
Eager Falsification for Accelerating Robustness
Verification of Deep Neural Networks

Xingwu Guo∗, Wenjie Wan∗†, Zhaodi Zhang∗, Min Zhang∗
∗Shanghai Key Laboratory for Trustworthy Computing,

East China Normal University, Shanghai, China
†ByteDance Privacy and Security, Shanghai, China

zhangmin@sei.ecnu.edu.cn

Fu Song‡§, Xuejun Wen¶
‡ShanghaiTech University, Shanghai, China

§Shanghai Engineering Research Center of Intelligent

Vision and Imaging, Shanghai, China
¶Huawei International, Singapore

Abstract—Formal robustness verification of deep neural net-
works (DNNs) is a promising approach for achieving a provable
reliability guarantee to AI-enabled software systems. Limited
scalability is one of the main obstacles to the verification
problem. In this paper, we propose eager falsification to accelerate
the robustness verification of DNNs. It divides the verification
problem into a set of independent subproblems and solves them
in descending order of their falsification probabilities. Once
a subproblem is falsified, the verification terminates with a
conclusion that the network is not robust. We introduce a notion
of label affinity to measure the falsification probability and present
an approach to computing the probability based on symbolic
interval propagation. Our approach is orthogonal to existing
verification techniques. We integrate it into four state-of-the-art
verification tools, i.e., MIPVerify, Neurify, DeepZ, and DeepPoly,
and conduct extensive experiments on 8 benchmark datasets. The
experimental results show that our approach can significantly
improve these tools by up to 200x speedup when the perturbation
distance is in a reasonable range.

Index Terms—Deep neural network, robustness verification,
adversarial example, scalability

I. Introduction

The significant progress of deep learning makes it applicable

to safety-critical domains such as autonomous driving [1]–

[3] and medical diagnostics [4]–[6]. Because applications

in these domains demand high-reliability guarantees, it is

necessary to formally certify the related properties of deep

neural networks (DNNs). Among them, robustness is one of

the most important properties, which requires DNNs to make

the same classification for all perturbed inputs in a reasonable

perturbation range. However, DNNs are found to be vulnerable

against robustness and may suffer from adversarial attacks

and environmental perturbations [7]–[12]. Formal robustness

verification has been proposed and intensively investigated as

a promising technique for certifying the robustness of neural

networks [13]–[27].

Although many efforts have been made to the robustness

verification DNNs, limited scalability is still one of the most

challenging obstacles due to the intrinsic high computational

complexity of the verification problem. It has been proved that

the robustness verification problem of DNNs with the simplest

activation function, Rectified Linear Unit (ReLU), is even NP-

complete [14]. Therefore, heuristic verification strategies are

necessary to mitigate the situation.

In this work, we propose a general and effective approach,

called eager falsification, to accelerate the robustness verifica-

tion. Specifically, we divide a verification problem into a set of

independent subproblems and solve them in descending order

of the probability of falsifying the robustness. The number

of subproblems is equal to the one of potential misclassified

labels. Once one of them is falsified, we can conclude that the

deep neural network is not robust and terminate the verification.

If all the subproblems are satisfied, we can conclude that the

deep neural network is robust. The falsification is called eager
in that in each iteration the subproblem that is the most likely

to falsify is solved first.

Eager falsification relies on the way of identifying the

subproblem where there most likely exists a perturbed input

that is misclassified by the neural network. Given an original

unperturbed input, we can easily know to which label the

input is most likely misclassified according to its probability.

Intuitively, we can take the sub-problem corresponding to that

label as the most likely falsified case. However, we find that

this is not always true. Instead of computing the falsification

probability directly, we introduce a notion of label affinity,

which reflects a relative probability in which a subproblem is

falsified. We propose a symbolic interval propagation-based

approach to computing affinities among classification labels for

both feedforward neural networks (FNNs) and convolutional

neural networks (CNNs).

Our eager falsification approach is not competing with other

state-of-the-art robustness verification approaches. Instead, it is

orthogonal to and compatible with many existing verification

approaches [21], [22], [24], [26]. The properties i.e. soundness
and completeness (if satisfied) of the original verification ap-

proach will be preserved when our eager falsification approach

is applied. That is because it only affects the order of target

labels for searching for adversarial examples, but does not alter

the solution space of the original problem. To demonstrate the

efficacy of our eager falsification approach, we integrate it into

four recent promising verification tools, i.e. MIPVerify [22],

Neurify [26], DeepZ [21], and DeepPoly [24] 1. We conduct

experiments to measure efficiency improvement by applying the

1The four extended tools are available at https://github.com/MakiseGuo/V
erifast.

345

2021 IEEE 32nd International Symposium on Software Reliability Engineering (ISSRE)

2332-6549/21/$31.00 ©2021 IEEE
DOI 10.1109/ISSRE52982.2021.00044

original tools and extended ones to their built-in benchmarks,

respectively. The experimental results show that the proposed

eager falsification approach can accelerate these tools with

up to 218× speedup when the perturbation threshold is in

reasonable ranges.

In summary, this work is a sequel of previous works on the

robustness verification of DNNs and makes the following main

contributions:

• A general and effective approach for accelerating the

robustness verification of DNNs using eager falsification.

• A new approach for measuring the order of falsification

probabilities of subproblems by label affinity.

• Extensions of four state-of-the-art verification tools with

up to 218x efficiency speedup on extensive benchmarks.

The rest of this paper is organized as follows. Section II

presents some preliminaries that are necessary to understand

our approach. Section III describes the details of our eager

falsification approach and the approach for sorting subproblems.

Section IV presents extensive experiments by integrating

our approach into four state-of-the-art verification tools and

evaluates their performance improvements. Section V discusses

related work and Section VI finally concludes the paper.

II. Preliminaries

In this section, we recap some preliminaries such as feed-

forward deep neural networks, interval analysis, symbolic

interval propagation, and linear relaxation that are necessary

to understand our approach.

A. Deep Neural Networks (DNNs)

An l-layer (l ≥ 2) DNN is a function f : I → O, mapping the

set of vectors I to the set of vectors O, where f is recursively

defined as follows:

x̄0 = x̄,

x̄k+1 = φ(Wk x̄k + b̄k) for k = 0, ..., l − 1,

f (x̄) = Wlx̄l + b̄l,

(1)

x̄0 = x̄ ∈ I is the input vector of real numbers, Wk and b̄k

respectively are the weight matrix and bias vector of the k-th

layer, and φ(·) (e.g., ReLU, sigmoid, tanh etc.) is an activation

function applied to the input vector in a coordinate-wise way.

The activation function ReLU, defined by Relu(x) ≡ max(0, x),

is one of the most popular activation functions in the modern

state-of-the-art DNN architectures [28]–[30]. In this work, we

are focused on DNNs that only take ReLU as the activation

function. For a given input x̄, the label of x̄ is determined by

the function L, defined as follows,

L(f (x̄)) = arg max
j

f (x̄)[j],

where, f (x̄)[j] denotes the j-th element in the output vector

f (x̄) which is the confidence that x̄ is classified to the label

j. By applying the softmax function to the output f (x̄), we

will get the probabilities of the labels to which the input

x̄ is classified. For this reason, we in what follows may

say f (x̄)[j] is the probability that the input x̄ is classified

x0

x1

x2

x3

Input

layer

h(1)

1

h(1)

2

h(1)

3

h(1)

4

Hidden

layer 1

h(2)

1

h(2)

2

h(2)

3

Hidden

layer 2

ŷ1

ŷ2

Output

layer
W0 W1

Bias: b1 Bias: b2

W2

Bias: b3

Fig. 1. A fully connected feedforward deep neural network f : I → O

to the label j. For simplicity, we also use the indices j to

represent the classification labels. L(f (x̄)) returns the label

whose corresponding probability is the largest among all the

labels. We call it the true label of the input x̄. In the case that

the last step is not well defined, namely, there are more than

one maximal element in f (x̄), the index of the first maximal

element is regarded as the true label of the input x̄.

