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Farey tree and devil’s staircase of frequency-
locked breathers in ultrafast lasers

XiuqiWu1, YingZhang1, JunsongPeng 1,2 , Sonia Boscolo3, Christophe Finot4&
Heping Zeng 1,5,6

Nonlinear systems with two competing frequencies show locking or reso-
nances. In lasers, the two interacting frequencies can be the cavity repetition
rate and a frequency externally applied to the system. Conversely, the exci-
tation of breather oscillations in lasers naturally triggers a second character-
istic frequency in the system, therefore showing competition between the
cavity repetition rate and the breathing frequency. Yet, the link between
breathing solitons and frequency locking is missing. Here we demonstrate
frequency locking at Farey fractions of a breather laser. The winding numbers
exhibit the hierarchy of the Farey tree and the structure of a devil’s staircase.
Numerical simulations of a discrete laser model confirm the experimental
findings. The breather lasermay therefore serve as a simple test bed to explore
ubiquitous synchronization dynamics of nonlinear systems. The locked
breathing frequencies feature a high signal-to-noise ratio and can give rise to
dense radio-frequency combs, which are attractive for applications.

Nonlinear systems with two competing frequencies show locking or
resonances, in which the system locks into a resonant periodic
response featuring a rational frequency ratio1. The locking increases
with nonlinearity, and at subcritical values of the nonlinearity, the
system has quasi-periodic responses between locked states, whilst the
supercritical system may exhibit chaotic as well as periodic or quasi-
periodic responses. A general feature of frequency locking is the
robustness of the locked states to variations of system parameters,
namely, the constancyof the frequency ratio (orwindingnumber) over
a range of parameters. Frequency locking has been investigated the-
oretically and experimentally in many physical systems including
coupled oscillators2, charge-density waves3, Josephson junctions4,5,
and the Van der Pol oscillator6 amongst others7, and their distribution
in parameter space in the formof a devil’s staircase8 is well understood
from the number theory concept of Farey trees9–14. In optics,
frequency-locking phenomena have been extensively studied in
modulated semiconductor lasers, where an external frequency can be
readily coupled to the nonlinear system by using a radio-frequency

(RF) source11,15–18, and the hierarchy of the Farey tree and structure of a
devil’s staircase canbe rather easily observedwhen tuning the external
frequency11. Frequency locking has also been demonstrated in other
laser structures, such as fibre lasers with external loss modulation19 or
solid-state lasers operating in a two-mode regime20. Furthermore,
although not explicitly mentioned by the authors, the subharmonic,
harmonic, and rational harmonic operation regimes of Kerr micro-
resonators that were reported in refs. 21,22 imply a frequency-locking
process. The generation of soliton molecules (i.e., stable bound states
of two solitons) in a titanium-sapphire laser that was reported in ref. 23
also evidences the occurrence of frequency locking: a subharmonic
response of the soliton molecule was observed when the strength of
the external driving force exceeded a certain threshold.

All the frequency-locking examples mentioned above relate to
nonlinear systems where an external, accurately controllable mod-
ulation provides a new frequency to the system. Far less is known, by
comparison, when the second frequency is not externally controlled
and is intrinsic to the nonlinear system. This is particularly relevant to
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breathing solitons that have recently emerged as a universal ultrashort
pulse regime in passively mode-locked fibre lasers24–28. Breathing
solitons are localised structures showing periodic variations in their
parameters. They are found in various subfields of natural science,
such as solid-state physics, fluid dynamics, plasma physics, chemistry,
molecularbiology andnonlinearoptics29. In optics, breatherswerefirst
observed in Kerr fibre cavities30 and subsequently found in
microresonators21,31,32. They are currently attracting significant
research interest in virtue of their relationship with a rich set of
important nonlinear phenomena, such as rogue wave formation33,34,
the Fermi–Pasta–Ulam recurrence35–37, turbulence38, chimera
states39,40, chaos41 and modulation instability phenomena42. From a
practical application perspective, breathers contribute to improving
the accuracy of dual-comb spectroscopy43 as the breathing frequency
comes along with additional tones in a frequency comb, and the
breather laser can produce strong ultrashort pulses without using
compressors44,45.

