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State of the art
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Quantum processors

53-qubit superconducting processor “Sycamore” [AAB+19]: 200s for a

particular task, which would take a supercomputer 10000 years.

[AAB+19] F. Arute et al. Quantum supremacy using a programmable superconducting processor. Nature

574(7779):505-510 (2019).
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Quantum processors

62-qubit superconducting quantum processor “Zu Chongzhi” [GWZ+21]

[GWZ+21] M. Gong et al. Quantum walks on a programmable two-dimensional 62-qubit superconducting

processor. Science 372, 948-952 (2021).

Introduction to Quantum Computing Y. Deng@ECNU 4



Quantum software

Qiskit (IBM), Cirq (Google), Q# (Microsoft) ...

https://quantum-computing.ibm.com
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Introduction
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Quantum Bit

• A bit in classical computing is in one of two states: 0 or 1.

• A quantum bit (qubit) can take two fundamental states: |0〉 and |1〉

|0〉 =

1

0

 |1〉 =

0

1


• Dirac notation: ket |0〉 is a column vector, bra 〈0| is a row vector [1 0]
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Superposition

• A qubit |ψ〉 can exist as a superposition of |0〉 and |1〉, expressed as a

linear combination

|ψ〉 = α|0〉+ β|1〉

with α, β ∈ C.

• |0〉 and |1〉 are computational basis states

|ψ〉 =

α
β


• constraint: |α|2 + |β|2 = 1

• coefficients α, β are probability amplitudes
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Qubit realization

Qubit realization using eletron energy states

Ground state: |0〉, excited state: |1〉
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Bloch sphere representation of qubit

Any point on the surface of the Bloch sphere represents a qubit state.

|ψ〉 = eiγ(cos
θ

2
|0〉+ sin

θ

2
eiϕ|1〉)
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Bloch sphere representation of qubit

Recall that a complex number α = a+ ib in the Cartesian coordinates can

be expressed in polar coordinates as α = reiφ with r =
√
a2 + b2.

Let α = rαe
iφα , β = rβe

iφβ .

|ψ〉 = rαe
iφα |0〉+ rβe

iφβ |1〉
= eiφα(rα|0〉+ rβe

i(φβ−φα)|1〉)

Since r2α + r2β = |α|2 + |β|2 = 1, take rα = cos θ2 and rβ = sin θ
2 .

|ψ〉 = eiφα(cos
θ

2
|0〉+ sin

θ

2
ei(φβ−φα)|1〉)

Then replace φα with γ and φβ − φα with ϕ to yield the required form.
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Bloch sphere representation of qubit

Ignore the global phase factor, |ψ〉 = cos θ2 |0〉+ sin θ
2e
iϕ|1〉
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Multiple qubits

• State of a two-qubit system

|ψ〉AB = α00|00〉+ α01|01〉+ α10|10〉+ α11|11〉

• Constraint: |α00|2 + |α01|2 + |α10|2 + |α11|2 = 1

• If we measure qubit A and observe 0, the probability is

|α00|2 + |α01|2

and the post-measurement state is

|φ′〉AB =
α00|00〉+ α01|01〉√
|α00|2 + |α01|2
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Bell state

• Bell state |ψ〉AB = 1√
2
|00〉+ 1√

2
|11〉

• If we observe qubit A and observe 0, the two-qubit state collapses to

state |00〉. Then if we measure qubit B, we observe outcome 0 with

certainty.

• The states of two qubits are perfectly correlated. This phenomenon is

quantum entanglement.

• Imagine this Bell state is created using quantum entanglement between

two electrons and then we separate the electrons by a large distance.

Measuring one electron determines the other eletron’s state.
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Dirac notation

• Ket vector |ψ1〉 =

 1√
2

i√
2

, |ψ2〉 =

 3
5

4i
5


• Bra vector 〈ψ1| =

[
1√
2
− i√

2

]
, 〈ψ2| =

[
3
5 − 4i

5

]
• Inner product of two vectors |ψ1〉 and |ψ2〉 is written

〈ψ1|ψ2〉 =
[

1√
2
− i√

2

] 3
5

4i
5

 =
7

5
√

2
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Magnitude of a vector

• The magnitude of a vector is the l2 norm

|||ψ〉|| =
√
〈ψ|ψ〉

• 〈ψ|ψ〉 =
[
c∗1 c∗2 ... c∗n

]

c1

c2
...

cn

 =
∑n
i=1 c

∗
i ci =

∑n
i=1 |ci|2.

• If |ψ〉 is a quantum state, 〈ψ|ψ〉 = 1. Each |ci|2 gives the probability of

the state |ψ〉 collapsing to the state |i〉 on measurement.
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Outer product

The outer product of two vectors |ψ1〉 ∈ Cm and |ψ2〉 ∈ Cn gives a matrix

of dimension m× n.

|ψ1〉〈ψ2| =


c1

c2
...

cm


[
d∗1 d∗2 ... d∗n

]
=


c1d
∗
1 c1d

∗
2 ... c1d

∗
n

...
...

...
...

cmd
∗
1 cmd

∗
2 ... cmd

∗
n


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Tensor product

The tensor product of two vectors |ψ1〉 ∈ Cm and |ψ2〉 ∈ Cn is another

vector in Cm×n.

|ψ1〉 ⊗ |ψ2〉 =

c1
c2

⊗

d1

d2

d3

 =



c1d1

c1d2

c1d3

c2d1

c2d2

c2d3


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Tensor product

If {|v1〉, ..., |vm〉} is the basis of one space, {|u1〉, ..., |un〉} the basis of

another space, then using tensor product can get a larger vector space with

basis vectors of the form |vi〉 ⊗ |uj〉, written |viuj〉.

(α1|0〉+β1|1〉)⊗ (α2|0〉+β2|1〉) = α1α2|00〉+α1β2|01〉+β1α2|10〉+β1β2|11〉

The Bell state cannot be factored as a tensor product of individual qubit

states.
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Single-qubit gates

X : α|0〉+ β|1〉 → β|0〉+ α|1〉 X =

0 1

1 0


Z : α|0〉+ β|1〉 → α|0〉 − β|1〉 Z =

1 0

0 −1


H :

 |0〉 → 1√
2
|0〉+ 1√

2
|1〉

|1〉 → 1√
2
|0〉 − 1√

2
|1〉

H = 1√
2

1 1

1 −1


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CNOT gate

CNOT :


|00〉 → |00〉
|01〉 → |01〉
|10〉 → |11〉
|11〉 → |10〉

CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


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Measurements in different basis

Let |+〉 = 1√
2
|0〉+ 1√

2
|1〉, |−〉 = 1√

2
|0〉 − 1√

2
|1〉

Then |0〉 = 1√
2
|+〉+ 1√

2
|−〉, |1〉 = 1√

2
|+〉 − 1√

2
|−〉

|ψ〉 = α|0〉+ β|1〉 = α+β√
2
|+〉+ α−β√

2
|−〉
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Preparation of Bell states

CNOT : ( 1√
2
|0〉+ 1√

2
|1〉)⊗ |0〉 → 1√

2
|00〉+ 1√

2
|11〉
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Generalized Bell states
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Quantum teleportation

Quantum teleportation aims to transmit a qubit by using two bits of

classical communication and a Bell pair.
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Quantum teleportation

|ψ0〉 = |ψ〉 ⊗ |β00〉 = (α|0〉+ β|1〉)⊗ 1√
2
(|00〉+ |11〉)

= α|0〉 1√
2
(|00〉+ |11〉) + β|1〉 1√

2
(|00〉+ |11〉)

|ψ1〉 = α|0〉 1√
2
(|00〉+ |11〉) + β|1〉 1√

2
(|10〉+ |01〉)

|ψ2〉 = α√
2
(|0〉+ |1〉) 1√

2
(|00〉+ |11〉) + β√

2
(|0〉 − |1〉) 1√

2
(|10〉+ |01〉)

= 1
2 |00〉(α|0〉+ β|1〉) + 1

2 |01〉(α|1〉+ β|0〉)
+ 1

2 |10〉(α|0〉 − β|1〉) + 1
2 |11〉(α|1〉 − β|0〉)
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Quantum parallelism

Start with an equal superposition state |x〉 = 1√
2
|0〉+ 1√

2
|1〉, the output

state

|ψ〉 = |x, y ⊕ f(x)〉 = |x, f(x)〉 =
1√
2
|0, f(0)〉+

1√
2
|1, f(1)〉
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Quantum parallelism

( 1√
2
|0〉+ 1√

2
|1〉)⊗n = 1

2n/2

∑1
xn−1=0 ...

