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Abstract
To transport high-quality quantum state between two distant qubits through one-dimensional spin chains, the
perfect state transfer (PST) method serves as the first choice, due to its natively perfect transfer fidelity that is
independent of the system dimension. However, the PST requires a precise modulation of the local pulse parameters
as well as an accurate timing of dynamic evolution, and is thus very sensitive to variations in practice. Here, we
propose a protocol for achieving quantum-preserved transport of excitations using an array of Rydberg-dressed
atoms, enabled by optimal control of minimally global parameters. By treating the weak coupling of two marginal
array atoms as a perturbation, an effective spin-exchange model with highly tunable interactions between the
external weak and the inner strong driving atoms can be established, which allows for coherent excitation transfer
even with large atomic position fluctuation. We furthermore show that the existence of long-time excitation
propagation unattainable for systems under antiblockade facilitation conditions. Our results highlight an
easily-implemented scheme for studying the dynamics of spin systems using Rydberg atoms and may guide the
avenue to the engineering of complex many-body dynamics.

Keywords: Quantum transport, Optimal control, Rydberg atoms, Weak-coupling condition

1 Introduction
For long-distance quantum communication, high-quality
quantum state transport has been considered the most
fundamental task [1–3]. E.g. it is crucial to transfer infor-
mation with high fidelity between two distant qubits in
large-scale fault-tolerant quantum computers [4–6]. Com-
mon ways of quantum state transport depend on precise
engineering of the special couplings between the nearest-
neighbor (NN) sites, known as perfect state transfer (PST)
[7], which adds experimental difficulty due to the multi-
ple local pulse controls [8], and is meanwhile very sensitive
to practical variations such as the atomic position fluctu-
ation [9]. Applying well-designed external fields [10–13]
or coupling strengths [14–17] may solve this problem.
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For instance, in shortcut to adiabaticity (STA) protocols,
one could use an auxiliary counteradiabatic modulation to
achieve a fast and robust state transport by simply sup-
pressing unwanted transitions [18–21]. However, this aux-
iliary driving strategy usually needs a complex form and
remains difficult to realize [22, 23]. Since the PST cannot
be achieved by fully uniform couplings the potential via-
bility of perfect transport through a non-uniform coupled
atomic array using minimally global controls, is becoming
increasingly attractive.

So far the spin excitation encoded by an array of laser-
dressed Rydberg atoms is treated as a good candidate for
such task which provides a promising platform for stud-
ies of quantum simulation and quantum information pro-
cessing [24–27]. In a Rydberg quantum simulator, pseudo-
spin can be mapped into different Rydberg manifolds al-
lowing for implementing various spin-1/2 models [28–30],
where a direct spin-exchange interaction can be induced
featuring both high tunability and long-range properties.
Earlier efforts for realizing such spin-exchange interac-
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tion could utilize two highly-excited Rydberg states me-
diated by resonant dipole-dipole interactions [31, 32], one
ground state and one Rydberg state by a second-order pro-
cess in terms of laser-dressed couplings [33, 34], as well as
the ground-state manifolds through second-order [35] and
four-order processes [36, 37]. For instance, Yang et al. [38]
derived a simple and effective model for engineering the
excitation transport dynamics where a pure synthetic spin-
exchange arises from diagonal van der Waals (vdWs) inter-
action avoiding the use of resonant dipolar interactions or
Floquet engineering with multiple Rydberg levels [39, 40].
Whilst, the local PST condition still impedes this model to
be used for a robust quantum state transport based on the
state-of-the-art experimental technologies.

Inspired by this work, we put forward an efficient proto-
col for transporting excitation in an one-dimensional (1D)
Rydberg-atom array with only control of the two marginal
couplings. When the boundary couplings are rather weak
as compared to the uniform and large intermediate atomic
couplings, known as the weak-coupling (WC) condition
[41, 42], the dynamic evolution of the system can per-
sist in the Zeno subspace formed by merely three eigen-
states {|Φ1〉, |Φm〉, |ΦN 〉} regardless of the system dimen-
sion, which is called quantum Zeno dynamics [43]. We
show that, by precisely varying the external large detun-

ings which provide a handle to change the relative en-
ergy of three eigenstates in the Zeno subspace, a quantum-
preserved excitation transport exerted on two marginal ar-
ray atoms can be realized. To investigate the robustness of
transport dynamics, we introduce the model with strong
atomic position fluctuation arising from finite tempera-
ture, and finally, by making use of minimally optimized pa-
rameters we successfully achieve a robust Rydberg excita-
tion transport with high fidelity benefiting from a strong
insensitivity to both the atomic position uncertainty [44]
as well as the dephasing error [45]. This work may serve
as an important step to the exploration of complex spin-
model dynamics in Rydberg quantum simulation [46].

2 Theoretical strategy
2.1 Description of the effective model
The system we consider, as shown in Fig. 1(a), is composed
of an array of individually trapped cold atoms, dressed by
far off-resonant laser fields which couple the ground state
|gj〉 to a Rydberg state |rj〉 with local Rabi frequency Ωj and
local detuning Δj, satisfying Δj � Ωj. Such a scenario can
be easily modeled by the original Hamiltonian [48]

H =
∑

j

Ωjσ
j
x +

∑

j

Δjσ
j
rr +

∑

j<k

Vjkσ
j
rrσ

k
rr , (1)

