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Abstract
The Doppler dephasing error due to residual thermal motion of atoms is a major cause of infidelity
in neutral-atom quantum gates. Besides cooling and trapping advancements, few effective methods
exist to mitigate this error. In the present work, we first propose an error-erasing strategy that
utilizes a pair of off-resonant fields to continuously dress the protected Rydberg state with an
auxiliary state, which can induce an opposite but enhanced sensitivity to the same source of
Doppler dephasing error. Combining with the optimal control of laser pulses, we have realized a
family of Rydberg two-qubit controlled-NOT gates in Rb and Cs atoms that are fully immune to
the Doppler dephasing error. We numerically simulate this gate operation with fidelity F≈ 0.9906
at any temperature for a lower-excited auxiliary state, and a higher fidelity of F≈ 0.9960 can be
attained for a ground auxiliary state even at a temperature of 500 µK. Finally, we predict a
super-high fidelity of F> 0.9999 for 50µK is possible by using the robust pulses with a larger
amplitude. Our results significantly reduce atomic temperature requirements for high-fidelity
quantum gates, and may provide fundamental guidance to practical fault-tolerant quantum
computing with neutral atoms.

1. Introduction

Errors restrict the fidelity of Rydberg gates in neutral-atom quantum computing and must be made
sufficiently low by using versatile fault-tolerant techniques [1–6]. So far, the ability to reduce the sensitivity
of gate operations to various intrinsic and technical errors by using robust pulses is a key capability for
constructing a neutral-atom quantum computer [7, 8], and the best reported fidelity for a two-qubit
controlled-phase gate has reached 0.995 relying on optimal control strategy [9]. Typically, a simple
time-optimal gate with robust pulses only maximizes the ideal gate fidelity in the absence of any error yet it
can be substantially impacted if the type of errors occurs [10, 11]. Recent efforts have shown that gate
protocols can be made natively robust to certain error sources either by modifying the cost function in
optimization [12–17] or by converting the feature of quasistatic errors [18]. However, to further improve the
robustness of gates against certain type of errors beyond pure numerical methods, remains a great challenge.

As we know, decoherence from residual atomic motion fundamentally limits the gate fidelity in
experiments [19, 20]. Atoms, whether they are warm or cold, are not stationary, inevitably leading to the
motional dephasing due to inhomogeneous velocity distribution. Although a traditional two-photon
transition with two counterpropagating excitation lasers can diminish the impact of Doppler dephasing,
nevertheless, this improvement is very limited in a sense [21–25] except for using more technically
demanding three-photon excitation where the overall Doppler effect turns to be exactly zero based on the
starlike planar geometry [26]. Therefore, such a Doppler dephasing error remains a crucial resource of
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technical errors for promising applications in quantum information processing. However, it is rarely
mitigated unless actual colder temperatures∼µK are reached [27, 28]. With the recent demonstration of a
coherence protection scheme in thermal atomic ensembles by Finkelstein et al [29], where a collective state
can be fully protected from inhomogeneous dephasing by employing off-resonant fields that dress it to an
auxiliary sensor state (note that this scheme has also been implemented to quantum memories with
improved performance [30]), there is a significant interest in achieving a Doppler-error erased gate by
applying this scheme.

In this work, we introduce a family of erasure protocols for realizing two-qubit Rydberg controlled-NOT
(CNOT) gates, which exhibit full robustness to the Doppler dephasing error originating from the thermal
motion of atoms. In combination with the optimal control method [31–33], our novel protocols employ a
pair of off-resonant laser fields continuously dressing the protected Rydberg state with a lower-excited
auxiliary state that has an opposite but enhanced sensitivity to the same error source. The resulting gates have
shown an absolute immunity to the Doppler dephasing error impacted on the Rydberg level at any
temperature. All gate pulses including their amplitudes and phases as well as the gate duration are globally
optimized, avoiding the requirement for stepwise operations [34, 35].

To characterize the compatibility of our protocol to various atomic systems, we explore the results using
different dressing cases in Rb and Cs atoms and show the choice of a higher sensitivity factor is key to
improve the gate performance. We analyze the method to suppress spontaneous decay errors from the
auxiliary excited state which ultimately limits the gate fidelity presently [36]. Furthermore, we instead utilize
a ground-state auxiliary state for avoiding the inherent decay error and identify the realization of two-qubit
CNOT gates with 0.9960 fidelity at T= 500µK yet sacrificing a slight insensitivity to the Doppler shifts
because of an unprotected Rydberg state. Besides, by enhancing the limitation for maximal laser amplitude to
be 2π× 20 MHz, we find the predicted fidelity number can even be above 0.9999 attributing to the strong
suppression of intermediate time-spent. Finally, with the increase of finite temperature of atoms, we confirm
that the newly-proposed dressing protocols are significantly superior to the typical two-photon excitation
gates, by mutually having a higher fidelity and a lower Doppler dephasing error over a very wide range of
atomic temperatures.

2. Model and Hamiltonians

To implement the Doppler dephasing-error erased gate, we assume the level scheme as shown in figure 1.
Each atom is modeled as a four-level system with long-lived ground states |0⟩, |1⟩, an uppermost Rydberg
state |r⟩ with lifetime 1/τr and a lower-excited auxiliary state |e⟩ with lifetime 1/τe. The traditional coupling
between |1⟩ and |r⟩ is enabled by a global two-photon laser pulse with time-dependent Rabi frequency Ωr(t),
between |0⟩ and |r⟩ by Ω ′

r (t). Moreover, the laser frequency is tuned to be resonant with the transition
between |1⟩ (or |0⟩) and |r⟩. Additionally, we require a pair of dressing fields off-resonantly coupling |r⟩ and
|e⟩ with a same strength Ωd and opposite detunings∆d,−∆d, possibly generated by using an electro-optic
modulator [29]. As a consequence, when the Doppler effect causes an uncertain detuning error of |1⟩ → |r⟩
transition, i.e.−δ = k⃗r · v⃗, state |e⟩ can also be affected by the same source of inhomogeneity from same
atomic velocity, experiencing an unknown energy shift χδ = (⃗kr + k⃗a) · v⃗ with χ = |1+ k⃗a/⃗kr|. Here, the
opposite sign (−δ,χδ) is ensured by the choice of different wavevectors of lasers (⃗ka, k⃗r) as well as their
propagation directions. For simplicity, the two-photon transition on the target qubit driving |0⟩ and |r⟩ is
enabled by a same wavevector k⃗r.

We require the sensitivity factor to be χ⩾ 1, which means the dressing state |e⟩ senses the fluctuation at
least as comparable as the Rydberg state |r⟩. This process can be achieved by an optical transition whose
wavevector k⃗a has an opposite direction yet a much larger magnitude (i.e. a shorter wavelength). In
two-photon transitions, the excitation wavevector k⃗r is a vectorial sum of participating fields’ wavevectors.
Their intermediate state |e ′⟩ (not shown, we choose |e ′⟩= |5P3/2⟩) and dressing state |e⟩ determines the

ratio k⃗a/⃗kr. Note that the transition |r⟩ → |e⟩ should have an enhanced and opposite velocity sensitivity as
compared to that of |1⟩ → |r⟩, consequently the choice of |e⟩ is vital. A nearby long-lived Rydberg state is
impossible to be |e⟩. Thereby, we first suggest protecting the Rydberg state |r⟩= |70S1/2⟩ by dressing it to a
lower excited state |e⟩= |5P1/2⟩ in 87Rb atoms. This choice provides k⃗r = 2π(λ−1