∑1
x0=0 |xn−1, ..., x0〉

Treat the binary string as an integer number x = xn−12n−1...+ x020.

Then ( 1√
2
|0〉+ 1√

2
|1〉)⊗n = 1

2n/2

∑2n−1
x=0 |x〉

and the output state 1
2n/2

∑2n−1
x=0 |x, f(x)〉
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Quantum interference

Let |ψ〉 = 1√
2
|0〉+ 1√

2
|1〉

H|ψ〉 = 1√
2
H|0〉+ 1√

2
H|1〉

= 1√
2

1√
2
(|0〉+ |1〉) + 1√

2
1√
2
(|0〉 − |1〉)

= 1
2 (1 + 1)|0〉+ 1

2 (1− 1)|1〉
= |0〉

After applying H to |ψ〉, the probability amplitudes of |0〉 (resp. |1〉)
undergo constructive (resp. destructive) interference.
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Deutsch’s algorithm

Deutsch’s problem: decide if a Boolean function f : {0, 1} → {0, 1} is

constant or not.
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Deutsch’s algorithm

|ψ0〉 = |01〉
|ψ1〉 = ( |0〉+|1〉√

2
)( |0〉−|1〉√

2
)

|ψ2〉 =

 ±( |0〉+|1〉√
2

)( |0〉−|1〉√
2

) if f(0) = f(1)

±( |0〉−|1〉√
2

)( |0〉−|1〉√
2

) if f(0) 6= f(1).

|ψ3〉 =

 ±|0〉( |0〉−|1〉√
2

) if f(0) = f(1)

±|1〉( |0〉−|1〉√
2

) if f(0) 6= f(1).

= ±|f(0)⊕ f(1)〉( |0〉−|1〉√
2

)

The circuit can determine the global property f(0)⊕ f(1) by measuring

the first qubit, using only one evaluation of f(x)!

With a classical apparatus, one would need at least two evaluations.
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The Deutsch-Jozsa algorithm

Deutsch-Jozsa problem: given a Boolean function f : {0, 1}n → {0, 1} that

is guaranteed to be either constant or balanced (it returns 0’s for exactly

half of all inputs and 1’s for the other half), determine if it is constant or

balanced.
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The Deutsch-Jozsa algorithm

|ψ0〉 = |0〉⊗n|1〉
|ψ1〉 =

∑
x∈{0,1}n

|x〉√
2n

( |0〉−|1〉√
2

)

|ψ2〉 =
∑
x∈{0,1}n

(−1)f(x)|x〉√
2n

( |0〉−|1〉√
2

)

Phase kickback: have the function value f(x) show up in the global phase

by applying a unitary transform on the target qubit in superposition.

For x = 0 or x = 1 we have H|x〉 =
∑
z(−1)xz|z〉/

√
2, thus

H⊗n|x1, ..., xn〉 =

∑
z1,...,zn

(−1)x1z1+...xnzn |z1, ..., zn〉√
2n

Write it succinctly,

H⊗n|x〉 =

∑
z(−1)x·z|z〉√

2n
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where x · z is the bitwise inner product of x and z, modulo 2.

|ψ3〉 =
∑
z

∑
x

(−1)x·z+f(x)|z〉
2n

(
|0〉 − |1〉√

2
)

• If f is constant: the amplitude for |0〉⊗n is ±1, all other amplitudes

must be zero.

• If f is balanced: the positive and negative contributions to the

amplitude for |0〉⊗n cancel, leaving amplitude zero.

In summary, a measurement of all 0s means f is constant; otherwise it is

balanced.
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The Bernstein-Vazirani Algorithm

The Bernstein-Vazirani Problem: Suppose there is a black-box function

f : {0, 1}n → {0, 1}, as in the Deutsch-Jozsa problem. Instead of being

balanced or constant, it is guaranteed to return the dot product with some

string s, i.e. fs(x) = s · x (mod 2). The problem is to find such s.

Classically, we can reveal s by querying with the inputs

100...0, 010...0, 001...0, ..., 000...1, i.e. to call fs exactly n times.
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The Bernstein-Vazirani Algorithm

Use the same quantum circuit as in the Deutsch–Jozsa algorithm,

|ψ3〉 =
∑
z

∑
x

(−1)x·z+fs(x)|z〉
2n ( |0〉−|1〉√

2
)

=
∑
z

∑
x

(−1)x·z+s·x|z〉
2n ( |0〉−|1〉√

2
)

The amplitude of any computational basis state |z〉 is

A(z) =
∑

x∈{0,1}n

(−1)x·z+s·x

2n

In particular, when z = s,

A(s) =
∑

x∈{0,1}n

(−1)x·s+s·x

2n
= 1

That is, we will get state |s〉 with 100% probability.
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Simon’s Problem

Suppose there is an unknown black-box function f , which is guaranteed to

be either one-to-one or two-to-one. For example,

• one-to-one: f(i) = i for i ∈ {1, 2, 3.4}

• two-to-one: f(1) = f(3) = 1, f(2) = f(4) = 2

When the function is two-to-one, then there is a secret string s such that

f(x1) = f(x2) iff x1 ⊕ x2 = s. The string s = 000... represents the

one-to-one function f .

The aim is to determine if f is one-to-one or two-to-one by finding string s.

Classically, we have to query f up to 2n−1 + 1 inputs, where n is the

number of bits in the inputs.
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Simon’s algorithm
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Simon’s algorithm

|ψ0〉 = |0〉⊗n|0〉⊗n

|ψ1〉 = 1√
2n

∑
x∈{0,1}n |x〉|0〉⊗n

|ψ2〉 = Uf |ψ1〉 = 1√
2n

∑
x∈{0,1}n |x〉|f(x)〉

|ψ3〉 = H⊗n|ψ2〉 = 1
2n

∑
z∈{0,1}n

∑
x∈{0,1}n(−1)x·z|z〉|f(x)〉

• If f is one-to-one, measuring the target qubits and observe |f(x)〉 will

get only one corresponding x. For each input |z〉 state, the amplitude

is A(z) = 1
2n/2

given that the target |f(x)〉 is observed. The probability

is 1
2n for all z, a uniform distribution over the input states |z〉.

• If f is two-to-one, measuring the target qubits and observe |c〉 would

crresponds to two values x1, x2 with f(x1) = f(x2) = c. The amplitude

of each input state |z〉 is A(z) = 1

2
n+1
2

[(−1)x1·z + (−1)x2·z].
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If A(z) 6= 0 then

(−1)x1·z = (−1)x2·z ⇒ x1 · z = x2 · z

s · z = (x1 ⊕ x2) · z = x1 · z ⊕ x2 · z = x1 · z ⊕ x1 · z = 0 (mod 2)

Measure the input qubits and observe n different z values to find string

s:

s · z1 = 0

s · z2 = 0
...

s · zn = 0

The n equations can be solved by Gaussian elimination.

