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Abstract

It is a current trend of sparse architectures employed for superconducting quan-
tum chips, which have the advantage of low coupling and crosstalk properties.
Existing qubit mapping algorithms do not take the sparsity of quantum archi-
tectures into account. To this end, we propose a qubit mapping method based
on binary integer programming, called QMBIP. First, we slice a given quan-
tum circuit by taking into account the sparsity of target architectures. Then,
the constraints and the objective function are formulated and rendered to the
binary integer programming problem by matrix transformation. The behavior of
a SWAP gate is characterized by an elementary row transformation on the map-
ping matrix between the physical and logical qubits. To reduce the search space,
we introduce path variables and isomorphic pruning, as well as a look-ahead
mechanism. Finally, we compare with typical qubit mapping algorithms such as
SABRE and SATMAP on the sparse architectures ibmq sydney, ibmq manhattan,
ibmq singapore, and a dense architecture ibmq tokyo. Experiments show that
QMBIP effectively maintains the fidelity of the compiled quantum circuits. For
example, on ibmq sydney, the fidelity of the quantum circuits compiled by our
approach outperforms SABRE and SATMAP by 53.9% and 46.8%, respectively.
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1 Introduction

Over the past four decades, quantum computing has been evolving at a rapid pace. In
1980, Paul Benioff proposed the quantum mechanical model of Turing machines [1].
During the last two decades, tech giants have developed prototypes of quantum com-
puters aiming to solve specific tasks. For example, in late 2023, IBM released the
first-ever 1,000-qubit superconducting quantum chip “Condor”1.

There are several ways of building a quantum computer, e.g., ion-trap quan-
tum computers [2], superconducting quantum circuits [3] and photonic quantum
devices [4]. Superconducting quantum circuits are widely investigated because they
enjoy good scalability, but in which a qubit is only connected to its adjacent qubits.
Table 1 shows the evolution of the topology and the average qubit connectivity for
superconducting quantum processors. As we can see, the trend is to lower the average
connectivity of qubits. The current adoption of such a sparse architecture of quan-
tum chips brings more scalability, less error rates, and more opportunities to explore
error-correcting codes.

Table 1 The evolution of the topology for superconducting quantum systems (left to
right)

processor Penguin v1 Penguin v2 Penguin v4 Falcon r42 Aspen-43

architecture

average qubit connectivity 3.9 3.7 2.3 2.1 2.25

The design of quantum algorithms usually leaves aside hardware constraints, but
physical constraints must be considered when compiling these algorithms. It is well
known that qubit mapping is an NP-complete problem [5]. Paler [6] has shown that
initial mappings have an important impact on qubit mapping. SABRE [7] depends
on a random initial mapping. SAHS [8] uses an annealing algorithm to find an initial
mapping, but it is unstable. Siraichi et al. constructed a weighted dependence graph [5]
according to the degree of qubits. Subgraph isomorphism performs well in the ini-
tial mapping, which considers the whole quantum circuit [9]. Much previous work has
reduced qubit mapping problems to existing ones, such as AI planning [10, 11], integer
programming [12] and boolean satisfiability problem (SAT) [13, 14], and then used cor-
responding tools to find an optimal solution for the problem in an acceptable amount
of time consumption. Different from the above approaches, in this work we employ the
method of encoding a path as a variable, instead of the usual approach of encoding a
SWAP gate as a variable, which greatly prunes the search space. Exact algorithms
are often sensitive to the size of a quantum circuit as well as the chip architecture. In
order to handle larger circuits, heuristic algorithms for qubit mapping have appeared

1https://www.nature.com/articles/d41586-021-03476-5, accessed 15 March 2023.
2https://research.ibm.com/blog/heavy-hex-lattice/, accessed 17 December 2023.
3https://qcs.rigetti.com/qpus, accessed 17 December 2023.
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in the literature, which selects a path towards satisfying the objective function. Some
heuristic algorithms aim at inserting as few SWAP gates as possible [5, 7–9, 15–18],
maximizing the fidelity of the compiled circuits [19] or minimizing the overall circuit
latency [20, 21]. However, we observed that existing heuristic algorithms do not per-
form well on circuits of sparse architecture if we consider the fidelity of the compiled
quantum circuits. Note that fidelity is the most accurate to evaluate the quality of
quantum circuits, which is affected by the total execution time of the circuit and gate
errors [22].

In the current work, we propose a solution for qubit mapping in sparse architec-
tures, which is based on binary integer programming. The mapping between logical
and physical qubits can be expressed as a matrix whose entries are either 0 or 1.
Then the behavior of a SWAP gate is equivalent to an elementary row transforma-
tion on the mapping matrix, which exchanges two rows of the matrix. The constraints
and objective function of qubit mapping can be encoded into a binary integer pro-
gramming (BIP) problem. As the scale of quantum circuits increases, it is difficult
to directly solve the BIP problem in an acceptable amount of time. Therefore, we
slice the quantum circuit into smaller ones step by step until sub-circuits are pro-
duced that conform to certain patterns. In order to improve the scalability, QMBIP
employs other techniques such as path variables and isomorphic pruning to reduce the
search space. Isomorphic pruning is a look-ahead mechanism driven by the structure of
sliced sub-circuits for the benchmarks. We compare QMBIP with typical qubit map-
ping algorithms such as SABRE and SATMAP on some sparse architectures including
those used in IBM’s chips ibmq sydney, ibmq manhattan, ibmq singapore and a dense
one ibmq tokyo. Experiments show that QMBIP has a better performance in terms of
fidelity. The main contributions of this work are as follows.