480 −λ−1
780) = 5.035µm−1,

k⃗a =−2π/λ475 =−13.228µm−1, arising the sensitivity factor χ≈ 1.627 if Ωd/∆d ≈ 0.698. Note that, in
order to improve the practical relevance, in section 6 we alternatively introduce |e⟩ to be a hyperfine ground
state where the one-photon transition between the Rydberg and auxiliary states is performed by an
ultraviolet laser [37]. This choice could entirely avoid the spontaneous decay from |e⟩ and make the scheme
benefited from a higher fidelity at lower temperatures.
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Figure 1. Doppler dephasing error erased two-qubit CNOT gates. Level scheme: qubit states |0⟩, |1⟩ are encoded in hyperfine
clock states |5S1/2,F= 1,mF = 0⟩ and |5S1/2,F= 2,mF = 0⟩ of two 87Rb atoms. The |0⟩ and |1⟩ states are coupled to the
Rydberg state |r⟩ with two-photon Rabi frequency of real amplitudesΩr,Ω ′

r and phases ϕ,ϕ
′, which undergo an unknown

Doppler shift−δ due to the atomic velocity. Additionally, two dressing fields with the same Rabi frequencyΩd and opposite
detunings∆d,−∆d enable the coupling between |r⟩ and a lower-excited auxiliary state |e⟩ (here |e⟩= |5P1/2⟩). The overall
transition frequency between |1⟩ and |e⟩ will experience an energy shift χδ, possibly opposite and larger as required by the
insensitive condition (see appendix A). The intrinsic error treating as the ultimate limit for the gate fidelity is the spontaneous
decay from state |e⟩ (see section 5.2).

The total Hamiltonian governing the dynamics of two atoms reads

H=Hc ⊗ I+ I⊗Ht +V|rr⟩⟨rr| (1)

with single-qubit Hamiltonians

Hc =
Ωr (t)

2
|1⟩⟨r|+

Ωd

(
ei∆dt + e−i∆dt

)
2

|r⟩⟨e|+H.c.− δ|r⟩⟨r|+χδ|e⟩⟨e|

Ht =
Ωr (t)

2
|1⟩⟨r|+ Ω

′

r (t)

2
|0⟩⟨r|+

Ωd

(
ei∆dt + e−i∆dt

)
2

|r⟩⟨e|+H.c.− δ|r⟩⟨r|+χδ|e⟩⟨e|

and I is the identity operator. Here, V denotes the strength of van der Waals interaction for Rydberg pair
state |rr⟩, and Ωr(t) = |Ωr(t)|eiϕ(t), Ω ′

r (t) = |Ω ′
r (t)|eiϕ

′(t) are the laser Rabi frequencies. We stress a global
drive of both laser fields, so as to eliminate the constraint of stepwise operations. Besides, two atoms are
placed at short distances such that the interaction strength V is much larger than laser Rabi frequencies (i.e.
V≫ |Ωr(t)|, |Ω ′

r (t)|), resulting in a strong suppression of simultaneous excitation of both atoms to the
Rydberg state [38, 39]. In the following, we are interested in finding robust pulses Ωr(t),Ω ′

r (t) that are
insensitive to the variation of Doppler shift δ.

3. Doppler dephasing robust pulses

We proceed by addressing the suppression of Doppler error via the combination of gate protocols and
optimal control methods [40–42]. A two-qubit CNOT gate can be realized by using numerically optimized
continuous pulses Ωr,Ω

′
r ,Ωd with a series of tunable parameters. To implement a time-optimal gate that

operates within a duration of Tg, if for the no-dressing case as discussed in our prior work [43], where the
system follows the standard two-photon excitation model, states |00⟩ and |01⟩ would experience single-qubit
rotations with two resonant couplings Ωr(t),Ω ′

r (t), requiring |00⟩ → |00⟩ and |01⟩ → |01⟩ at t= Tg. While
states |10⟩ and |11⟩ are off-resonantly coupled due to the blockade constraint and global drive. We expect the
exact conversion of |10⟩ → |11⟩ and |11⟩ → |10⟩ for a CNOT gate with optimal parameters. Finally, we can
measure the fidelity of gate with a commonly-used definition as

F=
1

4
Tr

[√√
Oρ

(
t= Tg

)√
O
]

(2)

having considered the average effect of four computational basis states {|00⟩, |01⟩, |10⟩, |11⟩}, whereO is the
ideal unitary matrix for the gate, and ρ(t= Tg) is the realistic output density matrix at the end of the gate
operation. To solve the dynamics of each basis state, we use the Liouville-von Neumann equation with
Lindblad relaxation terms [44]

∂ρ(t)/∂t=−i [H,ρ] +Lr [ρ] +Le [ρ] (3)
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Table 1. Optimized gate parameters for three laser amplitudesΩr(t),Ω ′
r (t),Ωd (in unit of 2π×MHz), laser phases ϕ(t),ϕ ′(t) (in unit

of 2π) as well as the gate duration Tg (in unit of µs). In all cases, the dressing-field detuning is∆d ≈ Ωd/0.698 ensured by the
insensitive condition. The blockade strength is V/2π = 200 MHz throughout. The last column presents the ideal gate fidelity in the
absence of any decay (γr = γe = 0).

Ωr(t) Ω ′
r (t) ϕ(t),ϕ ′(t)

Case Type Tg Ωmax ω Ω ′
max ω ′ δ0 δ1 δ2 Ωd F(ideal)

no-dressing linear 1.00 9.87 0.1946 10.0 0.1938 4.90 × × × 0.999 45
composite 0.62 9.19 0.1018 8.96 0.1026 −0.117 0.589 −0.0006 × 0.999 59

with-dressing linear 3.18 9.56 0.1007 9.59 0.1007 −4.97 × × 195.7 0.997 26
composite 3.60 9.89 0.1091 9.95 0.1093 −4.77 −0.57 −2.07 201.4 0.999 71

where

Lr [ρ] =
∑

i∈{0,1,e}

(
LirρL

†
ir −

1

2

[
L†irLirρ+ ρL†irLir

])

Le [ρ] =
∑

j∈{0,1}

(
LjeρL

†
je −

1

2

[
L†jeLjeρ+ ρL†jeLje

])

and Lir =
√
γr/3|i⟩⟨r|, Lje =

√
γe/2|j⟩⟨e| stands for Lindblad operators that correspond to the spontaneous

emission from each excited state to each ground state.
In the presence of an auxiliary state |e⟩ (with-dressing case), the optimization of pulses for the gate

requires more tunable parameters, which makes the entire evolution difficult to satisfy. In this work, in order

to ease the experimental implementation, we use smooth modulation for both laser amplitude |Ω( ′)
r (t)| and

phase ϕ( ′)(t), and set the dressing field Ωd as a constant value to be optimized. Specifically, we perform a
smooth phase modulation whose slope also represents the two-photon detuning value [9, 45]. Two kinds of
robust pulses are considered: one with a phase profile given by a linear function

ϕ(t) = δ0t (4)

corresponding to a fixed two-photon detuning δ0 to |r⟩, and a second one with a composite phase profile

ϕ(t) = δ0t+ δ1 sin

(
4π t

Tg

)
+ δ2 cos

(
2π t

Tg

)
(5)

which results in a more sufficient modulation for the two-photon detuning. We assume ϕ ′ = ϕ for simplicity.
Except for the varying phase, the varying amplitude depends on an assumption of smooth Gaussian profiles

|Ωr (t) |=Ωmaxe
− (t−Tg/2)2

2ω2 , |Ω
′

r (t) |=Ω
′

maxe
− (t−Tg/2)2

2ω ′2 (6)

with Ωmax,Ω
′
max the maximal amplitudes and ω,ω ′ the pulse widths. Following [46], we choose the

numerical genetic algorithm with single target of maximizing the gate fidelity F by globally optimizing all
pulse parameters. Note that the intrinsic decay error due to finite lifetime of energy levels is also considered
by numerical optimization, ensuring a minimal time-spent on intermediate excited states |r⟩ and |e⟩ [8]. In
addition, we add the gate duration Tg as another quantity to be optimized which is surely limited by the
maximal amplitudes. For constituting a practical gate that can reduce the spontaneous decay from excited
states, we choose a slightly higher limitation for the two-photon Rabi frequency (Ωmax,Ω

′
max)/2π ⩽ 10 MHz,

which enables the gate duration Tg ⩽ 1.0µs in the no-e cases [47]. While this duration scale will be
prolonged in the with-e case due to the extra population exchange between |r⟩ and |e⟩ states.