Introduction to Quantum Computing Y. Deng@ECNU 42



Superdense coding

Superdense coding aims to send two classical bits using just a single qubit

of communication.
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Superdense coding

(x0x1y0y1, |00〉) H−−→ (∗, |0〉+|1〉√
2
|0〉) CNOT−−−−−→ (∗, |00〉+|11〉√

2
)

CX−−−→ (∗, Xx1
0
|00〉+|11〉√

2
)
CZ−−−→ (∗, Zx0

0 Xx1
0
|00〉+|11〉√

2
)

≡



(00y0y1,
|00〉+|11〉√

2
) if x0 = x1 = 0

(01y0y1,
|10〉+|01〉√

2
) if x0 = 0, x1 = 1

(10y0y1,
|00〉−|11〉√

2
) if x0 = 1, x1 = 0

(11y0y1,
|10〉−|01〉√

2
) if x0 = x1 = 1

CNOT−−−−−→



(00y0y1,
|00〉+|10〉√

2
)

(01y0y1,
|11〉+|01〉√

2
)

(10y0y1,
|00〉−|10〉√

2
)

(11y0y1,
|11〉−|01〉√

2
)

H−−→


(00y0y1, |00〉)
(01y0y1, |01〉)
(10y0y1, |10〉)
(11y0y1, |11〉)

Meas−−−−→


(0000, |00〉)
(0101, |01〉)
(1010, |10〉)
(1111, |11〉)
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Qsimulation

Qsimulation is a tool for simulating quantum computation on classical

computers.

https://github.com/coconutoe/quantum see also Qiskit https://qiskit.org
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Mathematical Foundations
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Vector spaces

A(complex) vector space is a nonempty set H with two operations:

• vector addition + : H×H → H

• scalar multiplication · : C×H → H

satisfying the following conditions:

1. + is commutative: |u〉+ |v〉 = |v〉+ |u〉;

2. + is associative: |u〉+ (|v〉+ |w〉) = (|u〉+ |v〉) + |w〉;

3. + has the zero element 0, called the zero vector, such that 0 + |v〉 = |v〉;

4. each |v〉 ∈ H has its negative vector |v〉 such that |v〉+ (−|v〉) = 0;

5. 1|v〉 = |v〉;

6. α(β|v〉) = (αβ)|v〉;

7. (α+ β)|v〉 = α|v〉+ β|v〉;

8. α(|u〉+ |v〉) = α|u〉+ α|v〉.
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Inner product spaces

An inner product space is a vector space H equipped with an inner

product:

〈·|·〉 : H×H → C

satisfying the conditions:

1. 〈u|u〉 ≥ 0 with equality if and only if |u〉 = 0;

2. 〈u|v〉 = 〈v|u〉∗;

3. 〈u|αv + βw〉 = α〈u|v〉+ β〈u|w〉.

• If 〈u|v〉 = 0, then |u〉 and |v〉 are orthogonal, written |u〉⊥|v〉.

• The length of a vector |v〉 ∈ H is |||v〉|| =
√
〈v|v〉.

• A vector |v〉 is a unit vector if |||v〉|| = 1.
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Hilbert spaces

Let {|vn〉} be a sequence of vectors in an inner product space H and

|v〉 ∈ H.

1. If for any ε > 0, there exists a positive interger N such that

|||vm〉 − |vn〉|| < ε for all m,n ≥ N , then {|vn〉} is a Cauchy sequence.

2. If for any ε > 0, there exists a positive interger N such that

|||vn〉 − |v〉|| < ε for all n ≥ N , then |v〉 is a limit of {|vn}, written

|v〉 = limn→∞ |vn〉.

A Hilbert space is a complete inner product space, i.e., an inner product

space where each Cauchy sequence of vectors has a limit.
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Linear independence of vectors

• A set of vectors {|v1〉, |v2〉, ..., |vn〉} in H is linearly independent if

c1|v1〉+ c2|v2〉+ ...+ cn|vn〉 = 0 only when all the coefficients ci are

zero.

• If a set of n vectors {|v1〉, |v2〉, ..., |vn〉} in Cn is linearly independent,

the vectors span the entire n-dimensional vector space.

• A set of vectors {|v1〉, |v2〉, ..., |vn〉} in H is orthogonal if |vi〉⊥|vj〉 when

i 6= j.

• An orthogonal set of vectors are linear independent, but the converse

is not necessarily true.
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Basis

A basis B of a vector space H is a linearly independent subset of H that

spans H. That is,

• (the linear independence property) for every finite subset of vectors

{|v1〉, |v2〉, ..., |vn〉} of B, if c1|v1〉+ ...+ cn|vn〉 = 0 then all the

coefficients ci are zero.

• (the spanning property) for every vector |v〉 in H, there are

c1, c2, ..., cn ∈ C and |v1〉, |v2〉, ..., |vn〉 ∈ B such that

|v〉 = c1|v1〉+ ...+ cn|vn〉.
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Orthonormal basis

• An orthonormal basis B of H is a basis of H such that B is an

orthogonal set of unit vectors.

• The number of vectors in any two orthonormal bases are the same. It

is called the dimension of H.

• Suppose the dimension of H is n and there is a fixed orthonormal basis

{|v1〉, ..., |vn〉}, then a vector |v〉 =
∑n
i=1 ci|vi〉 ∈ H is represented by

the vector in Cn: 
c1
...

cn


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Closed subspace

Let H be a Hilbert space.

• If V ⊆ H, and for any |u〉, |v〉 ∈ V and c ∈ C.

– |u〉+ |v〉 ∈ V
– c|v〉 ∈ V

then V is called a subspace of H.

• For any V ⊆ H, its closure V is the set of limits limn→∞ |vn〉 of

sequences {|vn〉} in V .

• A subspace V of H is closed if V = V .

• For any set V ⊆ H, the space spanned by V is written

spanX = {
n∑
i=1

ci|vi〉 | n ≥ 0, ci ∈ C and |vi〉 ∈ V (i = 1, ..., n)}
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• spanV is the closed subspace generated by V .

• For any U, V ⊆ H, U and V are orthogonal, written U⊥V , if |u〉⊥|v〉
for all |u〉 ∈ U, |v〉 ∈ V .

• The orthocomplement of a closed subspace V of H is

V ⊥ = {|u〉 ∈ H | |u〉⊥V }

• The orthocomplement V ⊥ is a closed subspace of H, (V ⊥)⊥ = V .

• Let U, V be two subspaces of H. Then

U ⊕ V = {|u〉+ |v〉 | |u〉 ∈ U and |v〉 ∈ V }.
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Tensor product of Hilber spaces

• Let Hi be a Hilbert spaces with {|viji〉} as an orthonormal basis for

i = 1, ..., n.

• Write B for the set of elements in the form:

|ψ1j1〉, ..., |ψnjn〉 = |ψ1j1〉 ⊗ ...⊗ |ψnjn〉.

• The tensor product of Hi i = 1, ..., n is the Hilbert space with B as an

orthonormal basis: ⊗
i

Hi = spanB.
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Linear operators

Let H and K be Hilbert spaces. A mapping A : H → K is a linear operator

if it satisfies the conditions:

1. A(|u〉+ |v〉) = A|u〉+A|v〉

2. A(c|v〉) = cA|v〉

Examples:

• Identity operator maps every vector in H to itself, denoted by IH.

• Zero operator maps every vector in H to the zero vector, denoted by

0H.

• For vectors |u〉, |v〉 ∈ H, their outer product is the linear operator in H
with

(|u〉〈v|)|w〉 = 〈v|w〉|u〉.
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Projections

• Let V be a closed subspace of H and |v〉 ∈ H. Then there exists unique

|v0〉 ∈ V and |v1〉 ∈ V ⊥ such that

|v〉 = |v0〉+ |v1〉.

• Vector |v0〉 is called the projection of |v〉 onto V , |v0〉 = PV |v〉.

• For closed subspace V of H, the operator

PV : H → V, |v〉 7→ PV |v〉

is the projector onto V .
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Linear operator in terms of outer product

• We can define a linear operator A from a vector space V to W as

|w〉〈v|, where |v〉 ∈ V, |w〉 ∈W .

• For any vector |v′〉 ∈W ,

A|v′〉 = |w〉〈v|v′〉 = 〈v|v′〉|w〉

• The action of A is to take |v′〉 to the scaled version of |w〉 ∈W . The

scaling is based on how much overlap |v′〉 has with |v〉.

• In general, if |vi〉 ∈ V and |wi〉 ∈W are chosen to be be linearly

independent. Let B =
∑
i |wi〉〈vi|. Then

B|v′〉 =
∑
i

|wi〉〈vi|v′〉 =
∑
i

〈vi|v′〉|wi〉

The term 〈vi|v′〉 denotes the overlap of |v′〉 with each of the |vi〉.
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Pauli operators

σ0 = I =

1 0

0 1

 = |0〉〈0|+ |1〉〈1|

σ1 = X =

0 1

1 0

 = |1〉〈0|+ |0〉〈1|

σ2 = Y =

0 −i
i 0

 = i|1〉〈0| − i|0〉〈1|

σ1 = X =

1 0

0 −1

 = |0〉〈0| − |1〉〈1|
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Bounded operators

• An operator A is bounded if there is a constant c ≥ 0 such that

||A|v〉|| ≤ c · |||v〉||

for all |v〉 ∈ H.

