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explicitly operate low-level configurations, such as pulses and timing of operations. This requirement is

beyond the scope or capability of most existing QPLs.

We summarize three execution models to depict the quantum-classical interaction of existing QPLs. Based

on the refined HQCC model, we propose the Quingo framework to integrate and manage quantum-classical

software and hardware to provide the programmability over HQCC applications and map them to NISQ

hardware. We propose a six-phase quantum program life-cycle model matching the refined HQCC model,

which is implemented by a runtime system. We also propose the Quingo programming language, an external

domain-specific language highlighting timer-based timing control and opaque operation definition, which

can be used to describe quantum experiments. We believe the Quingo framework could contribute to the

clarification of key techniques in the design of future HQCC systems.

Additional Key Words and Phrases: Quantum Programming Framework, Quantum Programming Language,

Quantum Compilation, NISQ, Timing Control

1 INTRODUCTION
The potential in solving classically intractable problems such as decryption and quantum chemistry

simulation has attracted intensive research on quantum computing. Advancement in quantum

information theory, quantum hardware, and quantum control, contributed to the arrival of the

Noisy Intermediate-Scale Quantum (NISQ) [1–3] era. In the NISQ era, a quantum system can

integrate dozens of noisy qubits with limited coherence time and support complex quantum-

classical interaction, such as real-time feedback based on the measurement of qubits [4–7]. With the

increased number of qubits and enhanced control capability, the control complexity of executing

quantum applications on NISQ systems grows significantly, stressing the importance of high-level

quantum programming languages [8] in describing various quantum applications in the NISQ era

including algorithms as well as experiments. While being connected to NISQ hardware, existing

quantum programming frameworks and languages suffer from difficult mapping to nowadays

heterogeneous quantum-classical architectures or tedious and error-prone description of quantum

applications, and limited capability in describing NISQ experiments that occupies most of the qubit

usage time in the NISQ era.

1.1 Support for HeterogeneousQuantum-Classical Computation
It has been shown that practical quantum computing relies on the synergy between quantum and

classical computing resources, and it is a viable way to take quantum computers as coprocessors of

classical computing systems in a heterogeneous system.

Since Knill proposed the Quantum Random Access Machine (QRAM) model [Fig. 2(a)] in

1996 [9], dozens of quantum programming languages have been proposed to describe hetero-

geneous quantum-classical computation (HQCC). While mapping quantum algorithms described

by these quantum programming languages to NISQ hardware for execution, they are confronted

with three kinds of problems.

• The QRAM model is a neat model abstracting away implementation details. Quantum program-

ming languages directly based on the QRAM model, such as QCL [10] and Scaffold [11], allow

arbitrarily complex classical computation inserted during quantum state evolution subject to

applied quantum operations. As NISQ qubits have limited coherence time, it may fail when map-

ping programs described in these quantum programming languages to hardware for execution

(see Section 2.2 for a detailed discussion).

• With the limited qubit coherence time in mind, some quantum programming languages, such

as Cirq [12], are designed with strict constraints put on real-time classical computation and

quantum-classical interaction. Although these constraints enable a more reliable mapping of

quantum algorithms to real hardware, they are over strong and disable describing features that
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Code 1. PyQuil code implementing real-time flow control based on the measurement of a qubit.
1 from pyquil import Program
2 from pyquil.gates import *
3

4 main_prog = Program () # Initialize the Program
5 reg_flag = main_prog.declare('reg_flag ', 'BIT') # declare a 1 bit memory
6

7 main_prog += MOVE(reg_flag , 1) # initial reg_flag to 1
8

9 inner_loop = Program () # Define the body of the loop
10 inner_loop += Program(X(0), H(0))
11 inner_loop += MEASURE(0, reg_flag)
12

13 main_prog.while_do(reg_flag , inner_loop) # loop until reg_flag is 0
14

15 print(main_prog)

Code 2. A neater way to implement real-time flow control based on the measurement of a qubit with only
high-level programming constructs.

1 import config.json
2

3 operation loop(): unit {
4 bool flag = true;
5 using (q: qubit) {
6 while (flag) {
7 RX(q, PI);
8 H(q);
9 flag = measure(q);
10 }
11 }
12 }

have been demonstrated by real hardware such as real-time feedback based on the measurement

of qubits [8].

• Another set of quantum programming languages can support hardware-implementable (real-

time) quantum-classical interaction with reasonable constraints. They are implemented as a

Domain-Specific Language (DSL) embedded in a classical language, such as PyQuil [13] embedded

in Python and OpenQL [14] in C++. However, meta-programming techniques need to be used to

describe real-time quantum-classical interaction, resulting in counter-intuitive and complicated

code, especially when control-flow structures are involved. Take the PyQuil code as shown in

Code 1 as an example. It repeatedly prepares a qubit to the state
1√
2

( |0⟩ − |1⟩) and measures it

until the measurement result is 0 (|0⟩). To support real-time program flow control based on the

measurement of a qubit, it requires to use dedicated while_do function that takes as parameters

a low-level BIT-type value and a Program-type object composed of sub-circuits. However, it is

preferable to implement the same logic with only high-level programming constructs in a much

neater way, such as Code 2 (detailed in Section 5.3.2).

Unsatisfactory support for programming HQCC applications targeting execution on NISQ hard-

ware is an issue that should be addressed.

1.2 Support forQuantum Experiments
The noisy nature of qubits makes it essential to repeatedly perform quantum experiments calibrating

qubits and tuning quantum operations. Now and in the foreseeable future, quantum experiments

would occupymost of the qubit usage time in the NISQ era.While performing quantum experiments,

experimentalists have to explicitly operate some low-level configurations, such as applying pulses
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without well-defined quantum semantics and tuning the timing of pulses. For example, a set of

pulses with the same envelope but different amplitudes are used in the Rabi experiment to calibrate

𝑥- and/or 𝑦-rotations with particular rotation angles [15, 16]. In the experiment measuring the

qubit dephasing time (𝑇2), the intervals between the 𝑋𝜋/2 operations must be changed explicitly.

Most of the existing quantum programming languages aim to provide high-level features to sup-

port efficient description, optimization, and verification of quantum algorithms. They intentionally

abstract away hardware-dependent constraints. For example, Q# targets large-scale applications

on future quantum hardware and is hardware-agnostic [8, 17]. As a result, operating low-level

hardware configuration required by quantum experiments is beyond the scope or capability of most

existing quantum programming languages. Consequently, dedicated experiment environments in a

classical programming language such as QCoDeS [18] or PycQED [19] are used by experimentalists

(referred to as experiment toolchain). After qubits and quantum operations have been calibrated in

this environment, the right hardware configuration and pulse parameters can be determined. They

are later used by a hardware-aware conversion layer to convert compiled quantum applications to

the control electronics input [20] (referred to as application toolchain). In this way, some quantum

applications described in high-level quantum programming languages can be executed on physical

qubits.

Though workable, there are some drawbacks to using two toolchains to interact with qubits.

First, two toolchains can result in an undesired capability mismatch between them. On the one

hand, features well supported by the experiment toolchain may not be expressed in the applica-

tion toolchain. For example, feedback based on measurement results can be supported by many

experiment setups but cannot be expressed by some high-level quantum programming languages,

such as Cirq [12]. On the other hand, some features can be easily expressed in the application

toolchain, but are difficult to be converted to the format accepted by the experiment toolchain for

hardware execution, even if the hardware is capable of supporting this feature. For example, although

Scaffold [11] can support program flow control based on the measurement result, a feature also

supported by some hardware backends [4–7], there is a difficulty for its compiler ScaffCC [21] in

generating the accepted code with real-time control flow, as mentioned in [8, 22]. Second, as long

as the hardware-aware conversion between the compiler and hardware is still required, quantum

compilers can hardly perform thorough platform-specific optimization on all possible degrees of

freedom as some low-level details are hidden from the compiler.

Required is a neat quantum programming framework and language with proper assumptions on

the quantum-classical interaction, which describe HQCC algorithms and quantum experiments in

a format that can be easily mapped to NISQ hardware for execution. Hopefully, this framework can

satisfy the requirements of both the algorithm toolchain and experiment toolchain and bridges the

gap in the between.

1.3 Contribution
In order to address this issue, we propose the Quingo (pronunciation: /"kwiŋgo/) framework,

a proposal to integrate and manage quantum-classical software and hardware to provide the

programmability over HQCC applications and quantum experiments that can be mapped to NISQ

hardware.

The main contributions of this paper are as follows:

• We summarize three execution models (Section 2.2), viz., the QRAM model, the restricted

HQCC model, and the refined HQCC model, to depict the quantum-classical interaction

observed in existing quantum programming languages. Compared to the other two models,

quantum languages based on the refined HQCC model can be expressive and enable a neat
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description of quantum-classical interactionmore suitable to bemapped to the NISQ hardware

for execution.

• Aiming to serve quantum computing in the NISQ era based on the refined HQCC model, we

propose the Quingo framework at a system level to integrate and manage quantum-classical

software and hardware to provide programmability over HQCC applications and experiments

and map them to NISQ hardware.

• We propose a six-phase quantum program life-cycle model, which can guide the development,

compilation, optimization, and execution of HQCC applications. This model defines how the

Quingo framework integrates and manages quantum and classical computing resources.

• The common services of the Quingo framework are provided by the Quingo runtime system

according to the six-phase quantum program life-cycle model. We have implemented an

open-source prototype of the runtime system in Python, which can orchestrate both quantum

and classical software and hardware. It allows components of the framework to focus on their

genuine tasks, accordingly achieving a modular programming framework. In particular, we

define a protocol for the interaction between the classical host
1
language and the quantum

kernel language, which enables connecting an external DSL for HQCC, like Quingo or Q#, to

any general-purpose classical programming language, such as Python or C++.

• To support quantum experiments, we propose the Quingo language, which is an external

DSL
2
for quantum computing. The Quingo language highlights (1) a flexible, timer-based

timing control scheme at the language level with well-defined semantics, and (2) a mechanism

for primitive operation definition that enables a flexible binding between operations at the

language level and concrete semantics (unitaries or pulses) on the target platform. We have

implemented a prototype compiler that can handle quantum-classical interaction and translate

the Quingo program into eQASM instructions.

This paper is organized as follows. After illustrating the structure of HQCC algorithms with

an example, Section 2 presents and compares the three execution models summarized for HQCC.

Section 3 gives an overview of the Quingo framework based on the refined HQCC model, whose

key techniques are presented in Section 4. Section 5 introduces the Quingo language for describing

quantum kernels of both quantum algorithms and experiments. Quingo-related implementation as

well as an example is shown in Section 6. After discussing some design choices and the rationales

of the Quingo framework in Section 7, we conclude in Section 8.

2 BACKGROUND
2.1 HQCC Algorithms
Able to dramatically reduce the requirement on the number of qubits and the qubit coherence time,

algorithms that utilize both quantum and classical computing are highly promising in the near

term with wide applications in quantum simulation and optimization. Quantum phase estimation

(QPE) is a key component for a wide range of applications, such as quantum simulation [24, 25]

and Shor’s factoring [26], and a flavor that utilizes both quantum-classical computation, namely

iterative phase estimation (IPE), has been proposed recently. Compared with other flavors of phase

estimation such as Kitaev QPE [27], the measurement results help IPE to avoid intensive classical

1
It is worth noting that the term ‘host’ is used with two different meanings throughout this paper. First, when we talk about

embedded domain-specific languages, the host language refers to the general-purpose language that implements the DSL.

