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Abstract. We introduce an assertion-based logic specifically designed for local
reasoning about probabilistic programs featuring unbounded loops. Distribution
formulas and their extensions facilitate the representation of invariants for un-
bounded loops in probabilistic programs. The assertions connected by separating
conjunction exhibit probabilistic independence, which more intuitively displays
the mutually independent properties of variables and ensures that the logic sup-
ports local reasoning. We prove the soundness of our logic and showcase its ef-
fectiveness through the formal verification of a wide range of examples includ-
ing probabilistic inference in Bayesian networks and security analysis of crypto-
graphic schemes.

Keywords: Probabilistic programs · Separation logic · Local reasoning.

1 Introduction

Probabilistic programs are ubiquitous across various domains, including reliability anal-
ysis of networks [21, 46] and cyberphysical systems [30, 37], verification of randomized
algorithms [40], security of cryptographic algorithms [8], privacy protocols [10], and
machine learning, particularly Bayesian network analysis [23]. With the development
of these fields, there is a growing recognition of the importance of formally verifying
probabilistic programs to ensure their correctness. This is particularly crucial due to the
challenges posed by the probabilistic nature of their execution, necessitating rigorous
verification methods to mitigate potential risks and ensure reliable performance.

Since Kozen’s seminal work [35] established the semantics of probabilistic pro-
grams, different techniques have emerged to verify the correctness of programs. Early
methods rely on mathematical models derived from probabilistic semantics, utilizing
structures like Markov chains, Markov decision processes [29, 3], probabilistic input-
output automata [45, 50], and probabilistic transition systems [28, 26]. However, the
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x := 0;
while x < 5 do

n :=$ { 1
2 ·0+

1
2 ·1};

if (n = 1) then
x := x+1;

else
skip;

fi
od

Fig. 1: The program Prog1

complexities of some probabilistic programs often make precise model construction
difficult, hindering traditional verification methods. As an alternative, a systematic ap-
proach for formally verifying probabilistic programs without computing their seman-
tics has received much attention. Techniques such as probabilistic process algebra [2],
stochastic processes [19], and model checking [16] have been proposed.

The most mature approach in this area, which bypasses the need for computing
semantics, is the expectation-based technique [36, 39]. These works primarily utilize
the weakest pre-expectation calculus or the weakest precondition calculus, triggering
a series of research in this direction [31, 25, 33, 32, 34, 41]. Another popular family of
approaches is the assertion-based techniques, first proposed by Ramshaw [42]. These
techniques enable concurrent verification of properties involving multiple probabilities
and offer more intuitive specifications for loop reasoning.

Challenge. In the realm of probabilistic programs, assertion-based techniques re-
quire assessing whether an assertion is satisfied. Very often, the Boolean condition in
the guard of a loop may not deterministically evaluate to true or false after an iteration;
instead, it forms a Boolean distribution. This kind of loops, termed unbounded loops
in this paper, lack a guarantee of termination within any fixed number of iterations and
may potentially diverge with certain probability. The infinitary nature of unbounded
loops complicates reasoning tasks, posing a significant challenge in the design of while
rules and invariants for probabilistic programs. Many prior works in assertion-based
systems lack adequate rules to support the inference for unbounded loops [13, 9, 38].
A few works attempt to address this issue but impose constraints on invariants [43] or
introduce conditions that are challenging to verify [27, 5].

Let us consider a simple probabilistic program, called Prog1, as given in Figure 1.
Intuitively, the property x = 5 holds upon the termination of the program. However,
after each iteration of the loop, there remains a non-zero probability that the Boolean
condition x < 5 holds. Establishing a suitable invariant for this program is crucial for
verifying this property.

We take advantage of distribution formulas [18] to specify properties of distribution
states. An invariant for Prog1 can be expressed as x< 5⊕x= 5, which intuitively means
that both properties x < 5 and x = 5 are satisfied probabilistically, though the precise
probabilities are not explicitly stated.
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As discussed in [18], distribution formulas serve as a useful tool for constructing
invariants of while loops, thus avoiding the infinite sequences of assertions discussed
in [5].

Contribution. We present an assertion-based logic for local reasoning about prob-
abilistic programs featuring unbounded loops. Our contributions are summarized as
follows:

– We propose a new separation logic for discrete probabilistic programs, which uses
distribution formulas to specify probabilistic behavior. These formulas play a cru-
cial role in establishing an invariant condition in the proof rule for unbounded loops,
effectively preventing the occurrence of infinite assertion sequences.

– The separating conjunction in our work can represent probabilistic independence,
as inherited from [9], and is combined with a frame rule to facilitate local reasoning.
We then prove the soundness of the separation logic; a key ingredient of the proof
is the property that the denotation of every assertion is a closed set.

– We demonstrate the effectiveness of our logic by establishing the correctness of
various probabilistic programs featuring unbounded loops. The case studies en-
compass examples for Bayesian networks and cryptographic schemes, highlighting
the versatility and applicability of our approach.

Organization. The rest of the paper is structured as follows. In Section 2, we recall
some basic notations about probability distributions. Section 3 gives the syntax and de-
notational semantics of a probabilistic language. Section 4 defines an assertion language
and provides its semantics. In Section 5, we present a proof system for local reasoning
about probabilistic programs. In Section 6, we verify the correctness of Prog1 and a
program for encoding a Bayesion Network. We discuss related work and compare with
ours in Section 7. Finally, we conclude and discuss possible future work in Section 8.