Figure 1 Schematic of a quantum-preserved excitation transport based on a 1D Rydberg array using the WC condition. (a) Constructing an effective
model by a chain of off-resonant excited atoms within the Z = {|Φ1〉, |Φm〉, |ΦN〉} subspace manifesting as a three-level system (see box), where the
coupling strength of two marginal atoms is weaker than that of the intermediate atoms, i.e. Ω0 � Ω. (b) The variation of (IW , JW ) as a function of the
detuning ratio Δ0/Δ where (Ω0,Ω)/2π = (1, 10) MHz and N = 4. It is noted that the effective on-site potential |IW | can vanish at Δ0/Δ = C (C is an
uncertain number) for any sign of detuning Δ. The specific values considered here are C6/2π = 1416 GHz · μm6, r = 3.76 μm (the NN distance), so
that VNN/2π = 501 MHz, VNNN/2π = 7.83 MHz, proposed for 87Rb atoms using internal levels |gj〉 = |5S1/2, F = 1,mF = 0〉 and |rj〉 = |73S1/2〉 from the
ARC source library [47]
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where j, k are the array indices, σ
j
x = |rj〉〈gj| + |gj〉〈rj|, σ

j
rr =

|rj〉〈rj| are respectively the transition and projection oper-
ators for the jth atom and Vjk = C6/r6

jk is the vdWs interac-
tion between atoms located at rj and rk with rjk = |rj – rk|
the distance. The goal is to transfer Rydberg excitation be-
tween two marginal atoms of the array. To our knowledge,
high-quality quantum state transport plays a central role in
the field of quantum communication [49]. However, pre-
vious schemes (such as the PST) depend on precise con-
trol of local parameters (Ωj,Δj) which are highly sensitive
to practical variations [50]. Thus, to realize a high-fidelity
and robust state transfer, we apply two marginal atoms at
r1 and rN with weak couplings as compared to those of the
intermediate atoms, which is so-called the WC condition
i.e. Ω0 � Ω (note that Ω0 = Ω1,N , Ω = Ω2,...,N–1, similarly,
Δ0 = Δ1,N , Δ = Δ2,...,N–1) [51]. That means an individual
operation of every array atom by modulating all local pa-
rameters Ωj and Δj, is unnecessary. Only four global pa-
rameters (Ω0,Δ0,Ω,Δ) need to be determined. Note that
another effective model with the uniform-coupling condi-
tion is comparably studied in Appendix B and all relevant
results are presented in Fig. B1 and Table B1.

Therefore, the effective Hamiltonian under the WC con-
dition can be derived as (see Appendix A for details)

HWC,N =

⎡

⎣
0 JW 0

JW IW JW
0 JW 0

⎤

⎦ (2)

based on the Z = {|Φ1〉, |Φm〉, |ΦN 〉} subspace, same as
Eq. (A.14). Here, the exchange coupling strength JW and
the effective Ising-type potential IW take explicit forms
in (A.15). Figure 1(b) presents the explicit dependence of
IW and JW by varying the marginal detuning Δ0 (Δ is
fixed). Note that, Δ is the detuning of two-photon tran-
sition and a negative Δ may cause a facilitated dynam-
ics when Δ + VNN = 0 (see Fig. 4e). For any sign of de-
tuning we find IW always exists a zero point |IW | = 0 at
Δ0/Δ = C, beyond which the diagonal energy shift |IW | re-
veals a dramatic increase, manifesting one order of mag-
nitude larger than the level of off-diagonal coupling |JW |.
Meanwhile, |JW | has a distinct trend featuring relatively
steady with Δ0, and a negative detuning makes the cou-
pling strength larger due to the partial compensation of
the positive blockaded strengths VNN and VNNN . From the
view of a reduced three-level model (see box in Fig. 1a),
if |IW | � |JW | the state transfer of |Φ1〉 → |ΦN 〉 becomes
a second-order process whose contribution scales as ∼
J2
W /IW providing a suppression of intermediate state |Φm〉

in an adiabatic way [52]. This typically requires a long evo-
lution time ∼ πIW /(2J2

W ) together with a low transfer fi-
delity due to the effect of dephasing error [53]. Only if
|IW | ≈ 0 the state transfer can stay within the Z subspace
featuring a more efficient excitation transport.

2.2 Numerical verification
To benchmark the excitation transport efficiency between
two marginal atoms, we recognize that, the choice of ra-
tio Δ0/Δ (see Fig. 1b) is sensitively important which deter-
mines the relationship between JW and IW . We verify this
by performing an exact numerical integration of the full
Hamiltonian (1), governed by the Lindblad master equa-
tion for the density matrix ρ [54]

ρ̇ = –i[H ,ρ] + L[ρ], (3)

where the Lindblad superoperator L[ρ] describes the in-
trinsic dephasing error (denoted by rate Γ) caused by e.g.,
the laser phase noise [55] as well as the spontaneous decay
error (denoted by rate γ ) from state |rj〉, and thus

L[ρ] =
∑

l=1,2

∑

j

[LljρL†
lj –

1
2

(L†
ljLljρ + ρL†

ljLlj)] (4)

with L1j =
√

Γ(σ j
rr – σ

j
gg), L2j = √

γ |gj〉〈rj|. Accounting for
that a typical Rydberg lifetime of ∼ 100 μs [56], which is
much longer than the duration for excitation transport we
ignore the decay error (i.e. γ = 0) here. Finally, by solving
the evolution of ρ(t) with the original Hamiltonian H , the
full (not effective) dynamics could be resolved, which con-
serves the total excitation number 1 within the single ex-
citation subspace Π1. The quality of state transfer is mea-
sured by the fidelity F(t) = 〈ΦN |ρ(t)|ΦN 〉 meaning the real-
time local probability of state |ΦN 〉 and F presents the first
maximum of fidelity after an one-time evolution at t = Tg
between two marginal atoms.

Figure 2 depicts the numerical results of transferring
the initial excitation in |Φ1(0)〉 for N = 4 and 6 in the ab-
sence of dephasing error, Γ = 0. In principle, we can raise
the perfect fidelity to about F0 ≈ 1.0 with arbitrary de-
tuning as long as the WC condition Ω0 � Ω is satisfied.
Here, we choose Ω0/Ω = 1/10. However, if Δ0/Δ = 1 as in
Fig. 2(a1) and (c1), the dynamical behavior exhibits strong
oscillations for a negative detuning. Because the on-site
energy |IW | of |Φm〉 and the off-diagonal coupling strength
|JW | become comparable in this case leading to a near-
resonance excitation transfer along with oscillations. E.g.
for the (a1) case, |IW |/2π ≈ 0.1954 MHz which is only 4
times larger than |JW |/2π ≈ 0.0574 MHz then the dynam-
ics are affected by both competing terms. While, if the de-
tuning is positive, we find a near-perfect fidelity can be
achieved yet at the cost of a much longer Tg [see Fig. 2(b1;
d1)], especially for a larger N . For example, the time for the
case of N = 4 is Tg ≈ 640 μs. But it will need more time
Tg ≈ 15,000 μs to ensure the transfer for N = 6. This dis-
tinct behavior agrees with the understanding of a second-
order adiabatic process with an almost full suppression of
the intermediate population due to |IW | � |JW | [53]. Up to
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Figure 2 Ideal time-dependent excitation transport without dephasing Γ = 0 for N = 4 (a1-2; b1-2) and N = 6 (c1-2; d1-2), governed by the full
Hamiltonian (1). Here, global parameters are taken as Δ/2π = –200 MHz (left column) and 200 MHz (right column) and others are the same as in
Fig. 1(b). C = (1.0092, 1.0066, 1.0091, 1.0066) for (a2; b2; c2; d2)

