1
2 p2 + r · F(t ) + V (r), (2)

with the Coulomb potential

V (r) = −1 + 9e−0.85r1.6√
r2 + a0

, (3)

where the soft-core parameter a0 = 3.65 is tuned to reproduce
the ionization potential Ip = 0.7935 a.u. for the 2p orbital
of Ne. The orthogonal normalized eigenfunctions, ψx(r) and
ψy(r), are obtained using the imaginary-time propagation
method, corresponding to the 2px and 2py orbitals of Ne,
respectively. A linear combination of them yields the initial-
state wave function

ψ±(r) = 1√
2

[ψx(r) ± iψy(r)], (4)

where the subscript ± denotes the state with the magnetic
quantum number m = ±1.

Employing the split-operator Fourier method, we compute
the evolution of the wave function in the laser field. The calcu-
lation is performed on a spatial grid comprising 1024 points,
with a spatial increment of �x = �y = 0.2 a.u. in each of
the two dimensions, along with a time step of �t = 0.02 a.u.
To suppress unphysical reflections of the photoelectron wave
packet at the grid boundary, we apply an absorption function
near the boundary, 1/[1 + exp{(r − r0)/d}], with the radius
parameter r0 = 87.4 a.u. and the width parameter d = 4 a.u.
As the photoelectron wave packet approaches r0, we perform
absorption on the wave function every 0.2 a.u. in time. The
absorbed wave packet is projected onto the Volkov state to
obtain the photoelectron momentum distribution.

To convert the ionized quantum wave packet into classi-
cal trajectories, we evenly distribute 6000 virtual detectors
[39–42] on a spherical shell with a radius of rd = 40 a.u.
Following Newton’s equation of motion, these classical tra-
jectories are subsequently reversed in time to propagate back
until they reach the tunnel exit. Meeting the criterion of zero
momentum parallel to the instantaneous electric-field direc-
tion during the backward propagation signifies the arrival of
the trajectories at the tunnel exit. In our calculations, we have
tested that the results converge with respect to the numerical
grid parameters.

B. Strong-field approximation

The SFA theory neglects the influence of the laser field
on the initial bound state and the effect of the Coulomb in-
teraction on the final continuum state, yielding the transition
amplitude in the length gauge [28],

MSFA
± (p) = −i

∫
〈p + A(t )|r · F(t )|ψ±〉eiS0(t )dt

= −i
∫

i
∂

∂k
ψ̃±(k) · F(t )eiS0(t )dt, (5)

where k = p + A(t ), the action S0(t ) = ∫ t dt{[p +
A(t )]2/2 + Ip}, and ψ̃±(k) is the Fourier transform of the
initial-state wave function, ψ̃±(k) = ∫

dr exp(ik · r)ψ±(r).
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Considering the asymptotic form of the initial wave func-
tion in the momentum space [27,43],

ψ̃±(k) = A(−ik)l

2l+1/2(2Ip)(l−ν)/2

�(l + ν + 2)

�(l + 3/2)

× 2F1

(
l − ν

2
,

l − ν + 1

2
, l + 3

2
; − k2

2Ip

)

× Ylm(k̂)

(k2 + 2Ip)ν+1
, (6)

where l = 1, m = ±1, ν = 1/
√

2Ip, �(x) is the gamma func-
tion, Ylm is the spherical harmonics, and 2F1(a, b, c; z) is the
Gauss hypergeometric function. For the valence shell of Ne,
we have A = 2.1 [27]. For computational convenience, the
momentum-space wave function [Eq. (6)] of Ne with the p±
orbitals is approximated as

ψ̃±(k) � kx + imky

(k2 + 2Ip)ν+1
(m = ±1). (7)

By substituting this wave function into the transition ampli-
tude [Eq. (5)], we obtain

MSFA
± (p) =

∫
f (t )eiS0(t )dt, (8)

where

f (t ) = ∂

∂k

[
kx + imky

(k2 + 2Ip)ν+1

]
· F(t ). (9)