2 Preliminaries

Let S be a countable set. A (discrete) sub-distribution on S is a function µ : S → [0,1]
with ∥µ∥ ≜ ∑s∈S µ(s) ≤ 1. If ∥µ∥ = 1, then µ is a distribution. We denote the set of
all sub-distributions on S as SDist[S]. For any set S′ ⊆ S, we write µ(S′) for ∑s∈S′ µ(s).
The support of a sub-distribution µ is defined as ⌈µ⌉≜ {s ∈ S | µ(s)> 0}. If µ(s) = 0
for all s ∈ S, then µ is an empty sub-distribution, denoted by εS.

Let µ1,µ2 ∈ SDist[S] such that ∥µ1∥+∥µ2∥ ≤ 1. The sum of µ1 +µ2 is also a sub-
distribution in SDist[S], defined by letting (µ1 + µ2)(s) ≜ µ1(s)+ µ2(s), for all s ∈ S.
Let µ ∈ SDist[S] and p ∈ [0,1]. Then p ·µ is also a sub-distribution in SDist[S], defined
by letting(p ·µ)(s)≜ p ·µ(s), for all s ∈ S. Let S′ ⊆ S and µ ∈ SDist[S]. The restriction
µS′ of µ to S′ is also a sub-distribution, defined by

µS′(s)≜
{

µ(s), if s ∈ S′

0, otherwise.

Let S1 and S2 be two countable sets, µ1 ∈ SDist[S1], and µ2 ∈ SDist[S2]. The joint
sub-distribution µ1 ⊗µ2 ∈ SDist[S1 ×S2] is defined by letting

µ1 ⊗µ2(s1,s2)≜ µ1(s1) ·µ2(s2),
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(Aexp) a ::= r | x,y, ... | fm(a, ...,a)

(Bexp) b ::= true | false | Pm(a, ...,a) | b∧b | ¬b

(Com) c ::= skip | abort | x := a | x :=$ dA | c; c

| if b then c else c fi | while b do c od

Fig. 2: Syntax of PIMP

for any s1 ∈ S1 and s2 ∈ S2. Let S1 and S2 be two countable sets and µ ∈ SDist[S1×S2].
The two projection operators πS1(·) and πS2(·) yield two sub-distributions in the sets
SDist[S1] and SDist[S2], called the first and second marginals respectively, defined by

πS1(µ)(s1)≜ ∑
s2∈S2

µ(s1,s2) πS2(µ)(s2)≜ ∑
s1∈S1

µ(s1,s2).

The events in S1 and S2 are mutually independent if any µ ∈SDist[S1 × S2] can be
factored as πS1(µ)⊗πS2(µ).

3 A Probabilistic Imperative Language

In this section, we introduce the syntax and denotational semantics of a probabilistic
language, known as PIMP, obtained by extending the imperative language in [49] with
random assignments.

3.1 Syntax

The syntax of PIMP is given in Figure 2. Let Q be the set of rational numbers, and
Var be the set of variables. Arithmetic operators (e.g., +, −, ∗, etc.) are denoted by fm,
and Boolean predicates (e.g., =, ≤, ≥, etc.) are denoted by Pm, where m is the arity
of f or P. The set Aexp of arithmetic expressions includes constant rational numbers
r ∈ Q, variables x, y, ... in Var, as well as other arithmetic expressions constructed by
arithmetic operators fm. Similarly, the set Bexp of Boolean expressions encompasses
Boolean constants true and false, and other Boolean expressions created by Boolean
predicates Pm and Boolean connectives such as ∧ and ¬. We collectively refer to arith-
metic expressions a and Boolean expressions b as expressions, denoted by e. Here we
use dA to represent a distribution on the finite set A consisting of arithmetic expressions.
The set Com includes skip (no-op command), abort (halt command), the classical as-
signment, the random assignment, the sequential statement, the conditional statement
and the while-loop statement.

3.2 Partial States and Distribution States

Recall that a classical state is a mapping from Var to Q. We introduce a notion of partial
state in order to facilitate local reasoning.
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Definition 1. Let X be any subset of Var. A classical partial state on X is a function
σ : X →Q, where σ(x) represents the value of the classical variable x.

We abbreviate a classical (partial) state as a state hereafter. We denote the set of all
states on X by ΣX and the domain of any state σ ∈ ΣX by dom(σ) ≜ X . Note that the
set Σ /0 has only one element 0 : /0 → Q. We denote the set of all states by Σ . Suppose
X ⊆ Y ⊆ Var. For any σ ∈ ΣY , we use the notation σX to denote the state obtained by
restricting the state σ to the domain ΣX , such that σX (x) = σ(x). The updated state
denoted by σ [a/x] is defined as

σ [a/x](y)≜
{

a if y = x
σ(y) otherwise.

Let the set of (sub)-distribution states on X be SDist[ΣX ]. For any µ ∈ SDist[ΣX ],
its domain dom(µ) ≜ X . For simplicity, we abbreviate (sub)-distribution states as dis-
tribution states hereafter. We denote the set of all distribution states by

∆ = {µ ∈ SDist[ΣX ] | X ⊆ Var}.

The updated distribution state µ[a/x] is defined by letting

(µ[a/x])(σ)≜ ∑
σ ′∈⌈µ⌉

{µ(σ ′) | σ ′[a/x] = σ}.

