2	
3	Gas-to-aerosol phase partitioning of atmospheric water-soluble
4	organic compounds at a rural site of China: An enhancing effect
5	of NH ₃ on SOA formation
6	
7	
8 9 10 11	Shaojun Lv ¹ , Fanglin Wang ¹ , Can Wu ¹ , Yubao Chen ¹ , Shijie Liu ¹ , Si Zhang ¹ , Dapeng Li ¹ , Wei Du ¹ , Fan Zhang ¹ , Hongli Wang ³ , Cheng Huang ³ , Qingyan Fu ⁴ , Yusen Duan ⁴ , Gehui Wang ^{1,2*}
12 13 14 15 16 17 18 19	 ¹Key Lab of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200062, China ² Institute of Eco-Chongming, 20 Cuiniao Rd., Chongming, Shanghai 202162, China ³State Environmental Protection Key Laboratory of Cause and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai, 200233 China. ⁴Shanghai Environmental Monitoring Center, Shanghai 200232, China
20 21 22 23	
24 25 26 27	*Corresponding author: Gehui Wang (<u>ghwang@geo.ecnu.edu.cn)</u>
28 29	List of supporting materials:
30 31 32 33 34 35 36	 Three paragraphs describing the online measurements by the IGAC, calculation on the ALWC contributions and thermodynamic calculations on the partitioning of formic and acetic acids. Two tables, Table S1-Table S2 Eight figures, Figure S1-Figure S8. References

37	Detailed description of the online measurement by the IGAC and method accuracy test
38	Water-soluble organic compounds (WSOC) in the gas-phase (WSOCg) and $PM_{2.5}$ -
39	associated (WSOCp) were simultaneously measured with a 3-hr time resolution via an online-
40	IC system: IGAC combined with a total organic carbon (TOC) analyzer and a total nitrogen
41	(TN) analyzer. Fine particles (PM _{2.5}) were collected into aqueous samples by a scrub and
42	impactor aerosol collector (SIC). In the front, a vertical wet annular denuder (WAD) was
43	applied to collect the gas-phase compounds into liquid samples. ¹ After determining the
44	inorganic ions and small carboxylic acids (i.e., formic, acetic and oxalic acids), the remaining
45	gaseous and aqueous samples were simultaneously collected every three hours and further
46	analyzed for WSOC and water-soluble organic nitrogen (WSON) by a TOC/TON analyzer.
47	The application of the TOC analyzer for the determination of WSOC has been described in
48	detail elsewhere. ² Briefly, the instrument obtains total carbon (TC) using high-temperature
49	(680 °C) Pt-catalyzed transformation of all carbon into CO ₂ coupled to nondispersive infrared
50	(NDIR) gas detection of CO ₂ . The total inorganic carbon (TIC) was then measured by NDIR
51	through conversion into CO_2 using 25% H ₃ PO ₄ . The concentrations of WSOCs are the
52	difference between TC and TIC. Calibration curves for TC and TIC were created using
53	NaHCO ₃ , Na ₂ CO ₃ and potassium hydrogen phthalate standard solutions.
54	To test the collection efficiency of WSOCg, we chose acetic acid for comparison, as it
55	exists abundantly in the troposphere with a relatively strong volatility and can be accurately
56	measured by a proton transfer reaction mass spectrometer (PTR-MS, Ionicon Analytik GmbH,
57	Austria). For IGAC, an AS18 column (2 mm \times 250 mm, Dionex TM IonPac TM) was used to
58	analyze acetic acid. Detailed descriptions of PTR-MS application can be found in previous
59	reports. ^{3, 4} The results are given in Figure S2a, showing that the IGAC collection efficiency of