C. Saddle-point approximation

The SPA method effectively transforms the integral in
Eq. (8) into a summation over the saddle-point times. Rear-
ranging the prefactor f (t ) in the integrand of Eq. (8), we have

f (t ) = 1

(k2 + 2Ip)ν+2
f0(t ), (10)

with

f0(t ) = (Fx + imFy)(2Ip − νk2)

+ (−Fx + imFy)(1 + ν)(kx + imky)2, (11)

and the transition amplitude [Eq. (8)] can then be written as

MSPA
± (p) ≈

∑
ts

f0(ts)|S̈0(ts)|−(ν+3)/2eiS0 (ts ), (12)

where we have used [27,29,43]∫
C

eiS0(z)

[Ṡ0(z)]ν
dz ≈ iν

�(ν/2)

2�(ν)

∑
j

√
2π i(−2i)ν/2

× |S̈0(z j )|−(ν+1)/2eiS0(z j ). (13)

Here, the action

S0(ts) = −
∫ tr

ts

dt

{
1

2
[p + A(t )]2 + Ip

}
, (14)

and complex saddle-point time ts = tr + iti is obtained by
solving the SPE,

−Ṡ0 = 1
2 [p + A(ts)]2 + Ip = 0, (15)

where tr represents the ionization time and ti is related to the
tunneling ionization rate.

We reorganize the SPE [Eq. (15)] to isolate its imaginary
part

i[p⊥ + ReA(ts)] · ImA(ts) = 0, (16)

where p⊥ = (px, py) is the component of p in the laser po-
larization plane. From this expression, it is clear that p⊥ +
ReA(ts) is perpendicular to ImA(ts) = (ImAx(ts), ImAy(ts)).
Therefore, p⊥ + ReA(ts) has a direction along the unit vector

k̂⊥ = −ImAy(ts)êx + ImAx(ts)êy√
[ImAx(ts)]2 + [ImAy(ts)]2

. (17)

Hence, with the introduction of an auxiliary momentum as

k⊥ = [p⊥ + ReA(ts)] · −ImAy(ts)êx + ImAx(ts)êy√
[ImAx(ts)]2 + [ImAy(ts)]2

, (18)

Eq. (16) is then fulfilled automatically. This procedure sig-
nificantly reduces the search range for the saddle-point times
from the entire complex plane to just one axis, thus greatly
diminishing the computational complexity [44–47]. Further-
more, as the calculation is performed in the (tr , k⊥) coordinate
system, the Jacobian factor must be included when calculating
the ionization rate:

W SPA
± (tr, k⊥) =

∣∣∣∣det
∂ (px, py)

∂ (tr, k⊥)

∣∣∣∣|MSPA
± (p)|2. (19)

D. m-resolved saddle-point approximation

The SPA approach traditionally considers only the effect
of the magnetic quantum number m on the prefactor f0(ts)
of the transition amplitude. However, as we will demonstrate
later, this approach leads to inaccuracies in both the tunneling
exit characteristics and the asymptotic behavior of the pho-
toelectrons. To fully incorporate the effect of m on the SPE,
we introduce the m-SPA method. We begin by processing the
field-related integrand in Eq. (10):

Fx(t ) + imFy(t ) = −imF (t )eimφF (m = ±1), (20)

−Fx(t ) + imFy(t ) = −imF (t )e−imφF (m = ±1), (21)

where F (t ) =
√

F 2
x (t ) + F 2

y (t ) is the magnitude of the electric
field and

φF = arctan

(
Fx(t )

−Fy(t )

)
. (22)

Thus, Eq. (10) can be rewritten as

f (t ) = fm(t )eimφF , (23)

where

fm(t ) = −imF

(k2 + 2Ip)ν+2
[2Ip − νk2

+ (1 + ν)(kx + imky)2e−2imφF ]. (24)

In Eq. (8), the two exponential terms can then be combined
into one, yielding

eimφF eiS0(t ) = eiSm (t ), (25)
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where Sm(t ) = S0(t ) + mφF . Since the term fm(t ) remains
slowly varying relative to the action term Sm(t ) at the saddle
point, we can use the SPA [27,43]∫