Definition 2. Let X and Y be two sets of disjoint variables, µ1 ∈ SDist[ΣX ] and µ2 ∈
SDist[ΣY ]. We write µ1 ⊗µ2 for a new distribution state in the set SDist[ΣX∪Y ], which
satisfies (µ1 ⊗µ2)(σ) = µ1(σX ) ·µ2(σY ), for any σ ∈ ΣX∪Y .

Suppose X ⊆ Y ⊆ Var. We project a distribution state µ ∈ SDist[ΣY ] to a distribu-
tion state πX (µ) ∈ SDist[ΣX ] via the projection operator π in the following way:

πX (µ)(σ)≜ ∑
σ ′∈⌈µ⌉

{µ(σ ′) | σ ′
X = σ}.

If any distribution µ in SDist[ΣX1∪X2 ] can be factored as πX1(µ)⊗πX2(µ), we say
the variables in X1 and X2 are mutually independent, denoted by X1 ⊥ X2.

3.3 Denotational Semantics

We interpret expressions in both partial states and distribution states. For any expres-
sion e, we use V(e) to denote the set of variables occurring in e. The denotation of an
arithmetic expression a is a mapping of type ΣX →Q, and that of a Boolean expression
b is a mapping of type ΣX ′ → {true, false}, where V(a) ⊆ X and V(b) ⊆ X ′. Given
a distribution state µ , the evaluation of expressions under µ is defined inductively in
Figure 3 and most of them are self-explanatory. Note that for an expression e and dis-
tribution state µ , the notation [[e]]µ stands for a distribution over the values [[e]]σ for all
σ ∈ ⌈µ⌉.
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[[n]]σ =n

[[x]]σ =σ(x)

[[ fm(a, ...,a)]]σ = fm([[a]]σ , ..., [[a]]σ )

[[true]]σ =true
[[false]]σ =false
[[Pm(a, ...,a)]]σ =Pm([[a]]σ , ..., [[a]]σ )

[[b1 ∧b2]]σ =[[b1]]σ ∧ [[b2]]σ

[[¬b]]σ =¬([[b]]σ )
[[a]]µ =d{[[a]]σ |σ∈⌈µ⌉}, where d([[a]]σ ) = ∑

σ ′∈⌈µ⌉,[[a]]σ ′=[[a]]σ

µ(σ ′)

[[b]]µ =d{[[b]]σ |σ∈⌈µ⌉}, where d([[b]]σ ) = ∑
σ ′∈⌈µ⌉,[[b]]σ ′=[[b]]σ

µ(σ ′)

Fig. 3: Evaluation for expressions

[[skip]]µ = µ
[[abort]]µ = ε

[[x := a]]µ = ∑
σ∈⌈µ⌉

µ(σ) ·σ [[[a]]σ/x]

[[x :=$ dA]]µ = ∑
a∈A

d(a) · [[x := a]]µ

[[c0;c1]]µ = [[c1]][[c0]]µ

[[if b then c0 else c1 fi]]µ = [[c0]](b?µ)+[[c1]](¬b?µ)

[[while b do c od]]µ = lim
n→∞

[[(if b then c fi)n; if b then abort fi]]µ

Fig. 4: Denotational semantics for commands

The denotation of a command c is a mapping of type SDist[ΣVar] → SDist[ΣVar],
presented in Figure 4. Here b? is a function from ∆ to ∆ , which satisfies

b?µ(σ) =

{
µ(σ), iff [[b]]σ = true
0, iff [[b]]σ = false.

The skip command does not change any states and abort maps any input distribu-
tion state to the empty distribution state ε . The classical assignment statement changes
the value of variable x in every state of the input distribution and the random assignment
statement may assign any expression a ∈ A to variable x with probability d(a), where A
is a finite set.

As usual, the denotation of c0;c1 is the composition of these commands. For the
conditional statement, we need to divide the distribution state µ into two parts b?µ and
¬b?µ , then combine the semantics c0 and c1 in the two parts, respectively. Following the
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(Deterministic formulas) P ::= true | false | Pm(a, ...,a) | P∧P |¬P | ∃x.P(x)
(Probabilistic formulas) ϕ ::= P | ⊕i∈I piϕi | ⊕i∈I ϕi | ϕ ⊙ϕ | ϕ ∧ϕ | ϕ ∨ϕ

Fig. 5: Syntax of assertions

work of Barthe et al. [5], we define the semantics of a loop (while b do c od) as the limit
of its lower approximations, where the n-th lower approximation of [[while b do c od]]µ
is [[(if b then c fi)n; if b then abort fi]]µ . The statement (if b then c fi) is a shorthand
for (if b then c else skip fi) and cn+1 = c;cn with c0 ≡ skip. By [5, Definition 7],
the sequence ([[(if b then c fi)n; if b then abort fi]]µ)n∈N is convergent; its limit exists
because the sequence is strictly increasing and bounded.

4 Assertions

Assertions in our logic contain two categories of formulas: deterministic and probabilis-
tic ones. The latter are characterized by distribution formulas, which draw inspiration
from the work of [18] to describe the properties of distributions.

4.1 Syntax of Assertions

In Figure 5, we give the syntax of assertions. Deterministic formulas can be Boolean
constants, built from arithmetic expressions by Boolean predicates, or formed by other
deterministic formulas using connectives ∧, ¬ and ∃. Probabilistic formulas include
deterministic formulas, distribution formulas, and other probabilistic formulas built by
some connectives such as ⊙, ∧ and ∨. Recall distribution formulas in the form ⊕i∈I piϕi
from [18], which consist of various formulas ϕi composed by the connective ⊕, with
each formula weighted by pi. These weights satisfy the condition ∑i∈I pi = 1 and the
index set I is finite. The formula ⊕i∈Iϕi is a relaxed form of ⊕i∈I piϕi as the individual
probabilities pi are not important. The connective ⊙ describes the properties of two
independent sets of variables. Other connectives are standard.

