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Chapter I. Propositional Logic
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1 Orders and Trees
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Orders

Definition 1.1 (i) A partial order is a set S with a binary relation called

“less than”, and written <, on S which is transitive and irreflexive:

x < y and y < z ⇒ x < z and

x is not less than x for any x.

(ii) The partial order < is a linear order (or simply an order) if it also

satisfies the trichotomy law:

x < y or x = y or y < x.

(iii) A linear order S is well ordered if every nonempt subset A of S has a

least element, i.e., there is an x ∈ A such that for no y ∈ A is y < x.

This property easily implies that the order has no infinite descending

chain, i.e., there is no set of elements x0, x1, ... of S such that

... < x2 < x1 < x0
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(iv) We use the usual notational conventions for orderings:

x ≤ y ⇔ x < y or x = y.

x > y ⇔ y < x.

Note: We only consider finite or countably infinite sets. We may assume

that we have a listing of a set as either {ai | i < n} for some n ∈ N or as

{ai | i ∈ N}.
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Trees (1/2)

Definition 1.2 A tree is a set T (whose elements are called nodes)

partially ordered by <T , with a unique least element called the root, in

which the predecessors of every node are well ordered by <T .

A path on a tree T is a maximal linearly ordered subset of T .

Logic for Applications Y. Deng@SJTU 10



Trees (2/2)

Definition 1.3 (i) The levels of a tree T are defined by induction. The

0th level of T consists precisely of the root of T . The k + 1st level of T

consists of the immediate successors of the nodes on the kth level of T .

(We say that x is a successor of y in T if y <T x. It is an immediate

successor if y <T x and there is no z such that y <T z <T x.)

(ii) The depth of a tree T is the maximum n such that there is a node of

level n in T . If there are nodes of level n for every natural number n,

we say the depth of T is infinite or ω.

(iii) If each node has at most n immediate successors, the tree is n-ary or

n-branching. If each node has finitely many immediate successors, we

say that the tree is finitely branching. A node with no successors is

called a leaf or a terminal node.
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König’s lemma

Theorem 1.4 [König’s lemma] If a finitely branching tree T is infinite, it

has an infinite path.

Proof: Define the sequence x0, x1, ..., constituting a path P on T by

induction. The first element x0 is the root of T . It has infinitely many

successors by the assumption that T is infinite. Suppose that we have

defined the first n elements of P to be x0, x1, ..., xn−1 on levels

0, 1, ..., n− 1 of T , respectively, so that each xi has infinitely many

successors in T . By hypothesis, xn−1 has only finitely many immediate

successors. As it has infinitely many successors all together, (at least) one

of its immediate successors, say y, also has infinitely many successors. We

now set xn = y. xn is on level n of T and has infinitely many successors in

T and so we may continue our definition of P . �
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Labeled trees

Frequently it is just the shape of the tree that is important and not the

nodes themselves. To facilitate talking about the arrangement of different

materials into the same shape and to allow the same component to be used

at different places in this assemblage, we attach labels to the nodes of the

tree.

Definition 1.5 A labeled tree T is a tree T with a function (the labeling

function) that associates some object with every node. This object is

called the label of the node.
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Lexicographic ordering

Consider finite sequences of 0’s and 1’s. Consider a sequence or string σ of

length n as a map from {0, 1, ..., n− 1} into {0, 1}. The tree ordering <T is

given by extension as functions σ < τ ⇔ σ ⊂ τ , i.e., σ(n) = τ(n) for every

n at which σ is defined.

Lexicographic ordering on sequences: For two sequences σ and τ we say

that σ <L τ if σ ⊂ τ or if σ(n), the nth entry in σ, is less than τ(n) where

n is the first entry at which the sequences differ.
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Left to right ordering

Left to right ordering: First use <L as a linear order on each level of the

tree, then extend it to a linear ordering (also designated <T ) of all the

nodes of the tree. Given two nodes x and y, we say that x <L y if x <T y.

If x and y are incomparable in the tree ordering, we find the largest

predecessors x′ and y′ of x and y, respectively, that are on the same level

of T and let x <L y iff x′ <L y
′. Any such total ordering of the nodes of a

tree is also referred to as the lexicographic ordering of the nodes.

Logic for Applications Y. Deng@SJTU 15



2 Propositions, Connectives and Truth Tables

Propositions are just statements and propositional logic describes and

studies the ways in which statements are combined to form other

statements.

The syntactic part of logic deals with statements as just strings (i.e.,

sequences) of symbols. The semantic part of logic (semantics) ascribes

meaning to the symbols in various ways.

Connectives are operations that combine propositions to form new ones.
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Connectives

Formal symbols for some commonly used connectives:

∨ or (disjunction)

∧ and (conjunction)

¬ not (negation)

→ implies (conditional)

↔ if and only if (biconditional)
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Propositional logic

The language of propositional logic consists of the following symbols:

(i) Connectives: ∨, ∧, ¬, →, ↔

(ii) Parentheses: ), (

(iii) Propositional letters: A,A1, A2, . . . , B,B1, B2 . . . , . . ..
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Propositions

Definition 2.1 [Propositions]

(i) Propositional letters are propositions.

(ii) If α and β are propositions, then (α ∧ β), (α ∨ β), (¬α), (α→ β) and

(α↔ β) are propositions.

(iii) A string of symbols is a proposition if and only if it can be obtained by

starting with propositional letters (i) and repeatedly applying (ii).