• We first consider the qubit mapping problem in sparse architectures and propose
a way of slicing quantum circuits by taking into account the sparsity of target
architectures.

• We propose an initial mapping algorithm considering the first interactions between
any two qubits and encode the constraints and the objective function of qubit
mapping into a BIP problem by matrix transformation.

• We use other techniques including path variables and isomorphic pruning to reduce
the search space. Our approach turns out to be effective in solving the qubit map-
ping problem in sparse architectures while maintaining the fidelity of the compiled
quantum circuits at a reasonably high level.

The rest of this article is organized as follows. Section 2 reviews basic notions and
notations of quantum computing. Section 3 introduces the problem of qubit mapping
and the detailed solution. Section 4 uses other techniques for pruning and optimizing.
Section 5 reports the experimental results. We conclude in the last section and discuss
possible future work.
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2 Preliminaries

In this section, we introduce some notions and notations of quantum computing. Let
N and C denote the set of all natural and complex numbers, respectively.

Classical information is stored in bits, while quantum information is stored in
qubits. Besides two basic states |0⟩ and |1⟩, a qubit can be in any linear superposition
state |ϕ⟩ = a |0⟩+ b |1⟩, where a, b ∈ C satisfy the condition |a|2 + |b|2 = 1. The state
|ϕ⟩ is in the state |0⟩ with probability |a|2 and in the state |1⟩ with probability |b|2. In a
quantum circuit, each line represents a wire. The wire does not necessarily correspond
to a physical wire but may represent the passage of time or a physical particle that
moves from one location to another through space. The scale of a quantum circuit is
the number of 2-qubit gates. The interested reader can find more details of these gates
from the standard textbook [23].

q1 • • • • •
q2 • •
q3 • •
q4 •

g1 g2 g3 g4 g5 g6 g7 g8 g9 g10

(a)

q1

q2

q3

q4

(b)

Fig. 1 (a) A quantum circuit; (b) The first interactions between any two qubits

The architecture of a quantum chip called a coupling graph is denoted by G =
(Q,E), where Q is a set of physical qubits and E is an edge set between physical qubits.
The letter q (resp. Q) denotes a logical (resp. physical) qubit set, where q = {qi}i∈I

and Q = {Qj}j∈J for some index sets I and J . A path Q1 → Q2 → . . .→ Qn consists
of a set of transformations Qi → Qi+1, (1 ≤ i ≤ n − 1) with each transformation
denoting a SWAP gate. A CX gate is a pair g = (qc, qt) for c ̸= t and c, t ∈ I, where
qc is the control qubit and qt is the target qubit. The mapping between the physical
qubits and the logical qubits is a |Q| × |q|-dimensional matrix M , where each row
(resp. column) corresponds to a physical (resp. logical) qubits. The entry Mj,i = 1
means that the logical qubit qi is mapped to the physical qubit Qj , otherwiseMj,i = 0,
satisfying ∥Mi ∥1 = 1. The symbol ∥ · ∥1 denotes the 1-norm of a vector. The set
R(qi) = {Qj |Mj,i ̸= 0} consists of the candidate physical qubits mapped by logical
qubit qi. The symbol R(g) denotes a set {(Q1, Q2) | Q1 ∈ R(qc), Q2 ∈ R(qt), and Q1 ̸=
Q2}, which contains all the pairs of candidate physical qubits for the CX gate g. The
first interaction represents the first CX gate acting on two qubits. In Fig. 1 (b), the
black edges (q1, q2), (q1, q3), (q2, q3) correspond to the CX gate g1, g3, g2 in Fig. 1 (a),
respectively, which are in the first slice. The blue edge (q2, q4) corresponds to the gate
g9. Fig. 2 shows the architecture of the 27-qubit quantum chip ibmq sydney, where the
nodes represent the physical qubits and the edges represent the interactions between
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two physical qubits. The label on each edge is the fidelity of a CX gate operating on
the endpoints. The fidelity of a quantum circuit is the product of the fidelities of all
the gates.
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Fig. 2 The architecture of the 27-qubit quantum chip ibmq sydney

The general form of a binary integer programming problem is as follows,

minimize

n∑
i=1

cixi (1)

such that:

n∑
i=1

aixi = b and

n∧
i=1

(xi ∈ {0, 1}) (2)

where the constant coefficients ai, ci, b belong to [0, 1], (1) is the objective function
and (2) is the constraint. To encode the constraints of a slice into a dependency chain
of variables, we define a boolean function,

f(x1, x2, . . . , xk) = x1 ∧ x2 ∧ . . . ∧ xk

where x1, x2, . . . , xk ∈ {0, 1} are binary variables. Furthermore, when the input
consists of matrices and constants, the general form of f is as follows,

f(X1, . . . ,Xl, c̃, x1, . . . , xk) =
[
f(X1

ij , . . . ,X
l
ij , c̃, x1, . . . , xk, )

]
ij

where c̃ = c1, c2, . . . , cn ∈ {0, 1} are constants and X1, . . . ,Xl ∈ {0, 1}|Q|×|Q|. Note
that the boolean constraints can be linearized.