4.2 Semantics of Assertions

We first formally describe the combining operation on distribution states following the
Kripke resource semantics, where the set of possible worlds forms a partial, pre-order
commutative monoid M= (M,◦,I,⊑).

Definition 3 ([20]). A (partial) Kripke resource monoid consists of a set M of possible
worlds, a partial binary combining operation ◦ : M×M → M, an element I ∈ M, and a
pre-order ⊑ on M, such that the monoid operation

– has identity I: for all x ∈ M, we have I◦ x = x◦ I = x;
– is associative: x◦ (y◦ z) = (x◦y)◦ z, where both sides are either defined and equal,

or both undefined; and
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[[true]] =Σ
[[false]] = /0

[[Pm(a1, ...,an)]] ={σ ∈ ΣX | Pm([[a1]]σ , ..., [[an]]σ ) = true

and
∪

i=1,...,n
V(ai) = X}

[[P1 ∧P2]] =[[P1]]∩ [[P2]]

[[¬P]] =Σ \ [[P]]
[[∃x.P(x)]] ={σ | ∃r ∈Q,σ ∈ [[P[r/x]]]}

Fig. 6: Semantics of deterministic formulas

– is compatible with pre-order: if x ⊑ y and x′ ⊑ y′ and if both x ◦ x′ and y ◦ y′ are
defined, then x◦ x′ ⊑ y◦ y′.

Proposition 1. Let ∆ be the set of all distribution states and I be the element in SDist[Σ /0]
such that I(0) = 1. The partial binary combining operation ◦ is defined as:

µ ◦µ ′ ≜
{

µ ⊗µ ′ if dom(µ)∩dom(µ ′) = /0
undefined otherwise.

The pre-order ⊑ is defined as

µ ⊑ µ ′ iff dom(µ)⊆ dom(µ ′) and πdom(µ)(µ ′) = µ.

Then (∆ ,◦,I,⊑) is a Kripke resource monoid.

The semantics of a deterministic formula P on partial states is denoted by [[P]], as
shown in Figure 6. For a deterministic formula P and a partial state σ , we say σ |= P if
and only if σ ∈ [[P]]. For a deterministic formula P and a distribution state µ , we say

µ |= P iff ∀σ ∈ ⌈µ⌉, σ |= P.

The semantics of a probabilistic formula ϕ , denoted by [[ϕ ]], is given in Figure 7.
The denotation of ⊕i∈I pi ·ϕi is the set including all the distribution states that are linear
combinations of some µi with weight pi, and each µi is in the denotation of ϕi. The
denotation of ⊕i∈Iϕi comprises all the distribution states that are in the denotation of
⊕i∈I pi · ϕi for some arbitrary weights pi such that their sum is 1. The denotation for
the formula ϕ1 ⊙ϕ2 contains all the up-closures of distribution states that dominate the
combination of two distributions µ1 and µ2 with disjoint domains such that µ1 and µ2
are in the denotations of ϕ1 and ϕ2, respectively. Finally, other types of formulas are
self-explanatory. The satisfaction relation between distribution state µ and probabilistic
formula ϕ is defined as: µ |= ϕ if and only if µ ∈ [[ϕ ]].

We then propose the following important property to prove the soundness of our
logic. The proof is proceeded by induction on the structure of ϕ .

Proposition 2. For any probabilistic formula ϕ , its denotation [[ϕ ]] is a closed set.
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[[P]] ={µ | µ |= P}

[[⊕i∈I pi ·ϕi]] ={µ | ∃µ1 · · ·∃µm. [(
∧
i∈I

(µi |= ϕi)∧ (∥µi∥= ∥µ∥))

∧µ = ∑
i∈I

pi ·µi]}, for I = {1, . . . ,m}

[[⊕i∈Iϕi]] ={µ | ∃p1 · · · pm. ∑
i∈I

pi = 1∧µ |=⊕i∈I pi ·ϕi}

[[ϕ1 ⊙ϕ2]] ={µ | ∃µ1,µ2. (µ1 ◦µ2 ⊑ µ)∧µ1 ∈ [[ϕ1]]∧µ2 ∈ [[ϕ2]]}
[[ϕ1 ∧ϕ2]] =[[ϕ1]]∩ [[ϕ2]]

[[ϕ1 ∨ϕ2]] =[[ϕ1]]∪ [[ϕ2]]

Fig. 7: Semantics of probabilistic formulas

5 Proof System

In this section, we present a proof system which consists of some rules to reason
about the correctness of PIMP programs. As usual, we use Hoare triples of the form
{ϕ1} c {ϕ2}, where c is a program fragment and ϕ1, ϕ2 are two assertions.

The rules are given in Figure 8. Some of them are adapted from [18] and we just
give explanations for several new rules. The [RAssn] rule is used for the random assign-
ment, which is different from rule [DAssn] used for the deterministic assignment. If the
formula ϕa[a/x] holds at the current state for any a in a finite set A, the post-condition
⊕a∈Ad(a) ·ϕa holds after executing the random assignment. The [While] rule is derived
from [18], where ϕ0 and ϕ1 in the invariant ϕ are the assertions presented in Figure 5.
Note that the invariant ϕ represents a special form of distribution formulas with arbi-
trary probability coefficients. This indicates that we allow the probability coefficients
of the distributions to differ after each loop, as long as the support sets remain the same.
This weaker property enables us to handle a broader class of unbounded while loops.