B. Robustness Verification of DNNs

Intuitively, a DNN is robust if and only if it can always

return the same classification result for a slightly perturbed

input as the true label of the original input. The perturbation

range of an input is usually represented as an L-norm distance

threshold. There are three widely used L-norms: L0, L2, and

L∞ norms. In this work, we only consider L∞ norm, that is:

for each pair of vectors x̄, x̄′ with the same size,
∥∥∥x̄ − x̄′

∥∥∥∞ ≡ max{∣∣∣x̄[i] − x̄′[i]
∣∣∣ : i is an index of x̄}.

An input x̄ and a distance threshold ε form an input region,

which contains all the inputs x̄′ such that ‖x̄ − x̄′‖∞ ≤ ε. A

DNN is (local) robust w.r.t. the input x̄ and distance threshold ε
if and only if for all inputs x′ such that ‖x̄ − x̄′‖∞ ≤ ε, the DNN

always makes the same predication result. In the literature, a

DNN is called global robust w.r.t. a test dataset if it is local

robust for each input of the given test dataset [31]. In this

work, we focus on the local robustness.

Definition 1 (Robustness). Given a DNN f : I → O, an input
x̄ ∈ I, and a L∞ distance threshold ε, the DNN f is robust

w.r.t. the input x̄ and distance threshold ε if

L(f (x̄)) = L(f (x̄′))

for all inputs x̄′ ∈ I such that ‖x̄ − x̄′‖∞ ≤ ε.
If there exists some input x̄′ ∈ I such that ‖x̄ − x̄′‖∞ ≤ ε

and L(f (x̄)) � L(f (x̄′)), x̄′ is called an adversarial example
of x̄. Therefore, the essence of the robustness verification

is to check the satisfiability of the conjunction of the two

constraints ‖x̄ − x̄′‖∞ ≤ ε and L(f (x̄)) � L(f (x̄′)). Due to

the non-linearity or semi-linearity, checking satisfiability is

346

computationally expensive, e.g., NP-complete for the FNNs

that contain the simplest ReLU activation function [14].

The robustness notion can be refined w.r.t. a specific label,

which we call labeled robustness.

Definition 2 (Labeled robustness). Given a DNN f : I → O,
an input x̄ ∈ I, and a L∞ distance threshold ε, let j be a label
such that j � L(f (x̄)). The DNN f is called j-robust w.r.t. the
input x̄ and distance threshold ε, if for all inputs x̄′ ∈ I such
that ‖x̄ − x̄′‖∞ ≤ ε, L(f (x̄′)) � j.

The next proposition states that the robustness verification

problem can be equivalently reduced to a series of labeled

robustness problems, which up to our knowledge has never

been stated in the literature though straightforward.

Theorem 1. Given a DNN f : I → O, an input x̄ ∈ I, and a
L∞ distance threshold ε, suppose J is the set of all the possible
labels of f . Then, f is robust w.r.t. x̄ and ε if and only if f is
j-robust w.r.t. x̄ and ε, for all j ∈ J \ {L(f (x̄))}.

The proof is straightforward and we omit the details of the

proof due to the space limit.

To verify whether a DNN f is robust for an input x̄ and a

distance threshold ε, by Theorem 1, it suffices to verify that

the DNN f is j-robust for every possible classification label j
except for the true label L(f (x̄)). In other words, to falsify the

robustness of a DNN f for the input x̄ and distance threshold ε,
it suffices to find a label j such that the DNN f is not j-robust.

Theorem 1 provides a theoretical foundation for dividing the

robustness verification problem into subproblems to conquer

in efficient ways such as eager falsification in our approach.

Another application of labeled robustness is that given an

input to a DNN f , we can verify whether the DNN f is robust

or not on the input with respect to some specific classification

labels. In some cases, perturbations are allowed if they do not

cause a DNN to misclassify perturbed inputs to some specific

labels that are completely different from the true label. For

instance, consider a DNN supporting a self-driving car, the

predication labels of the DNN are fed into a controller that

drives the car. In this scenario, what matters is the consequences

of incorrect predictions on the final driving behavior produced,

rather than the incorrect predictions made by the DNN. It may

be acceptable if the DNN misclassifies a dog as a cat, but not

acceptable if the DNN incorrectly classifies a dog as a car.

C. Linear Approximation

Linear approximation is a technique for over-approximating

non-linear constraints using linear constraints [19]. Linear

relaxation of a unary non-linear interval function g(X) with

X = [l, u] is a function h(g, X) such that

h(g, X) = [lc1, lc2],

where lc1, lc2 are lower and upper linear bounds of g(X). Linear

approximation ensures that lc1(x) ≤ g(x) ≤ lc2(x) for any

x ∈ [l, u]. However, in general, lc1 and lc2 are not unique. The

principle of defining lc1 and lc2 is that they should be as tight

as possible.

As we focus on DNNs with only the ReLU activation function,

we show the linear relaxation for ReLU. The linear relaxation

function for ReLU on X = [l, u] is defined as follows:

h(ReLU, X) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

X, if l ≥ 0;

[0, 0], if u ≤ 0;

[ax, u
u−l (x − l)], if l < 0 < u;

where a ∈ [0, 1] is adaptively chosen for the lower bound.

Fig. 2 shows three different cases on the linear relaxation

of ReLU with different intervals.

• When l = −5 and u = 1 (Fig. 2(a)), the upper bound is
1
6
(x + 5) and the lower bound is 0, i.e. a = 0.

• When l = −2 and u = 4 (Fig. 2(b)), the upper bound is
2
3
(x + 2) and the lower bound is x, i.e. a = 1.

• When l = −3 and u = 3 (Fig. 2(c)), the upper bound is
1
2
(x+3) and the lower bound is 1

2
x, forming a parallelogram

to approximate ReLU with [−3, 3].

Linear approximation can achieve remarkable improvement

to efficiency by transforming non-linear problems into linear

ones. That is because non-linear problems are usually hard

to solve, while linear problems can be solved in polynomial

time. However, linear-approximation causes overestimation of

output range and consequently causes false positives, i.e., a

returned adversarial example might not be feasible due to over-

approximation. Recently, many efforts are made to define tight

linear approximations to reduce the overestimation [32]–[34].

D. Symbolic Interval Propagation

To sort subproblems for each given DNN f : I → O with an

input x̄ ∈ I and a distance threshold ε, we will propagate the

interval from the input layer to the output layer via interval

propagation. However, naively computing the output interval

of the DNN in this way suffers from high errors as it computes

extremely loose bounds due to the dependency problem. In

particular, it may produce a very conservative estimation of

the output, which is not tight enough to be useful.

Consider a 3-layer DNN given in Fig. 3(a), where the weights

are associated to the edges and all elements of the bias vectors

are 0. Suppose the input of the first layer are the intervals

[1, 3] and [2, 4]. By performing the scalar multiplications and

additions over intervals layer-by-layer, we get the output [−5, 7].

This output interval contains several concrete values that are

introduced by overestimation, but are infeasible in practice. For

instance, −5 can occur only when the neuron n21 outputs 10

and the neuron n22 outputs 5. To output 10 for the neuron n21,

the neurons n11 and n12 should output 3 and 4 simultaneously.

But, to output 5 for the neuron n22, the neurons n11 and n12

should output 1 and 2 simultaneously. This effect is known as

the dependency problem [35].

Symbolic interval propagation [36] is an effective solution

to minimize overestimation of outputs by preserving the

dependency information during propagating the intervals layer-

by-layer. A symbolic interval is a pair of linear expressions

[e, e′] such that e and e′ are defined over the input variables.