3 Qubit Mapping

The qubit mapping problem mainly consists of initial mapping and qubit mapping
adjustment, which is defined as follows.
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Definition 3.1 (The Qubit Mapping Problem [5]). Input: a coupling graph G =
(Q,E) and a list Ψ = (q × q)n, n ≥ 1, of n control relations between logical qubits
q, an integer KC ≥ 0, a list of allowed quantum transformations θ, and a function
C : θ → N that gives the cost to implement each transformation. Output: Yes, if we
can produce a version of Ψ that complies with G with transformations whose total
cost does not exceed KC .

3.1 Slicing

The triangle pattern is our criterion for slicing in the topology of a quantum circuit.
The reasons are as follows.

• The time cost of solving a BIP problem encoded by the whole circuit is mainly
affected by the scale of quantum circuits and target architectures.

• Compiling a quantum circuit on a sparse architecture typically needs to insert some
SWAP gates as soon as the topology of the CX gates forms a triangle.

• There are many consecutive slices with isomorphic interactions on the same qubit
set, called similar slices, which are the cornerstone of the look-ahead mechanism.

Example 3.1. The topology of the quantum circuit in Fig. 1 (a) is shown in Fig.
3. The green nodes represent incoming wire nodes and the red ones represent outgoing
wire nodes. The remaining nodes are 2-qubit gates. The label on a directed edge is the
operation qubit of the successor node. The in-degree of each gate is equal to the out-
degree. We slice the circuit topology based on the triangles marked by the blue lines
in Fig. 3. The set of slices is {{g1, g2, g3}, {g4, g5, g6}, {g7, g8, g9, g10}}. Note that the
gates g7 and g8 have the same operational qubits, which are sliced into the third slice.
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q3

q2

q3

g3
q1
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g4
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q2 g5

q3
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q3q1
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q2

q1 g8

q2

q1

q4

g9

q4

q2

g10
q4

q1

q4

q1q3

q2

q3

q2

q1

q4

Fig. 3 The topology of the quantum circuit in Fig. 1 (a)

3.2 Initial Mapping

For different physical architectures, there are different initial mapping methods. For
example, weighted dependence graph [5] and subgraph isomorphism of the whole
quantum circuit [8] are related to the degree of nodes, which are suitable for dense
architectures such as ibmq tokyo with an average qubit connectivity of 3.9. In sparse
architectures with an average qubit connectivity of 2.1, the initial mapping may be
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frequently changed during the process of circuit compilation, even though the inter-
actions of all gates are considered in the initial mapping. Thus, we only consider the
first interactions between any two qubits for constructing an initial mapping. First, we
find the set of maximal isomorphic subgraphs between the interactions and the target
architecture. Then, the matched isomorphic subgraphs are filtered by the sum of the
fidelities of each matched physical qubit and its neighbors. Here, we take the sum of
those fidelities, which intuitively mimics the degrees of the relevant nodes in the cou-
pling graph. Finally, the remaining nodes are mapped to the physical nodes with the
closest degree on the coupling graph.

Algorithm 1 Constructing the initial mapping

Input: The sliced quantum circuit C, the edge set E of the target architecture.
Output: A qubit mapping matrix M .
1: Gc ← compute the first interactions between any two qubits in quantum circuit C;
2: Ge ← compute a maximal isomorphic mapping between Gc and E, filtered by the

maximum sum of the fidelities of each matched physical qubit and its neighbors;
3: for all the unmapped logical qubit q do
4: Nq ← compute the mapped physical qubits of the neighbors of q in the

interactions Gc;
5: Np ← compute the unmapped neighbors of the physical qubits in Nq;
6: Ge ← Ge ∪ {q ↔ n|n ∈ Np and with the closest degree to q};
7: end for
8: M ← convert the mapping Ge to a 0–1 matrix;
9: return M ;

Example 3.2. Fig. 1 (b) shows the interactions of the first slice {(q2, q1), (q3, q2),
(q1, q3)} interacting with the remaining node q4, where the blue line is the first inter-
action (q4, q2) between the remaining qubit q4 and the first slice. There are some
maximum common subgraphs {{q1 ↔ Q1, q2 ↔ Q2, q4 ↔ Q3}, {q1 ↔ Q2, q2 ↔
Q3, q4 ↔ Q4}, · · · } between the interactions and the target architecture ibmq sydney.
We use the largest sum of degrees to filter out the maximum common subgraphs with the
highest fidelity. The sum of fidelities of the partial mapping {q1 ↔ Q9, q2 ↔ Q12, q4 ↔
Q15} is 2× (0.988 + 0.992 + 0.991 + 0.991 + 0.994 + 0.994 + 0.994 + 0.993) = 15.874,
which is the sum of each label of mapped nodes {Q9, Q12, Q15} in Fig. 2. The qubit q3
is still not mapped, which interacts with the mapped qubits q1 and q2. Thus the qubit
q3 should be mapped to one of the unmapped neighbors {Q6, Q10} of physical qubits
R(q1) ∪ R(q2) = {Q9, Q12}. The qubit q3 is mapped to the physical qubit Q6 with the
closest degree. The initial mapping becomes {q1 ↔ Q9, q2 ↔ Q12, q3 ↔ Q6, q4 ↔ Q15}.

3.3 Constriants

The constraints of qubit mapping refer to the injective mapping from logical qubits to
physical ones and the logical gates are executable in physical devices. The executable
constraints focus on the interactions between logical gates and the interactions between
physical qubits.
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3.3.1 Injective Constraint

The mapping from logical qubits to physical ones is injective in which the sum of each
column of the mapping matrix M is 1, and the sum of each row is not greater than
1, i. e.,

|q|∧
i=1

|Q|∑
j=1

Mj,i = 1 and

|Q|∧
j=1

|q|∑
i=1

Mj,i ≤ 1.

