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Abstract

Heterogeneous oxidation of SO, by NO, on aerosols has recently been found to be one of the major formation pathways of sulfate in
the polluted troposphere, but the chemical mechanisms and kinetics remain uncertain. By combining lab experiments, theoretical
chemistry calculations, and field measurements, here we show that the SO, oxidation by NO, is critically dependent on anions at the
air-aerosol aqueous interface. The reaction rate of NO, with HSO3 (1.1 x 108-1.6 x 10° M~'s™%) is more than four orders of magnitude
larger than the traditionally held value for the bulk phase due to the abundant occurrence of chloride, nitrate, and carboxylic anions
at the air-aqueous interface, which remarkably accelerates sulfate formation during China haze periods by enhancing the uptake of
NO, through interfacial electrostatic attraction. Atmospheric models not accounting for this aerosol interfacial process likely

produce major misrepresentations of tropospheric sulfate aerosols under polluted conditions.

Keywords: air pollution, China haze, sulfate aerosols, interface chemistry, aerosol kinetics

Significance Statement

Ahigh level of sulfate still frequently occurs in haze periods in China, but the formation mechanism remains unclear. From atmos-
pheric measurement in Beijing, laboratory experiments, and quantum chemical simulation, we show that the heterogeneous oxi-
dation of SO, by NO, in aerosol aqueous phase is the predominant pathway of sulfate formation during Chinese haze periods, which
is significantly enhanced by anions at the air-aqueous interface through an electrostatic attraction with NO,. Our work reveals that
air-aqueous interfacial chemistry is a key role in secondary aerosol formation in real atmosphere and should be accounted for
models.

Introduction neutralization by NH; under humid conditions is a major forma-
tion pathway of sulfate during winter haze periods in China (1,
7, 10-16), but these studies are controversial regarding the role
of NO, in the SO, oxidation process. Some researchers have pro-
posed that the oxidation of SO, by NO, in the aerosol aqueous
phase produces sulfate and HONO, and HONO subsequently

evaporates into the gas phase (Egs. 1 and 2) (1, 7, 17). In contrast,

Sulfate is one of the major components of atmospheric aerosols
and profoundly affects climate, human health, and the environ-
ment (1-3). Tropospheric sulfate is largely formed from heteroge-
neous reactions of SO, with oxidants such as Os, H,O,, and O,
catalyzed by transition metal ions (TMIs, mainly Fe*" and Mn?*)
in aerosols, fogs, and cloud droplets (2, 4-7). However, the rapid

formation of sulfate in China haze periods has often been under-
estimated by numerical models, suggesting some unknown sul-
fate formation mechanisms (8, 9). Recently, a few studies have
proposed that heterogeneous oxidation of SO, by NO, with

others presume that the dissolved SO, is oxidized into SO2~ not
only by NO, (Eq. 1) but also by NO7, and the latter is reduced
into N,O and subsequently evaporates into the gas phase (Eq. 3)
(10, 13, 18). Such controversial results suggest that some
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fundamental processes governing the reaction of SO, with NO, in
the troposphere are still not understood. Therefore, revealing the
mechanisms and kinetics is necessary because SO,, NO,, and their
secondary products, e.g. sulfate, nitrate, and ozone, are the major
pollutants in the troposphere.

2NO,(aq) + S(IV)(aq) + H,O — 2HT (aq)

+2NO,™(aq) + S(VI)(aq) .

H* (aq) + NO,~(aq) — HONO(g) 2)
2NO;~(aq) + 25(IV)(aq) — N,O(g) + 25(VI) (3)
2NO; + H,0(ag) — HONO + HNOs3 (4)

To date, studies on the heterogeneous formation of sulfate
through SO, oxidation in aerosols, fogs, and clouds have only fo-
cused on the reaction processes in the bulk phase and deemed
that the bulk-phase acidity (pH) is a crucial factor controlling
the SO, oxidation pathways and sulfate production in the global
atmosphere (10, 14, 19-22). In the past decade, a number of stud-
ies have found that ion distributions at the air-water interface of
an electrolyte solution are different from those in the bulk phase.
Some polarizable anions, such as Cl7, Br~, 17, NO3, and HCOg3, pref-
erably stay near the most top surface, while some cations, such as
Na* and Ca*’, and divalent anions, such as SO2~ and CO3", stay
near the bulk phase (23-26). Such different distributions can re-
sult in anions being enriched in the air-aqueous interface (27,
28), and thus may significantly affect the reactions of gaseous pol-
lutants with atmospheric aerosols, fogs, and cloud droplets.
However, direct field evidence on such an interfacial effect is lack-
ing, and thus, the involved atmospheric reactions are unknown
because compositions of the air-aqueous interface in the atmos-
phere cannot be measured directly.