Let us consider the same example using symbolic interval

propagation as shown in Fig. 3(b). Suppose x and y are the

347

l = −5 u = 1

1
6 (x+ 5)

1
6x

−5 0 1

1

2

(a) |l| > |u|
l = −2 u = 4

2
3 (x+ 2)

2
3x

x

−2 0 1 3 42

1

2

3

4

2

1

(b) |l| < |u|

l = −3 u = 3

1
2 (x+ 3) 1

2x

−3 2 310−1−2

1

2

3

(c) |l| = |u|
Fig. 2. Examples of choosing different a for the linear relaxation of ReLU with different intervals

n11 n12

n21 n22

n3

[1, 3] [2, 4]

[4, 10] [5, 11]

[−5, 7]

2
1 1

2

−1 1

(a) Naive interval propagation

[-1,3]

n11 n12

n21 n22

n3

[1, 3] [2, 4]

[4, 10] [5, 11]

x y

2x + y x + 2y

−x + y

2

1 1

2

−1 1

(b) Symbolic interval propagation

Fig. 3. Naive interval propagation vs. symbolic interval propagation [36].

input variables of the neurons n11 and n12. By applying the

linear transformation of the first layer, the values of the neurons

n21 and n22 are 2x+ y and x+ 2y, respectively. Since x ∈ [1, 3]

and y ∈ [2, 4], we have: 2x + y > 0 and x + 2y > 0. Therefore,

the output symbolic intervals of the neurons n21 and n22 are

[2x + y, 2x + y] and [x + 2y, x + 2y], respectively. By applying

the linear transformation of the second layer, the value of

the neuron n3 is −x + y. Thus, the output of the DNN will

be
[−x + y,−x + y

]
. From x ∈ [1, 3] and y ∈ [2, 4], we can

conclude that the output interval of the DNN is [−1, 3], which

is strictly tighter than the interval [−5, 7] produced by directly

performing interval propagation.

This exemplifies how symbolic interval propagation charac-

terizes each neuron result in terms of the symbolic intervals

and related activation functions. As the symbolic intervals

keep the inter-dependence between variables, symbolic interval

propagation significantly reduces the overestimation.

III. The Eager Falsification Verification Framework

In this section, we introduce our eager falsification verifica-

tion framework for accelerating the robustness verification of

DNNs. At its core, it divides the robustness verification problem

into a series of independent labeled robustness verification

problems and solves them in the order of their falsification

probabilities to be falsified, which we call eager falsification.

A. Eager Falsification

To the best of our knowledge, most existing approaches

reduce the robustness verification problem to the problem of

proving that all the inputs in a specified region can be correctly

classified to the true label. Equivalently, the robustness is

falsified if an input is found to be classified to a different label.

Thus, the verification time basically depends upon the size of

search space.

Instead of considering all the labels, we propose to sort

labels and verify DNNs label by label in order to search for

adversarial examples in small and independent spaces specific

to concrete labels. According to Theorem 1, the robustness

verification problem can be reduced into a series of labeled

robustness problem. In each labeled robustness problem, say

j-robustness, we check whether there is an adversarial example

in the specified region that can be classified to the label j.
If there exists such an adversarial example, we can conclude

that the DNN is non-robust, therefore the verification costs of

remaining labeled robustness problems can be avoided.

Algorithm 1 shows our verification framework. It takes a

DNN f , an input x̄ and a perturbation threshold ε, and outputs

one of the following results, depending on the underlying

labeled robustness verification engine used in the algorithm,

i.e., Verifier in Algorithm 1:

• Robust, meaning that the robustness of the DNN f is

proved.

• Non-robust, meaning that the DNN f is falsified. An

adversarial example is returned as a witness to the

violation.

• Unknown, meaning that the robustness of the DNN f is

neither proved nor falsified. Note that this case only occurs

when the underlying verification engine is not complete.

In detail, Algorithm 1 divides the robustness verification

problem into a list of labeled robustness problems. It sorts

the labeled robustness problems in descending order of label

affinity (to be detailed in Section III-B), represented by a sorted

list of labels J′ (lines 1–2). Note that the true label L(f (x̄))

is excluded from J′. Then, Algorithm 1 iteratively verifies the

j-robustness of the DNN f for each label j ∈ J′ (while-loop)

until J′ becomes empty or an adversarial example is found.

During each iteration of the loop, Algorithm 1 fetches the

head label j from the list J′, and checks whether the DNN f
is j-robust or not by invoking a back-end DNN verification

engine Verifier. The engine Verifier takes the DNN f , the

input x̄, the distance threshold ε and the target label j as inputs,

348

Algorithm 1: Verification with Eager Falsification

Input : A DNN f , an input vector x̄, a distance

threshold ε
Output : {Robust, Non-robust with an adversarial

example, Unknown}
1 J := Labels(f)/{L(f (x̄))} // J: the labels to

certify

2 J′:=sort(f , x̄, ε, J); // Sort labels

3 flag:=false; // to indicate the unkown case.

4 while J′ � nil do
5 j := head(J′); // Take the head label.
6 Result:=Verifier(f , x̄, ε, j); // Verify on j
7 switch Result do
8 case true do
9 J′ := tail(J′); // Delete the head

10 continue;

11 case false do
12 x̄′:=getAdvExample(f , x̄, ε, j); return x̄′ ;

13 case unkown do
14 flag:=true; // Try next label

15 J′ := tail(J′); // Remove the head of
J′

16 continue;

17 if flag then
18 return unknown; // Some subproblem fails.

19 else
20 return robust; // All labels are certified.

and may output True, False or Unknown. Our implementation

makes use of off-the-shelf DNN verification engines as they

are state of the art.

If Verifier returns true (i.e., the DNN f is j-robust),

Algorithm 1 proceeds to verify the remaining labels. If it

returns false, we extract and return an adversarial example. It

may return unknown, if the DNN verification engine is not

complete. In that case, we set a flag to record this failure and

skip this label. After all the labels have been verified and not

adversarial examples are found, Algorithm 1 returns robust if

flag is not true, and unknown otherwise.

We remark that the soundness and completeness of Algo-

rithm 1 rely on the back-end engine Verifier. We assume

that the engine (e.g., DeepZ and Neurify) is sound, which is

reasonable according to the survey [37]. Then, Algorithm 1

is also sound, i.e., if it returns Robust, f must be robust w.r.t.
x and ε. Likewise, Algorithm 1 is complete if the back-end

engine is complete.

B. Sorting Labeled Robustness Problems by Label Affinity

A premise order of the labeled robustness problems is that

an instance that has a larger probability to be falsified should

be falsified earlier. However, the real probability that a label

robustness problem can be falsified is hard to calculate in theory,

because if we know the exact probability, we would not need

to verify it further. We observe that what matters is the order of

probabilities rather than the exact probabilities. Therefore, to

ε = 3

ε = 5

ε = 7

no ε

[9, 2, 3, 5, 0, 8, 1]

[3, 9, 2]

[]

[3, 9, 2, 5, 8, 0, 1, 4, 6]

Sorting resultNetwork: FNN 1Input image

Fig. 4. Sorting results under different perturbation ranges

address this challenge, we introduce a new notion of label
affinity, which is a real number representing the distance

between an adversarial label to the correct classification label.

For an input x̄, a label that has a larger affinity to the true label

of x̄ is more likely to be falsified than those that have smaller

affinities.

A naı̈ve approach for measuring the affinities between two

labels l1 and l2 for an input x̄ is to compute the difference of

the probabilities of classifying x̄ to l1 and l2. Let us consider

an example shown in Fig. 4. We suppose that the probabilities

of classifying the image “7” by a network to 7, 3 and 9 are

72%, 15% and 6%, respectively. Then, the affinity between 3

and 7 is -0.57, and the one between 9 and 7 is -0.66. Therefore,

3 has a larger affinity with 7 than 9. The top list in Fig. 4 is

the sorting result of labeled robustness problems.

A drawback of the above approach is that the information

of perturbation threshold ε cannot be reflected by the affinity.

Under different perturbation thresholds, the most likely mis-

classified labels may be different. For example, the image of

“7” in Fig. 4 cannot be misclassified to other labels when ε
is 3. When ε is 5, the most likely misclassified label is 3. In

the case of ε = 9, the most likely misclassified label becomes

9. Thus, label affinity should take perturbation threshold into

account. To address this technical challenge, we propose a

novel affinity definition that takes the distance threshold ε into

account.

Given an input x̄ and a distance threshold ε, we assume

that a neural network f outputs an interval of probabilities for

each label. This assumption is reasonable because the interval

can be estimated using interval analysis technique. Let �r be

the true label of x̄ classified by f without any perturbations.