Suppose a SWAP gate acts on a pair of qubits (Qm, Qn). Its effect is to exchange
the m-th and n-th rows of matrix M . Based on this observation, we use a |Q| ×
|Q|-dimensional elementary matrix to describe a SWAP gate.
Example 3.3. We continue to consider the Example 3.2, focusing on the effect of
a SWAP gate on the initial mapping {q1 ↔ Q9, q2 ↔ Q12, q3 ↔ Q6, q4 ↔ Q15}. A
SWAP gate acts on the qubit Q9 and Q12, which is reflected by the initial mapping
matrix M27×4 multiplied by an elementary matrix P27×27,

P =



9 10 11 12

. . .
.
.
.

.

.

.
.
.
.

.

.

.
. . .

6 · · · 0 0 0 0 · · ·

7 · · · 0 0 0 0 · · ·

8 · · · 0 0 0 0 · · ·

9 · · · 0 0 0 1 · · ·

10 · · · 0 1 0 0 · · ·

11 · · · 0 0 1 0 · · ·

12 · · · 1 0 0 0 · · ·

13 · · · 0 0 0 0 · · ·

14 · · · 0 0 0 0 · · ·

15 · · · 0 0 0 0 · · ·
. . .

.

.

.
.
.
.

.

.

.
.
.
.

. . .



,M =



1 2 3 4

.

.

.
.
.
.

.

.

.
.
.
.

6 0 0 1 0

7 0 0 0 0

8 0 0 0 0

9 1 0 0 0

10 0 0 0 0

11 0 0 0 0

12 0 1 0 0

13 0 0 0 0

14 0 0 0 0

15 0 0 0 1

.

.

.
.
.
.

.

.

.
.
.
.



,PM =



1 2 3 4

.

.

.
.
.
.

.

.

.
.
.
.

6 0 0 1 0

7 0 0 0 0

8 0 0 0 0

9 0 1 0 0

10 0 0 0 0

11 0 0 0 0

12 1 0 0 0

13 0 0 0 0

14 0 0 0 0

15 0 0 0 1

.

.

.
.
.
.

.

.

.
.
.
.



.

3.3.2 Executable Constraint

Note that 2-qubit gates can only be executed on two adjacent physical qubits and a
sequence of SWAP gates can exchange the state of a qubit to any connected physical
qubit. We use the gray code algorithm [24] to compute the set P of shortest paths
that can exchange the states of a qubit pair (Qm, Qn) ∈ R(g) to any target one
(Qs, Qr) ∈ E filtered by the fidelities, where g = (qc, qt) and 1 ≤ m,n, s, r ≤ |Q|. Each
path Pk ∈ P can be represented by a matrix Pk, which is the product of a sequence
of elementary matrices Pk = Pk,|Pk| · · ·Pk,2Pk,1, that acts on the mapping matrix M
and results in a mapping matrix M ′

k after the adjustments,

M ′
k = PkM . (3)
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Each shortest path is considered as an option. We use a binary variable x ∈ {0, 1}
to indicate that either the path is chosen (x = 1) or not (x = 0). The path Pk ∈ P
moves the state of qubits Qm, Qn to the qubits Qs, Qr, which is indicated by the
variable xk ∈ {0, 1}, satisfying ∥x ∥1 = 1, for x = [x1, . . . , x|P |]

⊤ ∈ {0, 1}|P |. Whether
the path Pk ∈ P is chosen depends on not only the variable xk = 1, but also the truth
value of the current mapped qubit pair in the mapping matrix, i. e. Mm,c = 1 and
Mn,t = 1. In summary, the path variable vk is defined as

vk = f(Mm,c,Mn,t, xk). (4)

Example 3.4. For the quantum circuit in Fig. 1 (a), the gate g1 is executable,
while the second gate g2 is not executable. The current qubit pair set of g2 is R(g2) =
{(Q6, Q12)}, and the target one is in the set E. We get the set of shortest paths
P = {P1, P2} filtered by the fidelity limitation 0.956, where P1 = {Q12 → Q9 →
Q6}, P2 = {Q6 → Q9 → Q12}. The binary variables x1 and x2 represent the paths P1

and P2, respectively, satisfying the condition x1 + x2 = 1. The path variable of P1 is
v1 = f(M6,3,M12,2, x1) = f(1, 1, x1), where M6,3 = M12,2 = 1. Similarly, the path
variable of P2 is v2 = f(M6,3,M12,2, x2) = f(1, 1, x2). If the constraints x1 = 0 and
x2 = 1 hold then we also have v1 = 0 and v2 = 1, which means that the state of qubit
pair (Q6, Q12) is swapped to the qubit pair (Q9, Q12) following the path P2.

For each path P1, . . . , P|P |, there is a sequence of matrixM ′
1, . . . ,M

′
|P | correspond-

ing to it, respectively. The matrix M ′′
k is combined by the path variable vk and the

matrix M ′
k via the function f ,

M ′′
k = f(M ′

k, vk) =

{
M ′

k if vk = 1,

0 otherwise.
(5)

When the value of the path variable vk is 1, the matrix M ′′
k is equivalent to M ′

k,
otherwise M ′′

k is set to be 0. The matrices M ′′
1 , ...,M

′′
|P | are gathered as the mapping

matrix M ′′ =
∑|P |

k=1 M
′′
k . Note that all of the path variables satisfy ∥v ∥1 = 1, where

v = [v1, . . . , v|P |]
⊤ ∈ {0, 1}|P |.