E.g. (A ∨B), C, ((A ∧B) → C), (¬(A ∧B) → C) are propositions while

A ∧ ¬, (A ∨B, (¬ → A) are not.
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Formation tree

Definition 2.2 A formation tree is a finite tree T of binary sequences

(with root ∅ and a left to right ordering given by the ordinary

lexicographic ordering of sequences) whose nodes are all labeled with

propositions. The labeling satisfies the following conditions:

(i) The leaves are labeled with propositional letters.

(ii) If a node σ is labeled with a proposition of the form

(α ∧ β), (α ∨ β), (α→ β) or (α↔ β), its immediate successors, σ ·0
and σ ·1, are labeled with α and β (in that order).

(iii) If a node σ is labeled with a proposition of the form ¬α, its unique
immediate successor, σ ·0, is labeled with α.

The formation tree T represents or is associated with the proposition with

which its root is labeled.

Logic for Applications Y. Deng@SJTU 20



Example: formation tree
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Example: uniqueness of formation tree

Theorem 2.3 Each proposition has a unique formation tree associated

with it.

Proof: First show by induction that each proposition has a formation tree

associated with it.

Base case: for a propositional letter A, define a tree consisting of ∅ labeled

with A.

Inductive case: for the proposition α→ β, by induction there are

formation trees Tα and Tβ. The formation tree T(α→β) for (α→ β) has as

its root ∅ labeled with (α→ β). The other nodes are all sequences 0·σ for

every σ on Tα and 1·τ for every τ on Tβ . The labels are the same as they

were in the original trees. Other cases are similar.

Then show uniqueness. For propositional letters this is clear. For the
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inductive case caonsider α→ β. Note that its root ∅ must be labeled with

α→ β. Every node on must be of the form 0·σ or 1·τ , respectively, for
some binary sequence σ. For n = 0, 1 let Tn = {σ | n·σ ∈ T} have the

standard ordering and be labeled as in T . It is clear that T0 is a formation

tree for α and T1 for β. They are unique by induction and so T has been

uniquely determined as required. �
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Depth and support of a proposition

Definition 2.4 (i) The depth of a proposition is the depth of the

associated formation tree.

(ii) The support of a proposition is the set of propositional letters that

occur as labels of the leaves of the associated formation tree.
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Closure operation

A set S is closed under a single (for example n-ary) operation f(s1, ..., sn)

iff for every s1, ..., sn ∈ S, f(s1, ..., sn) ∈ S. The closure of a set S under

(all) the operations in a set T is the smallest set C such that 1. S ⊆ C

aand 2. if f ∈ T is n-ary and sl, ., sn ∈ C, then f(s1, ..., sn) ∈ C.

C = ∩{D | S ⊆ D & D is closed under the operation of T}
Obviously S ⊆ C. Then show C is closed under the operations of T . So C

is the smallest such set as it is contained in every set D ⊇ S that is closed

under the operations of T .

The set of propositions is the closure of the set of propositional letters

under the operations ∧,∨,¬,→ and ↔.
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Truth tables

For the semantics, we view the meaning of a propositional letter is simply

its truth value, that is, its truth or falsity. Each proposition then has a

unique truth value (T , for true or F , for false). The truth value of a

compound proposition is determined from the truth values of its parts in

accordance with the truth tables below:
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Example: Truth tables

The column for (A ∧B) is auxiliary and could be eliminated. The result

would be the abbreviated truth table for (A ∧B) → C).
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Truth tables

In general, an n-ary connective is any function σ that assigns a proposition

σ(A1..., An) to every n-tuple of propositions A1, ..., An. An n-ary

connective is truth junctional if the truth value for σ(A1, ..., An) is uniquely

determined by the truth values for A1, ..., An. Our five connectives are

truth functional since their meaning was defined by truth tables. A

connective like “because” is not. For let A symbolize “I had prune juice for

breakfast” and B “there was an earthquake at noon”. Even in the event

that both A and B have truth values T it is at least debatable whether

(B because A) should have truth value T . An n-ary connective that is

truth functional can be completely described by means of a truth table.

Conversely, two distinct abbreviated truth tables (with the conventional

listing of truth values for A1, ..., An) correspond to distinct truth functional

connectives. By counting we see there are 22
n

distinct n-ary truth

functional connectives.

Logic for Applications Y. Deng@SJTU 28



Adequacy

Definition 2.5 A set S of truth functional connectives is adequate if,

given any truth functional connective σ, we can find a proposition built up

from the connectives in S with the same abbreviated truth table as σ.

Theorem 2.6 [Adequacy] {¬,∧,∨} is adequate.

Proof: Let A1, ..., Ak be distinct propositional letters and let aij denote

the entry (T or F ) corresponding to the ith row and jth column of the

truth table for σ(A1, , Ak). Suppose that at least one T appears in the last

column.
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For any proposition α, let αT be α and αF be (¬α). For the ith row denote

the conjunction (Aai1
1 ∧ ...Aaik

k ) by ai. Let i1, ..., im be the rows with a T in

the last column. The desired proposition is the disjunction (ai1 ∨ ... ∨ aim)

The proof that this proposition has the given truth table is left as an

exercise. �
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Example: From truth table to proposition

Take the disjunction of the propositions we obtain for all relevant rows

(rows 1, 5, 8 in this case), we obtain

(A ∧B ∧ C) ∨ ((¬A) ∧B ∧ C) ∨ ((¬A) ∧ (¬B) ∧ (¬C))

Logic for Applications Y. Deng@SJTU 31



DNF and CNF

From any proposition we can construct its truth table, then find a

disjunctive normal form (DNF) or a conjunctive normal form (CNF) .
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Adequacy

Corollary 2.7 {¬, ∨} is adequate.