C
eiS(z)dz ≈

∑
j

√
2π i|S̈|−1/2eiS(z j ) (26)

to calculate Eq. (8), leading to

Mm-SPA
± (p) ≈

∑
ts

fm(ts)|S̈m(ts)|−1/2eiSm (ts ), (27)

where the saddle-point time ts is determined by solving the
m-resolved saddle-point equation (m-SPE),

−Ṡm = 1
2 [p + A(ts)]2 + Ip + mφ̇F = 0, (28)

where, for long pulses,

φ̇F = εω

ε2 cos2(ωt ) + sin2(ωt )
. (29)

In CP fields, φ̇F = εω, with ε = ±1, whereas in EP fields, the
ionization rate peaks at the maxima of the laser electric field
t = t0 = π/(2ω), leading to φ̇F ≈ εω. The m-SPE [Eq. (28)]
is then approximated as

−Ṡm = 1
2 [p + A(ts)]2 + Ip + mεω = 0. (30)

The subsequent procedure follows the same steps as in the
SPA method. In addition, the present scheme is readily exten-
sible to higher values of |m|. For the SFI of electrons from
orbitals where the magnetic quantum number |m| > 1, we can
follow the same procedure by incorporating m into the phase
S0(t ), leading to the same m-SPE [Eq. (30)].

III. THE TUNNELING REGION

In this section, we delve into the tunneling dynamics of Ne
p± orbitals under the influence of intense CP and EP laser
fields, focusing on the characteristics at the tunnel exit. To
validate our proposed m-SPA method and compare it with the
traditional SPA approach, we use the tunneling characteristics
extracted with the backpropagation method [33–36] as our
reference standard. The backpropagation method treats the
tunneling dynamics fully quantum mechanically and retrieves
the tunneling exit characteristics from the portion of the wave
function that eventually ionizes. It does so by backpropagat-
ing along the time axis using classical electron trajectories,
a method proven to be reliable for obtaining highly differ-
ential information about the tunnel exit. This method has
been widely utilized in various studies, such as identifying
the origin of tunneling time delays [34,48], extracting the
tunneling [49,50] and deformation [20] dynamics of atomic
p orbitals, probing backward rescattering times [51], discov-
ering new conservation laws [37,38], and investigating the
subcycle transfer of linear momentum [52] due to nondipole
effects [53–55].

To benchmark the m-SPA method, we find it advantageous
to utilize the subcycle conservation law that relates angular
momentum and energy, as reflected in the SAME, in intense
CP fields [37,38]:

E0 = εω(Lz0 − m) − Ip (ε = ±1), (31)

where E0 represents the total energy of the electron at the
tunnel exit, Lz0 denotes its angular momentum, and ε = +1
stands for the right-circularly polarized (RCP) pulse, while
ε = −1 denotes the left-circularly polarized pulse. This con-
servation law holds at any moment within the laser pulse,
which stems from the infinite-order continuous dynamical
rotational symmetry present in CP fields [37], or can alter-
natively be understood within the rotating frame [38]. Based
on this conservation law, one can deduce that for the subset of
electrons that tunnel adiabatically with E0 = −Ip, their initial
magnetic quantum number is mirrored in the initial angular
momentum at the tunnel exit, that is, Lz0 = m. A detailed
derivation of the conservation law [Eq. (31)] can be found in
Appendix A.

We present in Fig. 1 a comparative analysis of the tunneling
exit characteristics derived from the backpropagation method
[Figs. 1(a1)–1(a5)], the m-SPA method [Figs. 1(b1)–1(b5)],
and the conventional SPA approach [Figs. 1(c1)–1(c5)], en-
compassing various aspects at the tunnel exit subjected to
a RCP laser field. Specifically, the comparison covers the
conservation law between angular momentum and energy, as
reflected in the SAME, for the p+ orbital (first column) and
the p− orbital (second column), the distribution of the ini-
tial angular momentum (third column), tunneling exit energy
(fourth column), and tunneling exit position (fifth column).