S2

60	acetic acid was on average 73%, which was similar to those of other volatile gases (e.g.,
61	formic acid and NH_3) ^{1, 5} . In addition to the gas-phase collection efficiency, the IGAC
62	collection efficiency of WSOCp was also determined by comparison with filter sampling.
63	During the entire sampling period, a total of 98 PM _{2.5} samples were collected using a high-
64	volume sampler (Tisch Environmental) with a PM _{2.5} inlet at a flow rate of 1.13 m ³ min ⁻¹ ,
65	which was performed on a day-night basis (daytime at 08:30-19:00 and nighttime at 19:30-
66	08:00). As shown in Figure S2b, the WSOCp concentrations measured by the IGAC
67	collection system were similar to those of the filter, yielding an average value of 89%.
68	Throughout the sampling period, some gas and particle phase WSOC and inorganic species
69	data were missing due to the electricity supply shutdown by the local government, leading to
70	the lack of WSOC and inorganic ions data from December 17 to 24 in 2019 and January 5 to 6
71	in 2020.

72 Calculation of the contributions of the major components of PM2.5 to ALWC

ALWC associated with inorganic species was estimated by ISORROPIA-II using meteorological conditions and the IGAC-measured inorganic compositions. The contribution of $(NH_4)_2SO_4$ was calculated by the difference between the model results without an $(NH_4)_2SO_4$ input (i.e., $(NH_4)_2SO_4=0$) and the total ALWC. Similarly, the difference in the ALWC between the predictions with and without NH_4NO_3 input showed the contribution of NH_4NO_3 . The contributions of organic matter (OM) to ALWC (ALWC_{org}) were calculated by the following equation⁶:

80
$$ALWC_{org} = \frac{[OM]\rho_{w}}{\rho_{org}} \frac{\kappa_{org}}{\frac{1}{RH} - 1}$$
(1)

81 where OM is the mass concentration of organics, ρ_w is the density of water and ρ_{org} is the 82 density of OM ($\rho_{org}=1.4 \text{ g cm}^{-3}$). κ_{org} is the hygroscopicity parameter of organic aerosol

84 Thermodynamic calculations of the partitioning of formic and acetic acids during the high 85 RH period

To further elucidate the impact of NH₃ on the partitioning behavior of WSOCg in the high RH period, we conducted a thermodynamic calculation on the gas-to-aerosol partitioning of the two acids, in which S curves showing the dependence of formic and acetic acid partitioning on aerosol pH were estimated by using the following equations:

90
$$\epsilon(\text{HCOO}^{-}) = \frac{H_{\text{HCOOH}}[\text{ALWC}]\text{RT}(\frac{\gamma_{\text{H}} + \gamma_{\text{HCOO}}^{-}}{\gamma_{\text{HCOOH}}} 10^{-\text{pH}} + \text{K}_{a1}) \times 0.987 \times 10^{-14}}{\gamma_{\text{H}} + \gamma_{\text{HCOO}} - 10^{-\text{pH}} + \text{H}_{\text{HCOOH}}[\text{ALWC}]\text{RT}(\frac{\gamma_{\text{H}} + \gamma_{\text{HCOO}}^{-}}{\gamma_{\text{HCOOH}}} 10^{-\text{pH}} + \text{K}_{a1}) \times 0.987 \times 10^{-14}}$$
(2)
91
$$\epsilon(\text{CH}_{3}\text{COO}^{-}) = \frac{H_{\text{CH3COOH}}[\text{ALWC}]\text{RT}(\frac{\gamma_{\text{H}} + \gamma_{\text{CH3COO}}^{-}}{\gamma_{\text{CH3COOH}}} 10^{-\text{pH}} + \text{K}_{a1}) \times 0.987 \times 10^{-14}}{\gamma_{\text{H}} + \gamma_{\text{CH3COO}} - 10^{-\text{pH}} + \text{H}_{ch3COOH}} 10^{-\text{pH}} + \text{K}_{a1}) \times 0.987 \times 10^{-14}}$$
(3)