Here, we used a laboratory smog chamber (Fig. S1) to mimic the
impact of the air-aqueous interfacial ions on the heterogeneous
oxidation of SO, by NO, in preexisting aerosols during haze peri-
ods in China by exposing a series of inorganic and organic seeds
to SOy, NO,, and NH; under humid conditions. Both gas- and
aerosol-phase species were comprehensively monitored online
by using a series of sophisticated instruments and simulated by
using state-of-the-art molecular dynamics (MD) models and
quantum chemical calculations to explore the reaction process
of SO, with NO,. Based on the field observations, laboratory cham-
ber experiments, and MD simulations, we found a key role of air-
aqueous interfacial anions in sulfate formation process in Beijing
by investigating the winter haze chemistry.

Results

Distinct behavior of SO, oxidation at

the air-aqueous interface

To investigate the heterogeneous oxidation of SO, by NO, on pre-
existing aerosols in urban atmosphere, we exposed different types
of seeds on a polydisperse mode including NaCl, NH4NOs,
(NH,4),S04, a mixture of (NH,4),SO, and NacCl, oxalic acid, and su-
crose, which are typical components of tropospheric aerosols
(29, 30), to the same levels of SO, (600 ppb), NO, (600 ppb), and
NHj; (80 and 190 ppb) under 90% relative humidity (RH) conditions,
respectively. All the seed solution was added with ethylenediami-
netetraacetic acid (EDTA) before being nebulized into the cham-
ber to remove a possible impact of TMIs. Figure 1 shows the
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Fig. 1. Changes in compositions of particles in the chamber during the
exposure of NaCl seeds to SO,, NH3, and NO, under 90% RH conditions.
The figure shows the time evolution of aerosol-phase (SO3~, NH}, NO3,
and wall-loss-corrected SO3~ (w-SO37), NH (w-NH;), and NOj (w-NO3)
species for a typical NaCl aerosol seed experiment under 80 ppb NHj (g)
conditions. w-SO3~, w-NHZ, and w-NO3 concentrations were derived by
correcting SO2~, NH}, and NOj3 concentrations using a wall-loss rate
before adding NH; into the chamber (see Materials and methods for more
details).

variations in concentrations of sulfate, nitrate, and ammonium
in the chamber during the exposure of NaCl seeds. When SO,
was introduced, a very small amount of sulfite was formed on
the NaCl seeds (phase I in Fig. 1). The sulfate increased to about
1.5 ug m~ after NH; was introduced (phase II in Fig. 1). Such a
small amount of sulfate formed in the absence of NO, is most like-
ly caused by a reaction between SO, and impurities of peroxides in
the solution and the increased dissolved S(IV) (15). After NO, was
further introduced, S(IV) was oxidized into S(VI) and a sharp in-
crease of 4.0 ug m~ sulfate was detected (phase Il in Fig. 1), sug-
gesting a rapid formation of sulfate on the NaCl seeds via
heterogeneous oxidation of SO, by NO,. The reactive uptake coef-
ficients of SO, in the three stages were 2.5 x 10~/ (unary uptake,
SO, only, phase I in Fig. 1), 1.5x% 107° (co-uptake, SO, and NHjs,
phase II in Fig. 1), and 2.6 x 10 (trinary uptake, SO,, NHs, and
NO,, phase Illin Fig. 1), respectively, indicating an enhanced inter-
action of SO, with NO, in the presence of NHs. Such a SO, uptake
was greater under 190 ppb NHj conditions (Tables S1 and S2), be-
cause NHj reduces the aerosol acidity and makes more S(IV) avail-
able at the interface. Similar results were also observed for oxalic
acid, NH4NOs, and (NH,4),SO4/NaCl mixture seeds, respectively
(Fig. S2A-C, and Tables S1 and S2). However, no additional sulfate
was formed on either (NH,4),SO, or sucrose seeds during the ex-
posure (Fig. S2D and E). Such distinct differences in sulfate for-
mation should be ascribed to the properties of seeded particles
rather than the addition of EDTA into the seeds, because all
the seeds contained the same amount (2mM) of EDTA.
Figure S3 compares the sulfate production rate on NaCl seeds
with a different size. It can be seen that both y, which is the up-
take coefficient of SO,, and Rso?;/SA' which is the sulfate forma-
tion rate (Rgpz-) normalized by the surface area (SA) of seeds, are
~50% higher on NaCl seeds with a 60-nm diameter than on NaCl
seeds with a 100-nm diameter. Such a dependence of sulfate
production rate on seed particle size is in agreement with the ex-
perimental results reported by Liu and Abbatt (15) and suggests
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that the heterogeneous oxidation of SO, by NO, proceeds at the
aerosol surface.