Example 3.5. Now let us continue to consider the Example 3.4. We only encode
the executable constraint of the gates. For the gate g2, the paths P1 and P2 can be
represented by the elementary row transformations P1 and P2, respectively,

P1 =



9 10 11 12

. . .
.
.
.

.

.

.
.
.
.

.

.

.
. . .

9 · · · 0 0 0 1 · · ·

10 · · · 0 1 0 0 · · ·

11 · · · 0 0 1 0 · · ·

12 · · · 1 0 0 0 · · ·
. . .

.

.

.
.
.
.

.

.

.
.
.
.

. . .


27×27

,P2 =



6 7 8 9

. . .
.
.
.

.

.

.
.
.
.

.

.

.
. . .

6 · · · 0 0 0 1 · · ·

7 · · · 0 1 0 0 · · ·

8 · · · 0 0 1 0 · · ·

9 · · · 1 0 0 0 · · ·
. . .

.

.

.
.
.
.

.

.

.
.
.
.

. . .


27×27

.
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After the elementary row transformation P1 and combining with corresponding path
variable v1, we get the mapping matrices M ′

1 = P1M and M ′′
1 = f(M ′

1, v1),

M
′
1 =



1 2 3 4

.

.

.
.
.
.

.

.

.
.
.
.

6 0 0 1 0

7 0 0 0 0

8 0 0 0 0

9 0 1 0 0

10 0 0 0 0

11 0 0 0 0

12 1 0 0 0

13 0 0 0 0

14 0 0 0 0

15 0 0 0 1

.

.

.
.
.
.

.

.

.
.
.
.


27×4

,M
′′
1 =



1 2 3 4

.

.

.
.
.
.

.

.

.
.
.
.

6 0 0 f(1, v1) 0

7 0 0 0 0

8 0 0 0 0

9 0 f(1, v1) 0 0

10 0 0 0 0

11 0 0 0 0

12 f(1, v1) 0 0 0

13 0 0 0 0

14 0 0 0 0

15 0 0 0 f(1, v1)

.

.

.
.
.
.

.

.

.
.
.
.


27×4

.

Similarly, after the elementary row transformation P2 and combining with correspond-
ing path variable v2, we get the matrices M ′

2 and M ′′
2 = f(M ′

2, v2), respectively,

M
′
2 =



1 2 3 4

.

.

.
.
.
.

.

.

.
.
.
.

6 1 0 0 0

7 0 0 0 0

8 0 0 0 0

9 0 0 1 0

10 0 0 0 0

11 0 0 0 0

12 0 1 0 0

13 0 0 0 0

14 0 0 0 0

15 0 0 0 1

.

.

.
.
.
.

.

.

.
.
.
.


27×4

,M
′′
2 =



1 2 3 4

.

.

.
.
.
.

.

.

.
.
.
.

6 f(1, v2) 0 0 0

7 0 0 0 0

8 0 0 0 0

9 0 0 f(1, v2) 0

10 0 0 0 0

11 0 0 0 0

12 0 f(1, v2) 0 0

13 0 0 0 0

14 0 0 0 0

15 0 0 0 f(1, v2)

.

.

.
.
.
.

.

.

.
.
.
.


27×4

.

Finally, we get the mapping matrix M ′′ by combining with the elementary row
transformations P1 and P2,
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M
′′

= M
′′
1 + M

′′
2 =



1 2 3 4

.

.

.
.
.
.

.

.

.
.
.
.

6 f(1, v2) 0 f(1, v1) 0

7 0 0 0 0

8 0 0 0 0

9 0 f(1, v1) f(1, v2) 0

10 0 0 0 0

11 0 0 0 0

12 f(1, v1) f(1, v2) 0 0

13 0 0 0 0

14 0 0 0 0

15 0 0 0 f(1, v1) + f(1, v2)

.

.

.
.
.
.

.

.

.
.
.
.


27×4

.

where the entry f(1, v1) + f(1, v2) of matrix M ′′ equals to 1, since either v1 = 1 or
v2 = 1 holds. So are the two nonzero entries f(1, v1) and f(1, v2) in the columns of
matrix M ′′. Thus, the constraints for the quantum gate g2 are as follows,

x1 + x2 = 1,

v1 + v2 = 1,

x1, x2, v1, v2 ∈ {0, 1}.

For the third gate g3 = (q1, q3), the qubits q1 and q3 are mapped to R(q1) =
{Q6, Q12} and R(q3) = {Q6, Q9}, respectively. The set of currently mapped qubit pairs
is R(g3) = {(Q6, Q9), (Q12, Q6), (Q12, Q9)}. Then there are four paths P = {P3 =
{Q6 → Q9}, P4 = {Q12 → Q9 → Q6}, P5 = {Q6 → Q9 → Q12}, P6 = {Q12 → Q9}}
filtered by the fidelity limitation 0.956. The path variables are as follows,

v3 = f(M6,1,M9,3, x3) = f(f(1, v2), f(1, v2), x3),

v4 = f(M12,1,M6,3, x4) = f(f(1, v1), f(1, v1), x4),

v5 = f(M12,1,M6,3, x5) = f(f(1, v1), f(1, v1), x5),

v6 = f(M12,1,M9,3, x6) = f(f(1, v1), f(1, v2), x6) = 0. (6)