92 where H_{HCOOH} and $H_{CH3COOH}$ are Henry's law constants for formic acid (9540 mol L⁻¹ atm⁻¹) 93 and acetic acid (5370 mol L⁻¹ atm⁻¹).⁸ R is the gas constant (8.314 m³ Pa K⁻¹ mol⁻¹), and 94 ALWC (µg m⁻³) and T (K) are the averages of the observed data. K_{a1} is the first acid 95 dissociation constant of formic (1.78×10⁻⁴ mol L⁻¹) and acetic acid (1.75×10⁻⁵ mol L⁻¹).⁹ γ_i are 96 activity coefficients. γ_{HCOOH} =0.515 and $\gamma_{CH3COOH}$ =3.39 were calculated using the web 97 version of AIOMFAC, while $\gamma_{H+}\gamma_{HCOO-}=\gamma_{H+}\gamma_{CH3COO-}=\gamma_{H+}\gamma_{NO3-}=0.235$ was predicted using the 98 E-AIM model.

As seen in Figures S6a and b, the growth trend of ambient ε (HCOO⁻) and ε (CH₃COO⁻) during the high RH period showed a strong dependence on the aerosol acidity in a pH range of 3-5, further demonstrating that the neutralization effect of NH₃ is favorable for the partitioning of WSOCg into the aerosol phase. However, the growth trends of ε (HCOO⁻) and ε (CH₃COO⁻) were underestimated by the S curves, which is similar to the results observed by

Nah et al. (2018)⁹, who also reported a significant underestimation by the S curve on the 104 partitioning of formic and acetic acids in the USA. They explained that the possible reasons 105 for such higher-than-predicted molar fractions of aerosol-phase formic and acetic acids 106 probably include a poor collection efficiency of the gas-phase acids, deviations of Henry's 107 law constants from the literature values and the dimers of formic and acetic acid formation in 108 the aerosol phase. To clarify the factors causing the underestimation, we recalculated the S 109 curves by enlarging the Henry's law constants of formic and acetic acids by factors of 5×10^2 110 and 5×10^3 , respectively. As shown in Figures S6c and d, the recalculated S curves can well 111 predict the $\varepsilon(\text{HCOO}^{-})$ and $\varepsilon(\text{CH}_3\text{COO}^{-})$ observed on Chongming Island in the high RH period, 112 suggesting that the enlarged Henry's law constants, which are commonly named as effective 113 Henry's law constant, are much more realistic for illustrating the partitioning process of 114 WSOCg in the YRD region. Documented Henry's law constants are usually determined and 115 calculated for a pure water system.⁸ However, the aqueous phase of atmospheric aerosols is a 116 complex mixture. Thus, many species and chemical reactions can affect the WSOCg 117 partitioning process, leading to a significant underestimation. Nevertheless, the strong 118 dependences of $\varepsilon(\text{HCOO}^{-})$ and $\varepsilon(\text{CH}_3\text{COO}^{-})$ on the pH values, which were regulated by NH₃, 119 either observed in Chongming Island or predicted by the S curves clearly demonstrate that the 120 neutralization of NH₃ with organic acids was important under the high RH conditions, which 121 enhanced significantly the WSOCg partitioning. 122 123 124 125 126 127 128

S5

Table S1 Observed NH₃ mean concentrations ($\mu g m^{-3}$) in different regions of China.