In this paper, we present the first in-depth study of the locking of
breather oscillations to the cavity repetition frequency in a fibre laser.
Besides the hurdle represented by the absence of an external driver to
realise frequency locking, the excitation of breathing solitons requires
fine-tuning of the laser parameters, as the parameter space of
breathing soliton mode locking is much narrower than stationary
mode locking44. Therefore, targeting frequency-locked breather states
in the laser via trial and error is a laborious task. Here we show that
such a difficulty can be circumvented by using an evolutionary algo-
rithm (EA). Machine-learning methods, referring to using statistical
techniques and numerical algorithms to carry out tasks without
explicit programmedandprocedural instructions, arewidely deployed
in many areas of engineering and science46. In the field of ultrafast
photonics, machine-learning approaches and the application of
genetic and evolutionary algorithms have recently led to several dra-
matic improvements in dealing with the multivariable optimisation
problem associated with reaching desired operating regimes in fibre
lasers. In the present study, the merit function used in the EA optimi-
sation procedure can distinguish between frequency-locked and
unlocked breather states, thereby enabling fast and precise tuning of
the laser to the target frequency-locked breather operation. The
locked breather states show two unambiguous features: persistence

under pump power and polarisation perturbations, and narrow line-
width and high signal-to-noise ratio (SNR) of the oscillation frequency
in the electrical spectrum of the laser emission. Importantly,
frequency-locked states occur in the order they appear in the Farey
tree and within a pump-power range equalling the width of the cor-
responding step in the devil’s staircase. This demonstrates that
breather mode-locked fibre lasers exhibit the ubiquitous competing
dynamics of two interacting frequencies in coupled systems.

Results
Frequency-locked and unlocked breathers in the laser
To investigate the dynamics of breathers, we have built the fibre ring
cavity that is sketched in Fig. 1a. Pump light is provided by a 980-nm
laser diode and it is delivered to the unidirectional cavity through a
wavelength-division multiplexer. A piece of erbium-doped fibre
(1.25m) is employed as the gain medium. Other fibres in the cavity are
standard single-mode fibres. These two optical fibres have group-
velocity dispersion (GVD) parameters of 65, and –22.8 ps2/km, respec-
tively, resulting in a net cavity dispersion of 0.009ps2 around 1565 nm.
The laser has a repetition rate (f r) of 34.2MHz.Mode locking is realised
through an effective saturable absorber by the nonlinear polarisation
evolution (NPE) effect47. The transfer function of the saturable absorber
(NPE) is controlled via three wave plates based on liquid crystal (LC)
phase retarders working together with a polarisation beam splitter
(PBS). The PBS is also used as an output coupler. The emitted light from
the laser is monitored by several diagnostic systems. A portion is
measured directly by a 50-GHz photodiode (PD1) connected to a real-
time oscilloscope with a bandwidth of 33GHz and a sampling rate of
80GSa/s. The second laser output is input to a dispersive Fourier
transform (DFT) setup which constitutes a long segment fibre that
cumulates a GVD large enough for the stretchedwaveform to represent
the spectral intensity of the initial pulse waveform48. Thus, the optical
spectrum of each pulse can be measured in real time by the oscillo-
scope through detecting the output signal from the DFT setup (PD2).
Additional measurement devices are used to characterise the spectral
properties of the laser output: an optical spectrum analyser, an elec-
trical spectrum analyser (ESA), and a cymometer.