The optimized gate parameters in no-dressing and with-dressing cases are presented in table 1, in which
two different phase profiles (linear and composite) are applied. The amplitude and phase profiles are plotted
in figures 2(b1)–(b4) and the corresponding infidelities 1− F(δ) as a function of δ are shown in figure 2(a).
It is explicit that the standard two-photon scheme, i.e. no-e case has no robustness to the Doppler dephasing
error, no matter how to modulate the laser phase profile. Thus, once |δ| grows, the infidelity reveals an
exponential increase (also see figure 2 of [14]), quickly reaching as high as∼0.1 at |δ|/2π = 1.0 MHz. To
quantify the performance of the dressing cases, figure 2(a) also presents the infidelity under the help of
dressing fields by performing the same optimization of all gate parameters. Excitingly, we find that the ideal
infidelity in both dressing cases remains a constant for any δ, strongly confirming the achievement of a
perfect protection for the Doppler dephasing error. It is more interesting that, by implementing a sufficiently

4



New J. Phys. 27 (2025) 054502 R Li et al

Figure 2. (a) Dependence of the gate infidelity 1− F(δ) on the Doppler shift δ in the absence of decay. Two no-dressing cases with
linear (or composite) phase modulation are denoted by the black-dashed (or green-dashed) lines, marked by no-e. Similarly, for
two with-e cases, results are denoted by red and blue solid lines. (b1–b4) Laser amplitudes and phase profiles with respect to the
four cases in (a).

composite modulation (blue-solid) of the pulse phase, the infidelity can even outperform the linear
modulation (red-solid) by one order of magnitude, staying at a very low level∼3.0× 10−4.

For completeness, we also calculate the time-integrated intermediate-state population. The total
time-spent in Rydberg state |r⟩ of the no-e case is quite large Pr ≈ (0.8372,0.6536)µs corresponding to the
linear and composite profiles, which is mainly caused by a wide laser-amplitude modulation over the entire
gate execution (see figures 2(b1) and (b2)). However, for the with-e protection mechanism with dressing
fields, the real pulse widths ω,ω ′ are strongly narrowed although at the cost of a prolonged gate time (see
figures 2(b3) and (b4)), which can achieve a much shorter time-spent in Rydberg states
Pr ≈ (0.1133,0.0742)µs and auxiliary states Pe ≈ (0.0705,0.0466)µs as compared to two no-e cases. We
point out that, although the average time-spent in the auxiliary state |e⟩ has been deeply minimized by
optimization during the dressing case, our gate may still suffer from a big decay error. Because the low-lying
excited state |e⟩ (|5P1/2⟩) is short-lived with a decay rate γe, typically 3 orders of magnitudes larger than γr of
state |r⟩, which ultimately limits the realistic gate fidelity. The discussion for this dominant decay error will
be presented in section 5.2, and a prospective protocol with zero decay error is presented in section 6.

4. Application to more dressing cases

Doppler dephasing induced by the residual thermal motion of atoms occurs across various atomic systems,
which dominantly limits the gate performance in the field of quantum computing [48, 49]. In section 3, we
have used the atomic parameters corresponding to a 87Rb atom with |e ′⟩= |5P3/2⟩ and |e⟩= |5P1/2⟩, arising
the sensitivity factor χ= 1.627 (Ωd/∆d ≈ 0.698). In order to verify the generality of our scheme adapted for
more atomic systems, we illustrate other double-dressing examples in Rb and Cs atoms (see table 2). Note
that the sensitivity factor χ is crucial that determines the degree of off-resonant dressing between |r⟩ and |e⟩,
consequently affecting the time-spent in these states. To analyze the role of χ, we newly optimize all gate
parameters for cases (a) and (g) of table 2 as compared to the original case (c). As shown in figure 3, we find
that cases (a) and (g) remain absolutely stable insensitivity to the variation of the Doppler shift δ, strongly
confirming the existence of an efficient protection mechanism from state |e⟩. However, once the insensitive
condition is broken, the Doppler shift on |r⟩ will no longer be perfectly protected, resulting in an exponential
enhancement of the gate infidelity (see figure 3, dashed lines). In table 3, we give the three sets of optimized
parameters in Rb and Cs atoms. For comparison, we further introduce another set of virtually optimized
parameters with a large χ= 15, which results in a far off-resonant coupling, i.e.∆d ≫ Ωd, ensuring a much
shorter time-spent in |e⟩. Numerical results based on the virtual case are displayed in figure 3 with full circles.
It is obvious that this case is also perfectly robust to the Doppler dephasing error, and meanwhile benefits

5
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Table 2. Choice of different intermediate states |e ′⟩ and auxiliary states |e⟩ for two-qubit CNOT gates in 87Rb and 133Cs atoms. The

effective two-photon wavevector is k⃗r = 2π(λ−1
up −λ−1

lower), in which λup(nm) and λlower(nm) represent the laser wavelengths of upper

and lower transitions respectively, and k⃗a =−2π/λa, where λa(nm) is the wavelength of the optical dressing fields. τ e(µs) denotes the

lifetime of the state |e⟩. k⃗r and k⃗a are shown with a unit of µm−1. We highlight the selected three cases in bold in which case (c) has been
studied in section 3.

87Rb 133Cs

Case (a,b) (c,d) (e,f) (g,h)

|e ′⟩ 5P1/2 5P3/2 6P1/2 6P3/2
λup 475 480 495 509
λlower 795 780 895 852

k⃗r 5.324 5.035 5.673 4.969

|e⟩ 5P1/2 5P3/2 5P1/2 5P3/2 6P1/2 6P3/2 6P1/2 6P3/2
λa 475 480 475 480 495 509 495 509

|⃗ka| 13.228 13.089 13.228 13.089 12.693 12.344 12.693 12.344

τ e 0.158 0.150 0.158 0.150 0.200 0.174 0.200 0.174
χ 1.484 1.458 1.627 1.6 1.238 1.176 1.554 1.484

Figure 3. The gate infidelity 1− F(δ) for different sensitivity factors χ = (1.627,1.484,1.554) denoted by solid lines. The
corresponding dashed lines present the breakdown of the insensitive condition by increasing χ to 15, while all optimized
parameters are kept unvaried. In addition, a virtually optimized case with a large χ= 15 is shown by full circles. No decay is
included in the calculation.

from a lower infidelity 1− F∼3× 10−5 due to the deep minimization of time-spent in state |e⟩ at
off-resonant condition.

Finally, we emphasize that the extension of this Doppler error erased protocol to more atomic sources
(Rb, Cs) is possible, as long as a suitably dressing state |e⟩ featuring an opposite but enhanced velocity
sensitivity for the |r⟩ → |e⟩ transition can be found. Furthermore, we note that the ideal gate fidelity can even
be improved to be> 0.9999 (the last column in table 3) if the insensitivity factor χ grows. This is interesting
in the limit where a long-lived auxiliary state is dressed, such that the intrinsic decay error can be entirely
avoided. In order to diminish the dissipative effect from the auxiliary state, in section 6., we introduce an
improved protocol by dressing Rydberg state to a hyperfine ground state |g⟩ (not a lower excited state)
through the one-photon transition. The central idea of protocol is to avoid the large spontaneous decay from
|5P1/2⟩ by replacing it with a more stable state.
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Table 3. Optimized gate parameters based on the choice of different sensitivity factors χ = (1.627,1.484,1.554) in Rb and Cs atoms,
corresponding to the dressing levels in Cases (c), (a) and (g) of table 2. Besides the optimized parameters, the required dressing-field
detuning∆d, the average time-spent in Rydberg state denoted by Pr(µs) and in auxiliary state denoted by Pe(µs), the ideal gate fidelity F
are also given in the last four columns. We highlight the last row in green suggesting an ideally large sensitivity factor χ= 15 regardless
of the realistic atomic energy levels. This choice can provide a pronounced improvement in the gate fidelity because of the far
off-resonant coupling (∆d ≫ Ωd) to the auxiliary state |e⟩.