Proof: Note that (A1 ∧A2) has the same truth table as

¬((¬(A1))∨ (¬(A2))). Thus, given any proposition α we can find a DNF of

α and then eliminate any use of ∧ by this substitution. The resulting

proposition will still have the same truth table. �

The sets {¬, ∧} and {¬, →} are also adequate.
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Exercises

1. Show that each proposition has a CNF.

2. Exercise 8 in page 22: the binary connective Sheffer stroke α|β (“not

both ... and”) is adequate.

3. Exercise 9 in page 22: joint denial α ↓ β (neither α nor β) is also

adequate.

4. Exercise 12: the set of connectives {∨,→,↔} is not adequate.
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3 Truth Assignments and Valuations

Definition 3.1 A truth assignment A is a function that assigns to each

propositional letter A a unique truth value A(A) ∈ {T, F}.

Definition 3.2 A truth valuation V is a function that assigns to each

proposition α a unique truth value V(α) so that its value on a compound

proposition (that is, one with a connective) is determined in accordance

with the appropriate truth tables.

E.g. V((¬α)) = T iff V(α) = F and V((α ∨ β)) = T iff V(α) = T or

V(β) = T . We say that V makes α true if V(α) = T .
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Unique Truth Valuation

Theorem 3.3 Given a truth assignment A there is a unique truth

valuation V such that V(α) = A(α) for every propositional letter α.

Proof: Given a truth assignment A, define (by induction on the depth of

the associated formation tree) a valuation V on all propositions by first

setting V(α) = A(α) for all propositional letters α. This takes care of all

formation trees (propositions) of depth 0. Assuming that V has been

defined on all propositions with depth at most n, the inductive steps are

simply given by the truth tables associated with each connective. E.g.

V((α→ β)) is defined to be F iff V(α) = T and V(β) = F .

Clearly V has been defined so as to be a valuation and it does extend A. It

remains to show that any two valuations V1,V2 both extending A must

coincide. We prove this by induction on the depth of propositions:
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(i) V1(α) = V2(α) for all propositional letters α (depth 0) since V1,V2 both

extend A.

(ii) Suppose V1(α) = V2(α) for all propositions α of depth at most n and

that α and β have depth at most n. Thus, V1(α) = V2(α) and

V1(β) = V2(β) by induction. V1((α ∧ β)) and V2((α ∧ β)) are then both

given by the truth table for ∧ and so are equal. The same argument works

for all the other connectives and so V1 and V2 agree on every proposition.

�

Corollary 3.4 If V1 and V2 are two valuations that agree on the support

of α, the finite set of propositional letters used in the construction of the

proposition α, then V1(α) = V2(α).
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Tautology

Definition 3.5 A proposition σ of propositional logic is said to be valid if

for any valuation V , V(α) = T . Such a proposition is also called a

tautology.

Definition 3.6 Two propositions α and β such that, for every valuation

V , V(α) = V(β) are called logically equivalent. We denote this by α ≡ β.
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Example: Logical Equivalence

(i) (A ∨ (¬A)) and (((A→ B) → A) → A) (Law of the excluded middle

and Peirce’s law) are tautologies.

(ii) For any proposition α and any DNF β of α, α ≡ β.

(iii) Rephrasing the adequacy theorem: given any proposition α, we can

find a β that uses only ¬, ∨, ∧ and such that α ≡ β.
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Consequence

Definition 3.7 Let Σ be a (possibly infinite) set of propositions. We say

that σ is a consequence of Σ (and write Σ |= σ) if, for any valuation V ,
(V(τ) = T for all τ ∈ Σ) ⇒ V(σ) = T .

Note that, if Σ is empty, Σ |= σ (or just |= σ) iff σ is valid. We also write

this as |= σ. This definition gives a semantic notion of consequence.
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Model

Definition 3.8 A valuation V is a model of Σ if V(σ) = T for every

σ ∈ Σ. We denote by M(Σ) the set of all models of Σ.

Proposition 3.9 Let Σ,Σ1,Σ2 be sets of propositions. Let Cn denote the

set of consequences of Σ and Taut the set of all tautologies.

(i) Σ1 ⊆ Σ2 ⇒ Cn(Σ1) ⊆ Cn(Σ2)

(ii) Σ ⊆ Cn(Σ)

(iii) Taut ⊆ Cn(Σ) for all Σ

(iv) Cn(Σ) = Cn(Cn(Σ))

(v) Σ1 ⊆ Σ2 ⇒ M(Σ2) ⊆ M(Σ1)

(vi) Cn(Σ) = {σ | V(σ) = T for all V ∈ M(Σ)}
(vii) σ ∈ Cn({σ1, ..., σn}) ⇔ σ1 → (σ2...→ (σn → σ)...) ∈ Taut
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4

4 Tableau Proofs in Propositional Calculus

Tableaux are labeled binary trees for representing proofs. The labels on

the trees are signed propositions, i.e., a proposition preceded by either a T

or an F (indicating an assumed truth value for the proposition). The

labels of the nodes are the entries of the tableau.