Breathing solitons can be excited by tuning the pump strength
and the cavity loss (polarisation controllers)24 in the laser. Figure 2a, b
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b The flowchart of the evolutionary algorithm.
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shows an example of a breather operation of the laser recorded at a
pump power of 74mW. In sharp contrast with soliton pulse shaping
which generates uniform pulse trains, the train of output pulses shows
periodic variations in intensity occurring, in the example of Fig. 2a,
across a well-defined period of 50 cavity roundtrips. Note that while
Fig. 2a shows the photo-detected signal after time stretching, the same
periodic evolution is also observed for the pulse train directly detected
at the laser output. The corresponding spatiospectral representation
of the laser regime (Fig. 2b) depicts that the optical spectrum of the
pulse broadens and compresses periodically over cavity roundtrips,
synchronised with the periodic variations in pulse energy (white line),
which is a distinctive feature of breathing solitons. Variations in the
system parameters may give rise to a different breather state in the
laser as shown in Fig. 2c, d, where the pump power is decreased to
73mW: whilst the period of oscillation seems to be unchanged, the
quality of the periodic behaviour is clearly degraded in comparison
with the previous case. The RF spectra of the laser emission taken from
the ESA (Fig. 3) reveal the major difference between the two types of
breather states. The breathing frequency of theunstable breather state
shown in Fig. 2c exhibits a noisy and broad structure (Fig. 3c, d). By
contrast, the stable breather state of Fig. 2a features a neat breathing
frequency with narrow linewidth (0.5Hz; see Supplementary Fig. 1 for
details of the measurement) and high SNR (Fig. 3a, b). The measure-
ments taken with the cymometer confirm the different stability
properties of the breathing frequency for the two states (Fig. 3e). The
breathing frequency (f b) of the stable breather state is 6.84MHz
exactly equalling one-fifth of the fundamental repetition frequency,
hence corresponding to a rational winding number of f b=f r = 1=5. As
discussed later in this paper, this locked breathing frequency remains
unchanged over a range of pump power values.

Evolutionary algorithm optimisation of frequency-locked
breathers
Reaching a frequency-locked breather state in our laser depends on
precisely adjusting four parameters: the pump strength and three
polarisation controllers, which is quite difficult to do manually. In ref.
49, we have introduced an approach based on an EA to search and
control thebreathermode-locking state in ultrafastfibre lasers. It relies
on detecting and controlling the key parameter of breathers—the
breathing frequency, to tune the period and breathing ratio of

breathers. In the self-tuning regime, the operation state of the laser is
characterised in real time with the oscilloscope, which is linked to a
computer running the EA and controlling the polarisation state
through the voltages applied on the LCs via a driver to lock the system
to thedesiredbreather regime (Fig. 1a, b). Yet, themerit function of the
breathermode locking used in ref. 49 is unable to distinguish between
frequency-locked and unlocked breather states, where it usually
breeds unlocked (unstable) stateswhichhave awider parameter space.
Here, we further develop our approach to directly pinpoint frequency-
locked breathers so that the EA tunes the laser to these states only. To
this end, we define a new merit function that takes into account the
distinguishing trait of frequency-locked breather states, namely, a high
SNR of the breathing frequency as shown in Fig. 3a, b. The new merit
function is given in Eq. (3) in “Methods”. Figure 4a shows a repre-
sentative optimisation curve (referring to a breather state with a
winding number of 1/5). It depicts the evolution of the maximum and
meanmerit scores of thepopulationover successive generations along
with the corresponding evolution of the SNR of the breathing fre-
quency. We can see that the SNR grows rapidly and converges to a
maximumafter eight generations, thus indicating the establishment of
a frequency-locked operation mode of the laser. The best merit score
features a similar evolution. The measurements of the breathing fre-
quency under pump power and ploarisation tuning shown in Fig. 4b
and c, respectively, confirm that the laser works in the target regime.
The reliability of the merit function of the frequency-locked breather
state has been assessed by repeating the optimisation procedure
numerous times, with the results showing that each time the SNR of
the breathing frequency is high-frequency locking occurs. Additional
examples of optimisation curves (for breather states with the winding
numbers 1/5 and 2/9) are given in Supplementary Fig. 2.