Atom χ Tg Ωr(t) Ω ′
r (t) ϕ(t),ϕ ′(t) Ωd ∆d Pr Pe F(ideal)

Ωmax ω Ω ′
max ω ′ δ0 δ1 δ2

Rb 1.627 3.60 9.89 0.1091 9.95 0.1093 −4.77 −0.57 −2.07 201.4 288.5 0.0742 0.0466 0.999 71
1.484 3.59 9.70 0.1086 9.70 0.1080 −15.0 2.72 0.874 262.4 362.0 0.0896 0.0612 0.998 80

Cs 1.554 3.55 9.43 0.1073 9.47 0.1075 −7.37 0.54 −0.98 218.6 307.3 0.0977 0.0638 0.998 97

Virtual 15 2.12 10.00 0.2383 9.12 0.2573 10.00 −1.09 −0.15 240.0 945.4 0.2837 0.0192 0.99997

Figure 4. (a) The gate infidelity 1− F(T) at different values of atomic temperature where the decays of Rydberg and dressing
states are both included, corresponding to the four cases described in table 1. The inset of (a) shows infidelities at the cases of
χ= 1.484 and χ= 1.554 (see table 3). (b), (c) Simulation of the realistic decay errors εr (for Rydberg state |r⟩ at γe = 0) and εe
(for auxiliary state |e⟩ at γr = 0) under different T. For a given T, each point denotes an average over 300 random realizations.
Here the specific decay rates considered are γr = 1/τr ≈ 2.6 kHz, γe = 1/τe ≈ 2π× 1.0 MHz.

5. Realistic gate performance with robust pulses

5.1. Gate performance
To gain insight on how the Doppler dephasing error affects the realistic gate performance with robust pulses,
we now include the spontaneous decays of Rydberg and dressing states at a finite temperature T. During the
gate execution, both the ground-Rydberg and the ground-dressing transitions will inevitably suffer from
atomic motional dephasing, which makes the real laser frequency perceived by the moving qubit atoms
deviate from its ideal value [50]. This can be estimated as the level detuning changes δ and χδ, respectively
for Rydberg and auxiliary states. Although the actual Doppler shifts of two atoms are different due to the
uncorrelated atomic velocities, our gate protocol suggests an independent protection for each Rydberg state
with an individual dressing state, so the anti-symmetric detuning error does not work here [14]. The velocity
v⃗ originates from finite temperature T of trapped atoms constituting an intrinsic source of randomness. Here
we assume v⃗ is randomly drawn from a one-dimensional Gaussian distribution with width vrms =

√
kBT/m,

where kB is the Boltzmann constant andm is the mass of atoms. This choice arises the detuning changes
δ = k⃗r · v⃗ and χδ = (⃗kr + k⃗a) · v⃗. Both of them are also random values. Then we calculate the gate infidelity
caused by residual thermal motion of atoms, represented by the relationship between 1− F(T) and the
atomic temperature T.

Numerical results are summarized in figure 4(a). We first focus on two no-e cases. As expected, the gate
infidelity dramatically increases as T grows no matter how to modulate the phase profile [51]. Because
without the use of protection mechanism, the gate protocol is ideally optimized in the absence of the
Doppler error, i.e. at T= 0. As T increases, both the Rydberg decay error εr and the Doppler dephasing error

7



New J. Phys. 27 (2025) 054502 R Li et al

are dominant. At T= 5 mK, we observe that these two errors contribute at the same level∼10−2 (also see
figure 4(b)), leading to the total infidelity as high as 1− F≈ 0.03. In contrast, for the newly-proposed with-e
cases the infidelity perfectly preserves a constant for any temperature, which means the Doppler dephasing
error has been truly erased that no longer depends on the temperature. Besides, we also note that, the
selected choices (χ = 1.627,1.484,1.554, see inset of figure 4(a)) for Rb and Cs atoms can all contribute a
Doppler-error erased gate with the increasing of atomic temperatures.

Note that, the results over a very wide temperature range is schematically given in figure 4(a), only for
presenting the absolute insensitivity of gate infidelity against the Doppler dephasing error for any
temperature. Unfortunately, we observe the with-e protocols reveal better gate performance merely if T> 1.5
mK, which inherently makes the scheme worthless for current experiments that usually work in a cold
environment. In the following, via a deep study of the major limitation as well as other error sources, we
further propose a more relevant with-g protocol (by dressing with an auxiliary ground state) for achieving
high-fidelity quantum gates, which also has significantly reduced insensitivity to the Doppler errors (see
details in section 6).

5.2. Major obstacle
Despite the perfect insensitivity to the Doppler dephasing error, we should admit that there is a major
obstacle in the gate protocol, originating from the choice of a short-lived dressing state |e⟩ [52, 53]. For the
chosen excited state |e⟩= |5P1/2⟩ typically γe ≫ γr, this will cause a larger decay error εe from the dressing
state |e⟩.

To address this issue, we separately characterize the gate infidelity by individually calculating two decay
errors εr and εe, as a function of T in figures 4(b) and (c). By increasing the temperature, for no-dressing
cases, the only Rydberg decay error quickly reaches as high as εr∼10−2 at T= 5 mK, which means the
random fluctuation δ from the atomic motional dephasing will significantly affect the time-spent in the
Rydberg state, because no protection is performed for this state. However, with the help of dressing state |e⟩,
we observe that the εr (here γe = 0) obtains a big reduction and perfectly stays at∼1.3× 10−5,
outperforming the εr of two no-dressing cases by orders of magnitude due to the minimization of time-spent
in the Rydberg state. In addition, the εr does not vary with T because |r⟩ is fully protected in this case. Finally,
we estimate the intermediate decay error εe from the dressing state |e⟩ in figure 4(c) only for two with-e cases.
To avoid additional errors from the Rydberg state, we set γr = 0. By varying T it is clear that the decay error
εe can also remain a constant owing to the perfect protection; whilst, unfortunately it keeps at a quite high
value∼10−2, serving as the leading-order error source to the gate infidelity. This is actually a result of the
short lifetime of |e⟩ and can be completely avoided by replacing with a long-lived dressing state (see
section 6). The complete robustness of εr and εe to any T values also indicates that the average time-spent in
both states (|r⟩, |e⟩) can be preserved unvaried with the increase of T. Hence, our protocol is verified to be
perfectly immune to the Doppler-dephasing error caused by atomic thermal motion.

Accounting for the major obstacle by εe in the dressing protocols, we have shown that, our protocol with
dressing-field protection mechanism (dressing a lower excited state) would suffer from a relatively low gate
fidelity F(T)∼0.9906 (see figure 4(a)) as compared to the no-dressing case for T⩽ 1.5 mK; although its full
robustness against the Doppler dephasing errors for any temperature is very remarkable. In order to achieve
a higher gate fidelity along with strong robustness, we develop a promising proposal by dressing with a
long-lived ground state, as presented in section 6.