On the contrary to the traditional Debye-Hiickel theory of bulk
aqueous electrolytes, a number of studies found that in the air-
water interface of an electrolyte solution, some polarizable ions,
such as halogen ions (ClI7, Br~, and I7), NO3, HCO3, carboxylate,
and NHj, stay closer to the surface, while other ions, such as
Na*, K*, SO37, and COZ", stay deeper in the bulk phase (31, 32).
Thus, the air-aqueous interfaces of wetted NaCl and oxalate
seeds are enriched with anions, while that of (NH,),SO4 seeds
are enriched with cations. We assume that the anions at the air-
aqueous interface of an aerosol may greatly promote the trans-
port of NO, from the gas phase into the aqueous phase and thus
enhance SO, oxidation by NO,. To elucidate this effect, we used
an MD model to simulate the distribution of ions in a NaCl solu-
tion droplet with a concentration (2 M NaCl) similar to that in
our chamber experiments (33). As shown in Fig. 2A, Na* has a
high distribution at a distance of ~11 A from the water surface,
while Cl™ has the largest distribution at a distance of ~8 A from
the water surface, which means that Cl~ ions are more accessible
to the air-aqueous surface (34). At deeper positions, the concen-
trations of both ions are nearly the same (Fig. 2A). The layered
Na* and CI~ can form an electric field directed toward the water
surface, which is the same as the direction of the dipole moment
of NO, and thus efficiently promotes the adsorption of NO,. When
NO, moves from the air to the surface of the water slab, it may
even directly collide with Cl™ ions at the surface (Fig. 2B).
Figure 2C shows the electrostatic potential of the NO,-Cl™ inter-
action calculated by the quantum chemical method. It can be
seen that the negatively charged Cl™ ion has a strong attraction
to the partially positively charged N atom. In fact, a ¢ bond could
be formed between the single unoccupied molecular orbital
(SUMO) of NO, and the highest occupied molecular orbital
(HOMO) of Cl~ (Fig. 2B), which therefore significantly enhances
NO, uptake by the wetted NaCl aerosols.

Because at the air-water interface of a solution NH} ions pref-
erably stay near the surface with the counterpart SO3~ ions locat-
ing deeper in the bulk phase (35, 36), and sucrose is a nonionizable
organic compound, the air-water interfaces of (NH,),SO, and su-
crose seeds in the chamber lack anions. Therefore, NO, molecules
cannot effectively dissolve into the aerosol aqueous phase due to
their poor solubility (2). As a result, SO, cannot be efficiently oxi-
dized by NO,, and thus, no sulfate was formed on (NHy4),SO4 and
sucrose seeds unless NaCl was added to the (NH,4),SO, solution
(Fig. S2C-E). Hua et al. (37) found that NOj is more accessible
than NH} to the air-water surface. Mahiuddin et al. (38) investi-
gated the surface behavior of aqueous solutions of diacids, includ-
ing oxalic acid using MD model, and found all these acids exhibit a
significant propensity for the air-water interface. Enami et al. (39)
laterreported that dicarboxylic acids at the surface largely exist as
monoanion and undissociated forms. Thus, like NaCl seeds, the
air-aqueous interface of NH,NO3 and oxalic acid seeds is also en-
riched with anions, which effectively trapped NO, and resulted in
a rapid formation of sulfate after NO, was introduced (Fig. S2B,
and Tables S1 and S2).