	Ð		(10)		0
Location	Туре	Region	Period	NH ₃	Reference
Gucheng	Rural	NCP	Mar.2016-May.2017	22.2±12.8 ª	Kuang et al. (2020) ¹⁰
Gucheng	Rural	NCP	May-Sep 2013	27.5±42.8 ª	Meng et al. (2018) ¹¹
Luancheng	Farmland	NCP	Dec.2015-Feb.2016	17.2	Pan et al. (2018) ¹²
Cangzhou	suburban	NCP	Dec.2015-Feb.2016	22.2	Pan et al. (2018) ¹²
Lin'an	Rural	YRD	Sep 2009-Dec 2010	12.5±8.5 ª	Meng et al. (2014) ¹³
Shanghai	Rural	YRD	Dec.2019-Jan.2020	9.3±4.0	This study
Shanghai	Rural	YRD	July-Dec 2013, Mar-June 2014	9.4±6.9 ª	Wang et al. (2015) ¹⁴
Nanjing	Urban	YRD	Dec.2015-Feb.2016	7.5	Pan et al. (2018) ¹²
Guangzhou	Urban	PRD	Dec.2015-Feb.2016	4.4	Pan et al. (2018) ¹²
Guangzhou	Rural	PRD	Oct-Nov 2004	7.3±6.2	Hu et al. (2008) ¹⁵
Maoming	Urban	PRD	Dec.2015-Feb.2016	5.9	Pan et al. (2018) ¹²
Hongkong	Urban	PRD	Autumn 2000	2.3±2.7 ^a	Yao et al. (2006) ¹⁶
Akesu	Farmland	Northwest	Dec.2015-Feb.2016	3.2	Pan et al. (2018) ¹²
Cele	Desert	Northwest	Dec.2015-Feb.2016	3.1	Pan et al. (2018) ¹²
Linze	farmland	Northwest	Dec.2015-Feb.2016	2.3	Pan et al. (2018) ¹²

^a The unit of NH₃ concentrations in the original text is ppb, which was converted by the formula of standard atmospheric pressure and normal temperature in this study, for example,

134 22.2
$$\mu$$
g m⁻³ = $\frac{29.2 \text{ ppb} \times 17}{22.4}$
135
136
137
138
139
140
141
142
143

Table S2 Average concentrations (μg m⁻³) of PM_{2.5}, ammonium, nitrate, sulfate and WSOCp
 in different regions of China

±0 <u>0</u>			51 5 milia						
Code	Location	Region	Time	PM _{2.5}	NH4 ⁺	NO ₃ -	SO4 ²⁻	WSOCp	Reference
SH	Shanghai	YRD	Winter, 2019	55±40	7.0 ± 5.5	16±14	6.0±4.1	4.6±2.9	This study
BJ	Beijing	NCP	Winter, 2016	176		39	15		Sun et al. 2019 ¹⁷
BJ	Beijing	NCP	Winter, 2016	76±70				10±10	Yang et al. 2019 ¹⁸
BJ	Beijing	NCP	Winter, 2017	61±45	8.0 ± 6.5	16±21	6.9±6.4	7.2 ± 5.0	Li et al. 2020 ¹⁹
TJ	Tianjin	NCP	Winter, 2011	71±60	61±45	13±13	15±16	14±12	Xu et al. 2016 ²⁰
LC	Liaocheng	NCP	Winter, 2017	308±188	22±14	73±57	36±17	41±14	Meng et al. 2020 ²¹
SH	Shanghai	YRD	Summer, 2005	67±28	4.2±2.1	7.2±6.7	16±9.8	5.8±4.2	Pathak et al. 2011 ²²
SH	Shanghai	YRD	Summer, 2014	30±13	8.9±4.0	4.8±3.9	8.2±4.5	3.4±1.3	Zhao et al. 2016 ²³
SH	Shanghai	YRD	Winter, 2013	105±65	12±8.9	21±19	17±11	9.6±6.6	Zhao et al. 2016 ²³
CZ	Changzhou	YRD	Summer, 2015	81±38	8.2±4.3	6.8±6.2	16±9.8	6.4±1.8	Ye et al. 2017 ²⁴
CZ	Changzhou	YRD	Winter, 2015	127±50	13±3.7	24±12	19±7.6	14±6.6	Ye et al. 2017 ²⁴
NS	Nansha	PRD	Annual 2009	44±27	5.5±3.6	4.8±4.4	12±7.2	3.9±2.5	Kuang et al. 2015 ²⁵
GZ	Guangzhou	PRD	Annual 2009	56±30	6.8±4.2	6.7±6.3	13±6.8	4.9±2.5	Kuang et al. 2015 ²⁵
GΖ	Guangzhou	PRD	Summer, 2004	59±28	5.0±2.2	5.8±4.2	13±6.0	4.3±1.2	Pathak et al. 2011 ²²
GZ	Guangzhou	PRD	Winter, 2012	75±24	5.1±2.1	5.8±3.4	11±4.4	4.1±2.0	Liu et al. 2014 ²⁶
GZ	Guangzhou	PRD	Winter, 2016	118±26	5.5±2.2	11±8.9	9.2±3.9	5.3±2.0	Jiang et al. 2020 ²⁷
LZ	Lanzhou	NW	Summer, 2006	65±29	3.8±2.0	2.7±2.0	11±6.0	2.4±0.80	Pathak et al. 2011 ²²
QH	Qinghai	NW	Winter, 2011	44±22	0.85±0.9	2.1±1.4	5.3±5.6	1.5±0.84	Zhao et al. 2015 ²⁸
QH	Qinghai	NW	Summer, 2012	22±14	0.73±0.7	1.3±1.3	4.5±3.5	1.3±0.38	Zhao et al. 2015 ²⁸
161									
162									
163									
164									
165									
166									
167									
168									
169									
170									
171									
172									
173									