We use [lr, ur] to denote the probability interval of �r for all

perturbed inputs of x̄ under ε. Let �s be a different label from

�r and [ls, us] be the probability interval of �s. Then, we define

the affinity between �s and �r as follows:

A(�s, �r) =

⎧
⎪⎨
⎪⎩

us − lr if us ≥ lr
−∞ otherwise

(2)

Being −∞ means that there is no affinity between �s and �r.
If that is the case, we can safely exclude the verification of

�s-robustness because the input x̄ is theoretically impossible

to be classified to �s no matter how x̄ is perturbed under ε.
The bigger A(�s, �r) is, the more overlap there is between the

output probability intervals of �s and �r. It means a higher

probability that there exists an adversarial example of x̄ under

ε such that the adversarial example is classified to �r.

349

x1

x2

x3

x4

x5

x6

�1

�2

�3

�4

1

-2

1

-2
1

0

0

-1

1

[2,4]

[0,3]

[1,6]

[-4,4]

x4ub =
1
2
x1 − x2 + 2

[-14,-2]

0

[3,10]

x6

�1ub =
5
2
x1 − x2 + 2x3 + 2

�1lb =
5
2
x1 − x2 + 2x3

[4, 24]

�2ub = −1
2
x1 − x2 − x3 + 2

�2lb = −1
2
x1 − x2 − x3

[−11, 0]

�3ub =
3
2
x1 − x2 + x3 + 2

�3lb =
3
2
x1 − x2 + x3

[1, 14]

�4ub = x1 − 2x2 + 4

�4lb = x1 − 2x2

[−4, 8]

-1

1

-1

1
2

1

1

2

2

-2
1

x4lb =
1
2
x1 − x2

0

Fig. 5. An example of computing label affinities

We use the example in Fig. 5 to explain the process of

computing label affinities. We assume that there are three

input intervals, which are calculated by a concrete input and a

distance perturbation. They are propagated layer by layer and

finally an output interval is computed for each label. This can

be achieved by symbolic interval propagation as we introduced

in Section II-D. We assume that �3 is the true label of the

input if there is no perturbation. Then, the label affinities

between �1, �2, �4 and �3 are 23, −∞, and 7, respectively. The

verification of �2-robustness can be excluded because there are

no adversarial examples that have higher probabilities of being

misclassified to �2 than to �3. The verification of �1-robustness

has a higher priority to falsify than the one of �4-robustness

because it has a higher affinity than �3-robustness.

The example in Fig. 4 depicts the affection of perturbation

distance to sorting result. Under different ε, e.g., 3, 5, and 7,

the sorted lists of labels which shall be falsified in Algorithm

1 are different. They are also different from the sorting result

when perturbation is not considered in affinity definition.

• When ε = 3, our sorting approach returns an empty list.

It means that the original image cannot be misclassified

to any other labels under the threshold distance ε = 3,

thereby the robustness of the DNN is proved.

• When ε = 5, the sorting result is [3, 9, 2]. It means that

only the three subproblems labeled by 3, 9, 2 may have

adversarial examples. Furthermore, the one labeled by 3

has the highest probability to be falsified.

• When ε = 7, the sorting result is [9, 2, 3, 5, 0, 8, 1], and

the subproblem with label 9 has the highest label affinity

and thereby shall be the first to falsify.

Our sorting approach has two advantages. First, the informa-

tion of perturbation distance is considered, which produces a

more precise order than the naı̈ve one. Second, the labels that

do not have adversarial examples are excluded from the list,

and consequently their labeled robustness problems are omitted.

These advantages allow us to efficiently find an adversarial

example when there exists one. In the case that there are

no adversarial examples, the improvement is more significant

because all the labeled robustness problems are safely excluded

before feeding them into the back-end verification engine.

Fig. 6. A symbolic interval propagation example of CNN

C. Extending to CNNs

In this subsection, we discuss how to extend the aforemen-

tioned label sorting approach to the CNNs. Recall that the key

feature of CNNs is convolutional layers. As the pooling layers

can be handled straightforwardly, we only discuss how to handle

convolutional layers using symbolic interval propagation.

Consider a convolutional layer with a group of t filters

F p,q = (F p,q
1
, · · · , F p,q

t), where for each 1 ≤ i ≤ t, the filter F p,q
i

has type Rm×n×r → R(m−p+1)×(n−q+1). During symbolic interval

propagation, the input x̄ to each filter F p,q
i becomes a three-

dimensional array of symbolic intervals. After the computation

of the filter F p,q
i , the entry of F p,q

i (x̄) at the coordinate (i, j) also

becomes a symbolic interval. By stacking the outputs produced

by each filter, the output of the convolutional layer is a three-

dimensional array of symbolic intervals, where the activation

function ReLU is approximated as described in Section II-C.

Fig. 6 shows an example of the symbolic interval propagation

for convolutional layers. In this example, for the sake of

simplifying the presentation, the input to the convolutional

layer and weights of the filter are given as two-dimensional

arrays. Indeed, we can regard each entry of these arrays as a

vector of symbolic intervals. Then, the symbolic interval of

the variable x26 can be computed as follows:

x26 = φ(Σ
3
i=1ki · xi + Σ

6
i=4ki · xi+2 + Σ

9
i=7ki · xi+4),

where φ denotes the activation function.

In our implementation, in contrast to Neurify which

performs symbolic interval propagation via SMT solving,

we implemented a data structure to store and propagate

the coefficients of symbolic expressions instead of directly

propagating symbolic expressions. Indeed, we found that the

approach of Neurify becomes inefficient with the increase of

the size of DNNs.

To further improve efficiency, inspired by the implemen-

tations of convolution computations in current popular deep

learning libraries such as Caffe [38] and MXNet [39], we use

image-to-column (img2col) and generalized matrix multiplica-

tion methods to implement symbolic interval propagation for

convolutional layers. By combining these implementation-level

accelerations, the efficiency of our approach is significantly

improved using the BLAS library [40] and Multi-Core CPU.

Thus, the overhead of label sorting is very limited and can be

even ignored, compared with the time cost of verification.

350

IV. Implementation and Evaluation

In this section, we evaluate the effectiveness of our labeled

robustness problem sorting approach to the acceleration of

robustness verification of DNNs. We integrate the approach

into four existing efficient verification tools and compare their

time cost, respectively.

A. Implementation

We have implemented Algorithm 1 using Julia programming

language [41]. To evaluate its performance, we leverage

the following four most recent promising DNN verification

tools as back-end labeled robustness verification engines. To

demonstrate the orthogonality of our approach, we choose

the tools that are based on different verification techniques

including constraint solving, interval analysis and abstract

interpretation.

• MIPVerify [22] formulates the robustness verification

program as an MILP program. It improves existing

MILP-based approaches via a tighter formulation for non-

linearities and a novel presolve algorithm. MIPVerify is

both sound and complete.

• Neurify [26] is one of the most efficient approximation-

based DNN verification tools. It introduces symbolic

interval analysis and linear relaxation to compute tighter

bounds of outputs. Although Neurify is theoretically

complete, its refinement process might take too much

time in practice and thereby a threshold is usually needed

to force termination.

• DeepZ [21] is based on abstract interpretation. It introduces

a specialized abstract domain, coupled with abstract

transformers for handling affine transforms, activation

functions, and the max pooling operation. DeepZ supports

both feed-forward and convolutional networks. It is sound

but not complete.

• DeepPoly [24] is also based on abstract interpretation but

with a new abstract domain. It is one of the state-of-the-art

DNN verification tools with remarkable scalability and

precision. It is intentionally designed to be incomplete for

better scalability. Both DeepZ and DeepPoly are included

in the toolkit ERAN.

We leverage the above four efficient tools as back-end

verification engines. Note that these tools do not directly support

labeled robustness verification and therefore we revise their

implementations when they are used as our engines. To reduce

the overhead caused by sorting, we propagate the coefficients

of symbolic expressions instead of propagating the expressions

directly. We make use of image-to-column (img2col) and

generalized matrix multiplication methods in the BLAS library

[40] to deal with convolutional layers.

a) Benchmarks: We choose eight neural networks that

are provided by ERAN and Neurify. They have different

architectures, including three FNNs (denoted by FNNi with

i = 1, 2, 3) and five CNNs (denoted by CNNi with i = 1...5).