For example, Python is the host language of Qiskit. Second, when we talk about heterogeneous computing, host and kernel
refer to the language, program, compiler, or hardware corresponding to the general-purpose part and the coprocessor part,

respectively. This pair of terms are borrowed from the OpenCL framework. The readers should pay attention to which

meaning is used according to the context.

2
An external DSL is completely designed and implemented from the scratch, not relying on any pre-existent language [23].
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Preparation

ResultInput

Next Round
Preparation

Quantum Execution

(1)
(2)

(3)

(4)

real-time looping
for k = m ... 1

Fig. 1. Flow chart of the Iterative Phase Estimation (IPE) algorithm.Quantum execution is executed by the
quantum device and other steps by the classical computer.

computing. We take IPE as an example to illustrate some properties of HQCC algorithms and show

their requirement on both the language and the programming framework. This section briefly

introduces the principle and procedure of the IPE algorithm, and interested readers are referred to

[7, 28, 29] for more details.

Suppose the unitary operator𝑈 has an eigenstate |𝑢⟩ with the corresponding eigenvalue 𝑒𝑖\ , i.e.,

𝑈 |𝑢⟩ = 𝑒𝑖\ |𝑢⟩ ,

and |𝑢⟩ can be provided, the goal of a phase estimation algorithm is to estimate the value of \ . IPE

achieves this goal by utilizing only one ancillary qubit with a circuit as shown in Fig. 1.

To generate an𝑚-bit estimation of \ , a circuit consisting of𝑚 sub-circuits is required with the 𝑘-

th sub-circuit generating a one-bit measurement result 𝑐𝑘 , where 𝑘 = {𝑚,𝑚−1, · · · , 1}. These𝑚 bits

together form a𝑚-bit estimation to the targeting phase with the relationship \ = 2𝜋 · 0.𝑐1𝑐2 . . . 𝑐𝑚 ,
where 0.𝑐1𝑐2 . . . 𝑐𝑚 is binary representation of the value Σ𝑚𝑖=1𝑐𝑖 · 2−𝑖 . As shown in Fig. 1, each

sub-circuit consists of a 𝑧-rotation [𝑅𝑧 (\𝑘 )] and a controlled-𝑈 2
𝑘−1

operation sandwiched by two

Hadamard operations (𝐻 ) before the final measurement on the ancillary qubit. Generally, the angle

of the 𝑧-rotation \𝑘 in the 𝑘-th sub-circuit is determined at real-time using classical logic based on

\𝑘 = (−0.𝑐𝑘+1𝑐𝑘+2 ...𝑐𝑚) · 𝜋, (1)

where 𝑘 ∈ {1, 2, . . . ,𝑚 − 1}, and \𝑚 = 0. Note that the controlled-𝑈 2
𝑘−1

gate is supposed to be

optimized instead of applying the controlled-𝑈 gate 2
𝑘−1

times. Otherwise, the efficiency and

fidelity of this algorithm will be reduced dramatically.

The flow chart of the IPE algorithm can be outlined, as illustrated in Fig. 1. This algorithm

includes the following steps:

(1) Quantum kernel preparation: construct the quantum kernel program required by the following

step and convert it into a hardware-readable format;

(2) Quantum execution: performs quantum computing. This step happens on the quantum copro-

cessor and comprises the following sub-steps:

(a) Initialization: initialize the ancilla qubit into the state |0⟩;
(b) Phase information extraction: apply the 𝑘-th sub-circuit on the qubits and the phase

information will be phase-kicked back to the ancilla qubit.

(c) Measurement: measure the ancilla qubit;

(d) Real-time classical computing: compute the rotation angle \𝑘−1 using the previous mea-

surement results based on Equation (1) for the next round of iteration;

(e) Iteration: let 𝑘 ← 𝑘 − 1 and repeat steps (a) – (d);

(3) Post-processing: classically calculate the desired result based on the measurement results.
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Computer
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Results

Quantum
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Computer Qubits

Circuits
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Results
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Binary
Programs

Results
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Quantum
Circuit
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Fig. 2. Various execution models for heterogeneous quantum-classical computation (HQCC). (a) Quantum
Random Access Machine (QRAM) model. (b) Restricted HQCC model. (c) Refined HQCC model. While thin
black lines indicate interaction between corresponding parts abstracting away hardware details, thick gray
lines (thin green lines) indicate a slow (fast) interaction between corresponding parts.

(4) (Optional) Search: calculate the new parameters based on some classical algorithm, like

search;

(5) Repetition & optimization: repeat steps (1) – (4) with the possible new parameters calculated

in step (4) in each iteration. The repetition stops after a good enough result is retrieved.

All steps are carried out by the classical computer, except that step Quantum execution happens on

the quantum coprocessor.

As we can see, the IPE algorithm combines classical and quantum computing in two senses.

First, Post-processing, Search, and Quantum kernel preparation are interleaved with Quantum
execution where slow interaction is required (indicated by thick grey lines). In other words, the

quantum state does not need to be preserved during the period when heavy classical computing

happens. In some other cases like the variational quantum eigensolver (VQE) algorithm [24], the

quantum execution needs to repeat multiple times with different quantum kernel programs, which

should be calculated in step (4) (Search).
Second, to calculate \𝑘 at real-time and enable efficient looping over different sub-circuits in

step (2) (Quantum execution), classical instructions must be used, which calls for fast interaction

with quantum operations during the quantum execution. To accomplish the phase estimation task

with one copy of the eigenstate, the IPE algorithm needs to finish execution before the qubits

holding the eigenstate lose the information. Hence, it requires real-time classical instruction to

enable fast looping.

A key feature of the IPE algorithm is that not all quantum gates in the circuit can be determined

in step (1) (Quantum kernel preparation). The 𝑧-rotations in the circuit need to be calculated at real-

time using classical instructions. The feature using classical computation to decide what following

operations are applied on the qubits based on previous measurement results was termed dynamic
lifting by Green et al.[30].

2.2 Execution Models ofQuantum Programming Languages
Quantum programming languages are designed based on particular execution models, and the

execution models largely define the interaction between quantum and classical computing. By

analyzing the execution or simulation of most quantum programming languages based on the

circuit model, we summarize three execution models that can depict possible interactions between

classical and quantum computing resources in these languages. As shown in Fig. 2, the three models

are the Quantum Random Access Machine (QRAM) model, the restricted HQCC model, and the

refined HQCC model.
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2.2.1 The QRAMModel. With the observation that practical quantum computing would take place

on a classical machine with access to quantum registers, Knill proposed the Quantum Random

Access Machine (QRAM) in 1996 [9], when there was no actual architecture for heterogeneous

quantum-classical computation. As shown in Fig. 2(a), the QRAM model consists of a classical

computer and qubits or quantum registers. The classical computer performs classical computation,

controls the evolution of qubits by applying operations (or quantum circuits) on the quantum

register and can read back measurement results of qubits.

The QRAM model later became a canonical model that guided the design of many quantum

programming languages such as QCL [10], QPL [31], Q Language[32], Scaffold [11], LIQ𝑈𝑖 |⟩ [33],
and Qwire [34].

2.2.2 Restricted HQCC model. The restricted HQCC model arises from the early experiment

setups for quantum computing. Except for flying qubits such as photons, stationary qubits are

mostly controlled and measured via complex analog signals such as microwave or laser. Dedicated

waveform generators, modulators, and data acquisition boards are used to generate required control

signals and discriminate the measurement results of qubits. These devices usually cannot execute

classical instructions for classical computation as present in quantum applications.

These analog devices are usually connected to the classical computer via, e.g., Peripheral Com-

ponent Interconnect Express (PCIe) bus or Ethernet. The communication between the classical

computer and the analog devices is usually of a substantial latency, which is introduced by signal

transmission latency in cables, decoding the protocol in both hardware and software, memory

access, operating system duties, and so on. As observed in experiments, it could easily take mil-

liseconds to send a command from the classical computer to the analog device, such as Tektronix

Arbitrary Waveform Generator 5014 [35], a control device that was widely used in controlling

superconducting qubits. Though it is possible to reduce the latency in the communication between

the classical computer and the analog devices, the required engineering effort would cost more

than reasonable labor and time resources. Moreover, the achievable latency is not guaranteed

because the operating system in principle has no guarantee in the response latency to an event.

Therefore, the interaction latency between classical operations executed by the classical computer

and the quantum operations is very likely larger than the qubit coherence time (e.g., hundreds of

microseconds for superconducting qubits [36]).

By abstracting the quantum-classical interaction from this kind of quantum experiment setup,

we get the restricted HQCC model, as shown in Fig. 2(b). The main difference between this model

and the QRAM model is the introduction of the quantum circuit executor, which can only apply a

fixed quantum circuit on qubits within the qubit coherence time. With little classical computing

power, the quantum circuit executor by itself cannot support real-time feedback based on the

measurement. It is assumed that the communication between the classical computer and the

quantum circuit executor has a latency comparable to or larger than the qubit coherence time.

This slow communication is indicated by thick grey lines in Fig. 2. Hence, quantum-classical

interaction can only happen off-line, i.e., before or after the quantum circuit is applied on qubits.

The restricted HQCC model can depict the quantum-classical interaction of some popular

quantum programming languages. For example, Cirq [12] can only generate fixed quantum circuits

without real-time feedback. Quipper clearly distinguishes the circuit generation time and circuit

execution time. The former takes place on a classical computer and generates a fixed quantum

circuit, which is executed at real-time by the quantum processor in the latter. Although Quipper

incorporates a library to support dynamic lifting, this library is built based on the assumption that

the physical quantum device has the ability to preserve qubits in long-term storage between real-time
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circuit invocations [30]. However, such kind of long-term storage is beyond the capability of NISQ

technology.

2.2.3 Refined HQCC Model. Addressing the issue of not supporting programmable real-time

feedback based on qubit measurements, dedicated quantum control architectures [4, 6, 7, 37]

containing a control processor capable of executing interleaved quantum and classical instructions

have been proposed. The interleaved execution of quantum and classical instructions enables fast

interaction between classical and quantum operations. Hence, it can support real-time feedback as

well as structural program description based on, e.g., loop and selection. We call their execution

model the refined HQCC model, as shown in Fig. 2(c).

Compared to the restricted HQCC model, the refined HQCC model inserts a control processor

between the quantum circuit executor and the classical computer. The quantum control processor

can execute quantum instructions that control the quantum circuit executor to apply quantum

operations on qubits, and auxiliary classical instructions that update classical registers and direct

the program flow. Although the control processor can execute classical instructions, it can carry out

very limited real-time classical computation, as NISQ qubits have limited coherence time resulting

in a very limited quantum execution time.

In the refined HQCC model, the classical computer invokes the quantum coprocessor by sending

binary executables instead of quantum circuits. With similar reasons to the restricted HQCC model,

the interaction between the classical computer and the quantum control processor is assumed to

be slow.

This model has been adopted by heterogeneous quantum-classical programming languages like

ProjectQ [38], Qiskit [39], PyQuil [13], Q# [17], OpenQL [14], and sqir [40]
3
. ProjectQ and Qiskit

support this model because of their support for binary control (the Control meta-instruction in

ProjectQ and the c_if construct in Qiskit). Without binary control, both ProjectQ and Qiskit can

only produce fixed quantum circuits in each run and could be classified into the restricted HQCC

model.

sqir [40] can support programmable real-time feedback based on the qubit measurements.

Targeting at serving program reasoning, sqir is too simple to support some necessary real-time

classical logic constructs and cannot support describing complex classical logic happening on the

classical computer and its interaction with the quantum logic, such as the Search step as mentioned

in Section 2.1. Hence, the execution model of sqir can be summarized as the refined HQCC model

without slow communication between the classical computer and the quantum control processor.