now, we have shown two protocols for high-fidelity trans-
port in the WC picture; however, both of them are unsatis-
factory: one (a1; c1) suffers from strong oscillations which
is susceptible to the intrinsic dephasing and systematic er-
rors and the other (b1; d1) needs a quite long time im-
pacted by the decay error.

What’s more, since at Δ0/Δ = C the system is effectively
formed by quasi-degenerate three levels {Φ1〉, |Φm〉, |ΦN 〉},
it is instructive to look for more efficient excitation trans-
ports in this regime. The calculated full dynamics of single
Rydberg excitation is displayed in (a2-b2) and (c2-d2) of
Fig. 2 for Δ0/Δ = C. We observe that a perfect excitation
transfer between |Φ1〉 and |ΦN 〉 which qualitatively agrees
with the effective model with the expected evolution time,
given by

Tg ≈ π/(
√

2|JW |). (5)

Clearly, owing to the vanishing of IW , the evolution time
is solely dominated by the coupling strength |JW |. It reveals
that a smaller |JW | leads to the increase of Tg . Such a trend
is confirmed by comparing the results for N = 4 and 6. Ac-
counting for JW ∝ (N – 2)–1/2, as N increases (c2; d2), we
find similar behavior as (a2) and (b2) except for a longer

time. In fact there exists a trade-off between the coupling
strength JW which affects the evolution time Tg and the
transfer fidelity F . A larger |JW | could shorten time along-
side with a small excitation leakage. However, a larger |JW |
may be at the cost of large Rabi frequencies which also
breaks the off-resonance condition in the WC regime, al-
lowing the whole transfer beyond the single excitation sub-
space.

3 Optimal control strategy
In order to balance the impact of JW and IW both of which
contribute a high-quality excitation transfer based on the
effective three-level system, a precise control of the global
parameters (Ω0,Ω,Δ0,Δ) is of great importance. Here, we
employ the classical Genetic Algorithm (GA) as used in
our recent work [57], focusing on maximizing the trans-
fer fidelity F in the presence of dephasing which serves
as the cost function. GA is a kind of random search algo-
rithm inspired by Darwin’s theory of natural selection and
evolution, which usually contains the population initial-
ization, fitness assessment, selection, crossover and mu-
tation. GA starts optimization from a series of temporary
results and iterates them simultaneously, which allows it to
avoid local maxima and realize parallel computation eas-
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Table 1 In Opt cases, the optimized parameters (Ω0,Ω,Δ0,Δ) (in units of 2π ×MHz), the calculated values |JW |, |IW | (in unit of
2π ×MHz), the transfer fidelity F in the presence of dephasing error (F0 is the ideal value) and the evolution time Tg (in unit of μs)
based on an N-atom array. For a fair comparison, two non-optimal cases (labeled by Non-Opt and Mod) are given, correspondingly

Non-Opt Case N Ω0 Ω Δ0 Δ |JW | |IW | F0 F Tg

I 4 1 10 –200 –200 0.0574 0.1954 0.9839 0.9188 15.9
1 10 200 200 0.0266 1.8645 0.9980 0.3940 640.0

II 4 5 10 –200 –200 0.2870 0.2985 0.7158 0.7107 1.1
5 10 200 200 0.1330 1.5399 0.9719 0.8922 21.0

III 6 5 10 –200 –200 0.2030 0.3820 0.3919 0.3833 1.4
5 10 200 200 0.0940 10.3451 0.9870 0.1873 290.0

IV 8 5 10 –200 –200 0.1557 0.3969 0.2532 0.2432 1.6
5 10 200 200 0.0690 79.4930 0.9813 0.0624 4052.0

Mod Case N Ω0 Ω Δ0 Δ |JW | |IW | F0 F Tg

I 4 1 10 –201.83 –200 0.0573 0 0.9899 0.9550 6.2
1 10 201.32 200 0.0264 0 0.9908 0.9387 13.5

II 4 5 10 –201.54 –200 0.2867 0 0.9914 0.9826 1.2
5 10 200.56 200 0.1326 0 0.9912 0.9824 2.8

III 6 5 10 –201.50 –200 0.2027 0 0.9356 0.9134 1.7
5 10 201.08 200 0.0937 0 0.9692 0.9315 3.8

IV 8 5 10 –201.52 –200 0.1555 0 0.8549 0.8144 2.3
5 10 201.40 200 0.0687 0 0.9141 0.8389 5.2

Opt Case N Ω0 Ω Δ0 Δ |JW | |IW | F0 F Tg

I 4 1.10 9.56 –202.77 –201.11 0.0600 0.0095 0.9932 0.9626 6.0
1.06 10.00 208.31 207.03 0.0268 0.0032 0.9953 0.9470 13.3

II 4 4.87 10.17 –215.64 –215.35 0.2794 0.0427 0.9924 0.9865 1.2
5.01 9.99 198.72 198.14 0.1344 0.0193 0.9948 0.9844 2.8

III 6 4.50 11.00 –216.36 –215.84 0.2136 0.0034 0.9832 0.9629 1.4
4.50 9.52 209.71 208.76 0.0759 0.0016 0.9809 0.9448 4.5

IV 8 4.51 10.61 –208.90 –207.17 0.1568 0.0478 0.9725 0.9238 2.2
4.51 10.92 212.20 210.89 0.0702 0.0312 0.9404 0.8617 5.1

ily. Thus, it offers a global optimization within the given
search region for all parameters. The aim of GA’s usage
in our work is to find out a set of parameters to make
the final transfer efficiency have the best fitness. To im-
plement a fine and efficient tuning, the required ratio of
(Ω0/Ω,Δ0/Δ) is preset before optimization treating as the
non-optimal parameters initially. Then, we add a small
variation of ±10% with respect to every non-optimized
value e.g. Ω0 → (0.9, 1.1)Ω0 serving as the search region
and perform the global optimization, while preserving the
ratio almost unvaried.