Formally, we define (or describe how to build) tableaux for propositions

inductively by first specifying certain (labeled binary) trees as tableaux

(the so-called atomic tableaux) and then giving a development rule defining

tableaux for compound propositions from tableaux for simple propositions.
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4

Atomic Tableaux
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4

Tableaux

Definition 4.1 A finite tableau is a binary tree, labeled with signed

propositions called entries, that satisfies the following inductive definition:

(i) All atomic tableaux are finite tableaux.

(ii) If τ is a finite tableau, P a path on τ , E an entry of τ occurring on P

and τ ′ is obtained from τ by adjoining the unique atomic tableau with

root entry E to τ at the end of the path P , then τ ′ is also a finite

tableau.

If τ0, τ1, ..., τn, ... is a (finite or infinite) sequence of finite tableaux such

that, for each n ≥ 0, τn+1 is constructed from τn by an application of (ii),

then τ = ∪τn is a tableau.
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Example: Tableaux

We wish to begin a tableau with the signed proposition

F (((α→ β) ∨ (γ ∨ δ)) ∧ (α ∨ β).
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4

Tableaux

Definition 4.2 Let τ be a tableau, P a path on τ and E an entry

occurring on P .

(i) E has been reduced on P if all the entries on one path through the

atomic tableau with root E occur on P . (E.g., TA and FA are

reduced for every propositional letter A. T¬α and F¬α are reduced

(on P ) if Fα and α, respectively, appear on P . T (α ∨ β) is reduced if

either Tα or Tβ appears on P . F (α∨ β) is reduced if both Fα and Fβ

appear on P .)

(ii) P is contradictory if, for some proposition α, Tα and Fα are both

entries on P . P is finished if it is contradictory or every entry on P is

reduced on P .

(iii) τ is finished if every path through τ is finished.

(iv) τ is contradictory if every path through τ is contradictory. (It is, of

course, then finished as well.)
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Example: Tableaux

A finished tableau with three paths. The leftmost path is contradictory;

the other two are not.
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Tableau Proof

Definition 4.3 A tableau proof of a proposition α is a contradictory

tableau with root entry Fα. A proposition is tableau provable, written

⊢ α, if it has a tableau proof.

A tableau refutation for a proposition α is a contradictory tableau starting

with Tα. A proposition is tableau refutable if it has a tableau refutation.
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Example: Tableau Proof

A tableau proof of an instance of Peirce’s law.
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Complete systematic tableaux (CST)

Definition 4.4 Let R be a signed proposition. We define the complete

systematic tableau (CST) with root entry R by induction.

• Let τ0 be the unique atomic tableau with R at its root.

• Assume that τm has been defined. Let n be the smallest level of τm

containing an entry that is unreduced on some noncontradictory path

in τm and let E be the leftmost such entry of level n. We now let τm+l

be the tableau gotten by adjoining the unique atomic tableau with

root E to the end of every noncontradictory path of τm on which E is

unreduced. The union of the sequence τm is our desired complete

systematic tableau.

Logic for Applications Y. Deng@SJTU 54



4

CST are finished

Theorem 4.5 Every CST is finished.

Proof: Consider any entry E that occurs at some level n of the CST τ

and lies on a noncontradictory path P in T . There are at most finitely

many entries on T at or above level n. Thus, all the entries at level n or

above on T must be in place by some point of the construction. That is,

there is an m0 such that for every m ≥ m0, τm through level n is the same

as T through level n. Now, for m ≥ m0, the restriction of P to τm is a

path in τm containing E. At each step m ≥ m0 in the construction of the

CST we reduce the entry on the lexicographically least node labeled with

an unreduced entry that is on some noncontradictory path in the tableau

τm. If E is not already reduced on P by stage m0, we can proceed for at

most finitely many steps in this construction before E would become the

lexicographically least unreduced entry. At this point in the construction

we would reduce E. �
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CST as a proof

Theorem 4.6 If τ = ∪τn is a contradictory tableau, then for some m, τm

is a finite contradictory tableau. Thus, in particular, if a CST is a proof, it

is a finite tableau.

Proof: τ is a finitely branching tree. Consider the subset of all nodes of τ

with no contradiction above them. If this set is infinite, it has an infinite

path by Konig’s lemma. As this contradicts the assumption that every

path in τ is contradictory, there are only finitely many such nodes. They

must all appear by some level n of τ . Thus, every node at level n+ 1 of τ

has a contradiction above it. Once again, as τ through level n+ 1 is finite,

there is an m such that τm is the same as τ through level n+ 1. Now every

path P in τm is either a path in τ (ending with a leaf of level ≤ n) or a path

containing a node of level n+ 1. In the first case, P is contradictory by our

assumption that τ is contradictory. In the second, P is contradictory by

our choice of n and m. Thus, τm is the desired contradictory tableau.
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Note that if τ = ∪τn is as in the definition of a CST and m is the least

such that τm is contradictory, then we cannot extend τm in the

construction of τ . In this case τ = τm. �
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Every CST is finite

Definition 4.7 Define the degree of a proposition α, d(α) by induction:

(i) If α is a propositional letter, then d(α) = 0.

(ii) If α is ¬β, then d(α) = d(β) + 1.