5.3. Other detuning error sources
It is worth pointing out that during the gate execution, other error sources such as the ac Stark shift [55–57],
the fluctuation in laser frequencies [58–60] and so on, also serve as an unknown detuning error that leads to
the realistic two-photon detuning, which includes not only the Doppler shift term δ =−k⃗r · v⃗, but also other
unknown detunings δ ′. For a typical two-photon transition system with a large intermediate detuning, a
significant ac Stark shift occurs as a consequence of the uncompensated laser amplitude fluctuations [25].
According to our recent work [61], for a modest estimation of laser amplitude deviation∼5.0%, this
unknown detuning is about 2π× 0.32 MHz. To quantify the robustness of with-e gate performance against
other detuning errors, figure 5(a) shows the ideal gate infidelity at δ= 0 and 2π× 1.0 MHz by varying extra
errors over a wide parameter range δ ′/2π ∈ [−1.0,1.0]MHz. The observed gate infidelity 1− F(δ ′) clearly
varies with δ ′ due to the breakdown of the insensitive condition. Because the realistic detuning χδ of the
dressing state |e⟩ is irrelevant to δ ′ (just relevant to δ), making the robust gate no longer immune to these
error sources. By increasing the values of |δ ′|, we find that the ideal gate infidelity has the same trend of
exponential enhancement for different δ/2π = (0,1.0)MHz. In general, this detuning error source
contributes at the level of< 10−3, which is much smaller than the decay error εe by more than one order of
magnitude, and is therefore not very important. This can be verified further by including the effect of
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Figure 5. (a), (b) The infidelity of Doppler-error erased gates 1− F(δ ′) as a function of other detuning fluctuation δ ′, where the
Doppler shift is δ= 0 and δ/2π = 1.0 MHz, for the ideal case without decay and for the realistic case with spontaneous decays,
respectively. (c) The realistic gate infidelity 1− F as a function of both T and δ ′. Every point (Tj, δ ′

j ) in the color plot is obtained
by using an average over 300 random samplings, individually extracted from the range of a one-dimensional Gaussian
distribution with vrms =

√
kBTj/m for Tj and a uniform distribution of [−δ ′

j ,+δ ′
j ] for δ

′
j .

spontaneous decays. In figure 5(b), we show the realistic infidelity over a range of detuning fluctuations δ ′.
As expected, the total gate infidelity maintains around∼10−2, confirming the trivial impact from other
detuning errors compared to the dominant decay error εe.

We also consider the realistic gate infidelity in the presence of both Doppler error (induced by a finite
temperature T) and other detuning errors for completeness. Figure 5(c) presents the gate performance with
composite phase modulation (χ= 1.627) in the with-e case. It is clear that the infidelity numbers can always
maintain around 0.01 in the presence of significant detuning imperfections or Doppler dephasing errors,
which indicates a powerful robustness of our gate protocol to any magnitude of errors on the two-photon
detuning.

As compared with the traditional three-photon Doppler-free scheme [26], we may expect the overall
Doppler shift is automatically zero based on the starlike geometry, i.e. δ= 0. However, the uncompensated
Doppler shifts in one- or three-photon detunings would induce extra ac Stark shift error δ ′ that allows the
three-photon scheme to be not absolutely robust to the change of atomic temperature. A rough estimation
shows that, even for T= 1 K with a maximal δ ′ adding to the Rydberg state of about 0.1 MHz, the infidelity
F(δ ′ = 0)− F(δ ′) is only∼3.5× 10−5 in the no-e case using the optimized composite pulses, confirming the
feasibility of three-photon Doppler-free scheme although it is technically more demanding and therefore
impractical.

6. Dressing with long-lived ground states

In section 5, we have shown the error-erasing strategy of Doppler dephasing error in Rydberg quantum gates.
However, the major weakness of which lies in a large decay error εe∼0.01 from the intermediate dressing
state |e⟩, resulting in the ultimate gate fidelity F≈ 0.9906 even at low temperatures. In order to overcome this
decay error and improve the gate fidelity to a better level, we develop a modified protocol by replacing the
auxiliary state to be a stable ground state, so as to essentially avoid this dominant error. In figure 6(a), we
assume that the qubits are encoded into two hyperfine atomic ground states |0⟩ and |1⟩, and the traditional
excitation to Rydberg |s⟩ states is driven by a two-photon process. When two atoms are prepared in the pair
state |ss⟩, they will experience a natural two-body Förster resonance by obeying |ss⟩⇄ |pp ′⟩ with a
dipole–dipole interaction strength V [62–64]. Here, due to the transition selection rule, we remark that two
dressing fields Ωd should drive the coupling between |p⟩, |p ′⟩ and |g⟩ via a 297 nm ultraviolet laser [65] since
state |s⟩ is transition-forbidden. This new choice provides k⃗a =−2π/λ297 = 21.156µm−1 (⃗kr is the same),
arising a larger sensitivity factor χ= 3.202 when Ωd/∆d ≈ 0.463.

Now, the total Hamiltonian for the improved gate protocol, reads

H=Hc ⊗ I+ I⊗Ht +V(|ss⟩⟨pp ′|+ |pp ′⟩⟨ss|) (7)
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Figure 6. (a) The gate protocol that dresses a long-lived ground state |g⟩= |5S1/2,F= 2,mF =−1⟩ instead of a short-lived
excited state |e⟩. The qubit states |0⟩ and |1⟩ are same (see figure 1). A dipole–dipole interaction V drives the exchange coupling
between two Rydberg pair states |ss⟩⇄ |pp ′⟩ (e.g. |70S1/270S1/2⟩⇄ |70P3/269P3/2⟩) [54]. Here states |p⟩ and |p ′⟩ (noticeably
|s⟩ is not protected) are directly protected via a one-photon dressing with the ground state |g⟩. The Rydberg decay rates from |s⟩
and |p,p ′⟩ are γs = 2.6 kHz, γp,p ′ = 1.3 kHz, and the dipole–dipole interaction strength is V= 2π× 200 MHz. (b)–(c) Gate
performance based on the ground-dressing protocol are given by the red-dashed line, denoted as with-g. For comparison, the
original no-e and with-e protocols using the case of composite phase modulation, are also presented. (b) The infidelity 1− F(δ) as
a function of the Doppler shift δ in the absence of Rydberg decay. (c) The realistic gate infidelity 1− F(T) as a function of T,
including the spontaneous decays from all Rydberg levels.

where single-qubit Hamiltonians are

Hc =
Ωr (t)

2
|1⟩⟨s|+

Ωd

(
ei∆dt + e−i∆dt

)
2

|p⟩⟨g|+H.c.

− δ (|s⟩⟨s|+ |p⟩⟨p|)+χδ|g⟩⟨g|

Ht =
Ωr (t)

2
|1⟩⟨s|+ Ω ′

r (t)

2
|0⟩⟨s|+

Ωd

(
ei∆dt + e−i∆dt

)
2

|p ′⟩⟨g|+H.c.

− δ (|s⟩⟨s|+ |p⟩⟨p|)+χδ|g⟩⟨g|,

respectively. Similarly, numerical simulation adopts the Liouville-von Neumann equation:
∂ρ(t)/∂t=−i[H,ρ] +Ls[ρ] +Lp[ρ] with two Lindblad relaxation terms

Ls [ρ] =
∑

i∈{0,1,g}

(
LisρL

†
is −

1

2

[
L†isLisρ+ ρL†isLis

])

Lp [ρ] =
∑

i∈{0,1,g}

∑
j∈{p,p ′}

(
LijρL

†
ij −

1

2

[
L†ijLijρ+ ρL†ijLij

])

where the Lindblad operators are Lis =
√
γs/3|i⟩⟨s|, Lip =

√
γp/3|i⟩⟨p|, Lip′ =

√
γp′/3|i⟩⟨p ′|, describing the

Rydberg state decays. By extending to the new protocol that dresses with a hyperfine ground state |g⟩, we
apply numerical optimization to both laser amplitude and (composite) phase profiles, in which the
parameters are (all units are the same as in table 1)

Ωmax = 2π × 8.39, ω = 0.1179

Ω ′
max = 2π × 7.94, ω ′ = 0.1287

Ωd = 2π × 163, ∆d = 2π × 352

δ0 =−2π × 14.81, δ1 = 2π × 1.16

δ2 =−2π × 0.014, Tg = 0.8.

We note that this new protocol benefits from a much shorter gate duration (Tg = 0.8µs) for minimizing the
time-spent in Rydberg states only, more similar as the no-dressing case.