Farey tree and devil’s staircase of the breather laser
Benefiting from a reliable and efficient EA-based optimisation
approach, we have explored the transitions between the different
breather states of the laser that can be accessed by varying the pump
power starting from the range corresponding to a 1/5 frequency-
locked state. Figure 5a shows an example of a plot of the breathing
frequency as a function of the pump power, revealing the presence of
various plateaux (steps). The spectral measurements carried out with
the ESA allow us to unambiguously relate the breathing frequencies

Fig. 2 | Two different breather operations of the laser observed over 50 cavity
roundtrips. a, b Frequency-locked breather state showing a well-defined periodicity,
and c, d frequency-unlocked breather state featuring degraded periodicity. Panels

a, c show the photo-detected DFT (dispersive Fourier transform) output signals (Tr is
the round-trip time), and panels b, d are the corresponding DFT recordings of single-
shot spectra. The white curves in b, d represent the energy evolutions.
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associated with the plateaux to rational winding numbers: as shown in
Fig. 5b–d, when the laser operates in a frequency-locked state, the RF
spectrum features a finite number n of spectral lines below the cavity
repetition frequency f r and equally spaced by f r/n. For example, in Fig.
5d, the frequency-locked breather regime brings about the excitation
of a RF comb that is 41 times denser than that obtained when the laser
operates in the usual single-pulse stationary regime. The most intense
line in the spectrum is the breathing frequency f b, and if this is themth
line from the short-frequency side, then the corresponding winding
number is given by m/n. The temporal and spectral dynamics of the
breather patterns belonging to the winding numbers 2/9 and 9/41 are
given in Supplementary Fig. 3.

Importantly, in Fig. 5a the winding numbers occur from left to
right in the sequence predicted by the Farey tree, as shown in the inset
of the figure, and the width of the step associated with a m/n
frequency-locked state depends on the level wherem/n appears in the
Farey tree’s hierarchy. The gaps (in pump power) between the stairs
(plateaux) refer to quasi-periodic breather oscillations similar to the
example shown in Figs. 2c, d and 3c, d. The fractal dimension D of the
stairs can be calculated from the set of gaps (see Methods), and is
determined to be D = 0.906 ±0.025, approaching the value of 0.87
expected from a complete devil’s staircase9. Note that fractal dimen-
sions of 0.890 ±0.001 and 0.91 ± 0.03 were reported in refs. 8,11,
respectively. Here, the small deviation (4%) from 0.87 partly results

from the minimum power increment of the pump laser diode
(0.1mW). The fact that the steps associated with the winding numbers
7/32 and 9/41 consist of only one point in Fig. 5a is also due to this
limitation, thus stressing the need for very robust control of the sys-
tem’s properties. The process of formation of the devil’s staircase is
reversible: by decreasing the pump power, nearly the same staircase
can be observed. We emphasise that contrarily tomodulated external-
cavity semiconductor lasers where the modulation frequency can be
arbitrarily set hence the frequency-locked states appearing in the
order predicted by the Farey tree can be easily accessed11, in a
breathing soliton mode-locked laser the breathing frequency is
established once the laser is fabricated, while it can be entrained by
tuning the laser parameters. Nevertheless, the Farey tree and devil’s
staircase can still be observed, indicating the universality of this fractal
phenomenon. Setting the laser to a slightly different initial polarisation
state, Farey fractions belonging to other twoparts of the Farey tree can
be identified through the RF spectrawhile tuning the pumppower (see
Supplementary Figs. 4 and 5). In both cases, the calculated dimension
of the stairs approaches that of a complete devil’s staircase.

Figure 5e illustrates the build-up phase of frequency locking.
Starting from a pump power of 69mW, three radiofrequencies are
present, namely thebreathing frequency (f b), thedifference frequency
between f r and 5th harmonic of f bðf r � 5f bÞ, and the difference fre-
quency between the first two ð6f b � f rÞ. As f r � 5f b approaches zero,

a b

c d

e

SD = 2.05 Hz

SD = 7175.78 Hz

Fig. 3 | RF spectral measurements of the breather states shown in Fig. 2.
The reference frequency is one-fifth of the fundamental repetition frequency.
a, b Single-mode oscillation of the breathing frequency when frequency
locking occurs measured over spans of 50 kHz and 100 Hz, respectively.
c, d Unstable multimode oscillation of the breathing frequency measured