Table 1 shows the optimized parameters and the ob-
tained fidelities for the N-atom excitation transport, where
the effective coupling strength JW and the on-site poten-
tial IW are explicitly calculated. For a fair comparison,
the Non-Opt and Mod cases are separately presented. Re-
member here the value of F0 – F represents the pure de-
phasing error which is also inversely proportional to the
evolution time Tg . Firstly, it is obvious that the Non-Opt
Cases suffer from a relatively lower fidelity in practice as
plotted in Fig. 3(a-d) by the red-dashed lines for N = 4, be-
cause a finite on-site potential |IW | affects. In particular, if

|IW | � |JW | (see Fig. 3b with a positive detuning) the evo-
lution time becomes severely elongated due to the far off-
resonant coupling of intermediate state |Φm〉. As a conse-
quence, the transfer process suffers from a large dephasing
error and the final fidelity can be lower than 0.40. We note
that, as N increases this value turns to be even smaller. For
example, it will need Tg ≈ 290 μs to ensure the adiabatic
transfer for N = 6; however, the fidelity has been lowered to
0.1873 due to the significant dephasing error (F0 –F ≈ 0.8).
For N = 8 and a positive detuning, the evolution time has
been elongated to be larger than 4000 μs with the achiev-
able fidelity far below 0.1.

Fortunately, we find the simplest way to solve this dif-
ficulty is precisely tuning the detuning value, e.g. Δ0, al-
lowing the on-site potential to be |IW | = 0 exactly as done
by the Mod Case. When we only slightly modify Δ0 (keep
other parameters unvaried) the practical fidelity denoted
as F which is irrespective of detuning signs, can reveal a
dramatic increase alongside with a significant reduction in
the evolution time. As shown in Fig. 3 labeled by the black-
dotted lines, we find the behavior of dynamic evolution be-
comes smooth and the fidelity quickly reaches a high value
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Figure 3 The realistic fidelity F(t) of the state initially evolving from |Φ1(0)〉 for N = 4 where different ratios of Rabi frequency are used: (a-b)
Ω0/Ω = 1/10 and (c-d) Ω0/Ω = 5/10. Here, the Non-Opt, the Mod and the Opt cases are comparably presented. Numbers 1 or 2 in parentheses
stand for the case using negative or positive detunings. All parameters are given in Table 1 except for Γ/2π = 0.1 MHz

(close to 1.0) which apparently outperforms the Non-Opt
protocol. However, from Table 1 we see if N increases a
high fidelity can not be preserved by simply modifying one
parameter of the detuning.

In order to reach a higher-fidelity state transfer that is
significantly robust to the intrinsic dephasing error, espe-
cially for a larger N case, we implement the transfer pro-
cedure with globally optimal parameters, aiming at mini-
mizing the infidelity 1 – F caused by the dephasing with a
shorter evolution time [58]. The results of Opt-Case I and
II are displayed in Fig. 3(a-d) by the blue-solid lines and
the corresponding optimized parameters are reported in
Table 1. With global optimization in which all parameters
(Ω0,Ω,Δ0,Δ) are varied by ±10% around its pre-set ra-
tio Ω0/Ω = 1/10 for Case I and Ω0/Ω = 5/10 for Case II
we observe a clear improvement (especially for N = 6 and
8) in F outperforming the Non-Opt and Mod cases. Be-
cause, when the optimized parameters are precisely tuned,
it could lead to a larger coupling |JW | although at the cost
of a non-zero but tiny IW value, which provides a higher
fidelity for any detuning. Apparently, a higher fidelity is
mainly contributed by a stronger coupling strength along-
side with the reduction in the total evolution time. Ac-
cording to the definition of JW , a larger |JW | depends on
increasing the absolute laser Rabi frequencies, because
|JW | ∝ Ω0Ω. So the Opt Case II supports the best fidelity
above 0.98, which manifests that our scheme can show a
high-fidelity state transfer against the systematic dephas-
ing error in practice.

Furthermore, we explore the Opt Case for N = 6 and 8.
From Table 1, if we use the best case of Ω0/Ω = 5/10 to
transfer the state, the effective couplings strength |JW | still
decreases with the growth of N consequently requiring

more time. In fact, we find that to implement the excita-
tion transport, the fidelity inevitably decreases with N al-
beit a global optimization has been applied [59]. Because
the transfer within the pure Z subspace can not be per-
fectly preserved when more atoms are involved (the orig-
inal system contains more intermediate states). However,
as compared with the Non-Opt and Mod Cases for same
conditions, i.e. N = 6 and 8, our scheme still holds suffi-
cient robustness against the systematic dephasing errors
by keeping the final fidelity at a higher level.