In the first and second columns in Fig. 1, the three black
dotted lines represent the conservation law as presented in
Eq. (31), corresponding to m = −1, m = 0, and m = +1 from
top to bottom in each panel. Upon comparing Figs. 1(a1) and
1(a2), it is evident that the conservation law [Eq. (31)] is
satisfied. The slight curvature and downward shift observed
are attributed to the influence of the Coulomb potential in
the final state [37]. Clearly, as depicted in Figs. 1(b1) and
1(b2), the m-SPA method accurately reproduces the conser-
vation law. In contrast, as demonstrated in Figs. 1(c1) and
1(c2), the conventional SPA approach fails to reproduce the
m-dependent conservation law.

We now examine additional tunneling exit characteristics.
As observed in Fig. 1(a3), the average initial angular momen-
tum for the p+ orbital 〈Lz0〉+ is approximately 3.6. Compared
to adiabatic tunneling for the p+ orbital, Lz0 = 1, this value
suggests that on average, 2.6 photons are absorbed during
the under-barrier tunneling process. In contrast, for the p−
orbital, 〈Lz0〉− is approximately 2.2. Compared to its adiabatic
tunneling, Lz0 = −1, this value indicates that on average, 3.2
photons are absorbed during tunneling. Consequently, the p−
orbital exhibits a higher tunneling exit energy than the p+
orbital, as clearly depicted in Fig. 1(a4). The higher tunneling
exit energy and greater number of photons absorbed by the
p− orbital also lead to a closer tunneling exit position for the
p− orbital compared to the p+ orbital. It is important to note
that, under the RCP pulse used in this context, the p+ orbital
corotates with the RCP pulse, while the p− orbital counterro-
tates. Therefore, these observations align with the established
understanding that counterrotating orbitals are more suscepti-
ble to ionization and thus have a higher ionization probability.
Obviously, all these characteristics are accurately captured by
the m-SPA method. The minor discrepancies in the tunneling
exit energy and position can be attributed to the Coulomb
interaction, which is included in the full backpropagation
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FIG. 1. Correlated spectrum of angular momentum and energy (SAME; first column for p+ and second column for p−), angular
momentum distribution (third column), energy distribution (fourth column), and initial position distribution (fifth column) at the tunnel exit
for photoelectrons ionized from p± orbitals of Ne in the RCP field, calculated by (a1)–(a5) backpropagation, (b1)–(b5) m-SPA, and (c1)–(c5)
SPA. Solid blue lines correspond to the p+ orbital, and solid orange lines represent the p− orbital in the last three columns. The gray dashed
lines mark the position of Lz0 = 0 and E0 = −Ip, the colored vertical dashed lines represent the peak position of the respective distribution,
and the black dotted lines denote Eq. (31) with m = −1, 0, 1 from top to bottom in each panel. In the simulation, the peak laser intensity
I0 = 2 × 1014 W/cm2, the wavelength λ = 800 nm, and the ellipticity ε = 1.

method but not in SFA-derived methods. We note that the
m-SPA approach provides the correct initial tunneling condi-
tions, which is beneficial for classical trajectory simulations.
In contrast, the conventional SPA fails to reproduce the correct
orders of the peaks in the tunneling exit energy and position
for the p+ and p− orbitals.

We now turn our attention to the tunneling exit charac-
teristics in a right-elliptically polarized (REP) laser field. A
comparative analysis using the backpropagation method, m-
SPA, and SPA is presented in Fig. 2. It is evident that the
same conclusions drawn from the RCP field case apply here:
Counterrotating orbitals are more readily ionized, resulting
in a greater number of absorbed photons, higher tunneling
exit energy, and a closer tunneling exit position compared to
those of corotating orbitals. Consistently, the m-SPA method
accurately reproduces the backpropagation results, while the
conventional SPA method does not. A distinct difference be-
tween EP and CP pulses is that the conservation law relating
angular momentum and energy is no longer linear for EP
pulses. As previously indicated [36], the instantaneous ef-
fective angular frequency for the EP pulse varies with time,
leading to a changing slope of the SAME at different moments
within the laser pulse. This results in a curved relationship
between angular momentum and energy, which lacks a simple
closed-form analytical expression. Specifically, the angular
momentum and energy are interconnected through their para-
metric dependence on the auxiliary momentum k [Eq. (18)].