2.2.4 Comparison & Discussion. The QRAM model assumes ideal classical and quantum hardware

resulting in a neat model, which enables the programmer to focus on the computational logic

without worrying about implementation details. It is possible for the classical computer to decide

what following operations are applied on the qubits based on previous measurement results of

qubits, i.e., to implement dynamic lifting. However, the QRAM model may be not suitable for the

NISQ technology as no constraint at all is put on the quantum-classical interaction, which is very

likely beyond the capability of NISQ hardware.

The restricted HQCC model respects the latency between classical computers and qubits, which

results in quantum code more suitable for execution with NISQ hardware. However, as the model

does not support real-time feedback or dynamic lifting, the applications that can be described in

languages based on this model are significantly limited, including the IPE example as shown in

Section 2.1.

3
At the time of writing, these languages have the following version numbers (if they have one): ProjectQ v0.5, Qiskit v0.27,

PyQuil v2.28, OpenQL v0.9.
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In contrast, the refined HQCC model can support dynamic lifting without introducing unrealistic

assumptions. In the refined HQCC model, the program using dynamic lifting is compiled into

instructions, and sub-circuits within each branch form an individual code block. During quantum

execution, the classical instructions can direct the control flow to the corresponding code block for

execution based on the qubit measurement results that are fetched at runtime.

Although a quantum language based on a simple model like the QRAM model is more appealing

to the programmer for describing quantum algorithms, the refined HQCC model can enable an

easier compilation from quantum algorithms described in a high-level language to NISQ hardware

for execution. We take the refined HQCC model as the underlying execution model to design the

Quingo framework and the Quingo language. After the hardware and the compilation techniques

get better developed in the future, we may shift from the refined HQCC model back to the QRAM

model for quantum programming.

3 OVERVIEW OF THE QUINGO FRAMEWORK
Practical quantum computing relies on the synergy between quantum and classical computing

resources involving various hardware and software. To this end, multiple quantum systems with

different capabilities to support HQCC have been proposed. However, only part of these designs or

implementations is presented publicly, a big picture of integrating the heterogeneous quantum-

classical software and hardware is still missing. This requirement triggers the design of the Quingo

framework.

3.1 Design Principles
The Quingo framework adopts the following design principles:

(1) Matching NISQ Technology. To ensure the framework itself and quantum applications described

based on this framework can be implemented with NISQ technology, the framework should be

constructed based only on technologies that have been demonstrated.

(2) Supporting the Refined HQCC Model. The Quingo framework should enable describing quantum

applications in a way that naturally follows the refined HQCC model. Classical operations that

require slow communication and fast interaction with quantum operations should be easily

mapped to the classical host and the control processor for execution, respectively.

(3) Modular System with a Natural Integration. The framework needs to be a modular system in

which individual components, such as the host program, the kernel, and the compiler, are only

responsible for their genuine tasks. Also, various components could be naturally integrated by

some managers through clearly-defined interfaces.

(4) Quantum Experiment Support. The framework should support describing quantum experiments

and hopefully improves the experiment efficiency.

(5) Optimization Support. The framework should reserve as much information as possible for

the compiler to perform optimization over quantum kernels with techniques such as partial

execution [21].

3.2 Design Overview
Inspired by OpenCL [41], an industrial standard for parallel heterogeneous computing, and guided

by the design principles, we propose the Quingo framework, a proposal at the system level to

integrate and manage quantum-classical software and hardware to provide the programmability

over HQCC applications and experiments and map them to NISQ hardware, as shown in Fig. 3.
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Fig. 3. Overview of the Quingo framework. Except that interconnect is indicated by a pair of lines, other
hardware is illustrated as cubes; software modules are presented as rounded rectangles; source files are as
rectangles with a waving bottom line. Most components in the Quingo framework work on the classical host,
except that the quantum kernel runs on the quantum coprocessor. The wide grey arrow indicates that the
quantum kernel is compiled and uploaded to the quantum coprocessor or simulators for execution by the
classical processor.

The Quingo framework aims to serve quantum computing in the NISQ era based on the re-

fined HQCC model. It defines a minimum set of requirements on the hardware to support the

refined HQCC model. These requirements can be satisfied by nowadays hardware and have been

demonstrated by previous experiments (cf. Principle 1), and clarifies required software compo-

nents with their responsibility boundary and interaction interface in the entire system. Relying on

the necessary software infrastructure, the framework integrates and manages the software and

hardware for HQCC, helping programmers focus on describing computational logic and map the

quantum applications to the NISQ hardware. The Quingo framework comprises the following key

components:

• Quantumprograms: The quantum program is described in two parts: the classical host program

and the quantum kernel;

• Compilers: At least two compilers should be used, including a classical compiler or interpreter,

and a quantum compiler. Besides that, a pulse generator is required to generate pulses for

customized operations in quantum experiments or quantum optimal control [42–44].

• Hardware: The Quingo hardware platform comprises a classical host, a quantum coprocessor,

and a shared memory accessible to both the host and the coprocessor. The quantum coprocessor

includes a control processor capable of executing interleaved quantum-classical instructions

to control qubits. Note, the quantum coprocessor can be simulated using simulators such as

CACTUS [45] with QuantumSim [46] or QICircuit [47].

• Runtime system: A runtime system serving as the infrastructure of this framework that inte-

grates and manages various quantum and classical software and hardware components.

To match the HQCC model, quantum applications based on the Quingo framework are described

in two parts: the host program described in a classical language such as Python or C, and the

quantum kernel described in Quingo. For example, the IPE algorithm as shown in Section 2.1 is

described jointly by a Python host program (Code 3) and a Quingo kernel (Code 4) (Section 4.3

and Section 5 detail the host and kernel languages, respectively). The programmer is responsible
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for putting all classical computation that requires fast interaction with qubits in the kernel, and

the other classical tasks in the classical host program. Since the host program is fully-fledged, any

classical computing that does not require fast interaction is suggested to be offloaded to the host

program in a classical language, which can significantly ease the burden in developing classical

libraries in Quingo. This follows Principle 2.
Ideally, the host program should focus on describing the classical computing task and invoking

the quantum kernel; the quantum kernel focuses on describing the computing task running on the

quantum coprocessor; and the (quantum) compiler focuses on compiling the given Quingo program

with given parameters. To get a seamlessly workable system, the framework should (i) provide an

interface for the host language to call the quantum kernel with parameters, (ii) trigger the quantum

compiler to compile the kernel, (iii) load the quantum binary to the quantum coprocessor and

trigger its execution, and (iv) read the kernel execution result and return it to the host language. To

this end, the Quingo runtime system is introduced. Besides that, the selection and configuration of

the target backend are also done by the runtime system, instead of by the host program. In this

way, the same quantum program can be executed by real hardware or simulators without any

modification in the source files of the quantum program (cf. Principle 3). The runtime system is

introduced in Section 4.2.

A key component of the Quingo framework is the language used to describe the quantum kernel.

The kernel language should support the usage of opaque operations and controlling the timing

control to describe quantum experiments (cf. Principle 4). As describing real-time classical logic

using embedded DSL would result in complicated code, as illustrated in Code 1, the quantum

language is suggested to be an external DSL (cf. Principle 2). We have designed the Quingo quantum

programming language to satisfy these requirements, which is introduced in Section 5.

Previous work has shown that quantum algorithms can be significantly optimized with partial

execution [21, 30] after recognizing the different phases of a quantum program. Based on the

refined HQCC model, the Quingo framework refines previous life-cycle models into a six-phase

one. Considering the capability of the control processor to execute classical instructions, Quingo

delays the generation of quantum code until the point immediately before quantum state evolution

starts to provide as much information as possible to the quantum compiler (cf. Principle 5).
In the rest of the paper, key techniques in the Quingo framework are introduced in the following

section and the Quingo language in Section 5.

4 KEY TECHNIQUES IN THE QUINGO FRAMEWORK
We first introduce the quantum program life-cycle model in Section 4.1, which defines the routine

of how the entire framework works based on the refined HQCC model. It divides the entire life

of a quantum program into six phases and defines the responsibility of each component or the

programmer in each phase. The software system of the framework, which is embodied in the

runtime system, is introduced in Section 4.2. Section 4.3 presents the requirements and constraints

that the Quingo framework put on the host language and how the host language interacts with the

quantum kernel via the provided programming interface. The Quingo framework also puts some

requirements on the compilation of the quantum kernel, to maximally utilize the optimization

space as reserved by the six-phase life-cycle model. This is introduced in Section 4.4. Last but not

least, data exchange among different components in the framework should be supported by both

the software and hardware. We delay the introduction of the mechanism to exchange data after we

introduce the Quingo language in Section 5.5.
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4.1 Quantum Program Life Cycle
A quantum program life-cycle model can help clarify what task should be carried out by which

component in what order, which can help the programmer to understand the implication of the

code they write, and also guide a seamless integration of various quantum and classical components

into a working system. The design of the quantum program life-cycle model aims to reserve as big

optimization space over quantum programs as possible and support quantum-classical interaction

with timing constraints satisfied. Based on the refined HQCC model, we propose a six-phase

quantum program life-cycle model, of which the feasibility has been demonstrated by the common

workflow as observed in nowadays quantum experiments and quantum algorithms. It includes six

phases:

(1) Editing: Quantum programmers describe the quantum application using a classical program-

ming language (such as Python or C) for the host program and Quingo for the quantum

kernel. The required configuration (such as what primitive operations can be used by the

hardware) is also provided at this stage.

(2) Classical compilation (optional): A conventional compiler, such as GCC, compiles the host

program and outputs a classical binary. Note that this phase may not be needed for interpreted

languages such as Python.

(3) Classical pre-execution: The classical host executes the classical binary up to the moment

calling the quantum function defined in the kernel. At this moment, all parameters used to

invoke the quantum function (called the kernel interface parameters) have been determined.

(4) Quantum compilation: The quantum compiler compiles the kernel into a quantum binary

consisting of quantum-classical mixed instructions with possible extra data. At this step, the

quantum compiler can use the kernel interface parameters passed in to perform optimization

by, e.g., partial execution.

(5) Quantum execution: The control processor loads and executes the quantum binary. Accord-

ing to the executed instructions, the control processor updates classical registers, performs

flow control, and applies corresponding quantum operations over qubits. In this way, the

quantum state evolves under program control, accomplishing the kernel computational task.

Then, the computation result is sent to the classical host by writing to the shared memory

between the quantum coprocessor and the host.

(6) Classical post-execution: The classical binary continues execution, reads the quantum

computation result, and performs possible post-processing.

When required as in algorithms like VQE, phases (3) to (6) (from classical pre-execution to classical

post-execution) could be repeated multiple times to reach a good enough result.

Note that in some scenarios, the quantum compilation phase or part of it can be brought forward

to happen at the same time as the classical compilation. For example, when the execution of the

quantum kernel does not depend on the classical parameters, and deep optimization over the

quantum algorithm is not so critical compared to the requirement to execute the quantum circuit

as soon as possible, such as programs used for quantum communication such as teleportation [48].

Naturally, the semi-static compilation, as described in Section 4.4, might be disabled, and the

quantum binary generated without much optimization is loaded to the quantum control processor

awaiting execution.