Figure S1. Geographic location of the sampling site in Chongming, China.

Figure S2. A comparison of species measured by IGAC and other techniques ((a) gas-phase acetic acid, and (b) fine particulate WSOC).

Figure S3. Factors affecting the gas-to-aerosol phase-partitioning coefficients (Fp) of WSOCg, formic acid (F_{formic}) and acetic acid (F_{acetic}) in the YRD region of China in the low and high RH periods ((a) relative humidity, RH; (b), (e) and (i) temperature, T; (f) and (j) aerosol liquid water content, ALWC; (c), (g) and (k) PM_{2.5} acidity, pH; and (d), (h) and (l) NH₃ concentrations). Fp, F_{formic} or $F_{acetic} = C_p/(C_g + C_p)$, C_p and C_g are the concentrations of WSOC and formic or acetic acid in the particle phase and gas phase, respectively.

Figure S4. Linear regression fit for Fp versus ALWC of PM_{2.5} in the nighttime during the low RH period with the hourly RH higher than 80%.

Figure S5. (a) The mass fraction of organic matter ($f_{OM}=OC \times 1.8/(ALWC+PM_{2.5})$) and ALWC ($f_{ALWC}=ALWC/(ALWC+PM_{2.5})$). (b) The concentration ratio of SNA to OM

Figure S6. Analytically estimated S curves of partitioning of formic acid ε (HCOO⁻) and acetic acid ε (CH₃COO⁻) (solid black lines) and ambient data (blue circles) during the high RH period. For the analytically estimated S curves, we used $v_{HCOOH}=0.515$ and $v_{CH3COOH}=3.39$ (AIOMFAC predicted). Similar to Nah et al. (2018),⁹ we assumed that $\gamma_{H+}\gamma_{HCOO-}=\gamma_{H+}\gamma_{CH3COO-}$ = $\gamma_{H+}\gamma_{NO3}$ =0.235, which was predicted by the E-AIM model.. The black lines are S curves calculated based on the temperature and ALWC averages (7.7 °C and 60 µg m⁻³, respectively) in the high RH period. The dashed lines are S curves calculated based on the minimum values (-0.9 °C and 3.0 μ g m⁻³, respectively) and the averages plus one standard deviation (7.7 \pm 3.9 $^{\circ}$ C and 60±69 µg m⁻³, respectively). The S curves in (a) and (b) were calculated using the documented Henry's law constants, ²⁹ while those in (c) and (d) were calculated by enlarging the Henry's law constants of formic and acetic acids by factors of 5×10^2 and 5×10^3 , respectively.