Oxidation pathway of SO, by NO,

To clarify the oxidation pathway of SO, by NO,, we exposed NaCl
seeds to NO,, SO,, and NH; in an order being different from thatin
Fig. 1. As seen in Fig. S4, at phase I, NO, molecules disproportion-
ate on the wetted seeds (Eq. 4) (40, 41), thus, ~8.0 pg m~ of NO3 in
the chamber was detected. After SO, was added into the chamber,

the heterogeneous oxidation of SO, with NO, proceeded at the air-
aqueous interface of the NaCl seeds. At this moment, only a small
amount of sulfate was detected (Fig. 54, phase II), because the par-
ticles became very acidic due to the formation of sulfuric acid,
which prevented further dissolution of SO, and thus limited the
availability of S(IV). After NH; was introduced into the chamber,
both SO+ and NH; significantly increased due to the neutraliza-
tion of NHj (Fig. S4, phase III), but NO3 concentration was almost
constant as that in phase I, suggesting that NH; may accelerate
NO, hydrolysis rate (42) but does not change the reaction equilib-
rium. During the whole process, no N,O or NO was produced.
Moreover, after SO, and NH; were injected into the chamber,
the increase in HONO concentration was stoichiometrically equal
to the decreased NO, concentration in the absence and presence
of NaCl seeds (Fig. S5). These results clearly show that Egs. 1
and 2, rather than Eqg. 3, are the reaction pathways of SO, oxida-
tion by NO,. The ISORROPIA-II thermodynamic model calculation
results show that the pH values of NaCl particles in the chamber
after the reaction were ~5.0 (Tables S1 and S2). Our previous work
revealed that under such moderate acidic conditions, the gas-
phase HONO(g) concentration in the chamber is 2-3 orders of
magnitude higher than that in the aerosol liquid phase due to
the high volatility of HONO and the high specific SA of aerosols
(17). Therefore, in the chamber, the HONO formed in the aerosol
aqueous phase quickly evaporated into the gas phase, resulting
in very minor amounts of HONO and NOj remaining in the aque-
ous phase (17). Consequently, oxidation of S(IV) by dissolved
HONO (aq) or NO; was negligible, and no N,0(g) in the chamber
was detected (Fig. S4).

To further clarify the reaction pathway of SO, with NO, in the
aerosol aqueous phase, we carried out a computational study to in-
vestigate the reactions of SO, and NO, in water by using density
functional theory (43-45) and compare the NO, disproportionation
pathway with the redox between NO, and SO, (HSO3). As shown in
Fig. 3, the pathway of disproportionation starts from a NO, dimer, in
which the optimal pathway has a six-membered ring transition
state TS4 as the rate-determining state. Relative to a NO,
dimer, TS4 requires a 10.7-kcal mol™" activation free energy.
Alternatively, at higher concentration, the disproportionation path-
way can start from the most stable N,0,, which has a lower Gibbs
free energy of —4.9 kcal mol ™%, making the pathway behave as a first
order reaction with an activation Gibbs free energy of 15.6 kcal
mol™". For the pathway of NO, reduction by HSO3, one NO, mol-
ecule and one HSOj ion can be connected via hydrogen bonding
with solvent water, forming intermediate IM1. An asynchronous
concerted dual hydrogen atom transfer process can smoothly con-
nect IM1 to IM2 via TS1. Relative to the substrate, TS1 has a Gibbs
free energy of 8.0 kcal mol™, which is 2.7 kcal mol™* lower than
that of NO, disproportionation, approximately corresponding to a
100-fold difference in conversion rate of NO,. Through TS1, one
molecule HONO and a SOj radical anion were generated, which
are still connected through a water molecule. After IM2 formation,
another molecule of NO, radical can readily react with SO3 radical
through radical-radical coupling. This process is barrierless and
highly spontaneous, giving the S-O-bonded intermediate IM3. IM3
can then react with water through a six-membered ring transition
state TS3 to give IM4, which subsequently dissociate into HSO;
and another molecule of HONO.