Among them, CNN3, CNN4 and CNN5 are adversarially trained

with DiffAI [42], SPAD (ε=0.1) [43], and PGD (ε=0.1) [44],

TABLE I
Details of the DNNs used in our experiments

Model ReLUs Network Architecture Source Defense

FNN1 48 〈784,24,24,10〉# Neurify None

FNN2 200 〈784,100,100,10〉# ERAN None

FNN3 500 〈784,100,100,100,100,100,10〉# ERAN None

CNN1 3604 〈784,k:16*4*4 s:2 p:0, k:32*4*4
s:0 p:1,100,10〉+

ERAN None

CNN2 5704 〈784,k:16*4*4 s:2 p:1, k:32*4*4
s:2 p:1,1000,10〉+

ERAN None

CNN3 48064
〈784,k:32*3*3 s:1 p:1, k:32*4*4
s:2 p:1, k:64*3*3 s:1 p:1,
k:64*4*4 s:2 p:1,100,10〉+

ERAN DiffAI

CNN4 4804 〈784,k:16*4*4 s:2 p:1, k:32*4*4
s:2 p:1,100,10〉+

Neurify SPAD
ε=0.1

CNN5 4804 〈784,k:16*4*4 s:2 p:1, k:32*4*4
s:2 p:1,100,10〉+

Neurify PGD
ε=0.1

#: 〈x, y, ...〉 denotes a DNN with x number of neurons in first layer, y
number of neurons in second layer, etc.
+: k:c*h*w denotes the output channel (c), kernel height (h), kernel width
(w), s and p denote stride (s) and padding (p).

respectively. Network information is given in Table I. Column

2 gives the number of activation functions. Column 3 gives

the numbers of layers and neurons in each layer.
b) Experimental settings: For each DNN, we evaluate the

performance of the tools under different perturbation thresholds

on the same set of inputs. We selected the first 100 images

from the test set of MNIST [45] as original inputs and verify

the robustness of target DNNs on them. Remark that we

may evaluate some tools on subset of the selected DNNs

because the back-end tools do not support some neural network

architectures or input formats. The timeout threshold is set to

three hours per execution. All the experiments were conducted

on a workstation running Ubuntu 18.04 with a 32-core AMD

Ryzen Threadripper 3970X CPU @ 3.7GHz and 128 GB of

RAM.

B. Evaluation of Labeled Robustness Problem Sorting
We evaluate the effectiveness of our labeled robustness

problem sorting approach, i.e., whether a labeled robustness

problem with a higher label affinity is more likely to be falsified

than those with lower affinities. We conduct experiments on six

DNNs including three FNNs and three CNNs. For each DNN,

we selected 100 images and vary perturbation thresholds. Then,

we obtain a list of sorted labeled robustness problems for each

image. Let m be the number of images on which the target

DNN is not robust, and n j be the number of cases where a

real adversarial example is found for the label j. Then, n j/m
denotes the falsification probability of the j-robustness problem.

We chose MIPVerify as the back-end labeled robustness

verification engine because of its completeness. However,

MIPVerify cannot scale to large DNNs. If MIPVerify fails

due to out of time or memory, we use DeepPoly as alternative.

Because DeepPoly is practically incomplete, we only consider

the cases where DeepPoly returns real counterexamples to

guarantee the validity of the results.

351

1 2 3 4 5 6 7 8 9
Index

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty

FNN1 (Verified by MIPVerify)

epsilon=1
epsilon=3
epsilon=5
epsilon=7
epsilon=9

1 2 3 4 5 6 7 8 9
Index

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty

FNN2 (Verified by MIPVerify)

epsilon=1
epsilon=3
epsilon=5
epsilon=7

1 2 3 4 5 6 7 8 9
Index

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty

FNN3 (Verified by Deeppoly)

epsilon=1
epsilon=3
epsilon=5
epsilon=7
epsilon=9

1 2 3 4 5 6 7 8 9
Index

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty

CNN1 (Verified by Deeppoly)

epsilon=1
epsilon=3
epsilon=5
epsilon=7
epsilon=9
epsilon=11
epsilon=15
epsilon=25

1 2 3 4 5 6 7 8 9
Index

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty

CNN2 (Verified by Deeppoly)

epsilon=1
epsilon=3
epsilon=5
epsilon=7
epsilon=9
epsilon=11
epsilon=15
epsilon=25

1 2 3 4 5 6 7 8 9
Index0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty

CNN3 (Verified by Deeppoly)

epsilon=1
epsilon=3
epsilon=5
epsilon=7
epsilon=9
epsilon=11
epsilon=15
epsilon=25
epsilon=35

Fig. 7. The probabilities of falsifying sorted subproblems under different perturbation threshold and networks

Fig. 7 shows the falsification probabilities of all the labeled

robustness problems under different perturbation thresholds.

The horizontal axis in each figure represents the index of each

label in the sorted list J′ in Algorithm 1, namely, the descending

order of the labeled robustness problems. The vertical axis

represents corresponding falsification probability.

We can observe that in most cases, the falsification probabili-

ties are monotonic decreasing, which demonstrates the effective-

ness of our labeled robustness problem sorting approach using

label affinity. There is an exception case for the network FNN3

when ε = 3. We found that the number of the 4-th labeled

robustness problems that are falsified is even more than that

of the first one. This is due to the over-approximation during

symbolic interval propagation, which incurs the overestimation

of output range. A fine-grained approximation approach has

been recently proposed to compute tighter output range [34].

It could be used to reduce the overestimation and affect the

order of the subproblems to solve. We would investigate this

in our future work.

Note that for clarity we do not show the cases where all

the labeled robustness problems in a list can be falsified. This

occurs when the perturbation threshold is large, e.g., 35 on

CNN3. It is also possible that the falsification probabilities of

all the labeled robustness problems are 0, e.g., the cases of

FNN2, FNN3, CNN1 and CNN3 with ε = 1, namely, these

networks are robust on all the selected 100 images with ε = 1.

C. Evaluation of Efficiency Improvement

Fig. 8 depicts the accelerations that our eager falsification

brings to the four tools. The acceleration is quantitatively

measured by:

T − (T ∗ + Tsort)

T ∗ + Tsort
, (Acceleration Rate)

where, T denotes the verification time of an original tool, Tsort

denotes the sorting time of the labeled robustness problems,

and T ∗ denotes the verification time by the extended tool

after sorting. The total verification time of extended tools is

T ∗ + Tsort.

a) Performance on MIPVerify: We tested our approach

when MIPVerify is used as the back-end tool on the three

FNNs and two CNNs which are CNN4 and CNN5. The other

three CNNs are not supported by MIPVerify because the input

of MIPVerify needs to be normalized between 0 and 1.

Fig. 8(a) shows the results on five DNNs. The maximal

acceleration is up to 36.63x for FNN1 when ε = 1. We observe

that the acceleration on smaller perturbations is more significant

than that on larger perturbations. This is because the smaller the

perturbation value is, the more the labeled robustness problems

can be safely discarded without solving. Another observation is

that the acceleration on CNNs is more significant than that on

FNNs. The reason is that convolution layers can enhance feature

extraction. Because the two CNNs have been adversarially

trained with defense methods such as SPAD [43] and PGD

[44], many robust cases are discarded before solving.

b) Performance on Neurify: We evaluated the perfor-

mance of our approach on Neurify using the same DNNs as

on MIPVerify. Because Neurify discards those labels that

are impossible to be classified to, the efficiency improvement

are purely benefited from our sorting approach.