- 314

Figure S7. Average light absorption (Abs, M m⁻¹) of water extracts of PM_{2.5} at wavelengths of 300-550 nm at different levels of WSON (μ gN m⁻³) and ϵ (NH₄⁺) in the high RH period (heavy haze: daily PM_{2.5}>100 μ g m⁻³; light haze: 100 μ g m⁻³>daily PM_{2.5}>75 μ g m⁻³; and clean: daily PM_{2.5}<75 μ g m⁻³).

- 319
- 320 321
- 322
- 323
- 324
- 325

Figure S8. Scatter plots of WSOCp mass fractions vs. the relative abundances of sulfate observed at the national scale in China from the literature and this study (red, gray, blue and

- 328 observed at the national scale in China from the literature and this study (red, gray, blue a 329 green colors correspond to the observation sites located on the North China Plain (NCP),
- 330 YRD (Yangtze River Delta), PRD (Pearl River Delta) and Northwest (NW) China,
- respectively. Details of the reviewed literature are shown in Table S2).
- 332
- 333

References:

335	1.	Young, L. H.; Li, C. H.; Lin, M. Y.; Hwang, B. F.; Hsu, H. T.; Chen, Y. C.; Jung, C. R.; Chen, K. C.; Cheng,
336		D. H.; Wang, V. S.; Chiang, H. C.; Tsai, P. J., Field performance of a semi-continuous monitor for ambient
337		PM2.5 water-soluble inorganic ions and gases at a suburban site. Atmos. Environ. 2016, 144, 376-388.
338	2.	Ge, X. L.; Shaw, S. L.; Zhang, Q., Toward Understanding Amines and Their Degradation Products from
339		Postcombustion CO2 Capture Processes with Aerosol Mass Spectrometry. Environmental Science &
340		Technology 2014 , 48, (9), 5066-5075.
341	3.	Pan, X.; Kanaya, Y.; Tanimoto, H.; Inomata, S.; Wang, Z.; Kudo, S.; Uno, I., Examining the major
342		contributors of ozone pollution in a rural area of the Yangtze River Delta region during harvest season.
343		Atmos. Chem. Phys. 2015, 15, (11), 6101-6111.
344	4.	Zhou, X.; Li, Z.; Zhang, T.; Wang, F.; Wang, F.; Tao, Y.; Zhang, X.; Wang, F.; Huang, J., Volatile organic
345		compounds in a typical petrochemical industrialized valley city of northwest China based on high-resolution
346		PTR-MS measurements: Characterization, sources and chemical effects. Science of the Total Environment
347		2019, <i>671</i> , 883-896.
348	5.	Xu, J.; Chen, J.; Shi, Y.; Zhao, N.; Qin, X.; Yu, G.; Liu, J.; Lin, Y.; Fu, Q.; Weber, R. J.; Lee, SH.; Deng, C.;
349		Huang, K., First Continuous Measurement of Gaseous and Particulate Formic Acid in a Suburban Area of
350		East China: Seasonality and Gas-Particle Partitioning. Acs Earth and Space Chemistry 2020, 4, (2), 157-167.
351	6.	Guo, H.; Xu, L.; Bougiatioti, A.; Cerully, K. M.; Capps, S. L.; Hite, J. R.; Carlton, A. G.; Lee, S. H.; Bergin,