We take the IPE and VQE algorithm as examples to illustrate the match between the six-phase

life-cycle model and quantum algorithms. The IPE algorithm is first described in a classical language

and a quantum language (see Code 3 and Code 4), this corresponds to phase (1) (editing). Being an

interpreted language program, the Python host in Code 3 can start execution without compilation

(omitting the optional phase (2): classical compilation). The classical host program starts execution



14 TheQuingo Development Team

Code 3. Python host of the IPE algorithm
1 # host.py: the host of the iterative phase estimation algorithm
2 from qgrtsys import if_quingo
3 ''' Call the Quingo kernel to estimate the oracle phase.
4 Repeat $n$ times , each time receive $m$ bits.
5 '''
6 def ipe(m: int , n: int) -> float:
7 res = 0
8 for i in range(n):
9 if not if_quingo.call_quingo("ipe.qu", "ipe", m):
10 raise SystemError("The execution of the quantum kernel fails.")
11 res += if_quingo.read_result ()
12 return res / n

Code 4. Quingo kernel of the IPE algorithm.
1 import operations.*
2 import config.json.*
3

4 // kernel.qu: Iterative phase estimation algorithm.
5 // Input: the number of bits of the estimation
6 // Output: the estimation result
7 operation ipe(m: int) : double {
8 double theta = 0.0; // = theta_k / PI
9

10 using (ancilla: qubit , eigenstate: qubit) { // Allocate two qubits
11 if (! measure(eigenstate)) { // prepare the eigenstate |1>
12 X(eigenstate , PI);
13 }
14 for (int k = m - 1; k >= 0; k -= 1) {
15 init(ancilla); // reset ancilla to |0>
16 H(ancilla);
17

18 control(ancilla , oracle(eigenstate , k)); // controlled -U^(2^i)
19 Z(ancilla , -PI * theta);
20 H(ancilla);
21

22 if (measure(ancilla)) { // Update the estimated phase
23 theta = theta / 2.0 + 0.5;
24 } else {
25 theta /= 2.0;
26 }
27 }
28 }
29 return PI * theta;
30 }

in step (1) (quantum kernel preparation) and determines all parameters required by the quantum

kernel (phase (3): classical pre-execution). Thereafter, the quantum compiler compiles the quantum

kernel during which the kernel can be optimized (phase (4): quantum compilation). The quantum
kernel starts execution utilizing quantum and classical operations with fast interaction in between

in step (2) (quantum execution) and finishes with the measurement results generated (phase (5):

quantum execution). The host program fetches the measured data and calculates the required result

in step (3) (post-processing). For VQE-like algorithms, multiple iterations of the quantum execution

with different parameters are required. Based on the previously calculated result, the classical

computer searches a new set of parameters in step (4) (search). Steps (3) and (4) (post-processing and

search) together form phase (6) (classical post-execution). The newly-generated parameters is then

employed to prepare the quantum kernel to be used in the next round, which restarts the routine

from phase (3) (classical pre-execution).
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4.2 Runtime System
Since the host program, the kernel program, the compiler, and the quantum control processor in

the framework are expected to be only responsible for their own tasks, they cannot directly work

in collaboration due to the interaction among them. The following problems need to be resolved:

• Since the host program is not responsible for compiling the quantum program, when and

which component should trigger the quantum compiler to compile the quantum program?

• The kernel interface parameters provided by the host program reside in the memory space

corresponding to the process of the host program on the host machine, and cannot be directly

read by the quantum compiler working in another process on the host machine. How to pass

the kernel interface parameters to the quantum compiler?

• Which component should upload the quantum code to the quantum control processor and

trigger the execution after its generation?

• How to pass the kernel execution result back to the host program?

To get a full HQCC system with components working together seamlessly, we propose the

Quingo runtime system as the supportive environment of the Quingo framework, as shown in

Fig. 4. The Quingo runtime system is designed as a library or daemon running on the classical host

machine, which provides an application programming interface (API) to the classical host language

and manages the interaction among the classical host and the quantum kernel at both software and

hardware level. It mainly consists of five parts:

(1) A system configurator, which is in charge of configuring the execution environment for the

quantum program;

(2) A host language interface, which enables the host program to call quantum kernels to utilize

the quantum coprocessor to solve problems and read the result from the quantum kernel;

(3) An interface to call various quantum backends to execute the quantum code and enable them

to return the computation results. This interface is implemented as various quantum backend

drivers;

(4) A parameter converter and kernel result decoder, which are responsible for enabling the

communication between the host and the kernel;

(5) A phase manager, which is responsible for triggering corresponding activities at different

phases of the program life-cycle model.

The runtime system supports the execution of quantum programs as described in the following.

Before executing the quantum program, the programmer configures the execution environment

through the configurator. For example, selecting a real machine or a simulator to execute the

quantum program is done at this stage. When the host program calls the quantum kernel through

the host language interface (see Section 4.3), the runtime system is activated, which delivers the

control to the phase manager. This moment corresponds to a time point in phase (3) (classical pre-
execution). The phase manager then passes the parameter to the Quingo compiler (see Section 5.5.1),

and triggers the compiler and the pulse generator (phase (4): quantum compilation). After the
compiler returns the quantum code, the phase manager uploads the quantum code to the shared

memory and triggers the quantum coprocessor to execute it (phase (5): (quantum execution)).
The phase manager then waits for the quantum kernel to return. The quantum kernel writes

the execution result to a piece of the shared memory with a starting address previously defined.

Thereafter, the phase manager triggers the data decoder to decode the returned result in the shared

memory and returns it to the host program in a format readable for the host language for post-

execution (phase (6): classical post-execution). The data decoder is introduced in Section 5.5. After

that, the phase manager exits and returns the control to the host program.
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All work done by the runtime system is transparent to the host program, the Quingo kernel, and

the Quingo compiler. As a result, they can focus on their genuine roles without worrying about

other details. For example, the host program only needs to describe the classical logic processing

the parameters sent to and the results received from the Quingo kernel. The host program needs

not learn about the concrete hardware architecture or the control methods over the quantum

coprocessor. Also, both the host program and the Quingo kernel can directly use the parameters

or results passing in between without touching the communication details. We believe that this

design helps to ease the development of HQCC applications.

4.3 Requirements on the Host Program
In the editing phase, the programmer is responsible for describing not only the kernel in Quingo,

but also the host program. The Quingo framework allows any general-purpose classical language

to be used as the host language, such as Python. The Quingo runtime system provides a set of APIs,

currently in Python, for calling the Quingo kernel and configuring the execution environment. A

classical language implementing the APIs provided by the runtime system can be an eligible host

language in the Quingo framework. It offers the freedom for the programmer to choose a suitable

classical language according to his/her requirements.

The host program of the IPE algorithm is shown as an example in Code 3. With the interface

provided by the Quingo runtime system (qgrtsys), the host program calls the quantum kernel

through the interface function if_quingo.call_quingo at line 8. The quantum function ipe

defined in the file kernel.qu is called with two kernel interface parameters m and n, which are both

integers in this algorithm. After the kernel finishes execution successfully, the host retrieves the

kernel execution result using the function if_quingo.read_result for post-classical processing.
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lines 8 – 11 in Code 3 repeatedly call the Quingo kernel for n times, which is followed by a simple

averaging at line 12. The actions behind this function correspond to phases (3) – (6) (classical
pre-execution to classical post-execution) in the six-phase life-cycle model.

Although the host program is allowed to call quantum kernels any number of times at any

point, the HQCC model assumes the quantum state will not be preserved between two consecutive

calls to the quantum kernel. If some classical computation is required to interact with quantum

operations in real-time, the programmer should put these classical operations in the kernel. In this

way, the timing of quantum-classical interaction can be assured.

Note, except for the methods and APIs defined by the runtime system used to call the Quingo

kernel and retrieve the quantum kernel result, there are no other constraints on the host program

written in the classical language. Hence, the host program can import and use any packages or

libraries available in the classical language. Since classical operations requiring fast interaction

with quantum operations are limited, and classical computation that only requires slow communi-

cation with qubits can be offloaded to the host program and described using fully-fledged classical

programming languages, the Quingo language is not required to develop libraries for complex

classical computations to enhance its expressiveness for quantum applications.

4.4 Requirements on theQuantum Compiler
Each time the host program calls the quantum kernel with a set of determined parameters, the

quantum compiler is called subsequently to translate and optimize the quantum kernel and generate

the quantum code for execution. The quantum compiler also forms a critical component of the

Quingo framework. This section introduces the requirements for the compiler of the Quingo

framework. We will not discuss a concrete quantum compiler design as it is not part of the

framework.

4.4.1 Intermediate Representation. Since the refined HQCC model allows the execution of inter-

leaved quantum and classical instructions, the quantum compiler should be capable of representing

both quantum and classical computational logic to generate quantum-classical mixed binaries.

Many existing quantum compilers adopt some format of quantum circuits as the intermediate rep-

resentation (IR) of quantum applications. For example, the internal representation (IR) of Qiskit is a

directed acyclic graph with quantum-operation nodes representing a quantum circuit. Quantum-

circuit-based IR can be cumbersome when used to represent classical constructs in quantum

algorithms.

Taking statements as the basic element of IR can enable a flexible description of HQCC appli-

cations with rich quantum-classical interaction [17]. As a consequence, the quantum compiler is

best constructed with an IR based on statements or a hierarchical structure such as MLIR [49],

instead of quantum circuits, to enable easy manipulation. In this way, the classical constructs or

operations in the quantum kernel can be translated into classical instructions mixed with quantum

instructions, which are eventually executed by the control processor.

Since manipulating the timing of operations is crucial for quantum experiments and presents

increasing importance in optimization over NISQ applications [7], the IR should also support

representation and manipulation of the timing of operations.

4.4.2 Semi-Static Optimization. Although it is possible to describe classical logic in the quantum

programming language, it does not mean that all classical logics described in the kernel should be

translated into instructions executed on the control processor.

More information provided to the compiler usually helps better optimization. As the kernel inter-

face parameters are fully determined before calling the kernel, it can also enlarge the optimization

space for the quantum compiler. Though not necessary, the Quingo framework suggests that the
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quantum compiler highly utilizes classical optimization techniques, such as procedure cloning,

constant propagation, dead code elimination [21]. In addition, partial execution is also an important

technique that should be harnessed to resolve and eliminate classical operations in the quantum

program.

For example, if the variable x in the branch statement if(x) {X(q);} else {Y(q);} is a

kernel interface parameter, the compiler can know the actual value of x and then perform partial

execution during compilation. Hence, the branch structure can be eliminated and the compiled

result of this branch statement would be a simple quantum assembly instruction X q or Y q. By

doing so, the classical instructions can be further reduced, which better matches the NISQ hardware

where the classical computing power on the control processor is limited.

4.4.3 Rethinking about Quantum Compilation. In the Quingo framework, the quantum code is

not generated when the host program starts execution. Quantum compilation happens after the

classical host calls the quantum kernel, which is the compile time for the quantum kernel but the

runtime for the classical host. We call quantum compilation happening at this stage semi-static
compilation. By delaying the generation of quantum code to the last moment, i.e., just before its

execution, the Quingo framework maximizes the optimization space reserved for the quantum

compiler. To make it clear, we term phases (3) – (6) as the classical runtime, and phase (5) as the

quantum runtime. Quantum state evolution only happens during the quantum runtime.

Note that, when applicable, optimization techniques in classical Just-In-Time (JIT) compilers

could also be adopted by the quantum semi-static compiler, such as collecting statistics about how

the program is actually running to rearrange and recompile for an optimal performance.

5 THE QUINGO LANGUAGE
The Quingo framework suggests an external DSL used to describe the quantum kernel. In this

section, we present the Quingo language, which is designed following the requirements of the

Quingo framework based on the refined HQCC model. The design of the Quingo language is guided

by the following principles:

(1) Intuitive and Concise Syntax. The syntax should be intuitive to reduce the barrier for new

users in learning this language. It should have native comprehensive support for structured

programming and other commonly-used program patterns to enable a concise description of

HQCC algorithms.