The [OFrame] rule in our work is similar to the [QFrame] rule in the work of [18],
with the distinction lying in the side condition. Let V(c) be the set of all variables
occurring in program c and MV(c) the set of all variables modified by program c.
Besides, given a formula ϕ , we denote the set of all free variables in ϕ by FV(ϕ). The
condition FV(ϕ3)∩V(c) stipulates that both the modified and read variables in c are
restricted from appearing as free in assertion ϕ3, while rule [QFrame] in [18] allows
read variables in the side condition. This distinction from rule [QFrame] is required
for handling the unique semantics of the ⊙ connective in the current work. Here the
assertion ϕ1 ⊙ ϕ2 denotes the independence relation between the variables in FV(ϕ1)
and FV(ϕ2) for any assertions ϕ1, ϕ2. Consequently, even if the free variables in ϕ3 are
not modified by the program c, being read by c may still result in the non-independence
between FV(ϕ2) and FV(ϕ3) after the execution of c. This point is illustrated further in
Example 1.

Example 1. Let ϕ1 = true, ϕ2 = (x = 0)⊕ (x = 1), ϕ3 =
1
2 (y = 0)⊕ 1

2 (y = 1) and let
c be the program in Figure 9. We encounter a situation where {ϕ1} c {ϕ2} holds, and



10 Wu, Cui and Deng

{ϕ} skip {ϕ}
[Skip]

{ϕ} abort {false}
[Abort]

{ϕ [a/x]} x := a {ϕ}
[DAssn]

{
∧

a∈A ϕa[a/x]} x :=$ dA {⊕a∈Ad(a) ·ϕa}
[RAssn]

{ϕ0} c0 {ϕ1} {ϕ1} c1 {ϕ2}
{ϕ0} c0;c1{ϕ2}

[Seq]

{ϕ1 ∧b} c1 {ϕ ′
1} {ϕ2 ∧¬b} c2 {ϕ ′

2}
{p(ϕ1 ∧b)⊕ (1− p)(ϕ2 ∧¬b)} if b then c1 else c2 fi {pϕ ′

1 ⊕ (1− p)ϕ ′
2}

[Cond]

ϕ = (ϕ0 ∧b)⊕ (ϕ1 ∧¬b) {ϕ0 ∧b} c {ϕ}
{ϕ} while b do c od {ϕ1 ∧¬b}

[While]

ϕ0 ⇒ ϕ1 {ϕ1} c {ϕ2} ϕ2 ⇒ ϕ3

{ϕ0} c {ϕ3}
[Conseq]

{ϕ1} c {ϕ ′
1} {ϕ2} c {ϕ ′

2}
{ϕ1 ∧ϕ2} c {ϕ ′

1 ∧ϕ ′
2}

[Conj]
{ϕ1} c {ϕ ′

1} {ϕ2} c {ϕ ′
2}

{ϕ1 ∨ϕ2} c {ϕ ′
1 ∨ϕ ′

2}
[Disj]

{ϕ1} c {ϕ2} FV(ϕ3)∩V(c) = /0
{ϕ1 ⊙ϕ3} c {ϕ2 ⊙ϕ3}

[OFrame]
{ϕ1} c {ϕ2} FV(ϕ3)∩MV(c) = /0

{ϕ1 ∧ϕ3} c {ϕ2 ∧ϕ3}
[Frame]

∀i ∈ I. {ϕi} c {ϕ ′
i } ∑i∈I pi = 1

{⊕i∈I pi ·ϕi} c {⊕i∈I pi ·ϕ ′
i }

[Sum]
∀r. r ∈Q ∧ {P(r)} c {ϕ ′}

{∃x. P(x)} c {ϕ ′}
[Exists]

Fig. 8: Inferences rules for PIMP programs

additionally, FV(ϕ3)∩MV(c) = /0. Despite these conditions, the Hoare triple

{ϕ1 ⊙ϕ3} c {ϕ2 ⊙ϕ3}

is still invalid. This is because the variables x and y are clearly not independent. Ac-
tually, we get the Hoare triple {ϕ1 ⊙ ϕ3} c { 1

2 (x = 0∧ y = 0)⊕ 1
2 (x = 1∧ y = 1)} in

Figure 9, where the post-condition is not equal to ϕ2 ⊙ϕ3.

The [Frame] rule adheres to the conventions of classical Hoare logic. Since the
assertion ϕ1 ∧ ϕ2 does not have any particular constraints between the variables in the
assertions ϕ1 and ϕ2, the side condition of the free variables in ϕ3 remains unmodified
by the program c, which is enough. Rule [Exists] is inspired by the work of [17].

Figure 10 displays several rules for auxiliary reasoning. Some already appear in [18],
we only explain the rules that are new in our work. The [OdotD] rule aids in distribut-
ing ⊙ into the connective ⊕. The connective operator ⊕ is commutative and associative
according to rules [OplusC] and [OplusA].

We write ⊢ {ϕ1} c {ϕ2} if the Hoare triple {ϕ1} c {ϕ2} can be derived from the rules
of our proof system. Semantically, the Hoare triple is valid, written as |= {ϕ1} c {ϕ2},
if for any distribution state µ , µ |= ϕ1 implies [[c]]µ |= ϕ2 .