To see whether this with-g protocol is fully robust to the Doppler dephasing error and meanwhile
manifests as a high-fidelity gate, we first simulate the ideal infidelity 1− F(δ) as a function of δ in figure 6(b),
marked by the red-dashed line. The best Doppler-error erased case (blue line) with χ= 1.627 for Rb atoms is
comparably displayed, which undoubtedly shows a complete robustness to the variation of Doppler shift δ.
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However, we observe that this new with-g protocol reveals some robustness as compared to the no-e case
against the change of δ values, unfortunately it is unable to be absolutely robust. This can be readily
understood by the design of two dressing fields, which only drive the Rydberg |p,p ′⟩ states so as to achieve
the protection from motional dephasing merely for these two states. While other Rydberg |s⟩ states can feel
the same magnitude of Doppler errors, which are not directly protected by the presence of |g⟩. Thus, the
resulting infidelity will no longer be fully immune to the Doppler dephasing error, revealing a small increase
with the Doppler shift |δ|.

Next we proceed by studying the realistic gate performance 1− F(T) in the presence of both Doppler and
Rydberg decay errors. Figure 6(c) shows the realistic gate infidelities by averaging over sufficient (N = 300)
random samplings of atomic velocity for each T in the range of [0,1000] µK. The no-e and with-e protocols
are the same as in figure 4(a). Clearly, at low temperatures T< 1000µK, the with-e protocol has no
advantages to maintain a higher infidelity than the no-e case because of the dominant decay error (εe∼0.01)
of state |e⟩. However, we observe that the with-g protocol can explicitly provide a lower infidelity although at
the cost of a small loss of robustness due to the unprotected state |s⟩, outperforming the with-e case for any
temperature. In addition, it is also better than no-e as long as T> 500µK. This is expected because the
improved with-g protocol benefiting from a non-lossy ground-state dressing, can effectively avoid the large
spontaneous decay from intermediate excited states, resulting in a more acceptable gate fidelity F≈ 0.9965 at
T= 50µK. Even if the temperature is increased to 500µK, the gate fidelity can be maintained at F≈ 0.9960,
which implies the strong (not perfect) robustness of scheme to the change of Doppler shifts. By now, we have
realized two-qubit CNOT gates featuring both high fidelity and strong insensitivity for a wide temperature
range up to∼1000µK. This result can significantly decrease the temperature constraint for implementing
quantum gates with cold atoms in the future.

7. Larger laser amplitudes

To further improve the practical relevance of scheme which can reveal advantages for a typical temperature
∼10µK, in this section, we discuss the realistic gate performance by using higher two-photon laser
amplitudes up to (Ωmax,Ω

′
max)/2π ⩽ 20 MHz, possibly done by ultrafast pulsed-laser technique [66–68],

and show that both the with-e and with-g protocols can further be improved for colder temperatures owing
to the substantial decrease of time-spent in the intermediate excited and Rydberg states.

To perform a deep optimization, here we additionally introduce a slightly more general ansatz for the
phase profile, given by

ϕ(t) = δ0t+ δ1 sin

(
4π t

Tg

)
+ δ2 cos

(
απ t

Tg

)
(8)

where coefficient α is added for a fine tuning, and a smoothly-modulated Gaussian waveform for laser
amplitudes is kept. Inspired by the results in the section 3, we note that the with-e (composite) protocol tends
to require the laser pulse having a narrowed peak with a long tail for minimizing the intermediate-state
population, e.g. for χ= 1.627, the total time-spent in the Rydberg and auxiliary states is
(Pr,Pe)≈ (0.0884,0.0554)µs. In contrast, the with-g protocol is driven by using a relatively global pulse
within a shorter gate time (more similar to the no-dressing case), which arises
(Pp,Ps)≈ (1.15× 10−4,0.1691)µs when χ= 3.202. We emphasize these time-spent values are obtained for
the cases with spontaneous decays. Here, we re-optimize all gate parameters for two protocols with higher
laser amplitudes, denoted as with-e-improve and with-g-improve, respectively.

In figures 7(a) and (b), the realistic gate infidelity 1− F(T) as a function of T are separately given with
the corresponding gate parameters summarized in table 4. With larger laser amplitudes, we clearly find a
significantly improved gate quality, greatly outperforming the original with-e and with-g protocols. For
example, in figure 7(a), the with-e-improve featuring complete robustness, has a higher fidelity of F≈ 0.9955
for any temperature, which reduces the infidelity number by 52.1% as compared to the with-e case. This
improvement arises from the strong suppression of the time-spent (Pr,Pe)≈ (0.0264,0.0209)µs on the
intermediate lossy states, less than half of the time of the with-e case, which leads to a smaller decay error.
Remarkably, results turn to be more exciting when the with-g-improve protocol is applied, see figure 7(b).
The realistic gate infidelity preserves below 10−4 for any T within the range of [0,50]µK, and even retains
F≈ 0.99991 at T= 50µK. This development is mainly contributed by minimizing the time-spent on the
unprotected Rydberg state |s⟩ which serves as the dominant decay error for the gate implementation. We
emphasize that, in this protocol there exists a strong time-spent minimization on the excited states leading to
(Pp,Ps)≈ (5.53× 10−4,0.1397)µs. Here, the average time on state |s⟩ has been significantly decreased by
17.4% (the impact of state |p⟩ is negligible), so in contrast to with-g, the realistic gate infidelity can be
reduced by several orders of magnitude. A strong robustness can also be seen for this case.
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Table 4. Coefficients of the optimized laser pulsesΩmax,Ω ′
max,Ωd and ϕ(t),ϕ ′(t) and laser phases ϕ(t), ϕ ′(t) for the improved schemes

(with-e-improve and with-g-improve) using larger laser amplitudes. The last column presents the realistic gate fidelity at T= 0. Other
parameters are given in table 1.

Case Auxiliary state Tg Ωr(t) Ω ′
r (t) ϕ(t),ϕ ′(t)

Ωmax ω Ω ′
max ω ′ δ0 δ1 δ2 α Ωd ∆d F(realistic)

with-e-improve excited state |e⟩ 2.54 19.64 0.0769 19.29 0.0768 −10.44 1.93 16.56 1.288 225.53 323.11 0.99 547
with-g-improve ground state |g⟩ 1.14 19.85 0.1179 19.38 0.1202 20.0 0.90 −15.99 0.002 173.36 374.42 0.99 998

Figure 7. Gate performance with larger laser amplitudes. (a)–(b) The realistic gate infidelity 1− F(T) as a function of T,
corresponding to the lower excited-state dressing and ground-state dressing cases, respectively. For comparison, the original cases
(with-e and with-g) are represented by solid lines, while the improved with-e-improve and with-g-improve cases are indicated by
dashed lines, whose parameters are given in table 4.

To shortly conclude, these improved protocols with larger laser amplitudes hold great promise for
higher-quality Rydberg quantum gates. The completely robust with-e-improve protocol can fundamentally
relax the temperature requirement for quantum gate operations. And the strong robustness in
with-g-improve protocol is able to achieve a super-high gate fidelity for colder temperatures, possibly
reaching a new milestone for two-qubit quantum gates in the neutral-atom computing platform. Both of
them deserve the experimental demonstration in the near future.

8. Conclusion and outlook

So far, the ground-Rydberg dephasing error from finite atomic temperature is believed to be an ultimate
limitation for the observed gate fidelity; however, it is rarely mitigated unless advanced technologies of
atomic cooling and trapping are developed [69–71]. In this work, we use the protection scheme first
proposed by Finkelstein and coworkers [29] to demonstrate a family of high-fidelity Doppler-error erased
gates, enabled by cleverly dressing with an auxiliary state that protects the Rydberg state from Doppler
dephasing errors. Based on the powerful optimal control strategy, we present several dressing protocols in
alkaline Rb and Cs atoms that implement two-qubit CNOT gates using global modulations of both laser
amplitude and phase profiles [72]. All protocols are fully robust to the Doppler dephasing errors yet at the
cost of a slightly large decay error from the intermediate auxiliary state, which fundamentally restricts the
attainable gate fidelity of F≈ 0.9906 for any temperature. To improve the practical relevance of protocols, we
show that it is more interesting to replace with a non-lossy ground state (as the auxiliary state) to mitigate
such incoherent spontaneous decay error achieving two-qubit CNOT gates with 0.9960 fidelity even at
T= 500µK, although the perfect insensitivity to Doppler errors would be slightly broken due to the
existence of other unprotected Rydberg states. Finally, we note that robust pulses with a larger amplitude can
enable significant improvements to the gate performance, suggesting a promise to the super-high gate fidelity
of 0.99 991 for T= 50µK.