(iii) If α is β ∨ γ, β ∧ γ, β → γ or β ↔ γ, then d(α) = d(β) + d(γ) + 1. The

degree of a signed proposition Tα or Fα is the degree of α. If P is a

path in a tableau τ , then d(P ) the degree of P is the sum of the signed

propositions on P that are not reduced on P .

Theorem 4.8 Every CST is finite

Proof: Let τ = ∪τm be any CST. We prove that every path on τ is finite

(indeed has length at most the degree of the root of τ) and so, by König’s

lemma, τ itself is finite. Consider any path P on τ . It is the union of paths

Pm on τm. A change occurs between Pm and Pm+1 when we add the

atomic tableau σ with root E to the end of Pm for some entry E that is
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4

unreduced on a path in τm. We claim that d(Pm+1) < d(Pm). Of course,

this immediately implies that we can add an atomic tableau to the end of

Pm at most finitely often (indeed at most d(α) many times where α is the

proposition at the root of τ). Thus, P is finite as desired. To verify the

claim first note that adding σ to the end of our path reduces the entry E

on P . This subtracts d(E) from the degree of the path while adding on the

degrees of the signed propositions other than E occurring on the path of σ

that is added on to Pm to form Pm+1. Thus, it suffices to check that the

sum of the degrees of the signed formulas (excluding the root) on each

path through any atomic tableau σ is less than the degree of the root of σ.

This is immediate from the definition of degree and the list of atomic

tableaux. �
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4

Exercises

1. Exercise 4 in page 26

2. Exercise 3 in page 36

3. Exercise 10 in page 38
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5 Soundness and Completeness of Tableaux

We prove the equivalence of the semantic notion of validity (|=) and the

syntactic notion of provability (⊢). Thus, we show that all tableau prov-

able propositions are valid (soundness of the proof method) and that all

valid propositions are tableau provable (completeness of the method).
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Soundness

Theorem 5.1 [Soundness] If α is tableau provable, then α is valid, i.e.,

⊢ α ⇒ |= α.

Proof: We prove the contrapositive. Suppose α is not valid. There is a

valuation V assigning F to α. We say that the valuation V agrees with a

signed proposition E in two situations: if E is Tα and V(α) = T or if E is

Fα and V(α) = F . We show below that if any valuation V agrees with the

root node of a tableau, then there is a path P in the tableau such that V
agrees with every entry on P . As no valuation can agree with any path on

a contradictory tableau there can be no tableau proof of α. �

Lemma 5.2 If V is a valuation that agrees with the root entry of a given

tableau τ given as in Definition 4.1 as ∪τn, then τ has a path P every

entry of which agrees with V .
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Proof: Prove by induction that there is a sequence 〈Pn〉 such that, for

every n, Pn is contained in Pn+1 and Pn is a path through τn such that V
agrees with every entry on Pn. The desired path P through τ will then

simply be the union of the Pn. The base case of the induction is easily seen

to be true by the assumption that V agrees with the root of τ . As an

example, consider (6a) with root entry T (α↔ β). If V(α↔ β) = T ,then

either V(α) = T and V(β) = T or V(α) = F and V(β) = F by the truth

table definition for ↔. Similar for other atomic tableaux.

For the induction step, suppose that we have constructed a path Pn in τn

every entry of which agrees with V . If τn+1 is gotten from τn without

extending Pn, then we let Pn+1 = Pn. If Pn is extended in τn+1, then it is

extended by adding on to its end an atomic tableau with root E for some

entry E appearing on Pn. By induction V agrees with E, the same analysis

as used in the base case shows that V agrees with one of the extensions of

Pn to a path Pn+1 in τn+1. �
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Completeness

Theorem 5.3 If α is valid, then α is tableau provable, i.e., |= α ⇒ ⊢ α.
In fact, any finished tableau with root entry Fα is a proof of α and so, in

particular, the complete systematic tableaux with root Fα is such a proof.
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Key Lemma

Lemma 5.4 Let P be a noncontradictory path of a finished tableau τ .

Define a truth assignment A on all propositional letters A as follows:

A(A) = T if TA is an entry on P .

A(A) = F otherwise.

If V is the unique valuation (Theorem 3.3) extending the truth assignment

A, then V agrees with all entries of P .

Proof: By induction on the depth of propositions on P .

(i) If α is a propositional letter and Tα occurs on P , then V(α) = T by

definition and we are done. If Fα occurs on P , then, as P is

noncontradictory, Tα does not and V(α) = F .

(ii) Suppose T (α ∧ β) occurs on the noncontradictory path P . Since τ is a

finished tableau, both T (α) and T (β) occur on P . By the induction

hypothesis V(α) = T = V(β) and so V(α ∧ β) = T as required.
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(iii) Suppose F (α ∧ β) occurs on the noncontradictory path P . Again by

the definition of a finished tableau, either Fα or Fβ must occur on P .

Whichever it is, the induction hypothesis tells us that it agrees with V and

so either V(α) = F or V(β) = F . In either case V(α ∧ β) = F as required.

Other connectives are treated likewise. �

Proof: (of Theorem 5.3): Suppose that α is valid and so V(α) = T for

every valuation V . Consider any finished tableau τ with root Fα. (The

CST with root Fα is one by Theorem 4.5) If τ had a noncontradictory

path P , there would be, by Lemma 5.4, a valuation V that agrees with all

its entries and so in particular with Fα. This would give us a valuation

with V(α) = F contradicting the validity of α. Thus, every path on τ is

contradictory and τ is a tableau proof of α. �
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6 Deductions from Premises

Definition 6.1 [Tableaux from premises] Let Σ be a (possibly infinite) set

of propositions. A finite tableau with premises from Σ is a binary tree that

satisfies the following inductive definition:

(i) All atomic tableaux are finite tableaux from Σ.