Kinetics of SO, oxidation by NO,

In the chamber, pH values of the aqueous phase of seed particles
are 3.5-5.0 (Tables S1 and S2), which are similar to those observed
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Fig. 3. Reaction pathways of NO, with HSO3 and NO, disproportionation. All energies labeled are the Gibbs free energy calculated at the PBEO-D3/

def2-TZVPD level with SMD solvation in water.

in Beijing winter haze periods (Table S3). Under such moderate
acidic conditions, NO, reacts mostly with HSO3 rather than SO3-
(2, 46). Thus, the formation rate of sulfate can be expressed as fol-
lows (see the details in SI Appendix S1):

2- e
d[s(;)t4 J = (kN[?_ZIES]%)kaleozpsozHNozPNoz (5)
where d[SO?7] is the molar concentration of sulfate during the re-
action time of dt. kyosuso; is the reaction rate constant of
Eq. 1. [H*]is the molar concentration of hydrogenionsin the aque-
ous phase of seed particles, which was calculated by using the
ISORROPIA-II model. ka1 is the dissociation constant of HSOj3.
Hso, and Hyo, are the Henry's law constants of SO, and NO..

Pso, and Pno, are the averaged partial pressures of SO, and NO,
in the chamber during the reaction time of dt (2, 15).

_— (d[sOz ]/t _Rwomso; ©)
P ka1Hso, Pso, Hno, Pro, [H*]
kNo;Hso; = kexp [H*] 7)

Based on the Eq. 5, the total reaction rate kexp of SO, with NO, in
the chamber, i.e. Eq. 6, can be further expressed as the Eq. 7. By
plotting a log-log relationship of kex, with [H'], we found that
kexp TObustly linearly correlated with hydrogen ion activity
during the reaction of SO, with NO; in the chamber with a slope
of =1 (R?=0.77, Fig. 4), again demonstrating that the reaction of
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NO, with HSOj3 rather than with SO?™ is the dominant formation
pathway of sulfate in the chamber. We further calculated the ef-
fective rate constant kygspso; of oxidation of SO, by NO; in the
chamber by using the Eq. 7 (2, 15). As seen in Tables S1 and S2,
knornso; Values ranged from 1.1x10° to 1.6x 10° M™"s™" under
the two levels of NH; conditions, which are over 4 orders of mag-
nitude higher than those (1.5 x 10*-1.4 x 10° M~*s™%) obtained for

bulk solutions (46, 47), further revealing that SO, oxidation by
NO, is enhanced by anions at the air-aqueous interface.

Discussion

To recognize whether such an interfacial effect is important for
sulfate formation in the real troposphere, we investigated the
aerosol chemistry in Beijing, China, during winter 2018. As shown
in Fig. S6, the daily concentration of PM, s in Beijing during the

5E13 4 Slope=-1 campaign frequently exceeded 75ug m~, the second grade
1 é R=0.77 National Air Quality Standard, among which two heavy haze
i / events occurred in the city with a daily PM, s level >200 pg m~>.
2E13 4 During the two haze events, sulfate sharply increased to 20 and
— 39 ug m~> (Fig. 5A, Table S3), with an uptake coefficient (yso ) of
t;fﬂ BN SO, of 7.0+1.2%x107° in Haze I and 9.5+0.2x 107> in Haze II
s ] (Table S4), indicating an efficient heterogeneous oxidation of
h,é 512 7 Difterent N, tevels SO,. The sum of the concentrations of NO3 and Cl~ accounted
¥ 8 ?g(fgng:;, for 20 and 17% of PM, 5 in the two haze periods. In addition, over
2612 { Difterent seeds 0.3 pg m~ oxalic acid in PM, 5 was detected in Beijing during the
: “;?:40 Haze Il event (Fig. 5B). We assumed that these abundant chloride,
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Fig. 5. Sulfate formation in China haze episodes. A and B) Temporal variations in the concentrations of NH}, SO?{, NOg3, Cl7, and oxalic acidin PM; 5
in Beijing during the 2018 winter campaign. Blue shadows indicate a haze event with a daily PM, s larger than 200 ug m~?, and the short lines in (A)
are the average concentrations of SO~ in PM, s with the SD in the two haze periods. C) Concentration ratio of SO3~ to OC in the chamber after