This work can strongly relax the temperature constraint for achieving high-fidelity Rydberg gates by fully
erasing the effect of Doppler dephasing error at any temperature, and would be worthwhile for future
experimental demonstration. Before ending, we have to admit that our gate protocol will be passively
impacted by other technical imperfections [73, 74]. For example, to completely quantify the gate
performance under finite temperatures, we also study the error sources from the fluctuated interaction and
the laser amplitude inhomogeneity. Both of them are induced by the thermal motion of atoms. Results in
appendix B explicitly show that our new protocols do not have explicitly reduced insensitivity to these errors.
However, a gate with complete robustness to certain error sources is enough useful, especially to the
ground-Rydberg dephasing error which plays a dominant role for high-fidelity quantum information
processing in scalable neutral-atom platforms [75, 76]. We believe such a protocol dealing with
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inhomogeneous Doppler dephasing could be utilized to explore other fault-tolerant mechanisms in many
more platforms.
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Appendix A. Derivation of the insensitive condition

Insensitive condition.—We start by deriving the insensitivity condition. To ease the derivation we assume that
the Rydberg state |r⟩ would experience an inhomogeneous energy shift−δ due to the inevitable Doppler shift
induced by the residual thermal motion of qubit atoms, where δ = k⃗r · v⃗ (⃗kr is the two-photon wavevector
and v⃗ denotes atomic velocity). The addition of an auxiliary state |a⟩ leads to a new subspace {|r⟩, |a⟩} based
on which we introduce a coherence protection mechanism, i.e. the double-dressing scheme as proposed and
experimentally verified by Finkelstein et al [29]. Here we specifically discuss the double-dressing scheme that
can be applied for constructing a high-quality Doppler-error erased gate. For an unknown shift−δ on |r⟩,
the auxiliary state |a⟩ will obtain a similar shift δ ′ = (⃗kr + k⃗a) · v⃗ originating from the same source of
inhomogeneity of atomic velocity. Since we require δ ′ = χδ with χ = |1+ k⃗a/⃗kr| a dimensionless sensitivity
factor, the dressing-field wavevector k⃗a should be opposite to k⃗r meanwhile requiring a larger amplitude
|⃗ka|> |⃗kr|.

Figure 8. Coherence protection mechanism. (a) No dressing case: Single atom without dressing field is composed by the ground
state |1⟩ and the Rydberg state |r⟩, which are coupled by a two-photon Rabi frequencyΩr. The overall (two-photon) transition
frequency shift is denoted by−δ due to the residual thermal motion of atoms at finite temperature. (b) With dressing case: Two
dressing fields with Rabi frequenciesΩd1 andΩd2 and opposite detunings∆d1 and−∆d2, are applied to protect state |r⟩ from
motional dephasing. The auxiliary state |a⟩ experiences an opposite and possibly larger transition frequency shift χδ, where

χ = |1+ k⃗a/⃗kr| denotes a sensitivity factor.

The double-dressing scheme as shown in figure 8(b), involves a pair of dressing fields Ωd1(detuned by
∆d1) and Ωd2(detuned by−∆d2). The state |r⟩ is coupled to |a⟩ by the dressing fields, arising the total
Hamiltonian in the subspace {|r⟩, |a⟩} given byHa =H0 +H1, where

H0 =

[
−δ 0
0 χδ

]
(A1)

H1 =

(
Ωd1

2
ei∆d1t +

Ωd2

2
e−i∆d2t

)[
0 1
1 0

]
. (A2)

To simplify the subsequent derivation, we rewriteH0 into a matrix form as

H0 =
δ

2

(
[χ− 1]

[
1 0
0 1

]
− [χ+ 1]

[
1 0
0 −1

])
(A3)

13



New J. Phys. 27 (2025) 054502 R Li et al

and rotate the system around the y axis by using

U=
1√
2

[
1 −1
1 1

]
(A4)

such that the rotated Hamiltonian transforming to the σx representation, takes form of

HR
a = U†HaU= U† (H0 +H1)U

=

[
Ωd1

2
(cos∆d1t+ i sin∆d1t)+

Ωd2

2
(cos∆d2t− i sin∆d2t)

]
× Sz +

δ

2
([χ− 1] I+ [χ+ 1]Sx) (A5)

where I is the identity, and

Sx =

[
0 1
1 0

]
Sy =

[
0 −i
i 0

]
Sz =

[
1 0
0 −1

]
.

Next, after introducing a unitary transformation operator forH1 only,

U
′
(t) = exp

(
−i

ˆ t

0
U†H1 (t1)Udt1

)
= exp

(
−iSz

[
Ωd1

2∆d1
(sin∆d1t− icos∆d1t+ i)+

Ωd2

2∆d2
(sin∆d2t+ icos∆d2t− i)

])
(A6)

we obtain the total Hamiltonian under the interaction picture

HI
a =

δ

2

[
(χ− 1) I+(χ+ 1)

(
S+e

(
iz1 sin∆d1t−iz

′
1 cos∆d1t−z1

)

+S+e

(
iz2 sin∆d2t+iz

′
2 cos∆d2t+z2

)
+H.c.

)]
(A7)

where z1 =Ωd1/∆d1, z
′

1 = iΩd1/∆d, z2 =Ωd2/∆d2, z
′

2 = iΩd2/∆d2, S+ is the Pauli matrix.
Utilizing the Jacobi–Anger identity

e±iz sin(∆dt) =
+∞∑

n=−∞
Jn (z)e

±in∆dt (A8)

we reduce equation (A7) to the first-order in the Magnus expansion [77]

H(1)
a =

1

T

ˆ T

0
HI

a (t1)dt1

=
δ

2

[
(χ− 1) I+ J0 (z1) J0

(
z
′

1

)
(χ+ 1)

(
S+e

−z1 + S−e
z1
)

+J0 (z2) J0
(
z
′

2

)
(χ+ 1)

(
S+e

z2 + S−e
−z2

)]
. (A9)

To find the insensitive condition we require the eigenvalues ofH(1)
a vanish (i.e. independent of δ). By

assuming two dressing fields with equal amplitudes and opposite detunings, i.e. Ωd =Ωd1 =Ωd2,
∆d = |∆d1|= |∆d2|, the first-order reads

H(1)
a =

δ

2

[
(χ− 1) I+ 2J0 (z)(χ+ 1)

(
S+e

−z1 + S−e
z1
)]
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Figure 9. The infidelity 1− F(δ) in the absence of any decay with different choices of χ = (0.5,1.0,50). The no dressing case is
shown for comparison. All pulse parameters are found in table 5.