(ii) If τ is a finite tableau from Σ and α ∈ Σ, then the tableau formed by

putting Tα at the end of every noncontradictory path not containing it

is also a finite tableau from Σ.

(iii) If τ is a finite tableau from Σ, P a path on τ , E an entry of τ

occurring on P and τ ′ is obtained from τ by adjoining the unique

atomic tableau with root entry E to τ at the end of the path P , then

τ ′ is also a finite tableau from Σ.
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If τ0, τ1, ..., τn, ... is a (finite or infinite) sequence of finite tableaux from Σ

such that, for each n ≥ 0, τn+1 is constructed from τn by an application of

(ii) or (iii), then τ = ∪τn is a tableau from Σ.
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Tableau Proof of a Proposition from Σ

Definition 6.2 A tableau proof of a proposition α from Σ (or with

premises from Σ) is a tableau from Σ with root entry Fα that is

contradictory, that is, one in which every path is contradictory. If there is

such a proof we say that α is provable from Σ and write it as Σ ⊢ α.
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Example: Tableau Proof

A tableau proof of A from {¬B, (A ∨B)}.
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CST from a set of premises

A finished tableau from Σ is a tableau from Σ that is a finished tableau in

the sense of Definition 4.2 and has an occurrence of Tα on every

noncontradictory path for every α ∈ Σ.

To construct a CST from Σ, we list the elements of Σ as αm, m ∈ N , and

revise the definition of the CST by simply adding on one step to the

definition of τm+1. If our new construction has produced τm we let τ ′m+1

be the next tableau that would be defined by the standard CST procedure.

(If that procedure would now terminate because every path is

contradictory, we also terminate the current construction.) We now add on

Tαm to the end of every noncontradictory path in τ ′m+1 that does not

already contain Tα to form our new τm+1.

Theorem 6.3 Every CST from a set of premises is finished.
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Soundness of deduction from premises

Lemma 6.4 If a valuation V makes every α ∈ Σ true and agrees with the

root of a tableau τ from Σ, then there is a path in τ every entry of which

agrees with V .

Theorem 6.5 [Soundness of deduction from premises] If there is a tableau

proof of α from a set of premises Σ, then α is a consequence of Σ,

Σ ⊢ α ⇒ Σ |= α.

Proof: If not, there is a valuation that makes β true for every β ∈ Σ but

makes α false. Continue now as in the proof of Theorem 5.1. �
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Completeness of deduction from premises

Lemma 6.6 Let P be a noncontradictory path in a finished tableau τ

from Σ. Define a valuation V as in Lemma 5.4. V then agrees with all

entries on P and so in particular makes every proposition β ∈ Σ true (as

Tβ must appear on P for every β ∈ Σ by definition of a finished tableau

from Σ).

Theorem 6.7 [Completeness of deduction from premises] If α is a

consequence of a set Σ of premises, then there is a tableau deduction of α

from Σ, i.e., Σ |= α ⇒ Σ ⊢ α.

Proof: If Σ |= α, every valuation V that makes every proposition in Σ

true also makes α true. Consider the CST from Σ with root Fα. It is

finished by Theorem 6.3. Now apply Lemma 6.6. �
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Compactness

Theorem 6.8 If τ = ∪τn is a contradictory tableau from Σ, then, for

some m, τm is a finite contradictory tableau from Σ. In particular, if a

CST from Σ is a proof, it is finite.

Theorem 6.9 α is a consequence of Σ iff α is a consequence of some finite

subset of Σ.
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Compactness

Definition 6.10 A set Σ of propositions is called satisfiable if it has a

model, i.e., there is a valuation V such that V(α) = T for every α ∈ Σ. We

also say that such a valuation satisfies Σ.

E.g.

(i) {A1, A2, (A1 ∧A2), A3, (A1 ∧A3), A4, (A1 ∧A4), ...} is a satisfiable

infinite set of propositions.

(ii) {A1, A2, (A1 → A3), (¬A3)} is a finite set of propositions that is not

satisfiable nor is any set containing it.

Logic for Applications Y. Deng@SJTU 75



Compactness

Theorem 6.11 [Compactness] Let Σ = {αi | i ∈ ω} be an infinite set of

propositions. Σ is satisfiable if and only if every finite subset of Σ is

satisfiable.

Proof: (⇒) Trivial.

(⇐) Let 〈Ci | i ∈ ω〉 be a list of all the propositional letters. We define a

tree T whose nodes are binary sequences ordered by extension. We use

lth(α) to denote the length of a sequence σ and set

T = {σ | there exists a valuation V s.t., for i ≤ lth(σ), V(αi) = T and

V(Ci) = T iff σ(i) = 1}. What this definition says is that we put σ on the

tree unless interpreting it as an assignment of truth values to the

propositional letters Ci(i ≤ lth(σ)) already forces one of the αi to be false

for i ≤ lth(σ).

Logic for Applications Y. Deng@SJTU 76



Claim: There is an infinite path in T if and only if Σ is satisfiable.