• The norm of A is

||A|| = inf{c ≥ 0 | ||A|v〉|| ≤ c · |||v〉|| for all |v〉 ∈ H}

• L(H) stands for the set of bounded operators in H.
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Operations of operators

(A+B)|v〉 = A|v〉+B|v〉
(cA)|v〉 = c(A|v〉)

(BA)|v〉 = B(A|v〉)

Introduction to Quantum Computing Y. Deng@ECNU 61



Löwner order

• An operator A ∈ L(H) is positive if for all states |v〉 ∈ H,

〈v|A|v〉 ≥ 0.

• Löwner order: A v B if and only if B −A is positive.

• Distance between operators

d(A,B) = sup
|v〉
||A|v〉 −B|v〉||

Introduction to Quantum Computing Y. Deng@ECNU 62



Matrix representation of operators

• Let the dimension of H is n, fix an orthonormal basis {|v1〉, ..., |vn〉}.
An operator on H can be represented by the n× n complex matrix

A =


a11 ... a1n

...

an1 ... ann


where aij = 〈vi|A|vj〉.

• If |v〉 =
∑n
i=1 αi|vi〉, then

A|v〉 = A


α1

...

αn

 =


β1

...

βn


where βi =

∑n
j=1 aijαj .
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Eigenvectors

• An eigenvector of an operator A is a non-zero vector |ψ〉 ∈ H such that

A|ψ〉 = λ|ψ〉 for some λ ∈ C ⇒ (A− λI)|v〉 = 0. If |v〉 6= 0 then

det(A− λI) = 0.

• λ is called the eigenvalue of A corresponding to |ψ〉.

• The set of eigenvalues of A is called the spectrum of A and denoted by

spec(A).

• For each eigenvalue λ ∈ spec(A), the set

{|ψ〉 ∈ H | A|ψ〉 = λ|ψ〉}

is a closed subspace of H and called the eigenspace of A corresponding

to λ.

• the eigenspaces corresponding to different eigenvalues λ1 6= λ2 are

orthogonal.
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Diagonal representation

• If the eigenvectors of the operator A denoted by |k〉 are orthonormal

and their corresponding eigenvalues are λk, then

A =
∑
k

λk|k〉〈k|

which is called a diagonal representation of the operator A.

• Take the Pauli matrix X. From det(X − λI) = 0 we obtain two

eigenvalues λ1 = 1, λ2 = −1. The corresponding eigenvectors are

|λ1〉 =
[

1√
2

1√
2

]T
and |λ2〉 =

[
1√
2
− 1√

2

]T
, which are orthonormal to

each other. The matrix X itself is not diagonal; however, it can be

represented as the diagonal matrix wrt the basis vectors |λ1〉 and |λ2〉.
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Adjoint of an operator

• For any operator A ∈ L(H), there exists a unique operator A† such

that

(A|u〉, |v〉) = (|u〉, A†|v〉).

• Operator A† is called the adjoint of A.

• If A = (aij)n×n then A† = (bij)n×n with bij = a∗ji.

• For two operators A, B, (AB)† = B†A†

• (A†)† = A
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Normal operators

• An operator A is normal if it commutes with its adjoint A†, i.e.,

AA† = A†A.

• Normal operators admit a spectral decomposition:

A =
∑
k

λk|k〉〈k|

where λk stands for the eigenvalue corresponding to the eigenvector |k〉.

Introduction to Quantum Computing Y. Deng@ECNU 67



Example

• The matrix representation of the Hadamard operator is

H = 1√
2

1 1

1 −1

 has eigenvalues λ1 = 1, λ2 = −1. The corresponding

eigenvectors are |λ1〉 =

 1√
4−2
√
2

1√
2
√
2

 and |λ2〉 =

 1√
4+2
√
2

− 1√
2
√
2


• Verify that

λ1|λ1〉〈λ1|+ λ2|λ2〉〈λ2| = H
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Hermitian operators

• An operator M ∈ L(H) is Hermitian if it is self-adjoint: M† = M . In

physics, a Hermitian operator is called an observable.

• If a Hermitian operator is not a degenerate i.e. each eigenvalue

corresponds to only one eigenvector, its eigenvectors are orthogonal to

each other.

• An operator P is a projector: P = PV for some closed subspace V of

H, if and only if P is Hermitian and P 2 = P .

• All eigenvalues of an observable (i.e. a Hermitian operator) M are real

numbers.

M =
∑

λ∈spec(M)

λPλ

where Pλ is the projector onto the eigenspace corresponding to λ.
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Unitary transformation

• An operator U ∈ L(H) is unitary if U†U = UU† = IH.

• All unitary transformations preserve inner product:

(U |u〉, U |v〉) = 〈u|v〉.

• If the dimension of H is n, then a unitary operator is represented by

an n× n unitary matrix U with U†U = In.
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Trace of linear operators

The trace of a linear operator is the sum of its diagonal entries.

• The sum of the eigenvalues of a linear operator equals its trace.

• tr(AB) = tr(BA)

• tr(A+B) = tr(A) + tr(B)

• For a linear operator A and a scalar c ∈ C, tr(cA) = c× tr(A)

• The trace of a linear operator is invariant to a unitary similarity

transform, tr(UAU†) = tr(A)
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Tensor product of operators

• Let Ai ∈ L(Hi) for i = 1, ..., n. Their tensor product⊗n
i=1Ai = A1 ⊗ ...⊗An ∈ L(

⊗n
i=1Hi):

(A1 ⊗ ...⊗An)|ψ1, ..., ψn〉 = A1|ψ1〉 ⊗ ...⊗An|ψn〉

• The tensor product of two matrices

A⊗B =


a11B ... a1nB

...
...

...

am1B ... amnB


• (A⊗B)∗ = A∗ ⊗B∗

• (A⊗B)T = AT ⊗BT

• (A⊗B)† = A† ⊗B†
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Functions of normal operators

• A normal operator has a spectral decomposition A =
∑
i λi|i〉〈i|, where

λi represents the eigenvalues and |i〉 the corresponding eigenvectors.

• A function f on A can be defined as f(A) =
∑
i f(λi)|i〉〈i|

• Example: exp(cA) =
∑
i e
cλi |i〉〈i|

• Alternatively, if A is not normal, we use the exponential expansion

exp(cA) = I + cA+
(cA)2

2!
+

(cA)3

3!
+ ...

• If A is normal, (cA)k =
∑
i(cλi)

k|i〉〈i| and

exp(cA) =
∑
i(1 + cλi +

c2λ2
i

2! + ...)|i〉〈i| =
∑
i e
cλi |i〉〈i|
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Commutator and anti-commutator operators

• The commutator of two linear operators M, N is

[M,N ] = MN −NM

• The anti-commutator of two linear operators M, N is

{M,N} = MN +NM

•
MN =

[M,N ] + {M,N}
2
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Postulates of Quantum Mechanics
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Postulate 1: Quantum state

• The state space of a closed quantum system is represented by a Hilbert

space.

• A pure state of the system is described by a unit vector in its state

space.

• Example: 2-dimensional Hilbert space

H2 = C2 = {α|0〉+ β|1〉 | α, β ∈ C}.

|+〉 =
|0〉+ |1〉√

2
=

1√
2

1

1

 , |+〉 =
|0〉 − |1〉√

2
=

1√
2

 1

−1


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Example: Square summable sequences

• The space of square summable sequences:

H∞ = {
∞∑

n=−∞
αn|n〉 | αn ∈ C for all n ∈ Z and

∞∑
n=−∞

|αn|2 <∞}

• Inner product:

(
∞∑

n=−∞
αn|n〉,

∞∑
n=−∞

βn|n〉) =
∞∑

n=−∞
α∗nβn.