Table 5. Coefficients for plotting figure 9. The transfer duration τ is fixed to 1.0 µs.

with dressing

(2π×MHz) no dressing χ= 0.5 χ= 1 χ= 50

Ωr 1 10 3 4
Ωd / 200 85 183
∆d / 45 35 460

in which the general insensitive condition occurs at

J0 (z1) =
(χ− 1)

2(χ+ 1)
. (A10)

Numerical verification.—To verify the validity of the insensitive condition (A10), we apply it for achieving the
population transfer in a single atom, in order to see whether the transfer process is perfectly robust to the
variation of energy shift δ. Consider a single atomic qubit comprising |1⟩ and |r⟩, as displayed in figure 8(a).
The atom initially in |1⟩, would experience a typical state rotation |1⟩ → |r⟩ → |1⟩ after adopting a 2nπ pulse
(Ωrτ = 2nπ, τ is the transfer duration, n is a tunable integer). However, since the atoms are not stationary,
their inhomogeneous velocity distribution leads to Doppler dephasing which reduces the fidelity of the
population transfer. In figure 9 we numerically calculate the infidelity of state transfer by following the
master equation dρ/dt=−i[Ha,ρ] in the absence of any decay (γ= 0), as a function of the Doppler shift δ.
Depending on the definition of χ = |1+ k⃗a/⃗kr|, without loss of generality, we adopt the sensitivity factor
χ = (0.5,1.0,50) as examples. Note that in the absence of dressing fields the transfer infidelity 1− F has an
exponential enhancement with |δ| and is quickly close to 0.5 when the frequency shift |δ|/2π increases to 1.0
MHz. However, with the help of double-dressing protection scheme the insensitivity of the infidelity could
be dramatically improved which implies that the insensitive condition can indeed make the system
insensitive to the Doppler dephasing, achieving a perfect protection from the Doppler dephasing error.

Moreover, we find that the exact ratio between Ωd and∆d caused by a different sensitivity factor χ, is
quite different. For a small χ= 0.5 we have Ωd/∆d ≈ 4.443 and therefore the dressing state becomes near
resonance there. The addition of double-dressing fields will severely affect the original state rotation between
|1⟩ and |r⟩, arising a poor infidelity number∼10−2. While for χ= 1, according to equation (A10), we have
Ωd/∆d ≈ 2.405. The resulting infidelity as shown in figure 9, stays independent of δ and achieves a very low
number< 10−4. For a larger χ= 50 which leads to Ωd/∆d ≈ 0.398, since∆d > Ωd the transfer infidelity is
still perfectly protected from the fluctuation of Doppler shift, arising a lower infidelity number∼10−5 as
compared to the χ= 1 case. Therefore, an enhanced sensitivity χ⩾ 1 enables the use of dressing fields
far-detuned and achieves a higher-fidelity state transfer, thus staying a high-insensitivity to the
inhomogeneous Doppler shift despite the continuous exposure of the atoms to the residual thermal motion.
The potential application of this protection scheme to achieve robust Doppler-error erased gates have been
profoundly discussed in the main text.

Appendix B. Other atomic temperature effects

In the main text, we show that our gates have a full insensitivity to the Doppler dephasing error induced by
finite temperatures. However, during the gate execution, the residual thermal motion of atoms in the trap
will also lead to other atomic temperature effects that affect the gate fidelity. Here, we consider the gate
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Figure 10. The gate infidelity F(T= 0)− F̄(T) caused by (a) the fluctuated Rydberg interaction between two trapped atoms and
(b) the inhomogeneous Rabi frequencies, both of which originate from the atomic thermal motion under a finite temperature T.
Each point denotes the average of 300 realizations.

infidelity scales with the change of atomic position r [78], which satisfies a normal distribution

f(r) =
1

(2π)3/2σxσyσz

e
− x2

2σ2
x e

− y2

2σ2
y e

− z2

2σ2
z (B1)

where r = {x,y,z} represents the real-time position. The standard deviation is σx,y,z =
√

kBT/mω2
x,y,z with T

the temperature and ωx,y,z the trapping frequency. We roughly estimate the maximal deviation of atomic
position by σx,y,z = (75,95,318) nm for trap frequencies ωx,y,z = (147,117,35) kHz if T= 50µK [67], while
the real atomic position is randomly extracted from the distribution (B1) during each gate execution.

Fluctuation of Rydberg interaction. First of all, it is intuitive that the change in atomic position would
result in a fluctuated Rydberg-Rydberg interaction, given by

V(r12) = V0 + δV(r12 − r0) (B2)

where r12 = r1 − r2 is a relative distance of two atoms and r1,r2 are real atomic positions satisfying
equation (B1) (note that r0 is the distance between two center of traps). The non-fluctuated interaction
V0(r0) = C6/r60 is assumed with the no-e and with-e cases for a van der Waals shift; while for a resonant
dipole–dipole interaction V0(r0) = C3/r30 corresponds to the with-g case. Here, the initial distance r0 relative
to the center of traps is calculated to be r0 = |r0| ≈ (4.03,3.41)µm where the dispersion coefficients are
C6/2π = 863 GHz.µm6 and C3/2π = 7.94 GHz.µm3 based on the choice of energy levels, respectively.

In addition, the change in Rydberg interaction can be described by

δV(r12 − r0) =−6C6 (r12 − r0)

r70

δV(r12 − r0) =−3C3 (r12 − r0)

r40
(B3)

where r12 − r0 means the realistic deviation to the relative distance of two atoms. During each realization j we
could obtain a gate fidelity Fj with a random distance r12, and finally the average gate fidelity after sufficient

realizations is provided by F̄(T) = 1
N

∑N
i=1 Fj for a finite temperature T, where N = 300 is used in the

calculation.
As shown in figure 10(a), we calculate the infidelity F(0)− F̄(T) caused by the fluctuated Rydberg

interaction. In general, the infidelity value keeps at a lower level< 10−3 for T⩽ 50µK. In particular, it is
worth noting that the with-g case benefits from the best infidelity as compared to other two cases, sustaining
below 10−6. Because the overall time-spent in the double Rydberg states |ss⟩ and |pp ′⟩ is much shorter
Pss + Ppp′ ≈ 8.885× 10−5µs, outperforming other cases (Prr ≈ 1.45× 10−4 for the no-e case and
Prr ≈ 4.08× 10−4 for the with-e case) by almost 1 order of magnitude. In addition, we note that the
interaction deviation caused by the dipole–dipole type δV∝ 3C3/r40 is relatively smaller than the van der
Waals type δV∝ 6C6/r70 for each T, so as to provide a smaller impact on the gate performance.

Inhomogeneity of Rabi frequency. Next we also find that the uncertainty of atomic position would make
the real laser amplitude perceived by atoms deviate from its desired value resulting in the position-dependent
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Rabi frequency. To estimate this error, we replace the laser amplitudes Ωr(t) and Ω ′
r (t) by the

position-dependent functions, as

Ωr (t,r) = Ωr (t,0)
e
− x2

ω2
x,r(1+z2/L2x,r)

− y2

ω2
y,r(1+z2/L2y,r)[(

1+ z2/L2x,r
)(

1+ z2/L2y,r

)]1/4
Ω ′

r (t,r
′) = Ω ′

r (t,0)
e
− x ′2

ω2
x,r(1+z ′2/L2x,r)

− y ′2

ω2
y,r(1+z ′2/L2y,r)[(

1+ z ′2/L2x,r
)(

1+ z ′2/L2y,r

)]1/4
where r,r ′ present the atomic position that satisfies the normal function (B1), and Ωr(t,0),Ω ′

r (t,0) are the
non-fluctuated pulse amplitudes same as |Ωr(t)|, |Ω ′

r (t)| in equation (6). The laser beam waist is
ωx(y),r ≈ 5.0µm typically, arising the Rayleigh length Lx(y),r ≈ 62.93µm for the effective two-photon
wavelength λeff ≈ 1248 nm, when two lasers (780 nm and 480 nm) propagate in opposite directions. We
observe that, even for T= 50µK the maximal position deviation of atoms is much smaller than the beam
waist i.e. σx,y,z ≪ ωx(y),r which means the realistic deviation of Rabi frequency felt by atoms remains
negligible. To verify this issue, we numerically calculate the infidelity caused by the inhomogeneity of Rabi
frequencies in figure 10(b), with the variation of atomic temperature. As expected, the gate error contributes
at a negligible level 10−7∼10−5 for all cases, confirming the strong robustness of protocols to the deviation of
atomic position.
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