over 50-kHz and 10-kHz spans. e Change in breathing frequency over time
for the locked (red) and unlocked (blue) breather states, as measured with
a cymometer. The standard deviation (SD) of the breathing frequency
values is 2.05 Hz for the frequency-locked state and 7175.78 Hz for the
unlocked state.
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frequency locking occurs at the winding number 1/5. This winding
number then experiences redshifts under pump-power increments,
generating other winding numbers. The map shown in Fig. 5e also
evidences the very different spectral features of frequency-locked and
quasi-periodic breather states. Therefore, even though the winding
numbers 7/32 and 9/41 display only one point in Fig. 5a, they can
clearly be identified in this map, which reveals a richness of detail that
has been largely overlooked in previous studies due to the lack of high-
quality RF spectral measurements. It is also noteworthy that changing
the pumppower by only 10% is enough to find seven frequency-locked
states for the laser, whose power-stability properties are dictated by a
devil’s staircase. As a further note, we would like to emphasise that the
frequency-locked states observed are reproducible but not self-start-
ing, meaning that if the pump power is turned off when the laser
operates in a locked state and then it is turned back on again, the laser
does not return to that state instantaneously. To restore the frequency-
locked operation, one can run the EA controlling the polarisation
states again, which will quickly reset the laser to the desired state.
Many such experimental tests have confirmed the reproducibility of
the locked states.

To validate our experimental findings, we have performed
numerical simulations of the laser using a scalar-field, lumped model
that includes the dominant physical effects of the system on the evo-
lution of a pulseover one round trip inside the cavity, namely, GVD and
self-phasemodulation for all thefibres, gain saturation andbandwidth-
limited gain for the active fibre50, and the discrete effects of a saturable
absorber element (see “Methods”). The gain saturation energy in the
model is related to the pump power in the experiment. Figure 6a, b
showsplots of the breathing frequency (winding number) as a function
of the gain saturation energywhen the latter is varied starting from the
range corresponding to a 1/5 locked state with a step of 10 and 1 pJ,
respectively. With the smaller step, more plateaux are observed, thus
confirming the fractal structure of the winding number distribution. It

is seen in Fig. 6b that the model can reproduce the same part of the
Farey tree from a breathing frequency of 1/5 to 2/9 as that observed in
the experiment (Fig. 5a). The gaps (in gain saturation energy) between
the stairs also resemble those (in pump power) found in the experi-
ment. The fractal dimension of the set of gaps calculated from the
model is 0.873 ±0.09, which is closer to the value expected from a
complete devil’s staircase than the experimentally calculated value
because the step in gain saturation energy can be made arbitrarily
small in the model. Figure 6c illustrates the build-up phase of fre-
quency locking, which again shows good agreement with the experi-
mental results (Fig. 5e). As mentioned above, a small change in the
initial polarisation state of the laser can trigger Farey fractions
belonging to a different part of the Farey tree. This experimental
observation is confirmedby the results shown in Supplementary Fig. 6,
which have been obtained by slightly changing the linear intracavity
loss in the model.

Discussion
We have demonstrated for the first time that a fibre laser working in
the breathing soliton generation regime is a nonlinear system
showing frequency locking at Farey fractions. The frequency-locked
breather states of the laser are characterised by robustness against
parameter (pump power and polarisation) variations and a breathing
frequency with narrow linewidth and high SNR. We have exploited
the latter feature to realise intelligent control of the frequency-
locking process, where the use of an EA with a locked breather-
tailored merit function has been the key to the precise excitation of
these breather states. Indeed, contrary to previous frequency-
locking demonstrations in optics relying on an external modulation
applied to the system, we have been able to manipulate the intrinsic
breathing frequency of the laser system. Both the experiments and
simulations show that the fractal dimension of the winding numbers
of breathers approaches that of devil’s staircase, indicating the
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universal nature of the laser. The breather mode-locked fibre laser
thus may serve as a simple model system to investigate the universal
dynamics of frequency locking. Besides, our work may stimulate the
study of frequency locking in other physical systemswhere breathing
solitons are found, where frequency locking could give a new angle
on the dynamics of these systems. The EA approach used in this
paper could benefit the control of the frequency-locking process in
such systems as well as in others. We also believe that our EA-based
approach for the control of frequency locking in fibre lasers is not
restricted to NPE-based configurations and can be extended to other
lasermode-locking schemes that entail periodmultiplication, such as
the Mamyshev oscillator51,52.