The detailed conservation law at the tunnel exit for EP pulses
is elaborated in Appendix A.

IV. THE ASYMPTOTIC REGION

In this section, we delve into the ionization of Ne p±
orbitals under CP and EP fields, with a particular focus on
the photoelectron characteristics in the asymptotic region. We
employ the SFA in its direct integral form as our benchmark.
Since the m-SPA and SPA are approximations that build upon
the SFA, comparing their results to those of the SFA provides
insights into how the saddle-point approximation should be
applied to the SFA and how the corresponding SPE should be
formulated.

In the asymptotic region, a similar conservation law can be
identified for CP pulses [37,38]:

E = εω(Lz − m) − Ip − Up (ε = ±1). (32)

Compared to the conservation law at the tunnel exit [Eq. (31)],
an additional term, −Up, is present. This term has been
demonstrated to arise from the exchange of photons of the
ionized electron with the laser field after tunneling until it
reaches the detector in the asymptotic region [37]. The deriva-
tion of the conservation law is outlined in Appendix B. This
conservation law also aligns well with the energy expres-
sion for above-threshold ionization (ATI). By substituting
ε(Lz − m) with the number of photons absorbed n, the
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FIG. 2. The same as Fig. 1, but for the REP field with an ellipticity ε = 0.7. The black dotted lines denote the conservation law for the
angular momentum and energy given by their parametric dependence on k in Eqs. (A11) and (A12) with m = −1, 0, 1 from top to bottom in
each panel.

expression reduces to the familiar expression for the energy
of ATI:

E = nω − Ip − Up. (33)

In Fig. 3, we present a comparative analysis of the
asymptotic photoelectron characteristics obtained from three
different methods when the atom is subjected to a RCP
laser field: the SFA method [Figs. 3(a1)–3(a5)], the m-SPA
method [Figs. 3(b1)–3(b5)], and the conventional SPA ap-
proach [Figs. 3(c1)–3(c5)]. The comparison encompasses the
conservation law between asymptotic angular momentum and
energy, as reflected in the SAME, for the p+ orbital (first
column) and the p− orbital (second column), the distribution
of the final angular momentum (third column), energy (fourth
column), and radial momentum (fifth column). This compar-
ison allows for a detailed evaluation of how each method
performs in capturing the essential dynamics of photoelec-
trons in the asymptotic region, providing insights into their
relative accuracy and reliability.

In the first and second columns of Fig. 3, the three
black dotted lines represent the conservation law as given by
Eq. (32), corresponding to m = −1, m = 0, and m = +1 from
top to bottom in each panel. By examining Figs. 3(a1) and
3(a2), it is clear that the conservation law [Eq. (32)] for the
asymptotic region holds true. The discontinuous distribution
observed in these plots is due to the different orders of ATI
rings, which result from intercycle interferences. Evidently, as
shown in Figs. 3(b1) and 3(b2), the m-SPA method faithfully
reproduces the conservation law. In contrast, as illustrated in

Figs. 3(c1) and 3(c2), the conventional SPA approach fails to
capture the conservation law.

Regarding the final energy and radial momentum distribu-
tion, as depicted in the fourth and fifth columns of Fig. 3,
there are no significant differences observed across the meth-
ods presented in Figs. 3(a) to 3(c). This is because the final
momentum p is approximately given by

p = k − A(t ), (34)

which is predominantly determined by the vector potential,
which is relatively large compared to the initial momentum
k at the tunnel exit. However, the final angular momen-
tum distribution shows considerable variation. By comparing
Figs. 3(a3), 3(b3), and 3(c3), it can be concluded that the
m-SPA method accurately reproduces the results of the SFA,
while the conventional SPA fails to yield the correct outcome.
It is important to note that angular momentum is related to the
phase gradient in the angular direction, given that the angular
momentum operator is L̂z = −i ∂

∂φ
. The inability of the SPA

to reproduce the angular momentum distribution suggests
that the phase of the photoelectron momentum distribution
obtained by SPA is incorrect, even though the amplitude is
reasonably accurate. Consequently, SPA would be ineffective
in scenarios where quantum interference is particularly promi-
nent.