• {|n〉 | n ∈ Z} is an orthonormal basis, H∞ is infinite-dimensional.
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Postulate 2: Quantum evoluation

• Suppose that the states of a closed quantum system at times t0 and t1

are |ψ0〉 and |ψ1〉, respectively. Then there is a unitary operator U

such that

|ψ1〉 = U |ψ0〉
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Schrödinger’s equation

• The quantum state of a closed system evolves according to

Schrödinger’s equation

ih

2π

d|ψ(t)〉
dt

= H|ψ(t)〉

where h is the Plank’s constant and H is the Hamiltonian of the closed

quantum system.

• The Hamiltonian is a Hermitian operator and hence has a spectral

decomposition

H =
∑
k

Ek|Ek〉〈Ek|
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• The solution to Schrödinger’s equation is

|ψ(t)〉 = e
−i2πH(t−t0)

h |ψ(t0)

• The expression U(t, t0) = e
−i2πH(t−t0)

h is the unitary operator

• If the spectral decomposition of the Hamiltonian operator is

H =
∑
iEi|Ei〉〈Ei|, then the spectral decomposition of U(t, t0) is

U(t, t0) =
∑
k

e
−i2πH(t−t0)

h |Ek〉〈Ek|
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Example: Hadamard transformation

H = 1√
2

1 1

1 −1


H|0〉 = H

1

0

 = 1√
2

1

1

 = |+〉

H|1〉 = H

0

1

 = 1√
2

 1

−1

 = |−〉
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Example: Translation

• Let k be an integer. The k-translation operator Tk in H∞ is defined by

Tk|n〉 = |n+ k〉

for all n ∈ Z.

• T−1 and T1 move a particle on the line one position to the left and to

the right, respectively.
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Postulate 3: Quantum measurement

• A quantum measurement on a system with state Hilbert space H is

described by a collection {Mm} ⊆ L(H) of measurement operators

satisfying the completeness equation:
∑
mM

†
mMm = IH

• The index m stands for the measurement outcomes that may occur in

the experiment.

• If the state of a quantum system is |ψ〉 immediately before the

measurement, then for each m,

– the probability that result m occurs in the measurement is

p(m) = ||Mm|ψ〉||2 = 〈ψ|M†mMm|ψ〉 Born rule

– the state of the system after the measurement with outcome m is

|ψm〉 = Mm|ψ〉√
p(m)
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Completeness equation

• The completeness equation comes from the fact that the sum of the

probabilities pertaining to the different measurement operators should

sum to 1.

∑
m p(m) = 1

⇒
∑
m〈m|M†mMm|m〉 = 1

⇒ 〈m|
∑
mM

†
mMm|m〉 = 1

The last equation holds only if
∑
mM

†
mMm = IH
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Example

• The measurement of a qubit in the computational basis:

M0 = |0〉〈0|, M1 = |1〉〈1|.

• If the qubit was in state |ψ〉 = α|0〉+ β|1〉 before the measurement,

then

– the probability of obtaining outcome 0 is

p(0) = 〈ψ|M†0M0|ψ〉 = 〈ψ|M0|ψ〉 = |α|2,

the state of the system after the measurement is M0|ψ〉√
p(0)

= |0〉.

– the probability of outcome 1 is p(1) = |β|2, the state after the

measurement is |1〉.
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Projective measurements

• An observable M defines a measurement {Pλ | λ ∈ spec(M)}, called a

projective measurement.

• Upon measuring a system in state |ψ〉, the probability of obtaining

result λ

p(λ) = 〈ψ|Pλ|ψ〉

the state of the system after the measurement is

Pλ|ψ〉√
p(λ)

• The expectation, i.e. average value, of M in state |ψ〉 is

〈M〉ψ =
∑

λ∈spec(M)

p(λ) · λ = 〈ψ|M |ψ〉.
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General Heisenberg uncertainty principle

• The standard deviation ∆M of M in state |ψ〉:

(∆M)2 = 〈M2〉ψ − 〈M〉2ψ

• For two measurement operators M and N , the standard deviation of

their outcomes follows the relation

∆M∆N ≥ 1

2
||〈ψ|[M,N ]|ψ〉||

See P. 71-74 of S. Pattanayak’s book for a detailed proof.

Introduction to Quantum Computing Y. Deng@ECNU 87



Postulate 4: Composite quantum systems

The state space of a composite quantum system is the tensor product of

the state spaces of its components.

• Suppose S is a quantum system composed by subsystems S1, ..., Sn

with state Hilbert space H1, ...,Hn.

• If for each 1 ≤ i ≤ n, Si is in state |ψi〉 ∈ Hi, then S is in the product

state |ψ1, ..., ψn〉.

• A state of the composite system is entangled if it is not a product of

states of its component systems.
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Examples

• The state space of the system of n qubits

H⊗n2 = C2n = {
∑

x∈{0,1}n
αx|x〉 | αx ∈ C for all x ∈ {0, 1}n}.

• A two-qubit system can be in a product state like |00〉, |0〉|+〉.

• It may also be in an entangled state like the Bell states or the EPR

(Einstein-Podolsky-Rosen) pairs.

|β00〉 = 1√
2
(|00〉+ |11〉), |β01〉 = 1√

2
(|01〉+ |10〉)

|β10〉 = 1√
2
(|00〉 − |11〉), |β11〉 = 1√

2
(|01〉 − |10〉).
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Implementing a general measurement by a projective measurement

• Let M = {Mm} be a quantum measurement in Hilbert space H.

• Introduce a new Hilbert space HM = span {|m〉} used to record the

possible outcomes of M .

• Choose a fixed state |0〉 ∈ HM . Define unitary operator in HM ⊗M :

Um(|0〉|ψ〉) =
∑
m

|m〉|ψ〉

• Define a projective measurement M = {|m〉〈m| ⊗ IH} in HM ⊗H.
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Implementing a general measurement by a projective measurement

• Then M is realized by the projective measurement M together with

the unitary operator UM .

• For any pure state |ψ〉 ∈ H,

– When we perform measurement M on |ψ〉, the probability of

outcome m is denoted by pM (m), the post-measurement state

corresponding to m is |ψm〉.
– When we perform measurement M on |ψ〉 = UM (|0〉|ψ〉), the

probability of outcome m is denoted by pM (m), the

post-measurement state corresponding to m is |ψm〉.

• For each m, we have

pM (m) = pM (m)

|ψm〉 = |m〉|ψm〉
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Ensembles

• The state of a quantum system is not completely known: it is in one of

a number of pure states |ψi〉, with respective probabilities pi, where

|ψi〉 ∈ H, pi ≥ 0 for each i,
∑
i pi = 1.

• We call {(|ψi〉, pi)} an ensemble of pure states or a mixed state

• It can be represented by the density operator

ρ =
∑
i

pi|ψi〉〈ψi|

• A pure state |ψ〉 may be seen as a special mixed state {(|ψ〉, 1)}. Its

density operator is ρ = |ψ〉〈ψ|.
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Density operators

• The trace tr(A) of operator A ∈ L(H):

tr(A) =
∑
i

〈ψi|A|ψi〉

where {|ψi〉} is an orthonormal basis of H.

• A density operator ρ is a positive operator with tr(ρ) = 1.

• The operator ρ defined by any ensemble {(|ψi〉, pi)} is a density

operator. Conversely, any density operator ρ is defined by an (but

unnecessarily unique) ensemble {(|ψi〉, pi)}.

• If ρ is a pure state, tr(ρ2) = 1; if it is a mixed state, tr(ρ2) < 1.

• The density operator of n quantum systems with density operators

ρ1, ..., ρn can be expressed as ρ = ρ1 ⊗ ...⊗ ρn.
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Postulates of quantum mechanics in the language of density operators

• A closed quantum system from time t0 to t is described by unitary

operator U depending on t0 and t: |ψ〉 = U |ψ0〉.

• If the system is in mixed state ρ0, ρ at times t0 and t, respectively,

then ρ = Uρ0U
†.

• If the state of a quantum system was ρ before measurement Mm is

performed, then the probability that result m occurs is

p(m) = tr(M†mMmρ)

and the system after the measurement is

ρm =
MmρM

†
m

p(m)
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Reduced density operators

• We often need to characterize the state of a subsystem of a quantum

system.

• It is possible that a composite system is in a pure state, but some of

its subssystems must be seen as in a mixed state.

• Let S and T be quantum systems whose state Hilbert spaces are HS
and HT , respectively.