Optical breathing solitons have been extensively studied in
open-loop nonlinear systems such as single-pass fibre systems36,53.
However, in the absence of a frequency-locking mechanism, these

breathers may suffer from instabilities originating from the noise of
the input light. By contrast, we have studied the dynamics of
breathers in a closed-loop system—a laser resonator. In this system,
the universal frequency-locking process is tailored through the
nonlinear interaction between the cavity repetition frequency pro-
vided by the laser resonator and the breathing frequency. Ergo,
frequency-locked breathers can be generated, showing excellent
stability against cavity parameter perturbations.

Frequency-locked breathers give rise to wide and dense RF
combswhich are not constrained by the length of the laser cavity. We
have shown an example of a comb where the density of the spectral
lines is increased by a factor of 41 compared with stationary single-
pulse mode locking, thus enabling a line spacing in the sub-MHz
range. Another example of a dense comb (where the density increase
factor is 35) is given in Supplementary Fig. 4. Therefore, representing
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an alternative to fibre cavities of hundreds of metres which are
regarded as being highly unstable, controlled frequency-locked
breather lasers are attractive for many applications, for instance, in
high-resolution spectroscopy.

We note that subharmonic entrainment of breather oscillations to
the cavity repetition rate in a fibre laser was recently reported and
explained as arising between the exceptional points of a non-
Hermitian system involving two coupled modes with different
detunings26. However, in light of the results presented in this paper, we
believe that the observed dynamics of subharmonically entrained
breathers fall outside of the exceptional point physics and can be well
understood in the framework of frequency locking of a nonlinear
system with two competing frequencies.

Dispersion plays an important role in determining the pulse
dynamics in ultrafast fibre lasers54–56. The laser cavity used in this
work has a nearly zero net dispersion. We have observed that fre-
quency locking of breathers does not occur when the laser is
operated at moderate or large normal dispersion24,49. Thus, a very
small net cavity dispersion seems to be crucial to the emergence of
frequency-locked breathers in a fibre laser. It is worth noting in this
regard that breathing solitons at nearly zero net dispersion and
large normal dispersion differ quite significantly in respect to their
period of oscillation. Indeed, the former oscillates with a period
ranging from several to dozens of round trips while the latter
generally features amuch longer period of the order of hundreds of
round trips24, indicating that the underlying formation mechanism

could be different. Future work will thoroughly investigate the
connection between the frequency-locking mechanism and the
cavity dispersion.

Methods
Farey tree
The Farey tree refers to a particular sequence of rational numbers
by using the Farey-sum or median operation

L
to two adjacent

fractions, m/n and p/q, returning a new fraction in the next lower
level of the tree by summing the denominators and numerators
separately:

m
n
� p

q
=
m+p
n+q

ð1Þ

The physically motivated hypothesis invoked to explain the
local ordering of the hierarchy of (two-frequency) resonances is
that the larger the denominator, the smaller the plateau. The Farey
fraction or Fareymediant is the fraction with smallest denominator
betweenm/n and p/q, if they are sufficiently close that ∣np�mq∣= 1
– when they are called adjacents—hence it is the most important
resonance in the interval. The Farey tree provides a qualitative local
ordering of two-frequency resonances and gives rise to a curve
containing an infinite number of plateaux exhibiting self-similarity,
which is known as the devil’s staircase. A detailed review can be
found in ref. 10.