(2) Native Support for Fast Interaction. Classical operations and program flow control on the control

processor should be naturally described without relying on dedicated variables or program

structures.

(3) Minimal Design Concepts. The Quingo language aims at providing core features to support

HQCC with a minimal set of concepts. Features that can be implemented using the core features

will be provided by libraries. The current design of Quingo should not impede its extension

to support high-level programming features in the future, such as adding control qubits to

quantum operations or inverting operations.

The Quingo language adopts a two-level design to define the language to ensure the extensibility

of the language and enable a practical engineering implementation. At the core level, the syntax

is defined with a minimal set of concepts, data types, and rules which aim to be expressive and

comprehensive enough. At the user level, syntactic sugar is constructed based on the core syntax to

improve programming efficiency. The benefit of this method is double-folded. First, the core syntax

being minimal enables a relatively easy and formal definition of this language and simplifies the

compiler design and formalization. Second, syntactic sugar can be added by modifying the compiler
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front-end without affecting the core syntax and intermediate representation, which enhances the

extensibility of the language while at the same time keeps the language steady. This section gives

a detailed description of the Quingo language. We focus on the core syntax since the user-level

syntax is still under development.

The Quingo language supports standard statements and expressions available in conventional

imperative languages, as well as special syntax for describing quantum algorithms and experiments.

The file syntax_core.md
4
presents the core syntax of this language in the Backus-Naur Form (BNF)

format. The import and package statements make up a simple module system (Section 5.1). The

Quingo language has a strong static type systemwhere each variable is explicitly defined with a type

(Section 5.2). The using statement is for the allocation and de-allocation of qubits (Section 5.2.2).

General control-flow structures are supported, including if-else , while , break , continue , and

return . Functions in the Quingo language are called operations. There are two kinds of operations,

opaque and operation (Section 5.3). An operation call can be associated with timing constraints

to control the execution time of the operation (Section 5.4).

For demonstration purposes, we use the program shown in Code 4 as a running example

throughout this section. Code 4 implements the IPE kernel to estimate the eigenvalue 𝑒𝑖\/2 of the
given oracle 𝑅𝑧 (\ ) where \ is unknown. As the oracle operates only one qubit, the IPE kernel can

be implemented using only two qubits.

5.1 Module System
A module system is used to organize program code in the Quingo language. Multiple operations

(explained later in Section 5.3) related to a common topic can be collected into a package to enable

separate compilation, avoid name conflict, and ease code distribution. A package is declared with

the package statement at the top of the source file, indicating that all operations defined in this

file belong to this package. Code 5 shows a code package named operations, in which a bunch of

opaque operations are defined. Operations inside a package can be imported by other files with the

import statement, as shown in lines 1 – 2 in Code 4.

Code 5. A package containing opaque operations imported by the VQE kernel
1 package operations
2

3 opaque I(q:qubit): unit;
4 opaque H(q:qubit): unit;
5 opaque X(q: qubit , angle: double): unit;
6 opaque Y(q: qubit , angle: double): unit;
7 opaque Z(q: qubit , angle: double): unit;
8 opaque CNOT(ctrl: qubit , target: qubit): unit;
9 opaque measure(c:qubit): bool;

5.2 Type System
The Quingo language has a strong static type system. Types in the Quingo language include

primitive types for classical and quantum data, operation types, and composite types. Besides these,

the Quingo language has two special types dedicated to timing control discussed in Section 5.4.

5.2.1 Primitive Classical Types. Considering the limited classical computational power of the

control processor, the Quingo language only allows four primitive classical types, i.e., bool , int ,

double , and unit . The unit type is merely used to describe the return type of an operation that

has no return value. For other classical types, basic arithmetic and logical operations are supported.

4
Available at: https://github.com/quingo/compiler_xtext/blob/master/docs/syntax_core.md.

https://github.com/quingo/compiler_xtext/blob/master/docs/syntax_core.md
https://github.com/quingo/compiler_xtext/blob/master/docs/syntax_core.md
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5.2.2 Primitive Quantum Type. The Quingo language defines qubit type as the only primitive

type for quantum data. One or more qubits can be allocated from a pool with the using statement

(e.g., line 10 in Code 4), and later be referenced using qubit-type variables (e.g., the variables

ancilla and eigenstate in line 10 in Code 4). Scope of a qubit-type variable is within the

block (between the curly braces) corresponding to the using statement. Qubits are allocated at

the beginning of the using block and automatically de-allocated (i.e., returned to the pool) when

exiting this block. The automatic de-allocation semantics avoids leakage of the qubit resource.

Qubits can only be manipulated by quantum operations (lines 11 – 21 in Code 4). The only way to

read out information from a qubit is using a measurement operation, which projects the qubit to

the computational basis state and returns the measurement result as a bool value (lines 11 and 21

in Code 4).

Unlike other quantum programming languages, the Quingo language assumes the qubit is in an

unknown state instead of |0⟩ upon allocation, and the programmer is responsible for initializing it.

This assumption is necessary to quantum experiments where the initialization has to be explicit.

5.2.3 Operation Type. The type of an operation consists of a parameter type and a return type. For

instance, qubit ->unit is the type of an operation on a single qubit that returns nothing. Parameter

type of a multi-parameter operation would be a tuple, e.g., the type of the oracle operation (line 18

in Code 4) is denoted as (qubit ,int)->unit .

5.2.4 Composite Types. The Quingo language supports using array and tuple to define data

collections. Any valid Quingo type can be the element type of array and tuple.
An array is an ordered sequence of elements of the same type, i.e., array is a homogeneous

collection type. Arrays can be modified dynamically by inserting, deleting, or replacing values.

Quingo arrays are jagged arrays, i.e., sub-arrays can have different lengths.

A tuple is an ordered, heterogeneous collection of elements. In the Quingo language, tuples are

immutable and mostly used to pass parameters to and return values from operation calls.

5.3 Operations
The Quingo language supports functions for structured programming. Functions are called op-
erations to emphasize that they are processes performing quantum operations on qubits for a

particular purpose. There are two kinds of operations in the Quingo language, opaque operations

and user-defined operations, defined with keywords opaque and operation , respectively.

5.3.1 Opaque Operation. In theory, there exists a set of universal quantum gates that can ap-

proximate any other quantum gates with arbitrary precision albeit at the cost of longer operation

sequences using some decomposition techniques, such as repeat-until-success [50]. The universal

gate set is not unique, and different quantum technologies may utilize a different primitive gate

set considering the implementation difficulty. The Quingo language does not define any built-in

quantum primitives. Instead, a mechanism is provided to declare platform-dependent primitive

operations. The mechanism consists of two parts: (1) a platform-dependent configuration file that

describes the available primitive operations, (2) opaque operation declaration statements defining

the interface for these primitive operations. The second part has already been shown in Code 5.

Code 6 shows part of the configuration file imported by the IPE kernel (Code 4).

The format of the configuration file is quite similar to JSON, with a leading package statement

declaring the package name. The configuration file consists of two sections, a platform definition

section (lines 3 – 11) and an operation definition section (lines 12 – 53). The former describes

features of the target architecture, e.g., the number of available qubits, and the latter provides

information about primitive operations on that architecture.
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Code 6. Platform-dependent configuration file for Quingo
1 package config.json
2

3 platform_def = {
4 "num_qubits": 5,
5 "single_qubit_gate_fidelity": {
6 "xy_rotations": [0.997 , 0.992 , 0.994 , 0.996 , 0.995]
7 "z_rotation": [0.985 , 0.989 , 0.990 , 0.984 , 0.977]
8 },
9 "qubit_coupling" : [[0, 1], [1, 2], [2, 3], [3, 4], [4, 5]],
10 "two_qubit_gate_fidelity": [0.985 , 0.989 , 0.990 , 0.984 , 0.977]
11 }
12 op_def = {
13 "X": {
14 "duration": 20e-9, "num_qubits": 1,
15 "params": [{"name": "theta", "type": "double"}],
16 "semantics": {
17 "type": "rotation",
18 "rot_axis": [1, 0, 0], # x-axis
19 "rot_angle": "theta"
20 }
21 },
22 "Y": {
23 "duration": 20e-9, "num_qubits": 1,
24 "semantics": {
25 "type": "pulse",
26 "assembly": {"type": "eqasm", "name": "y"},
27 "pusle": {
28 "pulse_name": "gaussian",
29 "params": {
30 "amplitude": 0.36,
31 "sigma": 20e-9,
32 "length": 4,
33 "sample_rate": 1e9 ,
34 "phase": PI/2
35 }
36 }
37 }
38 },
39 "H": {
40 "duration": 40e-9, "num_qubits": 1,
41 "semantics": {
42 "type": "matrix",
43 "matrix": [ [[0.707107 ,0.0], [0.707107 ,0.0]],
44 [0.707107 ,0.0], [-0.707107 ,0.0]] ]
45 }
46 },
47 "measure": {
48 "duration": 600e-9,
49 "semantics": { "type": "measure", "assembly":"MeasZ", "return": bool }
50 }
51 # more operation declarations
52 # ......
53 }

An operation is defined with a few properties. The duration and num_qubits properties represent
the duration the operation lasts and the number of target qubits, respectively. The Quingo language

supports the definition of parametric operations. For instance, the X operation in Code 6 is defined

as rotation along the 𝑥-axis with the rotation angle specified by the parameter theta (lines 16 –
20). The semantics property describes the operation’s inherent quantum semantics, that is, how

this operation transforms the target qubit(s) state. Code 6 presents four different ways to define the

semantics property:

(1) A rotation along a specific axis by a particular angle, such as the X operation at lines 16 – 20.
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(2) A pulse with the corresponding assembly code, such as the Y operation at lines 24 – 37.

(3) A unitary matrix describing the transformation on the state vector when applying this

operation on the target qubit(s), such as the H operation at lines 41 – 45;

(4) The measure semantics dedicated to the measure operation (lines 47 – 50).

To support features exposed by the Quingo language, the IR of the Quingo compiler should be

capable of representing the matrix, rotation, and measure semantics and can perform code analysis

and transformation based on this information. Operations with pulse semantics are treated as black

boxes during the analysis and transformation phases. The associated information is only used by

the compiler backend for code generation.

5.3.2 User-defined Operation. User-defined operations begin with the operation keyword, fol-

lowed by the operation name, parameter list, return type, and finally, the operation body. The

operation body is constructed in an imperative style with the basic element to be statements. With

statements, it allows to freely mix quantum operations with classical operations to enable the

execution of quantum operations controlled by classical program flow, such as measurement-based

feedback [17].

For simplicity, the Quingo language supports structured programming with four basic but

comprehensive structures [31, 51] at the core level, i.e., sequence, selection (if-else), loop (while

), and recursion. Other high-level structures, e.g., the for loop, can be easily constructed as syntactic

sugar based on the while loop. Note that classical operations in the kernel will be finally translated

into classical instructions executed by the control processor, which has a fast interaction with

quantum operations. Hence, conditions in the selection depending on measurement results are

generated into interleaved classical and quantum instructions that are executable on nowadays

hardware.

With the presented structures, the Quingo language provides more compact and readable code

than some other languages also supporting the refined HQCC model. For example, Code 2 is the

Quingo description which implements the same functionality using dynamic lifting as Code 1

in PyQuil. Since the Quingo language only describes tasks running on the quantum coprocessor,

Code 2 will be compiled into interleaved quantum and classical instructions which will be executed

by the control processor to implement dynamic lifting. No low-level data type and operations like

BIT and MOVE and extra data structure like Program are required in Quingo to describe the kernel

program.