Finally, the constraints of the gate g3 are as follows,
x3 + x4 + x5 + x6 = 1,

v3 + v4 + v5 + v6 = 1,

x3, x4, x5, x6, v3, v4, v5, v6 ∈ {0, 1}.
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3.4 Objective Function

The most accurate metric for evaluating a compiled circuit is the fidelity of the gener-
ated circuit, which is affected primarily by the error rate of the gates in the circuit and
the error caused by decoherence. The objective function considers only the fidelity of
each path,

maximize

n∑
i=1

|Pi|∑
k=1

wkvk,

where n is the number of gates in a slice and |Pi| is the size of the shortest path set
for the i-th gate. The weight wk is the fidelity of the path indicated by the variable
vk. By simply modifying the label of each edge on the architecture to a constant e,
where 0 < e < 1, the objective function is extended to the least number of 2-qubit
gates inserted. We summarize the encoding procedure in Algorithm 2.

Algorithm 2 Encoding into binary integer programming

Input: A slice of the quantum circuit G, a qubit mapping matrix M , the edge set E
of the target architecture and the fidelity limitation W .

Output: A constraint set T and the objective function F .
1: F ← 0 and T ← ∅;
2: for all g in G do
3: if g is a 2-qubit gate then
4: M ′′ ← 0;
5: P ← compute the set of the shortest paths from each qubit pair (Qm, Qn) ∈

R(g) to any edge in E filtered by the fidelity limitation W ;
6: let x = [x1, . . . , x|P |]

⊤ be a vector of binary variables and v = [v1, . . . , v|P |]
⊤

be a vector of path variables for each path Pk ∈ P as defined in (4);
7: for k ← 1 to |P | do
8: M ′

k ←M ;
9: Qm, Qn ← the currently mapped qubit pairs of Pk;

10: let w be the fidelity of the path Pk;
11: compute the mapping matrix M ′

k along the path Pk by (3) and obtain
M ′′

k by combining M ′
k and path variable vk as defined in (5);

12: F ← F + w · vk;
13: M ′′ ←M ′′ +M ′′

k ;
14: end for
15: M ←M ′′;
16: T ← T ∪ {∥v∥1 = 1, ∥x∥1 = 1};
17: end if
18: end for
19: return T and F ;

Example 3.6. Continuing to the Example 3.5, we consider encoding the objective
function. For each path variable, the weight is the fidelity of that characterized path.
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Thus, the objective function for the first slice is as follows,

F = 0.962v1 + 0.956v2 + 0.988v3 + 0.962v4 + 0.956v5 + 0.991v6.

The solution of the first slice is x1 = 0, x2–x3 = 1, x4–x6 = 0. That is a SWAP gate
acts on the qubits Q6 and Q9 inserted before the gate g2. Similarly, the constraints and
objective of each slice are encoded into a BIP problem and solved. Then the compiled
quantum circuit is as shown in Fig. 4.

Q9 × • × × × •
Q12 • × • × • • ×
Q6 × • • • ×
Q15 • ×

g′1 g′2 g′3 g′4 g′5 g′6 g′7 g′8 g′9 g′10

Fig. 4 The compiled quantum circuit

3.5 Complexity

The time complexity of our compilation is determined by the pruning strength. For a
quantum gate g, there are |R(g)|×|E| search paths. The times complexity of encoding
a quantum circuit C is |R(g)| × |E| × |C|, where |C| is the scale of quantum circuit C.

4 Efficiency

4.1 Pruning

In our approach, the number of variables is related to the size of the shortest path
set. In the worst case, there are |R(g)| × |E| shortest paths for encoding a gate where
|R(g)| = |Q| × |Q| − 1. First, we consider pruning the set of target qubit pairs E by
isomorphism, called isomorphic pruning, since pruning the currently mapped qubits set
R(g) will affect the existing variables. Some heuristics with a look-ahead mechanism
consider unexecutable gates in the objective function. We observed existing similar
slices in quantum circuits, which is the cornerstone of the look-ahead mechanism in
our approach. The isomorphic edges between the interactions of the similar slice and
the target architecture are considered as the target qubit pairs, which not only satisfies
the execution of the gates in that slice but also takes the following similar slices into
account, which is a look-ahead mechanism. When the gates in a slice are mapped, the
gates in the next similar slice are also mapped in the maximum isomorphic subgraph,
which only needs inserting a few SWAP gates. The scale of target qubit pairs of a
slice reduces from |G| × |E| to several maximum isomorphic subgraphs, where |G| is

13



the number of matched gates in a slice. Other gates still use the set E as the set of
target qubit pairs and the paths Pk ∈ P that have a low fidelity will be filtered out.
Example 4.1. In Example 3.6, the first and second slices are similar, since their
interactions on the same qubit set are isomorphic. The maximum isomorphic subgraph
of the first slice filtered by the maximum fidelity remains {(Q9, Q12), (Q12, Q15)}, which
is also the maximum isomorphic subgraph of second slice {g4, g5, g6}. Then, the path
set for the second gate is {{Q6 → Q9 → Q12}} and the path set for the third gate is
{{Q6 → Q9}}. After isomorphic pruning, there are only 2 path variables for encoding
the first slice. Compared with the encoding method without isomorphic pruning in
Example 3.6, isomorphic pruning uses 4 fewer path variables.