4 Error-tolerant excitation transport
4.1 Error tolerance in the transport
Up to now, we have shown that the transfer of single-
excitation state between two marginal array atoms can be
efficiently achieved by using the optimal control of mini-
mal parameters (the Opt case), which also displays good
robustness to the systematic dephasing error. In fact, the
array atoms can not be exactly frozen even for a sufficiently
low temperature T in experiment [60], thus it is more in-
structive to explore the robustness of our scheme against
other technical errors. Because of the finite temperature
the atomic positions are randomly spread leading to the
fluctuated VNN and VNNN that affect excitation transfer be-
tween the atoms [61, 62]. Here, we express the interatomic
distance as r′

jk = |rjk + δrj – δrk|, correspondingly, the vdWs
interaction between atoms turns to be V ′

jk = C6/(r′
jk)6. Then

the Hamiltonian (1) of the system is rewritten as

H =
∑

j

Ωjσ
j
x +

∑

j

Δjσ
j
rr +

∑

j<k

V ′
jkσ

j
rrσ

k
rr . (6)
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The uncertainty δrj, δrk in atomic positions results in a
fluctuated vdWs interaction V ′

jk , which consists of

V ′
jk ≈ Vjk –

6C6

|rjk|7 (δrj – δrk). (7)

Since the interaction decreases rapidly as increasing the
distance so we have considered the NN and NNN interac-
tions and ignore all terms Vj,k>j+2. As a result, we require
the fluctuated interactions defined by

V ′
NN = VNN –

6C6

r7 (δrj – δrj+1),

V ′
NNN = VNNN –

6C6

(2r)7 (δrj – δrj+2) (8)

with which the practical Hamiltonian under atomic posi-
tion fluctuations is readily given by

H =
∑

j

Ωjσ
j
x +

∑

j

Δjσ
j
rr +

∑

j

V ′
NNσ j

rrσ
j+1
rr

+
∑

j

V ′
NNNσ j

rrσ
j+2
rr . (9)

At a finite temperature T , the distribution of atomic
positions in the array is approximately a Gaussian func-
tion with standard deviation σ =

√
kBT/(mw2), where ω

is the trap frequency [63]. Using 87Rb atoms held at a
temperature of T = 50 μK in a trap with frequency ω =
2π × 147 kHz, the maximal uncertainty is calculated to be
σ = 0.0775 μm (corresponding to the interaction deviation
of |(V ′

NN – VNN )/VNN | = 6σ /r ≈ 12.4%) which is still much
smaller than the NN distance r = 3.76 μm as estimated in
our paper. In the calculation the real position deviation δrj
of every atom should be extracted from the 1D Gaussian
distribution that contributes intrinsic randomness for each
measurement. The final results depend on a sufficient sam-
pling of atomic positions, in analogy with the fluctuated
interactions.

From the view of effective model under the WC condi-
tion (see Eq. (2)) the role of interactions VNN and VNNN
has been essentially correlated with the effective coupling
JW and on-site potential IW that affect the excitation trans-
port. In principle, if JW and IW are insensitive to the varia-
tion of interactions our scheme can have good robustness
against the position error. Such a scenario is quite different
from the antiblockade facilitation protocols [64, 65] which
rely on an absolute facilitation condition Δ = –VNN [66] to
achieve the transport, so as to be extremely affected by the
atomic position fluctuation [67].

To investigate the robustness of our scheme, especially
against the dominant position error between array atoms,

in Fig. 4 we calculate the average fidelity after consider-
ing 100 random realizations for a finite atomic tempera-
ture T ∈ [0, 50] μK, where the corresponding deviation of
interaction strength is also given (see top axis). Apparently,
both the Mod and Opt cases [see Fig. 4(b) and (d)] can hold
a better robustness to the position error in practice if posi-
tive detunings are applied. E.g. in the Opt case II with N = 4
the final fidelity keeps around 0.9809 at T = 50 μK which
means a very tiny reduction of 0.0035 impacted by the po-
sition deviation. Even for N = 8 in Opt case IV we have a
small reduction of 0.0145 in the transfer fidelity when the
relative deviation of interaction is about ∼ 12.4% which
represents the robustness and high-fidelity of scheme can
be preserved in a larger system as long as the detuning is
positive. In contrast, for a negative detuning the dynamic
behavior of excitation transport is more sensitive to the
thermal fluctuation of atomic positions, see Fig. 4(a) and
(c), apparently decreasing the transport efficiency.

This distinct result due to different signs of detunings
can be easily understood by the change of |JW | due to the
interaction fluctuation. As shown in Fig. 4(e), the effective
coupling strength |JW | versus different NN interactions is
displayed. It exhibits that, if the detuning is negative la-
beled by the red-dashed line, there exists a special singu-
larity at which Δ0 + VNN = 0 providing the regime of ex-
citation facilitation (avoided by our scheme) [68]. Beyond
that, |JW | dramatically decreases to be plateau at Ω0Ω/|Δ0|
if VNN → ∞. As for a positive detuning labeled by the
blue-solid line, the JW function features an apparent soft-
core property that varies more slowly with the change of
VNN , which can make the excitation dynamics insensitive
against the atomic position error, promising for an error-
tolerant excitation transfer [69]. In the inset of Fig. 4(e) we
amplify the plot in the regime where the disorder-induced
interaction fluctuation is about ±10%. We note that the ef-
fective coupling strength |JW | for a position detuning keeps
almost unvaried with respect to the fluctuated interaction
perfectly agreeing with our finding that the transport fi-
delity remains high under a large position fluctuation in
the positive-detuning case.

4.2 Long-time excitation transport between two marginal
atoms

We have derived an effective model in the limit of WC
condition based on which a quantum-preserved transport
of Rydberg excitations having both high-fidelity and ro-
bustness features, is optimally achieved. This can preserve
the excitation of atoms within the Z subspace and mean-
while strongly reduce the intermediate-state populations
by bridging two marginal atoms in a simple three-level sys-
tem. Here we discuss whether the high-quality transport
could be persistently performed for any direction in many-
atom arrays [70]. In order to explore the realistic excita-
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Figure 4 Dependence of the transfer fidelity F(t) at t = Tg on the deviation of interactions (top axis) which is induced by finite atomic temperature
T ∈ [0, 50] μK (bottom axis). Every point is obtained by averaging over 100 realizations of uncertain atomic positions in the full model. (a-b)
correspond to the cases of Mod II-IV with a negative and positive detuning. Analogously, (c-d) are for the Opt II-IV cases. The fidelity number F at
T = 0 is the same as given in Table 1. We note that the numerical results presented are also taking account of a fluctuated NNN interaction. (e) The
spin-exchange coupling strength JW as a function of the NN interaction VNN for Ω0/Ω = 5/10, Δ0 =Δ =±2π × 200 MHz and N = 4. Inset illustrates
an amplified plot for the change of JW within the range of interaction deviation

tion transport for a long-time duration between marginal
atoms we simulate the population dynamics under the
full Hamiltonian (1) for different signs of detuning, cor-
responding to the Opt Cases II-IV of Table 1. From the
experimental point of view, a long-time transport might
not be well isolated from the dissipation caused by spon-
taneous decay. Therefore, we use γ /2π = 0.4 kHz denot-
ing the decay rate from state |73S1/2〉 and Γ/2π = 0.1 MHz
throughout. Also, the simulation is carried out at a finite
temperature T = 50 μK arising a 12.4% deviation for the
NN and NNN interactions.