352

200

220 FNN1

FNN2

FNN3

CNN1

CNN2

CNN3

0 5 10 15 20 25 30 35

0

5

10

15

20

25

30

ε

200

220 FNN1

FNN2

FNN3

CNN1

CNN2

CNN3

0 5 10 15 20 25 30 35
0

10

20

30

40

50

60

ε

(c) Accelerations to DeepZ

(a) Accelerations to MipVerify (b) Accelerations to Neurify

(d) Accelerations to DeepPoly

A
cc

el
er

at
io

n

A
cc

el
er

at
io

n
A

cc
el

er
at

io
n

A
cc

el
er

at
io

n

0 5 10 15 20 25 30 35
0

1

2

3

4

5

6

ε

FNN1

FNN2

FNN3

CNN4

CNN5

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

40

ε

FNN1

FNN2

FNN3

CNN4

CNN5

Fig. 8. Accelerations of the four extended tools on various neural networks

Fig. 8(b) depicts the acceleration results. It can be observed

that our approach can achieve better performance on CNNs

with smaller perturbation distances than FNNs or with larger

perturbation distances. The result reveals that our sorting

approach can help Neurify to achieve up to 4.55x speedup.

c) Performance on DeepZ: We evaluated the performance

of our approach on DeepZ using three FNNs and three CNNs,

i.e., FNN1, FNN2, FNN3, CNN1, CNN2 and CNN3. Fig. 8(c)

shows the acceleration results. For better understanding the

improvement, we also give the concrete experimental results in

Table II as an example. In the case of FNNs, the effectiveness

of our approach on DeepZ has similar trend than the one on

MIPVerify with the increase of perturbation distance. Our

approach achieves up to 12.39× speedup. But in the case of

CNNs, our approach is able to significantly accelerate DeepZ

with up to 218x speedup. This improvement benefits from

discarding those unsatisfiable subproblems before solving them.

The results on CNN3 show the effectiveness of our approach

on large CNNs even when the perturbation distance is big, e.g.,

6.31x speedup for ε = 35.

In terms of precision, both tools proved and falsified the same

number of robust properties of inputs under different distance

thresholds. Compared with MipVerify and MipVerify∗, both

DeepZ and DeepZ∗ are able to verify more robust properties of

FNN2 and FNN3 on which MipVerify and MipVerify∗ run

out of time (cf. Tables II(b) and II(c)). This is because DeepZ

and DeepZ∗ are based on abstract interpretation technique,

which is more scalable than the MILP-based approach of

MipVerify and MipVerify∗ for abstraction. However, DeepZ

and DeepZ∗ are not complete for the same reason.

d) Performance on DeepPoly: We evaluated our ap-

proach on DeepPoly with the same DNNs as on DeepZ.

Fig. 8(d) shows that our approach has a little improvement

to DeepPoly for FNNs. Because compared with DeepZ,

DeepPoly has achieved remarkable efficiency improvement

to small-scale DNNs [24]. Nevertheless, the accelerations on

DeepPoly for CNNs are similar to the one on DeepZ. In

particular, the acceleration on DeepPoly for CNN3 is higher

than that of DeepZ, because without acceleration DeepPoly

spends more time than DeepZ.

From the above experimental results, we can observe that our

acceleration approach is effective to scale up all the four state-

of-the-art tools, which are based on three different verification

techniques. It demonstrates the generality and orthogonality of

our approach to the existing tools. The results also show that

the time cost of our subproblem sorting approach is usually

small and can be omitted, compared with the verification time

of the original tools.

D. Threats to Validity

There are some threats to the validity of the eager falsification

approach and its performance. We discuss some threats below.

Large perturbation threshold would be one major threat. Our

approach has a better performance when the distance threshold

353

TABLE II
Performance comparison between DeepZ and its extended variant DeepZ∗ accelerated by eager falsification

(a) The result of FNN1

FNN1, valid input: 99/100

ε tsort DeepZ DeepZ∗ ACC S/U S∗/U∗

1 0.05 19.22 1.38 12.39 96/3 96/3
3 0.05 19.42 7.92 1.43 90/9 90/9
5 0.05 19.50 16.16 0.20 54/45 54/45
7 0.05 19.57 19.16 0.02 24/75 24/75
9 0.05 19.63 19.65 0.00 6/93 6/93
11 0.06 19.81 19.80 0.00 0/99 0/99

(b) The result of FNN2

FNN2, valid input: 98/100

ε tsort DeepZ DeepZ∗ ACC S/U S∗/U∗

1 0.19 99.09 15.21 5.43 97/1 97/1
3 0.20 101.67 51.27 0.97 89/9 89/9
5 0.22 104.89 100.71 0.04 56/42 56/42
7 0.33 107.52 106.10 0.01 13/85 13/85
9 0.34 110.09 109.93 0.00 2/96 2/96
11 0.36 112.11 112.36 -0.01 0/98 0/98

(c) The result of FNN3

FNN3, valid input: 99/100

ε tsort DeepZ DeepZ∗ ACC S/U S∗/U∗

1 0.54 179.57 156.28 0.15 99/0 99/0
3 0.67 197.18 192.40 0.02 81/18 81/18
5 0.70 228.52 228.77 0.00 33/66 33/66
7 0.71 254.76 254.77 0.00 3/96 3/96
9 0.72 271.70 271.70 0.00 0/99 0/99
11 0.73 284.41 283.52 0.00 0/99 0/99

(d) The result of CNN1

CNN1, valid input: 100/100

ε tsort DeepZ DeepZ∗ ACC S/U S∗/U∗

1 4.82 136.49 0.23 26.00 100/0 100/0
3 4.84 140.46 1.60 20.75 99/1 99/1
5 4.72 143.61 4.47 14.62 99/1 99/1
7 4.87 147.40 7.65 10.77 98/2 98/2
9 4.86 150.88 7.82 10.89 97/3 97/3
11 5.05 155.13 22.13 4.70 95/5 95/5
15 4.84 176.46 85.63 0.95 89/11 89/11
25 5.11 203.17 203.46 -0.03 29/71 29/71
35 5.18 435.67 435.77 -0.01 0/100 0/100

(e) The result of CNN2

CNN2, valid input: 100/100

ε tsort DeepZ DeepZ∗ ACC S/U S∗/U∗

1 10.03 2039.40 0.22 197 100/0 100/0
3 10.33 2245.56 0.22 211 100/0 100/0
5 10.54 2362.05 0.22 218 100/0 100/0
7 10.38 2501.49 108.99 17.61 100/0 100/0
9 10.36 2984.07 177.15 10.81 98/2 98/2
11 10.33 3489.56 750.19 1.91 95/5 95/5
15 10.42 4244.63 1626.08 0.39 82/18 82/18
25 10.46 5686.27 2375.54 0.02 8/92 8/92
35 10.43 TO TO – – –

(f) The result of CNN3

CNN3, valid input: 95/100

ε tsort DeepZ DeepZ∗ ACC S/U S∗/U∗

1 104.37 1225.32 0.22 10.71 95/0 95/0
3 104.53 1247.42 0.22 10.91 95/0 95/0
5 105.23 1285.31 0.22 11.19 95/0 95/0
7 104.90 1327.19 0.22 11.62 95/0 95/0
9 104.76 1509.20 0.21 13.38 95/0 95/0
11 104.58 1801.22 12.96 14.32 95/0 95/0
15 104.84 1687.58 17.48 12.80 94/1 94/1
25 106.98 1868.05 106.83 7.74 92/3 92/3
35 106.82 2901.56 290.05 6.31 86/9 86/9

is in a reasonable small range than the case of large threshold.

It can significantly improve the efficiency of the original tools

when the distance threshold is relatively small and even solve

the problems that the original tool fails. When the distance

threshold is relatively large, the improvement may not be as

significant as the small case. As we mentioned previously,

when the distance threshold becomes larger, more labels have

adversarial examples on a valid perturbed input. In the worst

case, back-end tools can find adversarial examples on any label

except the true one. Then, eager falsification may not save

verification time. In contrast, it may cause overhead due to the

extra time cost on sorting. Nevertheless, the tools extended with

our approach are almost comparable with the original tools

when the distance threshold is large. Besides, our assumption is

pragmatic in practice that the distance threshold to be verified

is relatively small.

Another threat is the quality of the neural networks to be

verified. If a neural network is not robust and easy to perturb,

eager falsification may not improve the verification efficiency.