4.2 Optimization

The optimization of qubit mapping is in three aspects, look-ahead in the initial map-
ping, gate cancellation and rearrangement of 1-qubit gates. In the previous work, Li
et al. [7] reverses the whole circuit to optimize the initial mapping. Here we make use
of this idea for our optimization. Let C1:n = C1C2 . . . Cn denote the first n slices in a
quantum circuit C, where Ci, 1 ≤ i ≤ n is a slice. After compiling the fragment C1:n,
the mapping is denoted by M ′, which is used as the initial mapping for compiling
the inverse of the fragment C−1

1:n. Finally, we get the mapping M ′′, which is used as a
new initial mapping. Our approach looks ahead to one slice for constructing the ini-
tial mapping, i. e. n = 2. Furthermore, the inserted SWAP gates may produce gate
cancellation with the existing CX gates in the quantum circuit. Thus we consider a
simple optimization of the compiled circuit, which contains gate cancellation and com-
mutation gates [25]. The position of the SWAP gates that are inserted affects the
fidelity of the neighboring 1-qubit gates. Our approach rearranges SWAP gates and
1-qubit gates to improve the fidelity of 1-qubit gates.

5 Experimental Evaluation

5.1 Implementation and Benchmarks

QMBIP is implemented in Matlab 2019a with a solver Gurobi and Python 3.7. All the
experiments are conducted on a Ubuntu machine with a 2.2GHz CPU and 64G mem-
ory. Considering the factors of solving time and local optima, we use some functions
of RevLib [26] with no more than 300 2-qubit gates as benchmarks, which have also
been adopted in several related work. We compare QMBIP with the latest constrained-
based algorithm SATMAP [14], which is based on maximum satisfiability and the
industry-recognized excellent heuristic algorithm SABRE [7]. Table 2 lists the number
and time cost of benchmarks successfully solved by the approaches SABRE, SATMAP
and QMBIP on three sparse architectures and a dense one. The compilation time for
a single instance is within 24 hours. The data of those target architectures is reported
from Qiskit4. Figs. 5–9 more intuitively show the performance of the three meth-
ods on the benchmark and the blue markers indicate the performance of QMBIP, the
green indicates SATMAP and the red indicates SABRE.

4https://Qiskit.org, accessed 17 December 2023.
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Table 2 Number of benchmarks and total time cost successfully solved by SABRE,
SATMAP and QMBIP within 24 hours

SABRE SATMAP QMBIP

#qubit architecture #benchmark #solved time (s) #solved time (s) #solved time (s)

27 sydney 85 85 460 69 272390 85 129283

65 manhattan 63 63 882 38 221175 63 246437

20 singapore 85 85 160 74 299152 85 119970

20 tokyo 85 85 66 85 77442 85 247403

5.2 Research questions

Our experiments focus on answering the following three questions.

1. How does QMBIP compare to constraint-based and heuristic approaches?
2. How does QMBIP perform with another objective?
3. What is the trade-off between scalability and optimality?

1. How does QMBIP compare to constraint-based techniques and heuristic
approaches?

First, we compare the fidelity of QMBIP with SATMAP and SABRE. In the first
row of Table 2, we list the number of instances successfully compiled by SABRE,
SATMAP and QMBIP among 85 instances on the architecture ibmq sydney and the
total time cost in seconds. SATMAP successfully compiled 69 instances in 272390s,
while SABRE and QMBIP successfully compiled 85 instances in less time. In Fig.
5, there is a more intuitive view of the fidelity for each instance, where the x-axis
represents the number of 2-qubit gates in each instance and the y-axis represents the
fidelity of the compiled circuits or the compilation time. The square markers indicate
the difference in fidelity and the line charts indicate the time cost among SABRE,
QMBIP and SATMAP for that instance. As the scale of the circuit increases, the
fidelity of the compiled circuit gradually decreases. The fidelity approximates 0 when
the scale of the quantum circuit is more than 200. In Fig. 5, we can see that the
fidelity of QMBIP in blue is almost the highest since SABRE and SATMAP consider
the number of SWAP gates inserted and do not take into account the differences
between physical qubits. Comparing the fidelity of the compiled instances of the three
approaches, all instances compiled by QMBIP outperform SABRE and SATMAP by
53.9% and 46.8% on average, respectively. The heuristic algorithm SABRE uses the
least amount of time since constraint-based solving algorithms are affected by the scale
of quantum circuits and the connectivity of the target architecture. QMBIP uses 52%
less time than SATMAP on average and the blue lines are below the green lines in
most instances as shown in Fig. 5.
2. How does QMBIP perform with other objectives?

In addition to the fidelity, we also compare the number of 2-qubit gates inserted by
QMBIP, SABRE and SATMAP on ibmq sydney. Fig. 6 shows the number of 2-qubit
gates inserted compiled by the three approaches in different scales, where the x-axis
represents the number of 2-qubit gates in each instance and the y-axis represents
the number of 2-qubit gates inserted or the compilation time. The bars indicate the
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Fig. 5 The fidelity and time cost of each instance while compiling on ibmq sydney

number of 2-qubit gates inserted and the line charts indicate the time cost of QMBIP,
SATMAP and SABRE. We can clearly see that the number of 2-qubit gates inserted
by SABRE is almost the highest in all instances. Within the range of 1–100, the blue
bars are the lowest, in addition to the x-coordinate 26 in Fig. 6 (a). Within the range
of 101–300, there are 21 out of 33 instances for which QMBIP inserts the fewest 2-
qubit gates. In Fig. 6, there is a lack of 13 green bars, which means those instances
could not be compiled by SATMAP successfully within 24 hours. On average, QMBIP
adds the least number of 2-qubit gates with a reduction of 11 (resp. 10) CX gates in
comparison with SABRE (resp. SATMAP) for each instance. The heuristic approach
SABRE uses the least amount of time and both constraint-based methods have a large
fluctuation.
3. What is the trade-off between scalability and optimality?