0 1 2 3 4 5 6 7 8
Frequency (MHz)

3615

3715

3815

3915

4015

4115

4215

E
sa

t (
pJ

)

0

1

Minimum increament of Esat : 10 pJ Minimum increament of Esat : 1 pJ

Part of the Farey treePart of the Farey tree

3615 3715 3815 3915 4015 4115 4215
Esat (pJ)

0.2

0.205

0.21

0.215

0.22

0.225

W
in

di
ng

 n
um

be
r

6.49

6.67

6.84

7.01

7.18

7.35

Br
ea

th
in

g 
fre

qu
en

cy
 (M

H
z)

3615 3715 3815 3915 4015 4115 4215
Esat (pJ)

0.2

0.205

0.21

0.215

0.22

0.225

W
in

di
ng

 n
um

be
r

6.84

7.01

7.18

7.35

7.52

7.69

Br
ea

th
in

g 
fre

qu
en

cy
 (M

H
z)

5/23
7/32

4/19

2/9

3/14

1/5

1
5

4
19

3
14

5
23

7
32

2
9

1
5

3
14

2
9

4
19

1
5

4
19

3
145

237
32

2
9

1
4

1
53

14

2
9

1
4

In
te

ns
ity

 (a
rb

. u
ni

ts
)

fbfr-5fb fb-(fr-5fb)

a b

c

Fig. 6 | Farey tree and devil’s staircase observed in the numerical simulations.
a, b Breathing frequency (winding number) as a function of the gain saturation
energy Esat (related to the pump power in the experiment) varied with a step of 10
and 1 pJ, respectively. With the smaller step, more plateaux are observed, eviden-
cing a fractal pattern. In the insets are shown the parts of the Farey tree containing

the observed Farey fractions. Since the plateau representing winding number 4/19
is very narrow, it is magnified in the inset in panel (b). cMap of spectral intensity in
the space of radiofrequency and gain saturation energy, showing the build-up of
rational winding numbers.
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Fractal dimension of a complementary set
We have employed the equation57

X
i

Si=S
� �D = 1 ð2Þ

for computation of the fractal dimension D of the Cantor set com-
plementary (on the pump-power axis) to a complete devil’s staircase.
In this equation, S refers to the gap (in pump power) between two
parental stairs representing winding numbers m/n and p/q, and Si
corresponds to the gaps between the filial stair ðm+pÞ=ðn +qÞ and the
parental stairs.

Evolutionary algorithm
The principle of the EA, as depicted in Fig. 1b, imitates Darwin’s
evolution theory: only the fittest individuals in a population sur-
vive through successive generations58. Here, an individual refers to
a laser regime, related to the transfer function of NPE determined
by the three control voltages added to the LCs; the three voltages
are thus the individuals’ genes. The algorithm starts with a group
of individuals (population), each constituted by a collection of
random genes. The output of the system is monitored for all the
individuals in each generation, calculated by a user-defined merit
function and a score is returned. Then the EA produces the new
generation by breeding individuals from the last generation; the
possibility of an individual to be chosen as a “parent” depends on
their score (“roulette wheel” selection58). To generate two new
individuals (children), the genes are interchanged between two
parents who are randomly chosen. Mutation is also considered,
allowing refreshing the genetic sequence. This procedure con-
tinues until the algorithm converges, giving rise to the fittest
individual. In the experiment, the algorithm starts with a popula-
tion containing 50 individuals and the number of individuals of the
next generations is maintained at a constant value of 30 (6 parents
and 24 children). It takes 2.5 min for the system to evaluate the
merits of the 30 individuals in a generation.