The reason is similar to the case when the perturbation threshold

is too large. Our experimental results also reflect that the

proposed approach has a better performance on the DNNs

that are adversarially trained. Usually, a DNN becomes more

robust after it is adversarially trained. For a relatively robust

DNN, our approach discards the cases which do not contain

adversarial examples and therefore the time spent on solving

these subproblems by the original tools can be saved.

V. RelatedWork

We discuss existing formal verification techniques for DNNs

(cf. [37], [46] for a survey). DNN testing (e.g., [10]–[12], [47]–

[56] to cite a few) is excluded, which is computationally less

expensive and can work on large DNNs, but at the cost of

losing theoretic guarantees.

Existing formal verification techniques can be broadly

classified as either complete or incomplete ones. Complete

techniques are based on constraint solvers such as SMT and

MILP solving [14], [23], [23], [57], [58]. Such approaches

essentially reduce the robustness verification to the problem

of solving a collection of linear programming problems. The

number grows exponentially with the number of neurons in

networks, which limits the scalability of these approaches. For

example, the verification of an FNN with 5 inputs, 5 outputs,

and 300 total hidden neurons on a single input takes Reluplex

a few hours [14]. Another solver-based verification system

is Planet [23], which resorts to satisfiability (SAT) solvers.

Although complete techniques produce neither false positives

nor false negatives, their scalability is always an obstacle that

prevents them from being applied to relatively large DNNs.
In contrast, incomplete techniques usually rely on approxima-

tion and abstraction for better scalability, but they may produce

false positives. Existing incomplete techniques mainly include

duality [17], layer-by-layer approximations of the adversarial

polytope [59], discretizing the search space [60], abstract inter-

pretation [20], [21], [24], linear approximations [18], bounding

the local Lipschitz constant [18], or bounding the activation

of the ReLU activation function with linear functions [18].

Recently, two novel abstraction-based frameworks have been

proposed [61], [62] to transform complex DNNs into small

ones by merging neurons and abstracting the transformation of

neurons, respectively. Li et al. proposed a symbolic propagation

technique for propagating values layer by layer on abstract

domains [63]. The common feature of these approaches is

that they do not intend to solve the verification task directly.

Instead, they tune the verification problem into a classical

linear programming problem for efficient solving. Although

approximation and abstract can significantly improve the

efficiency, they have to rely on iterative refinement when false

positives are produced.
Our approach is orthogonal to these approaches and can

be integrated with existing tools. Although both the symbolic

interval analysis and linear relaxation techniques have been

used in existing works, to our knowledge, they are the first

time used for sorting labeled robustness verification problems.

354

Furthermore, our eager falsification verification methodology

that reduces to the robustness verification problem of a DNN

to the independent labeled robustness verification problems of

the DNN is new to our knowledge.

VI. Conclusion and FutureWork

We have proposed a general and effective approach to acceler-

ate the robustness verification of DNNs and extended four state-

of-the-art tools by our approach. As the experimental results

demonstrated, our approach is orthogonal to and compatible

with the tools, bringing them up to 218x speedup. We believe

that the acceleration makes it possible and pragmatical to verify

the DNNs in real-world systems using more powerful hardware

such as GPU. Furthermore, all the labeled robustness problems

are independent, thus could be verified in parallel from the

implementation point of view.

As for the future work, we would extend our approach to

the neural networks that take non-ReLU activation functions

using the fine-grained approximation approach to compute

output ranges for the labeled robustness problem sorting [34].

Besides, it is also worth investigating other metrics for the

subproblem sorting, e.g., the percentage of overlapping sections.

We believe this work would inspire new algorithmically

efficient approaches. For instance, by dividing the verification

problem into independent subproblems, it is possible to improve

scalability and efficiency using parallel computing techniques.

Acknowledgements

The authors would like to thank the referees for their valuable

comments. This work is partially supported by National Key Re-

search and Development Program (2020AAA0107800), NSFC

general projects (No. 61872146), Open Project Fund from

Shenzhen Institute of Artificial Intelligence and Robotics for

Society, and Joint Funding and AI Project (No. 20DZ1100300)

of Shanghai Science and Technology Committee. Min Zhang

is the corresponding author.

References

[1] P. Holley, “Texas becomes the latest state to get a self-driving car service,”
https://shorturl.at/bktzG, May 2018.

[2] Apollo, “An open, reliable and secure software platform for autonomous
driving systems,” http://apollo.auto, 2018.

[3] Waymo, “A self-driving technology development company,” https://wa
ymo.com/, 2009.

[4] D. C. Ciresan, A. Giusti, L. M. Gambardella, and J. Schmidhuber, “Deep
neural networks segment neuronal membranes in electron microscopy
images,” in Proceedings of the 26th Annual Conference on Neural
Information Processing Systems., 2012, pp. 2852–2860.

[5] D. Shen, G. Wu, , and H.-I. Suk, “Deep learning in medical image
analysis,” Annual Review of Biomedical Engineering, vol. 19, pp. 221–
248, 2017.

[6] T. Parag, D. C. Ciresan, and A. Giusti, “Efficient classifier training
to minimize false merges in electron microscopy segmentation,” in
Proceedings of 2015 IEEE International Conference on Computer Vision,
2015, pp. 657–665.

[7] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” in ICLP’14,
2014.

[8] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.

[9] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: a simple
and accurate method to fool deep neural networks,” in CVPR’16, 2016,
pp. 2574–2582.

[10] Y. Lei, S. Chen, L. Fan, F. Song, and Y. Liu, “Advanced evasion attacks
and mitigations on practical ML-based phishing website classifiers,”
CoRR, vol. abs/2004.06954, 2020.

[11] G. Chen, S. Chen, L. Fan, X. Du, Z. Zhao, F. Song, and Y. Liu, “Who
is real Bob? adversarial attacks on speaker recognition systems,” CoRR,
vol. abs/1911.01840, 2019.

[12] Y. Duan, Z. Zhao, L. Bu, and F. Song, “Things you may not know about
adversarial example: A black-box adversarial image attack,” CoRR, vol.
abs/1905.07672, 2019.

[13] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural
networks,” in 2017 IEEE Symposium on Security and Privacy (SP).
IEEE, 2017, pp. 39–57.

[14] G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer,
“Reluplex: An efficient smt solver for verifying deep neural networks,”
in CAV’17. Springer, 2017, pp. 97–117.

[15] J. Peck, J. Roels, B. Goossens, and Y. Saeys, “Lower bounds on
the robustness to adversarial perturbations,” in Advances in Neural
Information Processing Systems, 2017, pp. 804–813.

[16] M. Hein and M. Andriushchenko, “Formal guarantees on the robustness
of a classifier against adversarial manipulation,” in Advances in Neural
Information Processing Systems, 2017, pp. 2266–2276.

[17] K. Dvijotham, R. Stanforth, S. Gowal, T. A. Mann, and P. Kohli, “A dual
approach to scalable verification of deep networks.” in UAI’18, 2018, pp.
550–559.

[18] T.-W. Weng, H. Zhang, H. Chen, Z. Song, C.-J. Hsieh, D. Boning, I. S.
Dhillon, and L. Daniel, “Towards fast computation of certified robustness
for relu networks,” arXiv preprint arXiv:1804.09699, 2018.

[19] H. Zhang, T.-W. Weng, P.-Y. Chen, C.-J. Hsieh, and L. Daniel, “Efficient
neural network robustness certification with general activation functions,”
in NeurIPS’18, 2018, pp. 4939–4948.

[20] T. Gehr, M. Mirman, D. Drachsler-Cohen, P. Tsankov, S. Chaudhuri, and
M. Vechev, “AI2: Safety and robustness certification of neural networks
with abstract interpretation,” in S&P’18. IEEE, 2018, pp. 3–18.

[21] G. Singh, T. Gehr, M. Mirman, M. Püschel, and M. Vechev, “Fast
and effective robustness certification,” in NeurIPS’18, 2018, pp. 10 802–
10 813.