By comparing Fig. 3 to Fig. 1, we gain insights into
the continuum motion following electron tunneling. As
shown in Fig. 1(a3), the p+ electron absorbs approximately
2.6 photons during tunneling, reaching 〈Lz0〉+ ≈ 3.6. After
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FIG. 3. Correlated SAME (first column for p+ and second column for p−), angular momentum distribution (third column), energy
distribution fourth column)), and radial momentum distribution (fifth column) in the asymptotic region for photoelectrons ionized from p±
orbitals of Ne in the RCP field, calculated by (a1)–(a5) SFA, (b1)–(b5) m-SPA, and (c1)–(c5) SPA. In the last three columns, the blue lines
correspond to the p+ orbital, and the orange lines represent the p− orbital, with light-colored lines showing calculation results from various
methods and dark-colored lines indicating the fits to the light-colored lines. The vertical dashed lines represent the peak position of the
respective distribution, and the black dotted lines denote Eq. (32) with m = −1, 0, 1 from top to bottom in each panel. In the simulation, the
peak laser intensity I0 = 2 × 1014 W/cm2, the wavelength λ = 800 nm, and the ellipticity ε = 1.

tunneling, it absorbs, on average, an additional 31 pho-
tons, reaching 〈Lz〉+ ≈ 34.6 asymptotically, which is evident
from Fig. 3(a3). In contrast, the p− electron absorbs about
3.2 photons during tunneling, reaching 〈Lz0〉− ≈ 2.2. After
tunneling, it absorbs, on average, another 29.5 photons, re-
sulting in 〈Lz〉− ≈ 31.7 asymptotically. Notably, while the
counterrotating p− orbital absorbs more photons or energy
during tunneling, it absorbs fewer photons or energy after
tunneling in the continuum motion. This can be understood
within the simple physical picture according to Eq. (34).
Although the p− electron absorbs, on average, 0.6 photon
more from the field than the p+ electron, it still has a smaller
average initial transverse momentum than the p+ electron
since its 〈Lz0〉 is less, which implies 〈k+〉 > 〈k−〉. According
to Eq. (34), the average energy absorbed during the continuum
motion �E can be expressed as

〈�E〉 = 1
2 〈p2 − k2〉 = 1

2 〈(k − A)2 − k2〉 = −〈k〉 · A + 1
2 A2

0

= 〈k〉A0 + 1
2 A2

0, (35)

where the last equation uses the fact that the average initial
momentum at the tunnel exit is antiparallel to the instan-
taneous vector potential. Since 〈k+〉 > 〈k−〉, it follows that
〈�E+〉 > 〈�E−〉.

In addition, we can analyze the asymptotic characteristics
of electrons from the p± orbitals in the REP field, as shown in
Fig. 4. It is evident that our m-SPA method is also applicable

to EP pulses. Furthermore, the conservation law for the EP
pulse exhibits a curved pattern in the asymptotic region. Once
again, the angular momentum and energy are linked to each
other through their parametric dependence on the auxiliary
momentum k [Eq. (18)], with the detailed relationship pro-
vided in Appendix B. The black dotted lines in Figs. 4(a) and
4(b) represent the conservation law corresponding to m = −1
and m = +1 from top to bottom in each panel, while those in
Fig. 4(c) correspond to m = 0. The broadening of the SAME
distribution is due to the varying laser amplitude at different
time instances. As demonstrated in the insets of Figs. 4(a1)
and 4(a2), the SAME at the pulse peak (t = t0) coincides pre-
cisely with the black dotted lines. The same conclusion can be
reached using the m-SPA method, whereas the conventional
SPA fails to replicate the correct outcome.