• The partial trace over system T :

trT : L(HS ⊗HT )→ L(HS)

trT (|ψ〉〈φ| ⊗ |θ〉〈ξ|) = 〈ξ|θ〉 · |ψ〉〈φ|

• Let ρ be a density operator in HS ⊗HT . Its reduced density operator

for system S: ρS = trT (ρ).
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The Bell state

• The density operator of the Bell state |ψ〉 = 1√
2
(|00〉+ |11〉) is

ρAB =
1

2
(|00〉〈00|+ |11〉〈00|+ |00〉〈11|+ |11〉〈11|)

• ρA = trB(ρAB) =
1
2 (|0〉〈0|〈0|0〉+ |1〉〈0|〈0|1〉+ |0〉〈1|〈1|0〉+ |1〉〈1|〈1|1〉) = I

2

• tr(ρ2A) = tr( I4 ) = 1
4 < 1

• Thus qubit A is in the mixed state, so is qubit B. The joint state of the

two qubits is in a pure state, while the individual qubits are in a mixed

state!
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Super-operators

• Unitary transformations are suited to describe the dynamics of closed

quantum systems.

• For open quantum systems that interact with the outside environment,

we need a general notion of quantum operation.

• A linear operator in vector space L(H) is called a super-operator in H.

• Let H and K be Hilbert spaces. For any super-operators E in H and F
in K, their tensor product E ⊗ F is the super-operator in H⊗K: for

each C =
∑
i αi(Ai ⊗Bi), Ai ∈ L(H), Bi ∈ L(K),

(E ⊗ F)(C) =
∑
i

αi(E(Ai)⊗F(Bi))
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Quantum operations

• A quantum operation in a Hilbert space H is a super-operator in H
satisfying:

1. tr(E(ρ)) ≤ tr(ρ) = 1 for each density operator ρ in H;

2. (Complete positivity) For any extra Hilbert space HR, (IR ⊗ E)(A)

is positive provided A is a positive operator on HR ⊗H, where IR
is the identity operator in L(HR).

3. Let the states of a system at times t0 and t are ρ0 and ρ,

respectively. Then they must be related to each other by a

super-operator E depending only on the times t0 and t:

ρ = E(ρ0)
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Examples

• Let U be a unitary transformation in a Hilbert space H. Define

E(ρ) = UρU† for every density operator ρ. Then E is a quantum

operation.

• Let M = {Mm} be a quantum measurement in H.

1. For each m, if for any system state ρ before measurement, define

Em(ρ) = pmρm = MmρM
†
m where pm is the probability of outcome

m and ρm is the post-measurement state corresponding to m, then

Em is a quantum operation.

2. For any system ρ before measurement, the post-measurement state

is

E(ρ) =
∑
m

Em(ρ) =
∑
m

MmρM
†
m

whenever the measurement outcomes are ignored. Then E is a

quantum operation.
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Kraus Theorem

The following statements are equivalent:

1. E is a quantum operation in a Hilbert space H;

2. (System-environment model) There is an environment system E with

state Hilbert space HE , and a unitary transformation U in HE ⊗H
and a projector P onto some closed subspace of HE ⊗H such that

E(ρ) = trE [PU(|e0〉〈e0| ⊗ ρ)U†P ]

for all density operator ρ in H, where |e0〉 is a fixed state in HE ;

3. (Krause operator-sum representation) There exists a finite or countably

infinite set of operators {Ei} in H such that
∑
iE
†
iEi v I and

E(ρ) =
∑
i

EiρE
†
i

for all density operators ρ in H. We write E =
∑
iEi ◦ E

†
i .
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Quantum Circuits
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Single qubit gates

Some common single qubit gates
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Rotation operators

Rotation operators about the x̂, ŷ and ẑ axes.
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Controlled gates

• A controlled-U operation: |c〉|t〉 → |c〉U c|t〉

• Toffoli gate
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Circuit equivalence
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Universal gate sets

• Single qubit and CNOT gates can be used to implement an arbitrary

unitary operation on n qubits, and therefore are universal for quantum

computation.

• The standard set of universal gates: {H,S, T,CNOT}

• Another universal gate set: {H,S,CNOT,Toffoli}

• Approximating arbitrary unitary gates is generically hard: an

arbitrary unitary operation U on n qubits may be approximated to

within a distance ε using O(n24n logc(n24n/ε)) gates.
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Principle of deferred measurement

• Principle of deferred measurement: Measurements can always be

moved from an intermediate stage of a quantum circuit to the end of

the circuit; if the measurement results are used at any stage of the

circuit then the classically controlled operations can be replaced by

conditional quantum operations.

• Teleportation with measurements at the end:
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Quantum Programming
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Syntax of a purely quantum language

1. Assume a countably infinite set qV ar of quantum variables, ranged

over by q, q′, q0 etc.

2. Each quantum variable q ∈ qV ar has a type Hq (a Hilbert space).

3. For simplicity, we consider two basic types:

Bool = H2, Int = H∞

4. A quantum register is a finite sequence q = 11, ..., qn of quantum

variables. Its state Hilbert space:

Hq =
n⊗
i=1

Hqi
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Syntax of a purely quantum language

S ::= skip | q := |0〉 | U [q] | S1;S2

| if (�m ·M [q] = m→ Sm)

| while M [q] = 1 do S
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Notations

• A positive operator ρ is a partial density operator if tr(ρ) ≤ 1.

• Write D(H) for the set of partial density operators in H.

• Write Hall for the tensor product of the state Hilbert space of all

quantum variables: Hall = ⊗q∈qV arHq

• Let q = q1, ..., qn be a quantum register. An operator in the state

Hilbert space Hq has a cylindrical extension A⊗ I in Hall.

• Write nil for the empty program, i.e., successful termination.

• A configuration is a pair 〈S, ρ〉, where

1. S is a quantum program or nil;

2. ρ ∈ D(Hall) denotes the (global) state of quantum variables.

• Transition between quantum configurations: 〈S, ρ〉 → 〈S′, ρ′〉
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Operational semantics

〈skip, ρ〉 → 〈nil, ρ〉

〈q := |0〉, ρ〉 → 〈nil, ρ′〉

where ρ′ =

 |0〉q〈0|ρ|0〉q〈0|+ |0〉q〈1|ρ|1〉q〈0| if type(q) = Bool∑∞
n=−∞ |0〉〈n|ρ|n〉q〈0| if type(q) = Int

〈U [q], ρ〉 → 〈nil, UρU†〉

〈S1, ρ〉 → 〈S′1, ρ′〉
〈S1;S2, ρ〉 → 〈S′1;S2, ρ

′〉
〈S2, ρ〉 → 〈S′2, ρ′〉
〈nil;S2, ρ〉 → 〈S′2, ρ′〉
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Operational semantics

〈if (�m ·M [q] = m→ Sm), ρ〉 → 〈Sm,MmρM
†
m〉

for each possible outcome m of measurement M = {Mm}

〈while M [q] = 1 do S, ρ〉 → 〈nil,M0ρM
†
0 〉

〈while M [q] = 1 do S, ρ〉 → 〈S; (while M [q] = 1 do S),M1ρM
†
1 〉
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Computation

Let S be a quantum program and ρ ∈ D(Hall).

1. A transition sequence of S starting in ρ is a finite or infinite sequence

of configurations

〈S, ρ〉 → 〈S1, ρ1〉 → ...→ 〈Sn, ρn〉 → ...

such that ρn 6= 0 for all n except for the last n if the sequence is finite.

2. If a sequence cannot be extended, then it is a computation of S

starting in ρ.

• If a computation is finite with the last configuration 〈nil, ρ′〉, then

it terminates in ρ′.

• If it is infinite, then it diverges.
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Denotational semantics

1. If a configuration 〈S′, ρ′〉 can be reached from 〈S, ρ〉 in n steps, then

we write 〈S, ρ〉 →n 〈S′, ρ′〉.