Theorem 1 (Soundness). For any assertions ϕ1, ϕ2 and any program c, we have that
⊢ {ϕ1} c {ϕ2} implies |= {ϕ1} c {ϕ2}.
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{true⊙ 1
2
(y = 0)⊕ 1

2
(y = 1)}

{1
2
(y = 0)⊕ 1

2
(y = 1)} [OdotE]

if (y = 0) then
x := 0;

else
x := 1;

fi

{1
2
(x = 0∧ y = 0)⊕ 1

2
(x = 1∧ y = 1)} [Cond]

Fig. 9: Example 1

ϕ ⊢ true
[PT]

ϕ ⊙ true ⊣⊢ ϕ
[OdotE]

(⊕i∈I piϕi)⊙ (⊕ j∈Jq jϕ j) ⊢ ⊕i∈I, j∈J piq j(ϕi ⊙ϕ j)
[OdotD]

ϕ1 ⊙ϕ2 ⊣⊢ ϕ2 ⊙ϕ1
[OdotC]

ϕ1 ⊙ (ϕ2 ⊙ϕ3) ⊣⊢ (ϕ1 ⊙ϕ2)⊙ϕ3
[OdotA]

ϕ1 ⊙ϕ2 ⊢ ϕ1 ∧ϕ2
[OdotO]

ϕ1 ⊙ (ϕ2 ∧ϕ3) ⊢ (ϕ1 ⊙ϕ2)∧ (ϕ1 ⊙ϕ3)
[OdotOC]

ϕ1 ⊕ϕ2 ⊣⊢ ϕ2 ⊕ϕ1
[OplusC]

ϕ1 ⊕ (ϕ2 ⊕ϕ3) ⊣⊢ (ϕ1 ⊕ϕ2)⊕ϕ3
[OplusA]

p0 ·P⊕ p1 ·P⊕ p2 ·P′ ⊣⊢ (p0 + p1) ·P⊕ p2 ·P′ [OMerg]

⊕i∈I pi ·ϕi ⊢ ⊕i∈Iϕi
[Oplus]

∀i ∈ I, ϕi ⊢ ϕ ′
i

⊕i∈I pi ·ϕi ⊢ ⊕i∈I pi ·ϕ ′
i
[OCon]

Fig. 10: Rules for entailment reasoning

Proof. We prove by induction that all the rules in the proof system are sound. Here we
only consider rule [While], which is the most difficult case.

Suppose ϕ = (ϕ0 ∧ b)⊕ (ϕ1 ∧¬b) and |= {ϕ0 ∧ b} c {ϕ}. We aim to prove that
|= {ϕ} while b do c od {ϕ1 ∧¬b}.

For any n ≥ 0, we write whilen for the n-th iteration of the while loop, i.e.

(if b then c fi)n; if b then abort fi.

We claim that if µ |= ϕ then [[whilen]]µ |= ϕ1 ∧¬b for any n ≥ 0. This can be proved
by induction on n. Note that if µ |= ϕ then there exist some p, µ0 and µ1 such that
µ = pµ0 +(1− p)µ1 with µ0 |= ϕ0 ∧b and µ1 |= ϕ1 ∧¬b.
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– n = 0. In this case we have that

[[while0]]µ = [[if b then abort fi]]µ
= p[[if b then abort fi]]µ0 +(1− p)[[if b then abort fi]]µ1
= pε +(1− p)µ1
= (1− p)µ1.

Since µ1 |= ϕ1 ∧¬b, it implies that (1− p)µ1 |= ϕ1 ∧¬b.
– n = k+1. We infer that

[[whilek+1]]µ = [[if b then c fi; whilek]]µ
= p[[ifb thencfi; whilek]]µ0 +(1− p)[[ifb thencfi; whilek]]µ1

= p[[whilek]][[c]]µ0
+(1− p)[[whilek]]µ1

= p[[whilek]][[c]]µ0
+(1− p)µ1.

Note that [[c]]µ0 |= ϕ . Therefore, it follows from the induction hypothesis that

[[whilek]][[c]]µ0
|= ϕ1 ∧¬b.

As in the last case, we have (1− p)µ1 |= ϕ1 ∧¬b. Then we immediately have that
[[whilek+1]]µ |= ϕ1 ∧¬b.

Thus we have completed the proof of the claim. Finally, by Proposition 2, we know that
the denotation [[ϕ1∧¬b]] for ϕ1∧¬b is a closed set. This implies that if a sequence {νn}
of distributions is in the set [[ϕ1 ∧¬b]] and the sequence has a limit limn→∞ νn, then the
limit is still in [[ϕ1 ∧¬b]]. So we can obtain [[while]]µ = limn→∞[[whilen]]µ |= ϕ1 ∧¬b.

⊓⊔

6 Case Studies

6.1 A Simple Program

Recall the program Prog1 given in the introduction, which has an unbounded loop. The
correctness of this program can be specified by the following Hoare triple:

{true} Prog1 {x = 5}.

We outline the correctness proof in Figure 11. Although this example is straightfor-
ward, it effectively illustrates the advantages of our logic when reasoning about loops
involving an unknown number of iterations.