Proof of Claim: If V satisfies Σ, then, by definition, the set of all σ such

that σ(i) = 1 iff V(Ci) = T is a path on T . On the other hand, suppose

that 〈σj | j ∈ N〉 is an infinite path on T . Let V be the unique valuation

extending the assignment determined by the σj , i.e., the one for which Ci

is true iff σj(i) = 1 for some j (or equivalently, as the σi are linearly

ordered by extension, iff σj(i) = 1 for every i such that i ≤ lth(σj)) If

V 6|= Σ, then there is some αj ∈ Σ such that V(αj) = F . Now by Corollary

3.4 this last fact depends on the truth values assigned by V to only finitely

many propositional letters. Let us suppose it depends only on those Ci,

with i ≤ n. It is then clear from the definition of T that no σ with length

≥ n can be on T at all. As there are only finitely many binary sequences σ

with length ≤ n, we have contradicted the assumption that the sequence

〈σj〉 is an infinite path on T and so V |= Σ as claimed.

The next claim is that there is, for every n, a σ of length n in T . By

assumption every finite subset of Σ is satisfiable. Thus, for each n, there is
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a valuation Vn that makes αi true for each i ≤ n. The string σ given by

σ(i) = 1 iff Vn(Ci) = T for i ≤ n is then on T by definition.

By König’s lemma (Theorem 1.4) there is an infinite path in T and so Σ is

satisfiable as required. �
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Exercises

• Exercise 6 in page 45

• Exercise 7 in page 46

• Exercise 8 in page 46
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7 An Axiomatic Approach

The axioms of propositional logic are certain valid propositions. A rule of

inference, R, in general, “infers” a proposition α from certain n-tuples

α1, ..., αn of propositions in a way that is expected to preserve validity.

Axioms: The axioms of our system are all propositions of the following

forms:

(i) (α→ (β → α))

(ii) ((α→ (β → γ)) → ((α→ β) → (α→ γ)))

(iii) (¬β → ¬α) → ((¬β → α) → β)

where α, β and γ can be any propositions. The forms in this list are often

called axiom schemes. The axioms are all instances of these schemes as α,

β and γ vary over all propositions.
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The rule of inference (Modus Ponens)

α

α→ β

β

Systems based on axioms and rules in the above style are called

Hilbert-style proof systems. Denote provability by ⊢H .
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Proofs

Definition 7.1 (i) A proof from Σ is a finite sequence α1, α2, ..., αn such

that for each i ≤ n either:

(1) αi is a member of Σ;

(2) αi is an axiom; or

(3) αi can be inferred from some of the previous a αj by an application

of a rule of inference.

(ii) α is provable from Σ, Σ ⊢E α, if there is a proof α1, ..., αn from Σ

where αn = α.

(iii) A proof of α is simply a proof from the empty set ∅; α is provable if it

is provable from ∅.
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Example: Proofs

Here is a proof of ((¬β → α) → β) from Σ = {¬α}:
¬α from Σ

(¬α→ (¬β → ¬α)) from axiom (i)

(¬β → ¬α) modus ponens

((¬β → ¬α) → ((¬β → α) → β)) axiom (iii)

((¬β → α) → β) modus ponens

Note that although the set of premises Σ may be infinite, if α is provable

from Σ, then α is provable from a finite subset of Σ. Proofs are always

finite!
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Soundness and completeness from premises

Theorem 7.2 α is provable from a set of propositions Σ if and only if α is

a consequence of Σ, i.e., Σ ⊢H α ⇔ Σ |= α .

Corollary 7.3 A proposition α is provable if and only if it is valid, i.e.,

⊢H α ⇔ |= α .
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8 Resolution

Definition 8.1 (i) A literal l is a propositional letter p or its negation

¬p. If l is p or ¬p, we write l̄ for ¬p or p, respectively. The

propositional letters are also called positive literals and their negations

negative literals.

(ii) A clause C is a finite set of literals (which you should think of as the

disjunction of its elements). As we think of C as being true iff one of

its elements is true, the empty clause � is always false - it has no true

element.

(iii) A formula S is a (not necessarily finite) set of clauses (which you

should think of as the conjunction of its elements). As we think of a

formula S as being true if everyone of its elements is true, the empty

formula ∅ is always true - it has no false element.
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(iv) An assignment A is a consistent set of literals, i.e., one not containing

both p and ¬p for any propositional letter p. (This, of course, is just

the (partial) truth assignment in which those p ∈ A are assigned T and

those q with q̄ ∈ A are assigned F .) A complete assignment is one

containing p or ¬p for every propositional letter p. It corresponds to

what we called a truth assignment in Definition 3.1.

(v) A satisfies S, A |= S, iff ∀C ∈ S(C ∩ A 6= ∅), i.e., the valuation

induced by A makes every clause in S true.

(vi) A formula S is (un)satisfiable if there is an (no) assignment A that

satisfies it.
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Example: literals, clauses and formulas

Definition 8.2 (i) p, q, r,¬p, q̄(= ¬q), r̄ and ¬q̄(= q) are literals.

(ii) {p, r}, {¬q} and {q,¬r} are clauses.

(iii) S = {{p, r}, {q,¬r}, {¬q}, {¬p, t}, {s,¬t}} is a formula that, in our

original notation system, would be written as

((p ∨ r) ∧ (q ∨ ¬r) ∧ (¬q) ∧ (¬p ∨ t) ∧ (s ∨ ¬t)).