exposing the water extracts of PM; s collected in Beijing during the 2018 Haze Il event to SO, (600 ppb), NO, (600 ppb), and NH; (80 and 190 ppb) under
90% RH conditions for 2.5 h. D) Molar ratio of SO~ to SO, as a function of HONO(g) concentration in Beijing during nighttime (16:00-8:00) in the Haze [
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collected during the Haze II period to SO,, NO,, and NH; under
90% RH conditions. As shown in Fig. 5C, a significant increase in
the mass ratio of sulfate to OC was observed after exposure,
with values of 1.4 +0.1 and 1.8 + 0.02 under 80 and 190 ppb NHj,
respectively, suggesting efficient sulfate formation on the Beijing
haze particles. During the exposure process, the reaction rates
knornso; at the two levels of NH; are were 3.6 -6.9x 10° M™'s™*
(Tables S1 and S2), which are also 3-4 orders of magnitude larger
the those for bulk solutions (46, 47) and in good agreement with
the kinetics observed from the other seed experiments (Fig. 4), re-
vealing that sulfate formation in the Beijing haze events acceler-
ated at the air-aerosol aqueous interface via Egs. 1 and 2. As a
result, the molar ratio of SO;~ to SO, at nighttime during the
two haze episodes exponentially increased with an increasing
HONO(g) concentration (Fig. 5D). These field evidences robustly
show that the air-aerosol aqueous interface in China winter
haze periods are dominated by anions due to the abundant chlor-
ide, nitrate, and carboxylic ions (Fig. 5B, Table S3), which accumu-
late at the air-aerosol aqueous interface and significantly
enhance the uptake of NO, and subsequent reaction with S(IV)
at the aerosol surface. Recently, a few studies proposed that aque-
ous phase photochemistry including nitrate photolysis and
oxalate-Fe(IIl) photochemistry could promote sulfate formation
(48-50). Since those processes all proceed under strong irradiation
conditions, which are thus not the cases for this study, because
rapid sulfate formation in China haze periods always occurs
under very weak solar radiation conditions and even at night (1,
10, 14, 15). Our recent study has compared the different formation
pathways of sulfate in Beijing haze periods by using the kinetics of
SO, oxidation by NO, obtained in this work, and found that SO,
oxidation by NO; is the dominant formation pathway for sulfate
in Beijing haze while others are relatively unimportant, in part
due to low levels of oxidants such as O3 and H,O, (7). Our current
work also revealed that in the reaction process of NO, with SO,,
NO, is reduced to HONO and the latter subsequently evaporates
into the gas phase, which indicates that the aerosol-phase reac-
tion is probably an important source of HONO in haze periods
(17). HONO is a major source of OH radicals in the troposphere
in some environments, and SO, and NOx are abundant in many
countries such as China and India. Thus, the enhancing effect of
air-aqueous interface anions not only regulates atmospheric
aerosol chemistry but also affects atmospheric oxidation cap-
acity, which should be considered in future model simulations
and other related studies.

Materials and methods

Laboratory experiments were performed to evaluate SO, oxida-
tion by NO, on various aerosols under dark conditions by using
a home-made 1 m® PTFE smog chamber (SI Appendix). To deter-
mine the interfacial effects of anions on the sulfate formation,
we conducted chamber experiments by consecutively exposing
different inorganic and organic particles to SO,, NO,, and NHj
under 90% RH conditions for ~2.5 h and measuring the concentra-
tions of the gas- and aerosol-phase components inside the cham-
ber (see the details in SI Appendix S1) (1, 7, 17). The seeded
particles are oxalic acid, NaCl, (NH,4),SO,, a NaCl and (NH,),SO4
mixture, sucrose, NH,NO; and water extracts of haze particles
from Beijing, which are typical aerosols in Chinese haze periods.
Field measurements of gaseous and PM pollutants were per-
formed in Beijing from 2018 December 1 to 2019 January 31, by us-
ing the same instruments as those used for the laboratory smog
chamber experiments. The sampling site is located on the rooftop

(~10 m above the ground) of a three-story building on the campus
of the Chinese Research Academy of Environmental Science,
which is located in the north part of Beijing city (SI Appendix
S2). The pH values of particles inside the chamber and atmospher-
ic PM, s in Beijing were estimated by utilizing the ISORROPIA-II
model (SI Appendix S3). To illustrate difference in distributions
of anions and cations at the air-aqueous interface and its effect
on SO, oxidation by NO,, we employed a MD model to simulate
the ion distribution of CI~ and Na* at the air-water interface of
2.0 M NacCl solution droplets. Moreover, we also performed quan-
tum chemical calculations to investigate the reaction pathway of
SO, with NO; in the aqueous phase (see the details in SI
Appendices S3 and S4).
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Supplementary material is available at PNAS Nexus online.
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