6.2 Bayesian Network

First of all, we use the symbol Pµ(P) to represent the probability of deterministic for-
mula P being satisfied by µ , and Pµ(P|Q) to represent the conditional probability of
formula P given Q. That is,

Pµ(P) ≜ 1
∥µ∥ ∑

σ∈⌈µ⌉
{µ(σ) | σ |= P},

Pµ(P|Q) ≜ Pµ (P∧Q)
Pµ (Q) .
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{true}
{0 = 0} [Conseq]

x := 0;

{x = 0} [DAssn]

{x < 5⊕ x = 5} [Conseq]

while x < 5 do
{x < 5} [Conseq]

{x < 5⊙ true} [OdotE]

=⇒{0 = 0∧1 = 1} [Conseq]

n :=$ {
1
2
·0+ 1

2
·1};

⇐={1
2
· (n = 0)⊕ 1

2
· (n = 1)} [RAssn]

{(x < 5)⊙ (
1
2
·n = 0⊕ 1

2
·n = 1)} [OFrame]

{1
2
((x < 5)⊙n = 0)⊕ 1

2
((x < 5)⊙n = 1)} [OdotD]

{1
2
((x < 5)∧n = 0)⊕ 1

2
((x < 5)∧n = 1)} [OdotO OCon]

if (n = 1) then
{(x < 5)∧n = 1} [Conseq]

{(x+1 < 5)⊕ (x+1 = 5)} [Conseq]

x := x+1;

{(x < 5⊕ x = 5)} [DAssn]

else
{(x < 5)∧n = 0} [Conseq]

{x < 5} [Conseq]

skip;

{x < 5} [Skip]

fi

{1
2
(x < 5⊕ x = 5)⊕ 1

2
(x < 5)} [Cond]

{(x < 5⊕ x = 5)⊕ (x < 5)} [Conseq Oplus]

{(x < 5)⊕ (x = 5)} [OplusC OplusA OMerg]

od
{x = 5} [While]

Fig. 11: Proof outline for program Prop1
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Lemma 1. Let µ be a distribution state, if µ |= ⊕i∈I pi ·Pi for some pi and Pi, then
Pµ(Pi)≥ pi.

For reasoning about Bayesian networks at the source code level, Batz et al. trans-
lated the Bayesian network, along with observations, into the Bayesian Network Lan-
guage (BNL) in [11]. Then they derived dedicated proof rules to determine exact ex-
pected outcomes and runtimes of such loops based on the weakest pre-expectation cal-
culus. We borrow the Bayesian Network (BN) depicted in Figure 12 from [11]. The net-
work consists of four binary random variables, including exam difficulty (D), student
preparation (P), achieved grade (G), and resulting mood (M), with inherent dependen-
cies shown in Figure 12. Each node xv has a conditional probability table, with rows for
the random variable values and columns for the corresponding probabilities of xv.

Grade

Difficulty Preparation

Mood

P(D)

D=0 0.6
D=1 0.4

P(P)
P=0 0.7
P=1 0.3

P(G = 0) P(G = 1)
D=0, P=0 0.95 0.05
D=1, P=1 0.05 0.95
D=0, P=1 0.5 0.5
D=1, P=0 0.6 0.4

P(M = 0) P(M = 1)
G=0 0.9 0.1
G=1 0.3 0.7

Fig. 12: A Bayesian network
We make some minor adjustments to the syntax of BNL fragment to align it with

our language, and the entire program is named BN, as shown in Figure 13. We can
still use this BN to compute the probability of a student having a bad mood (xM = 0),
after receiving a bad grade (xG = 0) for an easy exam (xD = 0), given that he was well-
prepared (xP = 1).

In [11] the conditional probability given an observation on P = 1 is computed as:

P(D = 0,G = 0,M = 0|P = 1) =
P(D = 0,G = 0,M = 1,P = 1)

P(P = 1)
.

However, according to our semantics, this property can be expressed by

{true} BN {xP = 1∧F1},

where F1 is

( 0.0054
0.3 (xG = 0∧ xD = 1∧ xM = 0)⊕ 0.0006

0.3 (xG = 0∧ xD = 1∧ xM = 1)

⊕ 0.0342
0.3 (xG = 1∧ xD = 1∧ xM = 0)⊕ 0.0798

0.3 (xG = 1∧ xD = 1∧ xM = 1)

⊕ 0.081
0.3 (xG = 0∧ xD = 0∧ xM = 0)⊕ 0.009

0.3 (xG = 0∧ xD = 0∧ xM = 1)

⊕ 0.027
0.3 (xG = 1∧ xD = 0∧ xM = 0)⊕ 0.063

0.3 (xG = 1∧ xD = 0∧ xM = 1)).
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xP := 0;
while xP ̸= 1 do

xD :=$ {0.6 ·0+0.4 ·1};
xP :=$ {0.7 ·0+0.3 ·1};
if (xD = 0∧ xP = 0)

xG :=$ {0.95 ·0+0.05 ·1};
else if (xD = 1∧ xP = 1)

xG :=$ {0.05 ·0+0.95 ·1};
else if (xD = 0∧ xP = 1)

xG :=$ {0.5 ·0+0.5 ·1};
else if (xD = 1∧ xP = 0)

xG :=$ {0.6 ·0+0.5 ·1};
fi
if (xG = 0)

xM :=$ {0.9 ·0+0.1 ·1};
else if (xG = 1)

xM :=$ {0.3 ·0+0.7 ·1};
fi

od

Fig. 13: Probabilistic program BN

Then by Lemma 1, we get Pµ(xD = 0,xG = 0,xM = 0)≥ 0.081
0.3 when xP = 1.