V. CONCLUSIONS

In conclusion, we developed and validated an m-resolved
saddle-point approximation method that accounts for the mag-
netic quantum number m in the saddle-point equation for
strong-field ionization of atoms initially in p orbitals. The
m-SPA method provides a more accurate representation of
the ionization dynamics by correctly incorporating the influ-
ence of m on the SPE, leading to improved predictions of
the initial tunneling position, angular momentum, and energy
distribution of the photoelectron. Our findings reveal that
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FIG. 4. The same as Fig. 3, but for the REP field with an ellipticity ε = 0.7. The black dotted lines denote the conservation law for the
angular momentum and energy given by their parametric dependence on k in Eqs. (B7) and (B8) with m = −1, 1 from top to bottom in (a) and
(b) and m = 0 in (c). The insets illustrate the SAME at the pulse center (t = t0).

photoelectrons from the counterrotating p− orbital ionize at
higher rates and from positions closer to the nucleus and
absorb more photons during under-barrier tunneling, com-
pared to those from the corotating p+ orbital, resulting in
distinct angular momentum and energy distributions at the
tunnel exit. The m-SPA method allows for a more precise
calculation of the asymptotic photoelectron characteristics as
well and also enables the generalization of angular momentum
and energy conservation laws to p orbitals in both circularly
and elliptically polarized fields, both at the tunnel exit and
in the asymptotic region. The m-SPA is readily extensible to
even higher m quantum numbers, such as d±2 orbitals. This
study broadens our perspective on the dynamic characteris-
tics of photoelectrons from various orbitals and enhances the
accuracy and reliability of theoretical predictions for strong-
field physics, paving the way for future research starting from
arbitrary atomic orbitals.
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APPENDIX A: CONSERVATION LAW
AT THE TUNNEL EXIT

In this Appendix, we provide a derivation of the analytical
expression of the conservation law for angular momentum
and energy at the tunnel exit. For simplicity, we consider the
scenario in which long pulses are used, thus neglecting the
temporal envelope effect in our calculations. By substituting
the vector potential from Eq. (1) into the m-SPE given by
Eq. (30), we can obtain its imaginary part

A2
0 cos(ωtr ) sin(ωtr ) cosh(ωti ) sinh(ωti )(ε

2 − 1)

+ A0 sinh(ωti )[−px sin(ωtr ) + εpy cos(ωtr )] = 0 (A1)

and real part

A2
0 cosh2(ωti )[cos2(ωtr ) + ε2 sin2(ωtr )]

− A2
0 sinh2(ωti )[sin2(ωtr ) + ε2 cos2(ωtr )]

+ 2A0 cosh(ωti )[px cos(ωtr ) + εpy sin(ωtr )]

+ p2 + 2I ′
p = 0, (A2)

where the effective ionization potential I ′
p = Ip + mεω.
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For CP fields (ε = ±1), Eqs. (A1) and (A2) reduce to

tr = 1

εω

[
arctan

(
py

px

)
+ π

]
, (A3)

ti = 1

ω
arccosh

(
E + I ′

p + Up

A0 p

)
, (A4)

where E = p2/2 is the energy, p =
√

p2
x + p2

y is the asymp-
totic momentum, and Up = A2

0/2 is the ponderomotive energy.
The tunneling exit position is given by

r0 = Re
∫ tr

ts

dt[p + A(t )] = Im
∫ ti

0
dtA(tr + it )

= E + I ′
p + Up − A0 p

εωp2
(pyêx − px êy), (A5)

and the initial momentum is

k = p + A(tr ) =
(

1 − A0

p

)
p. (A6)

Thus, we can obtain the initial angular momentum

L0 = r0 × k =
(

1 − A0

p

)
E + I ′

p + Up − A0 p

εω
êz (A7)

and the tunneling exit energy

E0 = 1

2
k2 + r0 · F(tr )

=
(

1 − A0

p

)
(E + I ′

p + Up − A0 p) − I ′
p

= εωLz0 − I ′
p

= εω(Lz0 − m) − Ip. (A8)

Clearly, the conservation law for angular momentum and en-
ergy associated with the magnetic quantum number m at the
tunnel exit in CP fields is given by