In addition to experimenting on the architecture ibmq sydney, we experiment on
other sparse architectures ibmq manhattan, ibmq singapore and a dense architecture
ibmq tokyo. Each row of Table 2 shows the number of solved benchmarks and time
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Fig. 6 The number of 2-qubit gates inserted and time cost while compiling on
ibmq sydney

costs for different architectures, compiled by QMBIP, SATMAP and SABRE. For the
architecture ibmq manhattan, the error rate on some edges is 1, so we compare the
number of 2-qubit gates inserted. To show the performance of SABRE, SATMAP
and QMBIP on architecture ibmq manhattan more clearly, only one instance with
the same scale is retained in the benchmarks. There are a total of 63 benchmark
tests in ibmq manhattan, as shown in the second row of Table 2, of which SATMAP
only successfully compiled 38 instances. Both ibmq singapore and ibmq tokyo test 85
benchmarks in total, as shown in the third and fourth row of Table 2, respectively.

In Fig. 7, the x-axis represents the number of 2-qubit gates in each instance and the
y-axis represents the number of 2-qubit gates inserted or the compilation time. There
are some instances that SATMAP can handle on the 27-qubit architecture ibmq sydney
but is not able to handle on the 65-qubit architecture ibmq manhattan, such as the
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Fig. 7 The number of 2-qubit gates inserted and time cost while compiling on
ibmq manhattan

x-coordinates 101, 104, 120, 123, 124, 126, 148 in Fig. 7 (c). For the instances in Fig. 7
(d), SATMAP has 12 out of 15 circuits unsuccessfully compiled within 24h. It demon-
strated that SATMAP is sensitive to changes in circuit scale. As for the compiled
circuits, QMBIP has a higher fidelity than SABRE (resp. SATMAP) in 45 out of 63
(resp. 35 out of 38) instances. On the sparse architecture ibmq singapore, there is a
similar performance for the fidelity of compiled quantum circuits, as shown in Fig. 8.
Comparing the fidelity of the compiled instances by the three approaches, QMBIP is
higher than SABRE in 81 out of 85 instances and higher than SATMAP in 68 out of
74 instances. QMBIP also can be extended to dense architectures, such as ibmq tokyo.
Fig. 9 shows the fidelity and time cost of each instance of QMBIP, SABRE, and
SATMAP compiled in the architecture ibmq tokyo. QMBIP maintains a higher fidelity
than SABRE in 60 out of the 85 instances and has a higher fidelity than SATMAP in
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Fig. 8 The fidelity and time cost while compiling on ibmq singapore

39 out of the 85 instances. Thus, QMBIP has better performance in sparse architec-
tures. Comparing the scalability of the three approaches on a 65-qubit architecture,
ibmq manhattan, a 27-qubit architecture ibmq sydney and the 20-qubit architecture
ibmq singapore, the time cost of SABRE is steadily maintained at a minimum in all of
the benchmarks. As the scale of the instances increases, there is a significant increase
in the time cost of constraint-based solving approaches including both QMBIP and
SATMAP. For different instances, QMBIP and SATMAP have large fluctuations in
time cost for obtaining higher fidelities. QMBIP easily adapts to changes in target
architectures because of isomorphic pruning, while SATMAP is sensitive to the scale of
the target architecture. From Figs. 5–8, we can see that QMBIP outperforms SABRE
and SATMAP in terms of fidelity or inserted 2-qubits gates in most instances.
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Fig. 9 The fidelity and time cost while compiling on ibmq tokyo

5.3 Discussion

Nowadays the mainstream architecture design direction of quantum chips is to adopt
a low connectivity, which is beneficial to double the number of qubits. The constraint-
based solving approaches are affected by the scale of circuits and the connectivity of
target architectures. QMBIP is designed for sparse architectures and is less affected
by the scale of the target architecture. The interactions of the whole quantum circuit
are generally strongly connected. We consider the first interactions between any two
qubits for constructing the initial mapping, which is adjusted as the 2-qubit gates
are executed step by step. The complexity of encoding is exponential in terms of
the degrees of chip nodes. We reduce the number of variables from the number of
edges to the number of shortest paths and filter them by fidelities. For similar slices,
isomorphic pruning effectively reduces the number of variables. The constraint-based
solving approaches use significantly more time than the heuristic algorithm, which can
be shortened by pruning.
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6 Conclusion

In this paper, we have investigated the problem of qubit mapping in sparse archi-
tectures. A quantum circuit was sliced step by step according to certain patterns for
scalability. We considered the first interactions between any two qubits for construct-
ing the initial mapping. To make a trade-off between the compilation time and the
objective, we have proposed to use path variables and isomorphic pruning together
with a look-ahead mechanism to reduce the search space. The experiments have val-
idated the improvement in the fidelity of the quantum circuits and the scalability
on different scales of architectures compiled by QMBIP. For future work, we plan to
improve the efficiency of QMBIP and reduce the effect of local optima in large-scale
circuits by more precise pruning.
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