[22] V. Tjeng, K. Y. Xiao, R. Tedrake et al., “Evaluating robustness of neural
networks with mixed integer programming,” in ICLR’19, 2019.

[23] R. Ehlers, “Formal verification of piece-wise linear feed-forward neural
networks,” in ATVA’17, 2017, pp. 269–286.

[24] G. Singh, T. Gehr, M. Püschel, and M. Vechev, “An abstract domain for
certifying neural networks,” in POPL’19, vol. 3. ACM, 2019, p. 41.

[25] G. Singh, T. Gehr, M. Püschel, and M. T. Vechev, “Boosting robustness
certification of neural networks,” in 7th International Conference on
Learning Representations (ICLR), 2019.

[26] S. Wang, K. Pei, J. Whitehouse, J. Yang, and S. Jana, “Efficient formal
safety analysis of neural networks,” in NeurIPS’18, 2018, pp. 6367–6377.

[27] Y. Zhang, Z. Zhao, G. Chen, F. Song, and T. Chen, “BDD4BNN: A BDD-
based quantitative analysis framework for binarized neural networks,”
CoRR, vol. abs/2103.07224, 2021.

[28] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[29] G. Huang, Z. Liu, L. Van Der Maaten et al., “Densely connected
convolutional networks,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2017, pp. 4700–4708.

[30] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2016, pp.
2818–2826.

[31] W. Ruan, M. Wu, Y. Sun, X. Huang, D. Kroening, and M. Kwiatkowska,
“Global robustness evaluation of deep neural networks with provable
guarantees for the hamming distance,” in IJCAI’19, 2019, pp. 5944–5952.

[32] H. Salman, G. Yang, H. Zhang, C. Hsieh, and P. Zhang, “A convex
relaxation barrier to tight robustness verification of neural networks,” in
32nd NeurIPS, 2019, pp. 9832–9842.

[33] P. Henriksen and A. R. Lomuscio, “Efficient neural network verification
via adaptive refinement and adversarial search,” in 24th ECAI, vol. 325,
2020, pp. 2513–2520.

[34] Y. Wu and M. Zhang, “Tightening robustness verification of convolutional
neural networks with fine-grained linear approximation,” in AAAI’21,
2021, pp. 11 674–11 681.

[35] R. E. Moore, R. B. Kearfott, and M. J. Cloud, Introduction to interval
analysis. Siam, 2009, vol. 110.

355

[36] S. Wang, K. Pei, J. Whitehouse, J. Yang, and S. Jana, “Formal security
analysis of neural networks using symbolic intervals,” in USENIX Security
Symposium’18, 2018, pp. 1599–1614.

[37] C. Liu, T. Arnon, C. Lazarus, C. W. Barrett, and M. J. Kochenderfer, “Al-
gorithms for verifying deep neural networks,” CoRR, vol. abs/1903.06758,
2019.

[38] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” in Proceedings of the 22nd ACM international
conference on Multimedia, 2014, pp. 675–678.

[39] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu,
C. Zhang, and Z. Zhang, “Mxnet: A flexible and efficient machine
learning library for heterogeneous distributed systems,” arXiv preprint
arXiv:1512.01274, 2015.

[40] BLAS, “BLAS Library,” http://www.netlib.org/blas/, 2018.
[41] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A fresh

approach to numerical computing,” SIAM review, vol. 59, no. 1, pp.
65–98, 2017.

[42] M. Mirman, T. Gehr, and M. T. Vechev, “Differentiable abstract
interpretation for provably robust neural networks,” in ICML’18, 2018,
pp. 3575–3583.

[43] E. Wong, F. R. Schmidt, J. H. Metzen, and J. Z. Kolter, “Scaling provable
adversarial defenses,” in NeurIPS’18, 2018, pp. 8410–8419.

[44] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” in ICLR’18, 2018.

[45] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner et al., “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[46] X. Huang, D. Kroening, W. Ruan, J. Sharp, Y. Sun, E. Thamo, M. Wu,
and X. Yi, “Safety and trustworthiness of deep neural networks: A
survey,” CoRR, vol. abs/1812.08342v4, 2019. [Online]. Available:
http://arxiv.org/abs/1812.08342v4

[47] K. Pei, Y. Cao, J. Yang, and S. Jana, “Deepxplore: Automated whitebox
testing of deep learning systems,” in Proceedings of the 26th Symposium
on Operating Systems Principles (SOSP), 2017, pp. 1–18.

[48] L. Ma, F. Juefei-Xu, F. Zhang, J. Sun, M. Xue, B. Li, C. Chen, T. Su,
L. Li, Y. Liu, J. Zhao, and Y. Wang, “Deepgauge: multi-granularity
testing criteria for deep learning systems,” in Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineering
(ASE), 2018, pp. 120–131.

[49] N. Papernot, P. D. McDaniel, I. J. Goodfellow, S. Jha, Z. B. Celik,
and A. Swami, “Practical black-box attacks against machine learning,”
in Proceedings of the ACM on Asia Conference on Computer and
Communications Security (AsiaCCS), 2017, pp. 506–519.

[50] A. Ilyas, L. Engstrom, A. Athalye, and J. Lin, “Black-box adversarial
attacks with limited queries and information,” in Proceedings of the
35th International Conference on Machine Learning (ICML), 2018, pp.
2142–2151.

[51] M. Cheng, T. Le, P. Chen, H. Zhang, J. Yi, and C. Hsieh, “Query-efficient
hard-label black-box attack: An optimization-based approach,” in Pro-
ceedings of the 7th International Conference on Learning Representations
(ICLR), 2019.

[52] C. Tu, P. Ting, P. Chen, S. Liu, H. Zhang, J. Yi, C. Hsieh, and S. Cheng,
“Autozoom: Autoencoder-based zeroth order optimization method for
attacking black-box neural networks,” in Proceedings of the 33rd AAAI
Conference on Artificial Intelligence (AAAI), 2019, pp. 742–749.

[53] A. N. Bhagoji, W. He, B. Li, and D. Song, “Exploring the space of
black-box attacks on deep neural networks,” CoRR, vol. abs/1712.09491,
2017.

[54] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial examples in
the physical world,” in Proceedings of the International Conference on
Learning Representations (ICLR), 2017.

[55] W. Brendel, J. Rauber, and M. Bethge, “Decision-based adversarial
attacks: Reliable attacks against black-box machine learning models,” in
Proceedings of the International Conference on Learning Representations
(ICLR), 2018.

[56] Z. Zhao, G. Chen, J. Wang, Y. Yang, F. Song, and J. Sun, “Attack as
defense: Characterizing adversarial examples using robustness,” CoRR,
vol. abs/2103.07633, 2021.

[57] V. Tjeng and R. Tedrake, “Verifying neural networks with mixed integer
programming,” arXiv preprint arXiv: 1711.07356, pp. 945–950, 2017.

[58] W. Liu, F. Song, T. Zhang, and J. Wang, “Verifying ReLU neural networks
from a model checking perspective,” Journal of Computer Science and
Technology, vol. 35, no. 6, pp. 1365–1381, 2020.

[59] W. Xiang, H.-D. Tran, and T. T. Johnson, “Output reachable set estimation
and verification for multilayer neural networks,” IEEE Transactions on
Neural Networks and Learning Systems, vol. 29, no. 11, pp. 5777–5783,
2018.

[60] X. Huang, M. Kwiatkowska, S. Wang, and M. Wu, “Safety verification
of deep neural networks,” in CAV’17. Springer, 2017, pp. 3–29.

[61] Y. Y. Elboher, J. Gottschlich, and G. Katz, “An abstraction-based
framework for neural network verification,” in CAV’20, 2020, pp. 43–65.

[62] P. Ashok, V. Hashemi, J. Kretı́nský, and S. Mohr, “Deepabstract: Neural
network abstraction for accelerating verification,” in ATVA’20, 2020.

[63] J. Li, J. Liu, P. Yang, L. Chen, X. Huang, and L. Zhang, “Analyzing deep
neural networks with symbolic propagation: Towards higher precision
and faster verification,” in ISSTA’19, 2019, pp. 296–319.

356