As shown in Fig. 5, the error-tolerant dynamics with
a positive detuning (right panels) can obtain a clear im-
provement as compared to the case with a negative de-
tuning (left panels), even in a long-time excitation trans-
port. For N = 8 the transfer fidelity at t = 4Tg can sustain
F = 0.5302 [see (c2)] which means the excitation probabil-
ity can largely return to state |Φ1〉 after two rounds of prop-
agation; whilst this value is lowered to 0.3651 [see (c1)]
when the detuning is negative.

5 Conclusion
We develop a realistic scheme for transporting excitation
in a 1D Rydberg-atom array with high-fidelity and high-
robustness, which utilizes the effective spin-exchange in-
teraction induced by the diagonal vdWs potential [38].
With the optimal control strategy, we show that, the excita-
tion transport can persistently stay in the single-excitation
Zeno subspace ensuring a strong tolerance to both the in-
trinsic dephasing error as well as the atomic position fluc-
tuation. Under the WC condition, this scheme only re-
lies on precisely modulating two marginally atomic cou-
plings while the controls exerted on all intermediate atoms
are globally engineered, which can significantly reduce
the experimental difficulty by avoiding local controls as in
a PST protocol [71]. We furthermore present that there
may achieve a long-time and high-quality transport be-
tween two marginal atoms for a multi-atom array [72]. Our
scheme is feasible in experimental operations which can
contribute a newly-efficient and stable method for long-
distance quantum information transfer, and even for the
construction of quantum networks [73–75].
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Figure 5 From top to bottom: the realistic long-time dynamics of single Rydberg excitation in the presence of dephasing and decay errors, which
are obtained by averaging over 100 realizations with atomic position fluctuations for T = 50 μK, corresponding to the Opt Cases II-IV in Table 1. Left
and right panels represent the cases of negative and positive detunings, respectively. Here, the positive-detuning cases feature higher fidelity and
higher robustness for a long-time propagation

Appendix A: The effective weak-coupling model
We consider a 1D array of individually trapped cold atoms,
dressed by laser fields Ωj that couple the ground state |gj〉
to the Rydberg state |rj〉 with a site-dependent detuning Δj.
Two excited atoms will interact via a diagonal vdWs poten-
tial Vjk = C6/r6

jk with rjk = |rj – rk| the distance. Recently,
Yang et. al. [38] derived an effective Hamiltonian for a sin-
gle Rydberg excitation by applying the second-order Van
Vleck perturbation theory [76], given by

Heff ,N =
N–1∑

j=1

Jj,j+1(|Φj+1〉〈Φj| + |Φj〉〈Φj+1|)

+
N–2∑

j=1

Jj,j+2(|Φj+2〉〈Φj| + |Φj〉〈Φj+2|)

+
N∑

j=1

Ij|Φj〉〈Φj| (A.1)

with the off-resonant condition of |Δj|, |Δj + Vjk| � Ωj,
where the effective NN and NNN spin-exchange interac-

tions are

Jj,j+1 =
∑

k=j,j+1

ΩjΩj+1VNN

2Δk(Δk + VNN )
,

Jj,j+2 =
∑

k=j,j+2

ΩjΩj+2VNNN

2Δk(Δk + VNNN )

(A.2)

and the Ising-type on-site potentials take the following
form as

Ij = Δj +
2Ω2

j

Δj
+

∑

k=j±1

Ω2
kVNN

Δk(Δk + VNN )

+
∑

k=j±2

Ω2
kVNNN

Δk(Δk + VNNN )
. (A.3)

Here, |Φj〉 = |g1g2...rj...gN 〉 with j = 1, 2, . . . , N represents the
collective singly-excited state and Π1 =

∑
j |Φj〉〈Φj| forms

a quasi-degenerate one-excitation subspace. The result-
ing effective Hamiltonian Heff ,N denotes that the dynam-
ical transport involving one Rydberg excitation can be re-
stricted to the subspace Π1. For simplicity, we have chosen
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the vdWs potential Vjk up to VNNN with k = j ± 2, and the
NN interaction is described by VNN for k = j ± 1.

In analogy with other dressing protocols [77–79], the
goal here is to achieve a high-quality excitation transport
between two marginal array atoms. For systems dominated
by the NN interaction, we can engineer the strength of dif-
ferent spin-exchange interaction Jj,j+1 by tuning local pa-
rameters Ωj and Δj to be a PST condition Jj,j+1 = J

√
j(N – j)

alongside with the same on-site energies I = Ij [80]. How-
ever, a fully local control of all pulse parameters with the
increasing number of atoms, makes the protocol intrinsi-
cally challenging in practice. Thereby our target lies in how
to achieve the transport with minimally global controls.