5.3.3 Operation Modifier. Adding control qubits to operations and inverting operations can signifi-

cantly improve the expressiveness of a quantum programming language. They have applications in

uncomputation and many oracle-based algorithms such as phase estimation. The Quingo language

takes two keywords, control and invert to support these features. We refer to them as operation
modifiers, and they work in a similar way as higher-order functions. The control modifier takes

a list of qubits and an operation as parameters and returns the controlled version of this input

operation with the qubits being the input qubit list. The invert modifier simply inverts the given

operation. For example, line 18 of Code 4 generates the controlled oracle using the control key-

word. Note, the oracle in the control is written in such a way that it is like being called, which

results in rather intuitive code.

5.4 Timing Control
As described in Section 2, experimentalists need to explicitly control the timing of operations in

many quantum experiments. As experimental quantum systems have been scaled up to support

more quantum algorithms, which are described at a rather low-level by the experimentalists, the
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Fig. 5. Timing of operations in the 𝑇2 experiment.

boundary between quantum algorithms and experiments blurs, which calls for describing the

timing of operations in algorithms. We use the 𝑇2 experiment of which the operations with timing

are presented in Fig. 5 to demonstrate the timing control mechanism of the Quingo language. In the

𝑇2-echo experiment, three 𝑥-rotations (𝑋𝜋/2, 𝑋 , and 𝑋𝜋/2) separated by the same interval followed

by a measurement are applied to the target qubit after initialization. The intervals will be set by

the experimentalist according to some properties of the calibrated qubit(s), such as the dephasing

time. The 𝑇 ∗
2
(Ramsey) experiment differs from the 𝑇2-echo experiment only by the absence of the

middle 𝑋 gate. Code 7 presents the Quingo code that describes the measurement of 𝑇2-echo or 𝑇 ∗
2

selected by the boolean variable echo .

5.4.1 Timer-based Mechanism. Quingo introduces a timer-based scheme for controlling the timing

of quantum operations. Two special types, time and timer , are added to the type system.

A time variable consists of a double-type value and a time unit such as ns (nanosecond), which
can be used to describe a timespan. There are three ways to obtain a time-type value: (1) a time

literal, (2) adding or subtracting two time values, and (3) scaling a time value by an int or double

value. Line 13 in Code 7 shows an example of (3).

A timer, defined with the timer keyword (line 6 in Code 7), is a clock starting at a particular

point. Quingo timers can be viewed as a special kind of external resource to the program. They

advance automatically at the same pace regardless of the program’s execution path. Timers can

only be read or reset. Timers can be compared against time values to form timing constraints.

Multiple timing constraints can be combined with logical operators &&. Timers are implicitly reset

upon definition.

Timing of quantum operations are specified using the syntax structure:

<operation> @{<timing-constraints>} !{<timer-list>}

The semantics of this structure is that the operation starts its execution at a time point at which

the given timing constraints enclosed in @{...} are satisfied, and at exactly the same moment, all

timers enclosed in !{...} get reset. <timing-constraint> and <timer-list> are both optional in a

statement.

In Code 7, the X(q, PI/2) operation in line 10 resets the timer tmr . If the experiment measures

𝑇2-echo, the X(q, PI) operation in line 13 starts execution when the timer tmr reaches the time

specified by intervals[i]/2. Hence, an interval of intervals[i]/2 is inserted between the

previous 𝑋𝜋/2 and this 𝑋 operation. In the same way, the operation 𝑋𝜋/2 specified by line 17 starts

at the time (interval[i]) after the first 𝑋𝜋/2. The duration function is a Quingo intrinsic

retrieving the duration of the given opaque operation. With the assistance of duration , operations

executed back-to-back can be specified. For example, the measurement operation in line 19 starts

right after the X(q, PI/2) operation in line 17 finishes. The same timer can appear in both the

<timing-constraints> and <timer-list> parts (e.g., tmr in line 18), which means this timer gets
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Code 7. Quingo code for the 𝑇2-echo and 𝑇 ∗
2
(Ramsey) experiment

1 import operations.*
2 import config.json
3

4 operation t2(intervals: time[], echo: bool) : bool[] {
5 bool[intervals.length] results;
6 timer tmr;
7 using (q : qubit) {
8 for (int i = 0; i < intervals.length; i += 1) {
9 init(q);
10 X(q, PI/2) !{tmr};
11 // Conditionally apply an X gate if this is the T2-echo experiment
12 if (echo) {
13 X(q, PI) @{tmr == intervals[i]/2};
14 }
15 // The X_pi/2 operation below gets executed at the same time point
16 // no matter if the X_pi operation is executed or not.
17 X(q, PI/2) @{tmr == intervals[i]} !{tmr};
18

19 results[i] = measure(q) @{tmr == duration(X)};
20 }
21 }
22 return results;
23 }

reset immediately after it reaches a time point when all listed timing constraints are satisfied. Note

that timing constraints can only be associated with quantum operations.

5.4.2 Solving the Timing Constraint. Through the timer-based scheme, the relative distance of

different quantum operations is specified, either as a concrete value (e.g. tmr== interval[i]/2)

or a range (e.g., tmr >interval). However, the underlying quantum architecture, e.g., eQASM [6],

requires a determined schedule in which every operation is associated with an absolute execution

time. The compiler is responsible for choosing a schedule where all timing constraints in the

quantum kernel are satisfied. Since the timing constraint can be not so strict, the same quantum

operation is allowed to be applied at one of multiple timing points, and the Quingo language turns

to be a non-deterministic language.

This scheduling problem can be solved by an augmented version of the list-scheduling algo-

rithm [52] commonly used by classical compilers. The time and timer variables involved in the

<timing-constraints> are modeled as read dependencies. Timers listed in the <timer-list> are

modeled as write dependencies. The timing constraints are modeled as extra latency in addition to

the operation duration. By adding these dependencies to the dependency graph, the list-scheduling

algorithm will determine the related order of the operations, as well as compute the execution

time for each quantum operation. Since timing constraints can be non-deterministic, there could

be more than one legal schedule, and heuristics can be used to make the decision. If no feasible

schedule can be found, the compiler will raise an error asking the programmer to modify the timing

constraints in the program.

5.5 Data Exchange
Data exchange is required between the host program and Quingo kernel. According to the six-phase

quantum program life-cycle model, the host program is required to pass parameters to the Quingo

kernel at the language level, and the kernel execution result should be returned to the host program.

The Quingo framework defines a protocol to enable such data exchange with nowadays available

technology. Since the quantum coprocessor can only return binary data via the shared memory to

the host language, a binary format should be defined for the quantum computation result. With the
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Code 8. main.qu generated by the runtime system whenQuingo kernel ipe is called.
1 operation main(): double {
2 return ipe(5);
3 }

well-defined data exchange protocol between the classical host and the quantum kernel, it opens

the door for replacing the classical host language or the quantum kernel language, and the compiler

with other classical or quantum language or compiler by supporting the communication protocol.

5.5.1 Host Program to Quingo Kernel. To decouple the data passing process from the compiler

implementation, we propose a Quingo-source-file-based method, which contains two parts. First,

the runtime system provides a set of interfaces in the host language, which can encode kernel

interface parameters to a format defined by the data converter. The programmer is responsible for

preparing the kernel interface parameters into the format by calling functions in the interface, as is

done in Q# [17]. However, if the host language supports type inference, these functions are not

required to be exposed to the programmer, and the underlying implementation of the call_quingo
function can perform the conversion automatically, which simplifies the programming in the host

language. The host program may pass invalid parameters, e.g., a list of elements with different

types, which is unsupported by Quingo where only homogeneous arrays are supported. In this

case, errors are raised during the conversion.

The converted data is written into a generated Quingo file. This file is added to the compilation

and hence can be read by the compiler. For example, assume the host program calls kernel iqe

with a parameter 5 in Code 3. The runtime system generates file main.qu as shown in Code 8.

This file contains a main operation that has zero parameters. Its return type is the same as the

called Quingo kernel iqe . Then, the compiler can read this file and retrieve the kernel interface

parameters to compile the quantum kernel. The advantage of this method is to simplify the design

of the Quingo compiler. Its inputs are all Quingo source files, and it does not need to provide a

dedicated interface for the host program (cf. Principle 3).

5.5.2 Quingo Kernel to the Host Program. After the execution of a quantum program, the results

are transferred back to the host by the runtime system. A shared memory space that can be accessed

by both the control processor and the host is used for this data transfer. First, the Quingo kernel

writes the return values to the shared memory. Next, the runtime system copies the data to the

host machine. Finally, the runtime system interprets the data as the types of the host language and

passes them to the host program.

The process of converting an object into a stream is normally referred to as serialization [53]. The
byte stream that the Quingo kernel writes to the shared memory can be seen as the serialization of

the return data. We propose a set of rules to define the format of the serialized data:

• For data of a primitive type, write the data in a little-endian style, i.e., the least significant

bits are stored in the lowest address. The bool values true and false are represented by 1

and 0, respectively. double numbers are serialized following the IEEE-745 single-precision

floating-point standard.

• For tuple types, their elements are serialized individually, and then the results are combined.

• An array is serialized into an integer value that is the offset from the current address to the

actual storing region. The actual storing region starts with an integer value indicating the

number of the elements in the array. The serialization result of the elements is placed after

the integer.
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Note that the data type is not stored in the serialization result because the runtime system can

fetch the data type from the Quingo kernel source program.

This data serialization format has the advantage that the content is independent of absolute

memory addresses. Note that the actual array storage location is accessed with a relative address

offset. This format allows the serialized byte stream to be copied to any absolute address and

maintains the same semantics. This feature is essential for the HQCC model, as the host and the

control processor have different memory spaces, and the serialization result needs to be transferred

from the control processor to the host.

6 IMPLEMENTATION & EXAMPLES
6.1 Implementation
The runtime system embodies the Quingo framework. We have implemented

5
most of the runtime

system as an open-source library with ∼1600 lines of Python code, including all modules except

the pulse generator in the Runtime System block in Fig. 4. Pulse generators and hardware drivers

for real quantum devices are available in prevailing open-source quantum control environments,

such as PycQED [19]. They can be integrated into the runtime system using the reserved interface

when the Quingo framework is connected to actual quantum setups.

An open-source prototype of the Quingo compiler
6
has been implemented using the Xtext [54]

framework with ∼200 lines of Xtext code, ∼700 lines of Xsemantics [55] code, and ∼6000 lines

of Xtend code. The prototype compiler comprises a front end and a code generator. The front

end is automatically generated from a description of the Quingo syntax in Xtext and the Quingo

semantics in Xsemantics [55]. The output of the front end is an abstract syntax tree of the Quingo

program, which forms the input to the code generator. While traversing the nodes of the abstract

syntax tree, the code generator partially executes the quantum kernel using techniques such as

constant propagation and dead code elimination. This step can simplify the abstract syntax tree

of the quantum kernel by removing nodes whose values are known at static time. For nodes

corresponding to quantum operations or classical operations whose operands are unknown at

compile time (e.g., the value comes from a measurement of a qubit), the code generator emits

corresponding quantum or classical eQASM instructions, which will be eventually executed by the

control processor.

eQASM programs can be simulated by the quantum control architecture simulator CACTUS [45]

connected to a quantum state simulator, like QuantumSim [46]. Since CACTUS is a cycle-accurate

simulator, of which the simulation speed is relatively low, we developed a functional simulator,

PyCACTUS
7
for eQASM. PyCACTUS is implemented using ∼2000 lines of Python code.

We have also implemented tens of examples of Quingo applications with the host language being

Python including some algorithms and quantum experiments
8
.