E0 = εω(Lz0 − m) − Ip. (A9)

For EP fields, we focus only on ionization that occurs at
the peak of the electric field of the laser. It is not difficult to
obtain the expression for the tunneling exit position,

x0 =
εk − A0 +

√
k2 − 2kA0ε + 2I ′

p(1 − ε2) + A2
0

ω(ε2 − 1)
, (A10)

the initial angular momentum

Lz0 = x0k, (A11)

and the tunneling exit energy

E0 = 1
2 k2 + x0A0ω. (A12)

In EP fields, the conservation law for angular momentum and
energy associated with the magnetic quantum number m at the

tunnel exit is thus established through the dependence of the
angular momentum and energy on the auxiliary momentum k,
given by Eqs. (A11) and (A12).

APPENDIX B: CONSERVATION LAW
IN THE ASYMPTOTIC REGION

In this Appendix, we derive the analytical expression for
the conservation law for angular momentum and energy in the
asymptotic region, where long-pulse approximation is used.
At the end of the laser field, the final position is given by

r f = r0 +
∫ t f

tr

dt[p + A(t )]

= r0 + [k − A(tr )](t f − tr ) +
∫ t f

tr

A(t )dt, (B1)

and the final momentum is

p = k − A(tr ), (B2)

resulting in the final angular momentum

L = r f × p =
[

r0 +
∫ t f

tr

A(t )dt

]
× [k − A(tr )] (B3)

and the final energy

E = 1
2 p2 = 1

2 [k − A(tr )]2. (B4)

For CP fields (ε = ±1), the final angular momentum be-
comes

L =
(

r0 − F
ω2

)
× [k − A(tr )]

=
(

E + I ′
p + Up − A0 p

εω
+ A0 p

εω

)
êz

= E + I ′
p + Up

εω
êz. (B5)

Therefore, the conservation law for angular momentum and
energy associated with the magnetic quantum number m in
the asymptotic region in CP fields is given by

E = εω(Lz − m) − Ip − Up. (B6)

For EP fields, the angular momentum [Eq. (B3)] in the
asymptotic region is

Lz =
(

x0 − A0

ω

)
(k − εA0), (B7)

where x0 is given in Eq. (A10), and the energy [Eq. (B4)] in
the asymptotic region is

E = 1
2 (k − εA0)2. (B8)

Therefore, in EP fields, the conservation law for angular mo-
mentum and energy associated with the magnetic quantum
number m in the asymptotic region is established through
the dependence of the angular momentum and energy on the
auxiliary momentum k, given by Eqs. (B7) and (B8).
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FIG. 5. The hypergeometric function 2F1( l−ν

2 , l−ν+1
2 , l +

3
2 ; − k2

2Ip
) for 2p± orbitals of Ne.

APPENDIX C: ASYMPTOTIC FORM OF THE INITIAL
WAVE FUNCTION IN MOMENTUM SPACE

In this Appendix, we briefly describe the simplification
of the asymptotic form of the initial wave function in the

momentum space [Eq. (6)]. For the 2p± orbitals of Ne,
since the constant term in the asymptotic form of the initial
wave function in momentum space does not impact the over-
all dynamics, it can be safely ignored in later calculations.
Furthermore, as illustrated in Fig. 5, the Gauss hypergeo-
metric function exhibits slow variation within the momentum
range [0,1.5], and we thus approximate it as a k-independent
constant term. Therefore,

ψ̃±(k) ∼ kYlm(k̂)

(k2 + 2Ip)ν+1
, (C1)

where the spherical harmonics Ylm(k̂) can be further
simplified to

Ylm(k̂) = ∓
√

3

8π
sin(θk )eimφk ∼ sin(θk )eimφk (C2)

for l = 1, m = ±1. Substituting Eq. (C2) into Eq. (C1), we
obtain

ψ̃±(k) ∼ k sin(θk )eimφk

(k2 + 2Ip)ν+1
=

√
k2

x + k2
y eimφk

(k2 + 2Ip)ν+1
= kx + imky

(k2 + 2Ip)ν+1
.
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