Next we consider the system involves two marginal
atomic qubits with a relatively weak coupling, namely,
Ω0 � Ω and arbitrary detunings Δ0, Δ, serving as the
WC condition [81]. Note that Ω0 = Ω1,N , Ω = Ω2,...,N–1
and same for Δ0, Δ which means at most four parameters
(Ω0,Ω,Δ0,Δ) have to be determined even if N is sufficient.
Also the facilitation regime with VNN , VNNN compensated
by the detunings should be avoided, since a small fluctu-
ation of atomic positions can hinder the excitation trans-
port in this regime [82]. Therefore, incorporating the WC
assumption, the NN interaction is rewritten as

J0 = J12 = JN–1,N =
Ω0ΩVNN

2Δ0(Δ0 + VNN )
+

Ω0ΩVNN

2Δ(Δ + VNN )
,

others J =
Ω2VNN

Δ(Δ + VNN )
(A.4)

satisfying J � J0 (because Ω � Ω0) and the NNN interac-
tion is

J ′
0 = J13 = JN–2,N =

Ω0ΩVNNN

2Δ0(Δ0 + VNNN )
+

Ω0ΩVNNN

2Δ(Δ + VNNN )
,

others J ′ =
Ω2VNNN

Δ(Δ + VNNN )
. (A.5)

With the above definitions (A.4) and (A.5), the effective
Hamiltonian Heff ,N can be obtained as

Heff ,N = J0(|Φ2〉〈Φ1| + |Φ1〉〈Φ2|)
+ J0(|ΦN 〉〈ΦN–1| + |ΦN–1〉〈ΦN |)
+ J ′

0(|Φ3〉〈Φ1| + |Φ1〉〈Φ3|)
+ J ′

0(|ΦN 〉〈ΦN–2| + |ΦN–2〉〈ΦN |)

+ J
N–2∑

j=2

(|Φj+1〉〈Φj| + |Φj〉〈Φj+1|)

+ J ′
N–3∑

j=2

(|Φj+2〉〈Φj| + |Φj〉〈Φj+2|)

+
N∑

j=1

Ij|Φj〉〈Φj|. (A.6)

To further evaluate the transport quality based on such a
WC assumption, we focus on our interest in the subspace
Π1 formed by N singly-excited states, by which the Hamil-
tonian (A.6) can be exactly rewritten in a matrix form as

Heff ,N = H0 + Ha, (A.7)

where the first term H0 is dominant due to the strong spin-
exchange coupling J � J0

H0 = J

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 0 · · · 0 0 0
0 1 1 · · · 0 0 0
0 1 0 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 0 1 0
0 0 0 · · · 1 1 0
0 0 0 · · · 0 0 2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

N×N

(A.8)

and the secondly auxiliary Hamiltonian is

Ha =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I1 – 2J J0 J ′0 0 · · · 0 0 0 0
J0 I2 – J 0 J ′ · · · 0 0 0 0
J ′0 0 I3 0 · · · 0 0 0 0
0 J ′ 0 I4 · · · 0 0 0 0
..
.

..

.
..
.

..

.
. . .

..

.
..
.

..

.
..
.

0 0 0 0 · · · IN–3 0 J ′ 0
0 0 0 0 · · · 0 IN–2 0 J ′0
0 0 0 0 · · · J ′ 0 IN–1 – J J0
0 0 0 0 · · · 0 J ′0 J0 IN – 2J

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

N×N

.

(A.9)

In deducing (A.8) we have shifted the energy of states
|Φ1〉, |ΦN 〉 by 2J for a same dimension, while, which are
also subtracted in Ha [see (A.9)]. Thus based on H0, it is ob-
vious that |Φ1〉 and |ΦN 〉 are two eigenstates with the same
eigenvalue 2J . Other eigenvalues of H0 can be resolved via
a reduced matrix M

M = J

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 · · · 0 0
1 0 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0
0 0 · · · 0 1
0 0 · · · 1 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(N–2)×(N–2)

(A.10)
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whose eigenvalue is [83]

εp = 2J cos[
(p – 1)π

N – 2
], p = 1, 2, . . . , N – 2. (A.11)

When p = 1, we get ε1 = 2J , which means other than eigen-
states |Φ1〉 and |ΦN 〉, there also exists a third eigenstate de-
noted as |Φm〉 having same energy 2J . By solving the eigen-
equation

H0|Φm〉 = 2J|Φm〉 (A.12)

whose explicit eigenstate is |Φm〉 = 1√
N–2 (|2〉 + |3〉 + · · · +

|N – 1〉). According to quantum Zeno effect, the evolu-
tion of system could remain in a Zeno subspace with in-
hibited quantum state transitions, as long as the frequent
measurements (H0) on the system could be devised with
multidimensional projections [84–87]. Therefore, due to
the strong coupling limit J � J0, the whole system can
be divided into N – 2 quantum Zeno subspaces (since H0
has N – 2 different eigenvalues). Because the measure-
ment is strong and continuous, so the system will approxi-
mately evolve in the initial-state subspace formed by Z =
{|Φ1〉, |Φm〉, |ΦN 〉}. After defining the projector in the Z
subspace by P =

∑
α |α〉〈α|(|α〉 ∈ Z), we rewrite the effec-

tive Hamiltonian Heff ,N in the matrix form under the WC
condition, as

HWC,N

= 2JP + PHaP

=

⎡

⎢⎢⎣

I1 – 2J J0+J ′0√
N–2 0

J0+J ′0√
N–2

(I2+I3+I4+···+IN–1–2J)
N–2 + 2(N–4)J ′

N–2
J0+J ′0√

N–2

0 J0+J ′0√
N–2 IN – 2J

⎤

⎥⎥⎦

+ 2JI . (A.13)

Since the last constant term 2JI contributes nothing to the
dynamical evolution, it can be ignored. Therefore, we ob-
tain

HWC,N =

⎡

⎣
0 JW 0

JW IW JW
0 JW 0

⎤

⎦ , (A.14)

where

JW =
J0 + J ′

0√
N – 2

,

IW =
∑N–1

k=2 Ik – 2J
N – 2

+
2(N – 4)J ′

N – 2
– I1 + 2J ,

(A.15)

respectively stand for the effective spin-exchange and
Ising-type interactions for the WC assumption. That
means, for systems initially in |Φ1〉 the excitation can be
persistently transferred in the Z subspace with a higher fi-
delity.