Due to a lack of a linear intermediate representation like LLVM [56] in the prototype compiler,

it is difficult to perform global analysis (including timing analysis of quantum operations) or

transformation on the program. Hence, we postpone solving the timing constraint of Quingo

programs in a new compiler based on the multi-level intermediate representation (MLIR) [49],

which is currently under development. Adding control qubits to or inverting a quantum operation

would significantly improve the expressiveness of the Quingo language. This functionality has

5
The code of the runtime system can be found at https://github.com/quingo/runtime_system.

6
The code of the prototype compiler can be found at https://github.com/quingo/compiler_xtext.

7
The code of PyCACTUS can be found at https://github.com/gtaifu/PyCACTUS.

8
The Quingo examples can be found at https://github.com/quingo/quingo_examples.

https://github.com/quingo/runtime_system
https://github.com/quingo/compiler_xtext
https://github.com/gtaifu/PyCACTUS
https://github.com/quingo/quingo_examples


Quingo: A Programming Framework for HeterogeneousQuantum-Classical Computing with NISQ Features 27

not been implemented due to limited manpower and will be implemented once we reach a stable

enough compiler that can process the quantum-classical interaction with optimization.

6.2 Example
We take an example to illustrate how components in the Quingo framework work together

seamlessly. The kernel and host program of the example are shown in Code 9 and Code 10,

respectively. The kernel operation sum_random takes a list of at least two integers (arr) and a

boolean value (r) as parameters. It returns two values. The first one is the sum of integers in the

list arr . If r is false , the second one is 0. Otherwise, the second one is randomly chosen from

arr[0] or arr[1], with the random flag generated from measuring an equally superposed qubit

(lines 13 – 15).

After the host program calls the kernel with parameters (line 6 of Code 10), the runtime system

converts the given parameters into the corresponding data types in Quingo, and generate a main

operation which actually calls sum_random (Code 11). The phase manager then triggers the

compiler to compile related Quingo files and configuration files. During compilation, the compiler

performs optimization over the quantum kernel, and generates corresponding eQASM file (Code 12)

for execution. Since r is false , the if body can be directly eliminated via partial execution at

compile time. Together with constant propagation, other classical operations in the kernel can

also be eliminated. As a result, there are neither classical or quantum instructions generated from

sum_random . Note, when r is true, corresponding quantum and classical instructions will be

generated to perform dynamic selection (see Code 13).

After the quantum coprocessor finishes computation and gets the result, it should serialize and

store the result into the shared memory with a starting address of 0, which task is fulfilled by the

last instructions of the eQASM program (lines 12 – 16 of Code 12). These special instructions are

generated by the compiler when compiling the return statement of the main operation. Later, when

the host language tries to retrieve the kernel computation result using if_quingo.read_result()

(line 9 of Code 10), the runtime system retrieves the leading bytes in the shared memory (result

block), decodes them into the data types of the host language, and return them to the host program.

Since then, the host program can process the kernel computation result as required, such as print it

(line 10 of Code 10).

7 DISCUSSION
7.1 Quantum Experiment Support ofQuingo v.s. Other QPLs
The core goal of the Quingo language is to support quantum experiments and assist NISQ algorithms,

which differentiates Quingo from other QPLs or programming framework. To this end, the Quingo

language introduces mechanisms to support interacting with low-level details, including the usage

of opaque operations and the timing control of operations. As a result, the Quingo language becomes

a QPL that is not so high level compared with many other QPLs.

Timing control plays a key role in quantum experiments. Nevertheless, almost all existing QPLs

actively neglect the requirement on timing control since it is low-level hardware detail. An exception

is OpenQL, which supports controlling the timing of quantum operations using the wait statements.

However, wait statements can be cumbersome when used to describe the timing of multiple qubits

if program flow controls such as loops are required. Though being straightforward for a small

number of qubits, the complete semantics of wait statements is difficult to comprehend, which

may result in unexpected compilation results. The Quingo language proposed a timer-based timing

control scheme at the language level, which is more flexible than the wait-statement-based timing

control. The underlying model is the timed automata proposed by [57], of which the semantics
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Code 9. Quingo kernel implementing the accumulator and random number selector.
1 // kernel.qu
2 import config.json.*
3 import operations.*
4

5 operation sum_random(arr: int[], r: bool): (int , int) {
6 int sum = 0, i = 0, random = 0;
7 while (i < arr.length) {
8 sum += arr[i];
9 i += 1;
10 }
11

12 if (r) {
13 using(q: qubit) {
14 init(q); H(q);
15 if (measure(q)) { random = arr[0]; }
16 else { random = arr[1]; }
17 }
18 }
19 return (sum , random);
20 }

Code 10. Python host calling the quantum accumulator and random number selector.
1 # host.py
2 from qgrtsys import if_quingo
3 from pathlib import Path
4

5 kernel_file = Path(__file__).parent / "kernel.qu"
6 if not if_quingo.call_quingo(kernel_file , 'sum_random ', [2, 6, 8], False):
7 raise Error("failed to call the quantum kernel.")
8

9 res = if_quingo.read_result ()
10 print("result of add example is:", res)

Code 11. main operation generated by the runtime system.
1 operation main(): (int , int) {
2 int[] var0_arr = {2, 6, 8};
3 bool var1_bool = false;
4 return sum_random(var0_arr ,var1_bool);
5 }

Code 12. Generated eQASM code when the condition is false.
1 XOR r0, r0, r0
2 ADDI r1, r0, 1
3 LDI r2, 0x20000
4 LDUI r2, r2, 0x1
5 SW r0, 0x10000(r0)
6 FCVT.S.W f0, r0
7 # start of sum_random
8 # end of sum_random
9 ADDI r6, r0, 0 # a 'stack ' pointer to the shared memory , used for exporting
10 ADDI r7, r0, 0 # a 'heap ' pointer to the shared memory , used for exporting
11 # start exporting: (int ,int)
12 ADDI r8, r0, 0 # load sharedAddr to the base register: r8
13 ADDI r9, r0, 16 # exporting: int (sum = 16)
14 SW r9, 0x0(r8)
15 ADDI r10 , r0, 0 # exporting: int (random = 0)
16 SW r10 , 0x4(r8)
17 STOP

related to timing control is well defined, easy to understand, even with the presence of classical

constructs. As a result, the program with complex timing control could also be easier to write.



Quingo: A Programming Framework for HeterogeneousQuantum-Classical Computing with NISQ Features 29

The semantics of quantum operations in a quantum program is assumed to be well-defined in

most QPLs, although their implementation might be opaque. The Quingo language supports the

usage of opaque operations without well-defined quantum semantics and treats them as pulse(s)

applying on one or multiple qubits with a certain duration. A dedicated configuration system is

coupled with the Quingo language to bind opaque operations to concrete quantum semantics or

particular pulses, and opaque operations will be treated as black boxes during compilation if no

quantum semantics is provided.

7.2 Embedded v.s. External DSL for HQCC
While most quantum programming languages are implemented as eDSLs, such as Quipper, ProjectQ,

Qiskit, PyQuil, Cirq, and OpenQL, the Quingo framework advocates external DSLs for quantum

computing. The rationale is the intrinsic disadvantage of using eDSLs to describe real-time quantum-

classical interaction, which deeply roots in the life cycle of an eDSL-based quantum program.

By analyzing existing eDSLs for quantum computing, we observe that eDSLs usually provide a

library in the host language with an interface of several methods including:

(i) instantiating objects representing quantum circuits or programs,

(ii) adding operations or sub-circuits to construct the quantum program, and

(iii) compiling and executing the quantum program.

After being written with these methods, an eDSL-based quantum program is first compiled into a

classical binary by a classical compiler and then executed by the classical computer
9
. The classical

execution stage starts with some classical pre-processing followed by the construction of the kernel

program. Thereafter, the quantum compiler is triggered to optimize the kernel program. A quantum

binary forms the final output of both the quantum compilation stage and classical execution stage,

which is sent to the quantum coprocessor for execution. The life cycle of an eDSL-based quantum

program is shown in Fig. 6(a) (the classical pre-processing is not present in the classical execution

stage for simplicity).

However, built-in classical operations and control flow structures provided by the host language,

such as the addition operation and loops, cannot be translated into classical instructions in the

quantum binary. Take the loop as shown in Fig. 6(a) as an example. The loop structure in the host

program (a1) will be parsed into a classical IR format (a2) by the classical compiler and translated

into classical instructions (a3) including cmpl, jge, jmp, and so on. These classical instructions

are executed by the classical computer, resulting in multiple occurrences of the sub-circuit with

corresponding parameters in the quantum IR (a4), and hencemultiple rz gates in the quantum binary

(a5). That no classical instructions can be directly generated from the host language primitives

forms an obstacle in describing real-time quantum-classical interaction when using eDSLs for

quantum computing.

The quantum-IR-format classical operations or control flow structures are the keys to generate

classical instructions in the quantum binary. eDSLs like PyQuil introduces meta-programming

techniques such as the BIT data type and while_do function to build classical operations or control

flow structures in the quantum IR. As shown in Fig. 6(b), the eDSL source code utilizing meta-

programming (b1) is parsed into classical IR (b2) and translated into classical binary (b3). Classical

operations and control flow structure introduced by meta-programming will only be constructed

using dedicated data structure after the classical binary is executed. Hence, these constructs can go

through the classical binary layer and appear in the quantum IR (b4), which are finally translated

into classical instructions in the quantum binary (b5). However, this inevitably increases the code

9
For the sake of simplicity, we blur the difference between compiled languages and interpreted languages here and in Fig. 6.

The difference in these two kinds of languages does not affect the conclusion of this subsection.
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Loop in classical binary
(x86 format)

rz(0)      q[0]; 

rz(1 * PI) q[0];

rz(2 * PI) q[0]; 

rz(3 * PI) q[0]; 

rz(4 * PI) q[0]; 

rz(5 * PI) q[0]; 

rz(6 * PI) q[0]; 

rz(7 * PI) q[0]; 

rz(8 * PI) q[0]; 

rz(9 * PI) q[0]; 

QASM

Classical Compilation

Classical Execution

Quantum
Program

Construction

Quantum
Compilation

  ADD  r2, r0, r0

  ADDI r3, r0, 10

START:

  BGE  r2, r3, LOOP_END

  MULI f1, r2, PI

  rz(f1) q[0];

  ADDI r2, r2, 1

  J START

LOOP_END:

  ...

Quantum IR

Classical
Binary

1. sub_circuit(k)
2.  k = k + 1

k < 10

1. sub_circuit(k)
2.  k = k + 1

k < 10
Classical IR

Classical Execution

Quantum
Program

Construction

Quantum
Compilation

Quantum IR
Op: rz   0, 0 
Op: rz  PI, 0 
Op: rz 2PI, 0 
Op: rz 3PI, 0 
    ... 
Op: rz 9PI, 0

Quantum Compilation

Quantum IR

1. sub_circuit(k)
2.  k = k + 1

k < 10

(a): Built-in for loop in eDSL

(b): for loop implemented with meta-programming in eDSL

(c): for loop in external DSL

Classical Compilation

  ADD  r2, r0, r0

  ADDI r3, r0, 10

START:

  BGE  r2, r3, LOOP_END

  MULI f1, r2, PI

  rz(f1) q[0];

  ADDI r2, r2, 1

  J START

LOOP_END:

  ...