2. Write →∗ for the reflexive and transitive closure of →.

3. Let S be a quantum program. Its semantic function

[[S]] : D(Hall)→ D(Hall)
[[S]](ρ) =

∑
{|ρ′ | 〈S, ρ〉 →∗ 〈nil, ρ′〉|}
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Structural definition

1. [[skip]](ρ) = ρ

2. If type(q) = Bool, then

[[q := |0〉]](ρ) = |0〉q〈0|ρ|0〉q〈0|+ |0〉q〈1|ρ|1〉q〈0|

3. If type(q) = Int, then

[[q := |0〉]](ρ) =
∞∑

n=−∞
|0〉〈n|ρ|n〉q〈0|

4. [[U [q]]](ρ) = UρU†

5. [[S1;S2]](ρ) = [[S2]]([[S1]](ρ))

6. [[if (�m ·M [q] = m→ Sm)]](ρ) =
∑
m[[Sm]](MmρM

†
m)
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Basic lattice theory

1. A partial order is a pair (X,v), where X is a nonempty set and v is a

binary relation on X satisfying

• Reflexivity: x v x for all x ∈ X;

• Antisymmetry: x v y and y v x imply x = y for all x, y ∈ X;

• Transitivity: x v y and y v z imply x v z for all x, y, z ∈ X.

2. Let (X,v) be a partial order.

• An element x ∈ X is the least element of X if x v y for all y ∈ X.

The least element is denoted by 0.

• An element x ∈ X is an upper bound of a subset Y ⊆ X if y v x
for all y ∈ Y .

• x is the least upper bound of Y , written x =
⊔
X if

– x is an upper bound of Y

– for any upper bound x′ of Y , x v x′.
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Basic lattice theory

1. A complete partial order (CPO) is a partial order (X,v) if for any

increasing sequence {xn}

x0 v x1 v ...

its least upper bound
⊔∞
n=0 xn exists. A CPO with bottom is a CPO

with a least element.

2. Let (X,v) be a CPO. A function f on X is continuous if

f(
⊔
n

xn) =
⊔
n

f(xn)

for any increasing sequence {xn} in X.

Introduction to Quantum Computing Y. Deng@ECNU 118



Knaster-Tarski Theorem

Let (X,v) be a CPO with bottom and function f : X → X is continuous.

Then f has the least fixed point

µ.f =

∞⊔
n=0

fn(0)

where f0 = 0 and fn+1(0) = f(fn(0)) for n ≥ 0.
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Domain of quantum operations

• Domain of partial density operators: (D(H),v) is a CPO with the zero

operator 0H as its least element.

• Domain of quantum operations:

– Each quantum operation in a Hilbert space H is a continuous

function on (D(H),v).

– Write QO(H) for the set of quantum operations in Hilbert space H.

– The Löner order between operators induces a partial order between

quantum operations: for any E ,F ∈ QO(H),

E v F ⇔ E(ρ) v F(ρ) for all ρ ∈ D(H)

• (QO(H),v) is a CPO.
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Syntactic approximation

• abort denotes a quantum program such that

[[abort]](ρ) = 0Hall for all ρ ∈ D(H)

• Consider a quantum loop

While ≡ while M [q] = 1 do S.

• For any integer k ≥ 0, the k-th syntactic approximation whilek of

while:

while0 = abort

whilek+1 = if (M [q] = 0→ skip

� M [q] = 1→ S;whilek)
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Denotation of loops

• Semantic function of loops:

[[while]] =
∞⊔
k=0

[[whilek]],

where
⊔

stands for the supremum of a sequence of quantum operations

in the CPO (QO(Hall),v).

• For any ρ ∈ D(Hall):

[[while]](ρ) = M0ρM
†
0 + [[while]]([[S]](M1ρM

†
1 )).
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Termination probabilities

• For any quantum program S and all partial density operators

ρ ∈ D(Hall),
tr([[S]](ρ)) ≤ tr(ρ).

• tr([[S]](ρ)) is the probability that program S terminates when starting

in state ρ.
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Quantum predicates

• A quantum predicate should be a physical observable.

• A quantum predicate in a Hilbert space H is a Hermitian operator M

in H with all its eigenvalues lying within the unit interval [0, 1].

• The set of predicates in H is denoted P(H).

• Satisfaction of quantum predicates: tr(Mρ) may be interpreted as the

degree to which quantum state ρ satisfies quantum predicate M .

• Let M be a Hermitian operator in H. The following statements are

equivalent:

1. M ∈ P(H) is a quantum predicate

2. 0H vM v IH
3. 0 ≤ tr(Mρ) ≤ 1 for all density operators ρ ∈ H
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Quantum predicates

Lemma For any observables M,N , the following two statements are

equivalent:

1. M v N

2. tr(Mρ) ≤ tr(Nρ) for all density operators ρ ∈ H

Lemma The set P(H),v of quantum predicates with the Löwner partial

order is a CPO.
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Quantum preconditions

• Let M,N ∈ P(H) be quantum predicates, E ∈ QO(H) a quantum

operation. Then M is a precondition of N w.r.t. E , written {M}E{N},
if

tr(Mρ) ≤ tr(NE(ρ))

for all density operators ρ ∈ H.

• Intuition: a probabilistic version of implication relation — if state ρ

satisfies predicate M , then the state after transformation E from ρ

satisfies predicate N .
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Quantum weakest preconditions

Let M ∈ P(H) be a quantum predicate, E ∈ QO(H) a quantum operation.

The weakest precondition of M w.r.t. E is a quantum predicate wp(E)(M)

satisfying

1. {wp(E)(M)}E{M}

2. for all quantum predicates N , {N}E{M} implies N v wp(E)(M).
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Characterisation of quantum weakest preconditions

Using Kraus operators:

Let E ∈ QO(H) be represented by the set {Ei} of operators

E(ρ) =
∑
i

EiρE
†
i

Then for each predicate M ∈ P(H):

wp(E)(M) =
∑
i

E†iMEi.
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Characterisation of quantum weakest preconditions

Using system-environment model:

If quantum operation E is given by

E(ρ) = trE(PU(|e0〉〈e0| ⊗ ρ)U†P )

then

wp(E)(M) = 〈e0|U†P (M ⊗ IE)PU |e0〉
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Schrödinger-Heisenberg duality

• Denotationally, a quantum program is a forward state transformer E :

E : D(H)→ D(H),

ρ 7→ E(ρ) for each ρ ∈ D(H)

• A weakest precondition defines a backward quantum predicate

transformer:

wp(E) : P(H)→ PH,
M 7→ wp(E)(M) for each M ∈ P(H)
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Schrödinger-Heisenberg duality

Let E be a quantum operation mapping density operators to themselves,

E∗ an operator mapping Hermitian operators to themselves. If for each

density operator ρ, Hermitian operator M ,

(Duality) tr(ME(ρ)) = tr(E∗(M)ρ)

then E and E∗ are (Schrödinger-Heisenberg dual).

ρ |= E∗(M)

E ↓ ↑ E∗

E(ρ) |= M

Any quantum operation E ∈ QO(H) and its weakest precondition wp(E)

are dual to each other.
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Basic properties of quantum weakest preconditions

Let λ ≥ 0, E ,F ∈ QO(H), let {En} be an increasing sequence in QO(H).

1. wp(λ · E) = λ · wp(E) provided λ · E ∈ QO(H);

2. wp(E + F) = wp(E) + ℘(F) provided E + F ∈ QO(H);

3. wp(E ◦ F) = wp(F) ◦ wp(E);

4. wp(
⊔∞
n=0) =

⊔∞
n=0 wp(En), with the later being defined as follows:

(

∞⊔
n=0

wp(En))(M) :=

∞⊔
n=0

wp(En)(M)
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Floyd-Hoare logic

A correctness formulas is a statement of the form

{P}S{Q}

where

• S is a quantum program

• P,Q ∈ P(Hall) are quantum predicates in Hall

• P is called the precondition, Q the postcondition.
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Partial and total correctness

• Partial correctness: If a state satisfies precondition P , by executing S,

either the program does not terminate, or it terminates in a state

satisfying the postcondition Q.

• Total correctness: If a state satisfies precondition P , by executing S,

the program must terminate and it terminates in a state satisfying the

postcondition Q.
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Partial and total correctness

• The Hoare triple {P}S{Q} is valid in the sense of total correctness,

written

|=tot {P}S{Q}

if

tr(Pρ) ≤ tr(Q[[S]](ρ))

for all ρ ∈ D(Hall), where [[S]] is the semantics of S.