Let us proceed to verify the accuracy of the effective
model HWC,N by comparing it with the rigorous dynam-
ics solved from the Lindblad master equation in Eq. (3),
where no dephasing error is considered. Figure A1 pro-
vides a detailed comparison of the population dynamics
between the full and the effective Hamiltonians, represent-
ing a good consistence in general. Specifically, for a positive

Figure A1 Numerical verification of the effective WC model representing a good consistency with the rigorous dynamics. The rigorous dynamics
displayed by the solid and dashed lines are based on solving the exact model with the full Hamiltonian H in (1) and the effective dynamics of states
{|Φ1〉, |Φm〉, |ΦN〉} utilizing the Hamiltonian HWC,N in (A.14) is denoted by stars, squares and circles. From left to right, panels correspond to the
Non-Opt Cases I-IV in Table 1, where the upper panels are given for (Δ0,Δ)/2π = –200 MHz and the lower ones for (Δ0,Δ)/2π = 200 MHz. Here, no
decay is considered
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detuning (lower panels), the rigorous system evolves with
a strong suppression of all intermediate-state populations
(i.e. in |Φ2∼N–1〉), demonstrating an adiabatic transfer be-
tween |Φ1〉 and |ΦN 〉 alongside with a longer duration due
to |IW | � |JW |, as same as analyzed by the effective model
in Sect. 2.1. However, e.g. for N = 8 the one-time evolution
requires even larger than 4000 μs [see Fig. A1(b4)] which
makes the excitation transport scheme unavailable via a
realistic Rydberg-atom system. While turning to a nega-
tive detuning (upper panels) with which the spin-exchange
(JW ) and Ising-type (IW ) interactions are competitive, the
resulting dynamics of the full system becomes difficult to
stay in the Z subspace given by the effective model as N
increases which is mainly caused by the imperfect WC
condition. A discrete distribution of populations on N – 2
intermediate states is observed, leading to a lower trans-
port fidelity. Our target is to achieve high-fidelity excita-
tion transfer from |Φ1〉 to |ΦN 〉 with strong robustness
against the atomic position fluctuation. In fact, there ex-
ists a balance between the transfer fidelity and weak cou-
pling strength [88] which makes the optimal control strat-
egy necessary, see more details in the maintext.

Appendix B: The effective uniform-coupling model
To illustrate the necessity of using the WC condition in

the scheme, we also explore an implementation for state
transfer with the uniform-coupling Ω = Ωj (i.e. a non-ideal
WC condition), for which the NN interaction is rewritten
as

J0 = J12 = JN–1,N =
Ω2VNN

2Δ0(Δ0 + VNN )
+

Ω2VNN

2Δ(Δ + VNN )
,

others J =
Ω2VNN

Δ(Δ + VNN )
(B.1)

and the NNN interaction is

J ′
0 = J13 = JN–2,N =

Ω2VNNN

2Δ0(Δ0 + VNNN )
+

Ω2VNNN

2Δ(Δ + VNNN )
,

others J ′ =
Ω2VNNN

Δ(Δ + VNNN )
(B.2)

and the Ising-type on-site potentials take the form as

Ij = Δj +
2Ω2

Δj
+

∑

k=j±1

Ω2VNN

Δk(Δk + VNN )

+
∑

k=j±2

Ω2VNNN

Δk(Δk + VNNN )
. (B.3)

Accounting for the symmetry of array as well as the inter-
actions, we note I1 = IN , I2 = IN–1, I3 = I4,...,N–2.

We further simulate the rigorous dynamics with the
Lindblad master equation (3) under the uniform-coupling
condition. Figure B1 provides the full dynamical behav-
ior of excitation transport in the absence of dephasing er-
ror. As expected, due to the invalidity of WC condition,
the transport cannot be restricted in the quasi-degenerate
three-level frame tending to have a sequent transfer in the
atomic array. While, for the Non-Opt system the transfer
fidelity is quite low in general, as verified by numerical re-
sults shown in Fig. B1(a1-3), due to the large difference
among the on-site energies |I1∼3| that impede the trans-
port. E.g. for N = 4, we find ||I2,3|– |I1|| ≈ 2π ×0.358 MHz,
which is quite comparable to the values of |J|, |J0|. Luckily,
as long as the optimal detuning values Δ0, Δ are applied,
leading to ||I2,3| – |I1|| � |J|, |J0| (here ||I2,3| – |I1|| ≈ 2π ×
0.043 MHz, about one order of magnitude smaller than |J|,
|J0| in the Opt system), the coherent dynamics between

Figure B1 The expected population evolution under the uniform-coupling condition in the absence of dephasing error, where
(Ω0,Ω)/2π = 10 MHz. Panels (a1-3) correspond to the Non-Opt case where (Δ0,Δ)/2π = 200 MHz, and panels (b1-3) to the Opt case where Δ0 and
Δ are optimal values. Relevant parameters are given in Table B1
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Table B1 Coefficients corresponding to numerical results in Fig. B1. All parameters including (Ω0,Ω,Δ0,Δ) and (J0, J, I1, I2, I3) are in
unit of 2π ×MHz. F0 is the ideal transfer fidelity without Γ and Tg (in unit of μs) is the evolution time

Non-Opt N Ω0 Ω Δ0 Δ F0 Tg |J0| |J| |I1| |I2| |I3|
I 4 10 10 200 200 0.5447 1.2 0.3574 0.3574 201.376 201.734 201.734
II 6 10 10 200 200 0.3831 1.7 0.3574 0.3574 201.376 201.734 201.752
III 8 10 10 200 200 0.3044 2.2 0.3574 0.3574 201.376 201.734 201.752

Opt N Ω0 Ω Δ0 Δ F0 Tg |J0| |J| |I1| |I2| |I3|
I 4 10 10 204.61 204.21 0.9582 1.3 0.3475 0.3479 205.944 205.901 205.901
II 6 10 10 204.20 203.79 0.8942 1.8 0.3484 0.3488 205.550 205.487 205.506
III 8 10 10 201.85 201.42 0.8305 2.3 0.3536 0.3541 203.216 203.144 203.163

the two marginal array of atoms can be established provid-
ing an apparent improvement in the fidelity. Figure B1(b1-
3) shows the optimal dynamics under the uniform cou-
pling, significantly outperforming the non-optimal cases
(a1-3) by enabling a higher transfer fidelity. Thus, the op-
timal control method may also help improve the quality of
state transport in a uniform-coupling environment, how-
ever, the system still suffers from a relatively lower trans-
fer efficiency due to the sequent transfer behavior among
multi-intermediate states |Φ2,...,N–1〉, which adds to diffi-
culty in the practical implementation.
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