With our program logic, we can reason about the correctness of other interesting
examples such as encodings of cryptographic schemes including one-time pad, private
information retrieval, and oblivious transfer. They are omitted due to lack of space.

7 Related Work

In addition to the approaches mentioned above, there are many other well-established
methods for the verification of probabilistic programs, such as martingale-based meth-
ods [14, 15, 48] or symbolic integration-based methods [44, 22, 12]. Here, we mainly
focus on probabilistic assertions within probabilistic programs.

7.1 Comparison of assertion-based work

In this sub-section, we compare our work with the most relevant assertion-based ap-
proaches in the literature, specifically focusing on Ellora [5], PSL [9], and Lilac [38].

Barthe et al. introduce ELLORA, a novel assertion logic that integrates probabilistic
independence and other distribution law properties into first-order logic. This extension
enables assertions to directly describe the probabilities of events and offers comparable
expressive power to expectation-based approaches. However, Barthe et al. also recog-
nize ELLORA’s limitations in handling conditional control flow in independence logic.
To address this issue, they later introduce PSL, a refined logic that draws from separa-
tion logic and treats independence in a structural manner. The separating conjunction
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in PSL models probabilistic independence by combining distributions over disjoint do-
mains of random variables, with the restriction that random variables cannot appear on
both sides of the conjunction. Moreover, the frame rule imposes extra side conditions to
capture the program’s data-flow properties, which can make the application of the frame
rule cumbersome. In contrast, the [OFrame] rule in our work simplifies these conditions
to a simpler constraint that is easier to verify while still sufficient for the verification of
relevant examples. Li et al. introduce Lilac, a modal separation logic that innovatively
reinterprets the separating conjunction by combining probability spaces, analogous to
the disjoint union of heap fragments in ordinary separation logic. This work models
probabilistic systems using standard objects from probability theory, where the measur-
ability of a random variable mirrors ownership in heap logic. Furthermore, they expand
the application scope of probabilistic separation logic by incorporating conditional in-
dependence.

7.2 PRHL

Another method for reasoning about the properties of probabilistic programs involves
establishing logical relations to recast reasoning problems as program equivalence prob-
lems. The equivalence is characterized using a step-indexed biorthogonal logical rela-
tion constructed over an operational semantics.

One prominent work in this trend is the relational Hoare logic PRHL proposed by
Barthe et al. [7]. The logic compares a pair of commands from a given pre-relation
to a given post-relation of sub-distributions over states in the language of PWHILE
programs. It is widely used for verifying cryptographic protocols, such as private infor-
mation retrieval and multi-party computation. While PRHL is very useful for verifying
the equivalence between two commands, we can also analyze program equivalence us-
ing our Hoare logic. Our definition of program equivalence is more targeted at state
transitions caused by variables modified by program fragments. Furthermore, logical
relations are less well-suited for proving intricate post-conditions such as the conver-
gence of distributions and the specific probability value of the occurrence of an event.
Another restriction of PRHL is that the coupled programs must execute synchronously.
This is a very strict requirement, though in [24] they propose a way to relax the require-
ment by introducing the presampling steps and storing the results on a tape.

7.3 Conditional independence

Li et al. [38] propose a logic that supports conditioning and continuous random vari-
ables, integrating a substructural approach to independence. They add a new modality
to handle conditional independence, which is based on disintegration theory. The veri-
fication process involves expressing probabilistic programs in a monadic style, similar
to Haskell’s style of pure functional language.

Several prior systems have explored the concept of conditional independence. For
example, Batz et al. [11] employ the weakest precondition style to analyze both ex-
pected outcomes and expected runtimes of a syntactic fragment of pGCL, which is
called the Bayesian Network Language (BNL). Simultaneously, Barthe et al. [6] inves-
tigate a relational type system named PrivInfer, designed for Bayesian inference within
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a functional programming language. In another direction, Bao et al. extend the stan-
dard logic of bunched implications, which underlies separation logic, to handle condi-
tional independence through the introduction of doubly-bunched implications [4]. On
the foundational side, Ackerman et al. [1] delve into computability issues for (condi-
tional) independence, motivated in part by exchangeable sequences closely related to
independence. Language-based investigations of exchangeable sequences are explored
by Staton et al. [47].

8 Conclusion and Future Work

Our work builds upon the previous work [18]. Initially, we developed a method for the
local reasoning of quantum programs. However, recognizing the broader applicability
of our methodology, we now adapt it to the probabilistic setting. Proposition 2 is newly
added, which is not explicitly stated in [18], but is crucial to prove the soundness of the
[While] rule. Besides, since we are no longer dealing with quantum states, the seman-
tics of assertions involving separation conjunction is changed to represent probabilistic
independence, which also necessitated a change in the side condition of the [OFrame]
rule. Moreover, we now allow conjunction and disjunction of distribution formulas,
which is not the case in [18] because the syntax of assertions given there is more re-
stricted. In summary, we have introduced a probabilistic separation logic tailored for
handling unbounded loops, with distribution formulas serving as useful invariants. Our
interpretation of separating conjunction aligns with the concept of probabilistic inde-
pendence, enhancing the versatility of our logic. We have proved the soundness of
the logic and its effectiveness is illustrated through the formal verification of several
intricate examples from probabilistic inference of Bayesian network to cryptographic
schemes.

As to the future work, we plan to analyze more randomized algorithms and cryp-
tographic protocols, addressing specific challenges in these domains through the pro-
posed logic. Additionally, further theoretical development and embedding the logic into
a proof assistant are also being considered.
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