352		M. H.; Ng, N. L.; Nenes, A.; Weber, R. J., Fine-particle water and pH in the southeastern United States.
353		Atmos. Chem. Phys. 2015, 15, (9), 5211-5228.
354	7.	Gunthe, S. S.; Rose, D.; Su, H.; Garland, R. M.; Achtert, P.; Nowak, A.; Wiedensohler, A.; Kuwata, M.;
355		Takegawa, N.; Kondo, Y.; Hu, M.; Shao, M.; Zhu, T.; Andreae, M. O.; Poeschl, U., Cloud condensation
356		nuclei (CCN) from fresh and aged air pollution in the megacity region of Beijing. Atmos. Chem. Phys. 2011,
357		11, (21), 11023-11039.
358	8.	Sander, R., Compilation of Henry's law constants (version 4.0) for water as solvent. Atmos. Chem. Phys.
359		2015, <i>15</i> , (8), 4399-4981.
360	9.	Nah, T.; Guo, H. Y.; Sullivan, A. P.; Chen, Y. L.; Tanner, D. J.; Nenes, A.; Russell, A.; Ng, N. L.; Huey, L. G.;
361		Weber, R. J., Characterization of aerosol composition, aerosol acidity, and organic acid partitioning at an
362		agriculturally intensive rural southeastern US site. Atmospheric Chemistry and Physics 2018, 18, (15),
363		11471-11491.
364	10	. Kuang, Y.; Xu, W. Y.; Lin, W. L.; Meng, Z. Y.; Zhao, H. R.; Ren, S. X.; Zhang, G.; Liang, L. L.; Xu, X. B.,
365		Explosive morning growth phenomena of NH3 on the North China Plain: Causes and potential impacts on
366		aerosol formation. Environmental Pollution 2020, 257.
367	11	. Meng, Z. Y.; Xu, X. B.; Lin, W. L.; Ge, B. Z.; Xie, Y. L.; Song, B.; Jia, S. H.; Zhang, R.; Peng, W.; Wang, Y.;
368		Cheng, H. B.; Yang, W.; Zhao, H. R., Role of ambient ammonia in particulate ammonium formation at a rural
369		site in the North China Plain. Atmos. Chem. Phys. 2018, 18, (1), 167-184.
370	12	. Pan, Y. P.; Tian, S. L.; Zhao, Y. H.; Zhang, L.; Zhu, X. Y.; Gao, J.; Huang, W.; Zhou, Y. B.; Song, Y.; Zhang,
371		Q.; Wang, Y. S., Identifying Ammonia Hotspots in China Using a National Observation Network.
372		Environmental Science & Technology 2018, 52, (7), 3926-3934.
373	13	. Meng, Z.; Zhang, R.; Lin, W.; Jia, X.; Yu, X.; Yu, X.; Wang, G., Seasonal Variation of Ammonia and
374		Ammonium Aerosol at a Background Station in the Yangtze River Delta Region, China. Aerosol and Air
375		Quality Research 2014, 14, (3), 756-766.
376	14	. Wang, S. S.; Nan, J. L.; Shi, C. Z.; Fu, Q. Y.; Gao, S.; Wang, D. F.; Cui, H. X.; Saiz-Lopez, A.; Zhou, B.,
377		Atmospheric ammonia and its impacts on regional air quality over the megacity of Shanghai, China.
378		Scientific Reports 2015, 5.
379	15	. Hu, M.; Wu, Z.; Slanina, J.; Lin, P.; Liu, S.; Zeng, L., Acidic gases, ammonia and water-soluble ions in