The merit function plays a key role in realising self-tuning of the
laser, which must give a larger value as the target state is approached.
In the present work, we have defined and tested the following merit
function for the auto-setting of an optimised self-starting frequency-
locked breather regime:

Fmerit =αFml +βFb + γFsnr ð3Þ

with Fml being the merit function associated with the mode-locking
state of the laser59:

Fml =
Xi =N

i = 1
Ii=N,Ii =

Ii, Ii ≥ Ith

� �
0, Ii<Ith

� �
8><
>: ð4Þ

where N is the number of the outputting laser intensity peaks (N = 224,
referring to a time trace of 7174 round trips), Ii is the intensity at the
position I in the time trace and Ith is an intensity threshold higher than
the noise. Thus, Fml is the average intensities of the pulses and is used
to exclude laser modes, including noise-like pulsing and relaxation
oscillations, which can display similar RF spectral features to the
breather regime. The second term Fb is a merit function that
distinguishes between breathers and stationary mode-locked regime,
derived from the feature that the breathing frequency f b emerges as
two symmetrical sidebands f ± 1 around the cavity repetition frequency
f r as measured by the ESA ðf b = ∣f ± 1 � f r∣Þ: There are no sidebands
when the laser operates at a stable mode-locked state. As a result, Fb is
designed to exploit the intensity ratio between the cavity repetition

rate (f r) and its sidebands at f ± 1:

Fb = 1�
Xf = f r +Δ

f = f r�Δ
Iðf Þ=

Xf = f + 1

f = f �1
Iðf Þ ð5Þ

where the numerator and denominator in the fraction are the
intensities measured across the frequency range with a width of 2Δ
centred at f r and the frequency span from f �1 to f + 1, respectively.
Therefore, if Fb is close to zero, it represents that f r dominates and
no sidebands are present, indicating that the laser works in a sta-
tionary mode-locked regime. In contrast, a far from zero value of Fb
means the generation of strong sidebands in the RF spectra,
evidencing that breathers could be formed in the laser. In the
optimisation process, the RF spectrum is calculated through fast
Fourier transform of the laser intensity recorded by the oscilloscope.
The weighted sum of Fml and Fb can be used to target the regime of
breather mode locking49. The third term in Eq. (3) is a new merit
function used to distinguish between frequency-locked and
unlocked breather oscillations by evaluating the strongest breathing
frequency in the interval f r + δ,3f r=2

� �
:

Fsnr =maxI fð Þ,f 2 f r + δ,3f r=2
� � ð6Þ

where the frequency shift δ is used to exclude the fundamental fre-
quency from the evaluation interval, and f r/2 represents themaximum
possible breathing frequency. The weights of the three components in
Eq. (3) are determined empirically and set to α = 2000, β = 200
and γ = 200.

Numerical modelling
The generalised nonlinear Schrödinger equation is used to model the
pulse evolution dynamics in optical fibres and its scalar version is50:

ψz = � iβ2

2
ψtt + iγ∣ψ∣

2ψ+
g
2

ψ+
1

Ω2 ψtt

� 	
ð7Þ

where ψ=ψðz,tÞ is the slowly varying electric field, z is the propaga-
tion coordinate, β2 and γ are the second-order dispersion and Kerr
nonlinearity coefficients, respectively, and the dissipative terms
represent linear gain as well as a parabolic approximation to the gain
profile with the bandwidth Ω. The gain is saturated according to
g zð Þ= g0expð�Ep=EsatÞ, where g0 is the small-signal gain, which is
non-zero only for the gain fibre, Ep zð Þ= R

dt∣ψ∣2 is the pulse energy,
and Esat is the gain saturation energy determined by the pump
power. The NPE-based mode-locking method can be modelled by an
instantaneous and monotonous nonlinear transfer function for the
field amplitude:

T =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q0 +qm= 1 +

PðtÞ
Psat

� �s
ð8Þ

where q0 is the unsaturated loss due to the absorber, qm is the satur-
able loss (modulation depth), P z,tð Þ= ∣ψðz,tÞ∣2 is the instantaneous
pulse power, and Psat is the saturation power. Linear losses are
imposed after the passive fibre segments, which summarise intrinsic
losses and output coupling. The numerical model is solved with a
standard symmetric split-step propagation algorithm and uses similar
parameters to the nominal or estimated experimental values (see
Supplementary Table 1).

Data availability
The data generated in this study have been deposited in the Zenodo
database [https://zenodo.org/record/7009100#.Yv82ubdBxD8t].
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Code availability
The code that supports the findings of this study is available from the
corresponding author on request.
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