• The Hoare triple {P}S{Q} is valid in the sense of partial correctness,

written

|=par {P}S{Q}

if

tr(Pρ) ≤ tr(Q[[S]](ρ)) + (tr(ρ)− tr([[S]](ρ)))

for all ρ ∈ D(Hall).
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Basic properties of correctness

• If |=tot {P}S{Q} then |=par {P}S{Q}.

• For any quantum program S, and predicates P,Q ∈ P(Hall),

|=tot {0Hall}S{Q}, |=par {P}S{IHall}.

• (Linearity) For any P1, P2, Q1, Q2 ∈ P(Hall) and λ1, λ2 ≥ 0 with

λ1P1 + λ2P2, λ1Q1 + λ2Q2 ∈ P(Hall), if

|=tot {Pi}S{Qi} (i = 1, 2)

then

|=tot {λ1P1 + λ2P2}S{λ1Q1 + λ2Q2}

The same holds for partial correctness if λ1 + λ2 = 1.
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Weakest (liberal) preconditions

• Let S be a quantum program, P ∈ P(Hall) a quantum predicate in

Hall.
1. The weakest precondition of S w.r.t. P is the quantum predicate

wp.S.P ∈ P(Hall) satisfying:

– |=tot {wp.S.P}S{P};
– if quantum predicate Q ∈ P(Hall) satisfies |=tot {Q}S{P} then

Q v wp.S.P .

2. The weakest liberal precondition of S w.r.t. P is the quantum

predicate wlp.S.P ∈ P(Hall) satisfying:

– |=par {wlp.S.P}S{P};
– if quantum predicate Q ∈ P(Hall) satisfies |=par {Q}S{P} then

Q v wp.S.P .

• Equivalence of semantic and syntactic definitions

wp.S.P = wp([[S]])(P ).
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Structural representation of weakest liberal preconditions

• wlp.skip.P = P .

• If type(q) = Bool, then

wlp.(q := |0〉).P = |0〉q〈0|P |0〉q〈0|+ |1〉q〈0|P |0〉q〈1|

If type(q) = Int, then wlp.(q := |0〉).P =
∑∞
n=−∞ |n〉q〈0|P |0〉q〈n|

• wlp.(U [q]).P = U†PU .

• wlp.(S1;S2).P = wlp.S1.(wlp.S2.P ).

• wlp.(if �m ·M [q] = m→ Sm).P =
∑
mM

†
m(wlp.Sm.P )Mm.

• wlp.(while M [q] = 1 do S).P = u∞n=0Pn, where P0 = IHall ,

Pn+1 = M†0PM0 +M†1 (wlp.S.Pn)M1 for all n ≥ 0.
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Trace-preserving property

• For any quantum program S, quantum predicate P ∈ P(Hall), and any

partial density operator ρ ∈ D(Hqll):

tr((wp.S.P )ρ) = tr(P [[S]](ρ))

tr((wlp.S.P )ρ) = tr(P [[S]](ρ)) + (tr(ρ)− tr([[S]]ρ)).

• Fixed point characterisation. Write while for the quantum loop

“while M [q] = 1 do S”. Then for any P ∈ P(Hall)
– wp.while.P = M†0PM0 +M†1 (wp.S.(wp.while.P ))M1.

– wlp.while.P = M†0PM0 +M†1 (wlp.S.(wlp.while.P ))M1.
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Proof system for partial correctness

• {P} skip {P}

• If type(q) = Bool, then

{|0〉q〈0|P |0〉q〈0|+ |1〉q〈0|P |0〉q〈1|} q := |0〉 {P}

If type(q) = Int, then

{
∞∑

n=−∞
|n〉q〈0|P |0〉q〈n|} q := |0〉 {P}

• {U†PU} U [q] {P}
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Proof system for partial correctness

•
{P} S1 {Q} {Q} S2 {R}
{P} S1;S2 {R}

•
{Pm} S {Q} for all m

{
∑
mM

†
mPmMm} if (�m ·M [q] = m→ Sm) {Q}

•
{Q} S {M†0PM0 +M†1QM1}
{M†0PM0 +M†1QM1} while M [q] = 1 do S {P}

•
P v P ′ {P ′} S {Q′} Q′ v Q
{P} S {Q}
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Proof system for partial correctness

If {P}S{Q} is derivable in the previous proof system, we write

`par {P}S{Q}.

• Soundness For any program S and predicates P,Q ∈ P(Hall)

`par {P}S{Q} implies |=par {P}S{Q}

• Completeness For any program S and predicates P,Q ∈ P(Hall)

|=par {P}S{Q} implies `par {P}S{Q}
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Bound (ranking) functions

Let P ∈ P(Hall) be a quantum predicate, ε > 0 be a real number.

A function

t : D(Hall)→ ω

is a (P, ε)-bound function of quantum loop

while M [q] = 1 do S

if for all ρ ∈ D(Hall),

1. t([[S]](M1ρM
†
1 )) ≤ t(ρ);

2. tr(Pρ) ≥ ε implies

t([[S]](M1ρM
†
1 )) < t(ρ)
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Characterisation of bound functions

The following two statements are equivalent:

1. for any ε > 0, there exists a (P, ε)-bound function tε of the loop

while M [q] = 1 do S;

2. limn→∞ tr(P ([[S]] ◦ E1)n(ρ)) = 0 for all ρ ∈ D(Hall).
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Proof system for total correctness

Rule for while loop: if

• {Q} S {M†0PM0 +M†1QM1}

• for any ε > 0, tε is a (M†1QM1, ε)-bound function of loop

while M [q] = 1 do S

then {M†0PM0 +M†1QM1} while M [q] = 1 do S {P}
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Proof system for total correctness

If {P}S{Q} is derivable in the previous proof system for total correctness,

we write `tot {P}S{Q}.

• Soundness For any program S and predicates P,Q ∈ P(Hall)

`tot {P}S{Q} implies |=tot {P}S{Q}

• Relative completeness For any program S and predicates

P,Q ∈ P(Hall)

|=tot {P}S{Q} implies `tot {P}S{Q}
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Quantum Algorithms
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Grover’s algorithm

Suppose there are N = 2n items in a database. The aim is to search the

item indexed by k. Assume the existence of a function f with f(x) = 1 if

x = k and 0 otherwise.
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Grover’s algorithm

1. |ψ0〉 = |0〉⊗n|0〉

2. |ψ1〉 = 1√
N

∑
x |x〉 ⊗

1√
2
(|0〉 − |1〉)

3. Phase kickback: |ψ2〉 = Uf |ψ1〉 = 1√
N

∑
x(−1)f(x)|x〉 ⊗ 1√

2
(|0〉 − |1〉)

4. View the equal superposition state |ψin〉 = 1√
N

∑
x(−1)f(x)|x〉 as a

linear combination of two vectors.

|ψin〉 = cos θ|c〉+ sin θ|k〉

with θ = arcsin 1√
N

.

5. Apply Uf on |ψin〉 gives |ψmid〉 = cos θ|c〉 − sin θ|k〉. It is a relfection

about vector |c〉.
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Grover’s algorithm

6. Reflect vector |ψmid〉 over the equal superposition state vector |ψeq〉.
Let

Ueq = 2|ψeq〉〈ψeq| − I =

cos 2θ sin 2θ

sin 2θ − cos 2θ


|ψout〉 = Ueq|ψmid〉 =

cos 2θ sin 2θ

sin 2θ − cos 2θ

 cos θ

− sin θ


=

cos 2θ cos θ − sin 2θ sin θ

sin 2θ cos θ + cos 2θ sin θ

 =

cos 3θ

sin 3θ

 = cos 3θ|c〉+ sin 3θ|k〉

7. Apply Uf followed by Ueq for m iterations, the final output state

(UeqUf )m|ψin〉 will be close to |k〉.

8. The Uf transformation is the same as in the Deutsch-Jozsa and
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Bernstein-Vajirani algorithms. Ueq can be slightly simplified as:

Ueq = H⊗n(2|0〉⊗n〈0|⊗n − I)H⊗n

The unitary transformation (2|0〉⊗n〈0|⊗n − I) maps |x〉 to |x〉 if

|x〉 = |0〉⊗n, and to −|x〉 otherwise.
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