PM2.5 at a coastal site in the Pearl River Delta, China. *Atmos. Environ.* 2008, *42*, (25), 6310-6320.

- 16. Yao, X.; Ling, T. Y.; Fang, M.; Chan, C. K., Comparison of thermodynamic predictions for in situ pH in
 PM2.5. *Atmos. Environ.* 2006, *40*, (16), 2835-2844.
- 17. Sun, Z.; Duan, F.; He, K.; Du, J.; Zhu, L., Sulfate-nitrate-ammonium as double salts in PM2.5: Direct
 observations and implications for haze events. *Science of the Total Environment* 2019, *647*, 204-209.
- 18. Yang, S.; Duan, F.; Ma, Y.; He, K.; Zhu, L.; Ma, T.; Ye, S.; Li, H.; Huang, T.; Kimoto, T., Haze formation
 indicator based on observation of critical carbonaceous species in the atmosphere. *Environmental Pollution* 2019, 244, 84-92.
- 19. Li, X. R.; Yang, Y.; Liu, S. Q.; Zhao, Q.; Wang, G. H.; Wang, Y. S., Light absorption properties of brown
 carbon (BrC) in autumn and winter in Beijing: Composition, formation and contribution of nitrated aromatic
 compounds. *Atmos. Environ.* 2020, 223.
- 20. Xu, W.; Fu Tzung, M.; Chen, J.; Tian, H., Ground-Based Measurement and Variation Analysis of
 Carbonaceous Aerosols in Wuqing. *Acta Scientiarum Naturalium Universitatis Pekinensis* 2016, *52*, (3), 409 419.
- 21. Meng, J. J.; Liu, X. D.; Hou, Z. F.; Yi, Y. N.; Yan, L.; Li, Z.; Cao, J. J.; Li, J. J.; Wang, G. H., Molecular
 characteristics and stable carbon isotope compositions of dicarboxylic acids and related compounds in the
 urban atmosphere of the North China Plain: Implications for aqueous phase formation of SOA during the
 haze periods. *Science of the Total Environment* 2020, 705.
- 22. Pathak, R. K.; Wang, T.; Ho, K. F.; Lee, S. C., Characteristics of summertime PM2.5 organic and elemental
 carbon in four major Chinese cities: Implications of high acidity for water-soluble organic carbon (WSOC). *Atmos. Environ.* 2011, 45, (2), 318-325.
- 23. Zhao, M. F.; Qiao, T.; Li, Y. L.; Tang, X. X.; Xiu, G. L.; Yu, J. Z., Temporal variations and source
 apportionment of Hulis-C in PM2.5 in urban Shanghai. *Science of the Total Environment* 2016, *571*, 18-26.
- 403 24. Ye, Z. L.; Liu, J. S.; Gu, A. J.; Feng, F. F.; Liu, Y. H.; Bi, C. L.; Xu, J. Z.; Li, L.; Chen, H.; Chen, Y. F.; Dai,
 404 L.; Zhou, Q. F.; Ge, X. L., Chemical characterization of fine particulate matter in Changzhou, China, and
- 405 source apportionment with offline aerosol mass spectrometry. *Atmos. Chem. Phys.* **2017**, *17*, (4), 2573-2592.
- 406 25. Kuang, B. Y.; Lin, P.; Huang, X. H. H.; Yu, J. Z., Sources of humic-like substances in the Pearl River Delta,
 407 China: positive matrix factorization analysis of PM2.5 major components and source markers. *Atmos. Chem.*408 *Phys.* 2015, *15*, (4), 1995-2008.
- 26. Liu, J. W.; Li, J.; Zhang, Y. L.; Liu, D.; Ding, P.; Shen, C. D.; Shen, K. J.; He, Q. F.; Ding, X.; Wang, X. M.;
 Chen, D. H.; Szidat, S.; Zhang, G., Source Apportionment Using Radiocarbon and Organic Tracers for
- PM2.5 Carbonaceous Aerosols in Guangzhou, South China: Contrasting Local- and Regional-Scale Haze
 Events. *Environmental Science & Technology* 2014, 48, (20), 12002-12011.
- 27. Jiang, H.; Li, J.; Chen, D.; Tang, J.; Cheng, Z.; Mo, Y.; Su, T.; Tian, C.; Jiang, B.; Liao, Y.; Zhang, G.,
 Biomass burning organic aerosols significantly influence the light absorption properties of polaritydependent organic compounds in the Pearl River Delta Region, China. *Environment international* 2020, *144*,
 106079-106079.
- 28. Zhao, Z.; Cao, J.; Shen, Z.; Huang, R.-J.; Hu, T.; Wang, P.; Zhang, T.; Liu, S., Chemical composition of
 PM2.5 at a high-altitude regional background site over Northeast of Tibet Plateau. *Atmospheric Pollution Research* 2015, *6*, (5), 815-823.
- 420 29. Staudinger, J.; Roberts, P. V., A critical review of Henry's law constants for environmental applications.
 421 *Critical Reviews in Environmental Science and Technology* 1996, *26*, (3), 205-297.
- 422
- 423