Classical IR 
Representation

(a1)

(a2)
(a3)

(a4)
(a5)

(b1)
(b2)

(b3) (b4)

(b5)QASM

QASM (c3)
(c2)

(c1)

Fig. 6. Compilation process of quantum programs with various loop implementations in an eDSL or external
DSL. (a) Loop implemented directly using built-in flow control structures in the host language of an eDSL;
(b) Loop implemented using meta-programming techniques in an eDSL; (c) Loop implemented using flow
control structures in an external DSL.

complexity and reduces its readability. Such inefficiency is clearly demonstrated by the PyQuil

implementation (Code. 14) of the same IPE algorithm as the Quingo description (Code 4), where the

former costs 44 lines of code while the latter only 24 lines. Also, describing structured programs

with meta-programming in eDSLs is much less readable than external DSLs. A reader can hardly

recognize the loop structure with its various components within lines 26 – 40 of Code 14 at first

glance.

To enable fast quantum-classical interaction and avoid complex source code, the Quingo frame-

work advocates using a classical language for the host program and an external DSL merely for

the quantum kernel. As NISQ qubits have very short coherence time, it is unlikely to interpret

and execute a quantum program on NISQ hardware. Hence, it is natural for QPLs to be compiled

languages other than interpreted languages. As shown in Fig. 6(c), the quantum compiler can parse

the quantum kernel described in an external DSL into the quantum IR directly. In this way, classical

operations and control flow structures can be kept in the quantum IR and finally translated into

classical instructions in the quantum binary. Both the Q# language and Quingo language adopt this

design.

Another advantage of external DSL is that it is not restricted by the syntax of an existing

language. For example, the ! operator in the Quingo language is used to denote resetting timers in

the following braces. This freedom is hard, if not impossible, to achieve when using an eDSL.
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7.3 HQCC Support ofQuingo v.s. Q#
The Q# language is also an external DSL and adopts a model similar to the refined HQCC model

including three levels, i.e., the off-line classical computation, quantum computation, and real-time

classical computation [17]. Since Q# aims to target large-scale quantum computation for future

hardware, there is no assumption about any hardware details, such as the latency difference between

two kinds of quantum-classical interaction, and the capability of the control processor. Hence, pro-

grammers are not explicitly guided to put heavy classical tasks without real-time interaction with

quantum operation in the classical host when programming with Q#. Take as an example the func-

tion EstimatePhase which estimates the phase of an oracle iteratively [58]. The only line of code in

this function for quantum computation is calling the function ApplyIterativePhaseEstimationStep,

which is sandwiched between classical tasks including integration and array manipulation which

does not require real-time interaction with quantum operations. In contrast, the control processor

in the refined HQCC model would have limited classical power. Correspondingly, the Quingo

language is designed with moderate classical processing capability. Hence, it can form an implicit

guide for the programmer to put classical tasks not requiring fast interaction with qubits to the

classical computer.

7.4 Program Life Cycle ofQuingo v.s.Quipper
Based on the restricted HQCC model, the Quipper program life cycle is divided into three phases,

including the compile time, circuit generation time, and circuit execution time (see section 4.3.1

in [30]). Classical operations in Quipper can be only performed by the classical computer at circuit

generation time, which cannot have fast interactions with quantum operations which are executed

at circuit execution time. To support dynamic lifting, it needs to assume that there is long-term

storage that can preserve qubits during the alternation between the circuit generation time and

circuit execution time. This life cycle is not suitable for programs based on the refined HQCC model

where fast interaction between classical and quantum operations is available. By utilizing the fast

interaction between the control processor and qubits, the six-phase quantum program life-cycle

model can naturally support dynamic lifting without assuming the long-term storage for qubits. As

a result, the six-phase quantum program life-cycle model can naturally support dynamic lifting

with nowadays available hardware.

7.5 Optimization via Semi-Static Compilation
Semi-static compilation for quantum kernels can further exploit the potential of HQCC architectures

to support HQCC. Semi-static compilation utilizes classical computation power to optimize the

quantum kernel, which can help improve the fidelity of quantum algorithms.

Semi-static compilation offloads the classical instructions that should be executed by the less

powerful control processor to the more powerful classical host. For example, the compiler running

on a classical computer performs aggressive optimization over the sum_random operation, resulting

in zero instructions that should be executed on the quantum coprocessor for this operation, as

shown by lines 7 – 8 in Code 12. Fewer operations executed by the control processor can lead to

two advantages in the NISQ era. First, with a possibly shorter quantum execution time, which is

highly dependent on the control processor execution time, the fidelity of the quantum program

could be improved. Second, the control processor has limited processing power and memory space

due to resource constraints. For example, most nowadays control processors or control devices

serving as a control processor are implemented with dedicated soft cores on FPGA [4, 6, 37, 59–62].

The semi-static compilation can offload some classical computation to the classical host via partial
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execution, which enables the programmer to describe the quantum kernel with more classical

computation power than what the control processor can offer.

The idea of performing aggressive optimization over the quantum program based on static

analysis and partial execution was first proposed by [21] with an implementation in ScaffCC based

on LLVM [56]. Since its design bears no control processor in mind, loop unrolling and procedure

cloning are extensively used during the compilation. The compiler cannot generate reliable code

describing quantum-classical interaction with timing constraints satisfied to support flow control

in real-time, and the size of the generated quantum code can be big.

8 CONCLUSION & FUTUREWORK
This paper summarizes three kinds of execution models that can depict quantum-classical inter-

action in most quantum programming languages. By analyzing the difference among these three

models, we found the refined HQCC model can best suit NISQ computing system implementa-

tion. The refined HQCC model clarifies the difference between two kinds of quantum-classical

interaction, i.e., the slow interaction between the classical host and quantum coprocessor, and the

fast interaction between classical operations and quantum operations in the quantum coprocessor.

To integrate and manage quantum and classical computing resources, required is a framework
more than a language for HQCC.

This paper proposes the Quingo framework at a system level based on the refined HQCC model.

The Quingo framework enables the programmer to code HQCC applications in a neat programming

model. With higher confidence, quantum programs described in this model can be mapped to a real

quantum computing system for execution with timing constraints satisfied. By introducing a novel,

six-phase quantum program life-cycle model based on the refined HQCC model, optimization space

of the quantum kernel is reserved for semi-static compilation, which could lay a foundation for

co-optimization of mixed quantum and classical computation.

With flexible timing control at the language level and a mechanism for primitive operation

definitions, the Quingo language can be used to describe a wide range of quantum experiments.

Compared to other quantum programming languages with many high-level features, the Quingo

language is a relatively low-level QPL. The Quingo language is expected to bridge the gap between

various quantum software and quantum experiments, which implies a closer description of quantum

algorithms to real quantum machines.

The next steps for Quingo include: introducing more high-level features to Quingo to ease the

programming of complex quantum algorithms, such as controlled quantum gate generation and

automatic uncomputation; developing a more powerful compiler for the Quingo language based on

some compilation framework, such as LLVM [56] or MLIR [49]; integrating the Quingo framework

with quantum control environments, such as PycQED [19]; and demonstrating its application in

quantum experiments with real hardware.

Hopefully, the Quingo framework could guide the design of an HQCC system enabling seamless

collaboration between quantum and classical software and hardware in the future.
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9 EXAMPLE QUINGO CODE

Code 13. Generated eQASM code when the condition is true.
1 XOR r0, r0, r0
2 ADDI r1, r0, 1
3 LDI r2, 0x20000
4 LDUI r2, r2, 0x1
5 SW r0, 0x10000(r0)
6 FCVT.S.W f0, r0
7 # start of sum_random
8 SMIS s0, {0}
9 MEASZ s0 # start of init
10 FMR r3, q0
11 ADD r4, r3, r0
12 BNE r4, r1, if_0_end
13 rx180 s0
14 if_0_end: # end of init
15 H s0 # H followed by msmt
16 MEASZ s0
17 FMR r5, q0 # r5 gets the random msmt result
18 ADDI r6, r0, 3
19 SW r6, 0x10022(r0)
20 BNE r5, r1, if_1_end
21 ADDI r7, r0, 5
22 SW r7, 0x10022(r0)
23 if_1_end:
24 LW r8, 0x10022(r0)
25 ADD r9, r8, r0
26 # end of sum_random
27 ADDI r10 , r0, 0 # a 'stack ' pointer to the shared memory , used for exporting
28 ADDI r11 , r0, 0 # a 'heap ' pointer to the shared memory , used for exporting
29 # start exporting: (int ,int)
30 ADDI r12 , r0, 0 # load sharedAddr to the base register: r12
31 ADDI r13 , r0, 8 # exporting: int (c = 8)
32 SW r13 , 0x0(r12)
33 SW r9, 0x4(r12) # exporting: int (random)
34 STOP

https://github.com/microsoft/Quantum/blob/main/samples/characterization/phase-estimation/BayesianPhaseEstimation.qs
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Code 14. PyQuil implementation of IPE.
1 def pyquil_ipe(prog: Program , controlled_oracle , m):
2 eigenstate = 1
3 ancilla = 0
4

5 power = prog.declare('power ', 'REAL')
6 theta = prog.declare('theta ', 'REAL')
7 prog += MOVE(theta , 0.0)
8 prog += MOVE(power , float(2 ** (m - 1)))
9

10 ro_es = prog.declare('ro_es ', 'BIT') # prepare the eigenstate |1>
11 prog += MEASURE(eigenstate , ro_es)
12 prog += NOT(ro_es)
13 prog.if_then(ro_es , Program(X(eigenstate)))
14

15 ro_ancilla = prog.declare('ro_ancilla ', 'BIT')
16 prog += MEASURE(ancilla , ro_ancilla)
17

18 k = prog.declare('k', 'INTEGER ') # start of for Loop
19 prog += MOVE(k, m)
20 flag = prog.declare('flag', 'BIT')
21 prog += GT(flag , k, 0)
22

23 loop_body = Program ()
24 prog.if_then(ro_ancilla , Program(X(ancilla))) # reset ancilla to |0>
25

26 loop_body += H(ancilla)
27 loop_body += controlled_oracle(ancilla , eigenstate , power)
28 loop_body += PHASE(theta , ancilla) # Z(theta_k)
29 loop_body += H(ancilla)
30 loop_body += MEASURE(ancilla , ro_ancilla)
31

32 loop_body += DIV(theta , 2)
33 if_branch = Program(ADD(theta , -0.5 * pi))
34 loop_body.if_then(ro_ancilla , if_branch)
35

36 loop_body += DIV(power , 2)
37

38 loop_body += SUB(k, 1)
39 loop_body += GE(flag , k, 0)
40 prog.while_do(flag , loop_body) # end of for loop
41

42 ro = prog.declare('ro', 'REAL') # try to return the estimated phase
43 prog += MUL(theta , -1)
44 prog += MOVE(ro, theta)


	Abstract
	1 Introduction
	1.1 Support for Heterogeneous Quantum-Classical Computation
	1.2 Support for Quantum Experiments
	1.3 Contribution

	2 Background
	2.1 HQCC Algorithms
	2.2 Execution Models of Quantum Programming Languages

	3 Overview of the Quingo Framework
	3.1 Design Principles
	3.2 Design Overview

	4 Key Techniques in the Quingo Framework
	4.1 Quantum Program Life Cycle
	4.2 Runtime System
	4.3 Requirements on the Host Program
	4.4 Requirements on the Quantum Compiler

	5 The Quingo Language
	5.1 Module System
	5.2 Type System
	5.3 Operations
	5.4 Timing Control
	5.5 Data Exchange

	6 Implementation & Examples
	6.1 Implementation
	6.2 Example

	7 Discussion
	7.1 Quantum Experiment Support of Quingo v.s. Other QPLs
	7.2 Embedded v.s. External DSL for HQCC
	7.3 HQCC Support of Quingo v.s. Q#
	7.4 Program Life Cycle of Quingo v.s. Quipper
	7.5 Optimization via Semi-Static Compilation

	8 Conclusion & Future Work
	Acknowledgments
	References
	9 Example Quingo Code