(iv) If A is given by {p, q, r, s, t}, i.e., the (partial) assignment such that

A(p) = T = A(q) = A(r) = A(s) = A(t), then A is an assignment not

satisfying the formula S in (iii). S is, however, satisfiable.
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Resolution rule

The resolution rule is much like a version of modus ponens called cut.

Modus ponens says that from α and α→ β one can infer β. In this format,

the cut rule says that from α ∨ γ and ¬α ∨ β infer γ ∨ β. Thus, cut is
somewhat more general than modus ponens in that it allows one to carry

along the extra proposition γ. Resolution is a restricted version of cut in

which α must be a literal while β and γ must be clauses.
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Resolution

Definition 8.3 [Resolution] From clauses C1 and C2 of the form {l} ⊔ C ′
1

and {l̄} ⊔ C ′
2, infer C = C ′

1 ∪ C ′
2 which is called a resolvent of C1 and C2.

(Here l is any literal and ⊔ means that we are taking a union of disjoint

sets.) We may also call C1 and C2 the parent and C their child and say

that we resolved on (the literal) l.
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Resolution deduction

Definition 8.4 A (resolution) deduction or proof of C from a given

formula S is a finite sequence C1, C2, ..., Cn = C of clauses such that each

Ci is either a member of S or a resolvent of clauses Cj , Ck for j, k < i. If

there is such a deduction, we say that C is (resolution) provable from S

and write S ⊢R C. A deduction of � from S is called a (resolution)

refutation of S. If there is such a deduction we say that S is (resolution)

refutable and write S ⊢R �.
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Example: resolution

(i) From {p, r} and {¬q,¬r} conclude {p,¬q} by resolution (on r).

(ii) From {p, q,¬r, s} and {¬p, q, r, t} we could conclude either

{q,¬r, s, r, t} or {p, q, s,¬p, t} by resolution (on p or r), respectively.

Of course, both of these clauses are valid and are equivalent to the

empty formula.
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Resolution tree proof

Definition 8.5 A resolution tree proof of C from S is a labeled binary

tree T with the following properties:

(i) The root of T is labeled C.

(ii) The leaves of T are labeled with elements of S.

(iii) If any nonleaf node σ is labeled with C2 and its immediate successors

σ0, σ1 are labeled with C0, C1, respectively, then C2 is a resolvent of C0

and C1.
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Example: resolution tree proof

A resolution tree refutation of the formula

S = {{p, r}, {q,¬r}, {¬q}, {¬p, t}, {¬s}, {s,¬t}}, i.e., a resolution tree

proof of � from S:

Logic for Applications Y. Deng@SJTU 93



Resolution tree proof

Lemma 8.6 C has a resolution tree proof from S if and only if there is a

resolution deduction of C from S.

Proof: (⇒) List all the labels of the nodes σ of the tree proof of C from S

in any order that reverses the < ordering of the tree (so leaves are listed

first and the root last). This sequence can be seen to be a resolution

deduction of C from S by simply checking the definitions.

(⇐) We proceed by induction on the length of the resolution deduction of

C from S. Suppose we can get tree proofs for any deduction of length < n

and C1, ..., Cn is one of length n from S. If Cn ∈ S,there is nothing to

prove. If not, then Cn is the resolvent of Ci and Cj for some i and j less

than n. By induction, we have tree proofs Ti and Tj of Ci and Cj . Let Tn
be the tree whose root is labeled C and to whose immediate successors we

attach Ti and Tj . Again, by definition, this is the desired tree proof. �
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Closure

Definition 8.7 R(S) is the closure of S under resolution, i.e., the set

determined by the following inductive definition:

1. If C ∈ S,C ∈ R(S).

2. If C1, C2 ∈ R(S) and C is a resolvent of C1 and C2, then C ∈ R(S).

Proposition 8.8 For any clause C and formula S, there is a resolution

deduction of C from S iff C ∈ R(S). In particular, there is a resolution

refutation of S iff � ∈ R(S).
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Soundness (1/2)

Lemma 8.9 If the formula (i.e., set of clauses) S = {C1, C2} is satisfiable

and C is a resolvent of C1 and C2, then C is satisfiable. Indeed, any

assignment A satisfying S satisfies C.

Proof: As C is a resolvent of C1 and C2, there are l, C ′
1 and C ′

2 such that

C1 = {l} ⊔ C ′
1, C2 = {l̄} ⊔ C ′

2 and C = C ′
1 ∪ C ′

2. As A satisfies {C1, C2}, it
satisfies (that is, it contains an element of) each of C1 and C2. As A is an

assignment, it cannot be the case that both l ∈ A and l̄ ∈ A. Say l̄ 6∈ A.

As A |= C2 and l̄ 6∈ A, A |= C ′
2 and so A |= C. The proof for l 6∈ A just

replaces C2 by C1 and l̄ by l. �
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Soundness (2/2)

Theorem 8.10 [Soundness of resolution] If there is a resolution refutation

of S, then S is unsatisfiable.

Proof: If C1, ..., Cn is a resolution deduction from S, then the lemma

shows by induction (on n) that any assignment satisfying S satisfies every

Ci. If the deduction is in fact a refutation of S, then Cn = �. As no

assignment can satisfy �, S is unsatisfiable. �
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Completeness (1/2)

Lemma 8.11 For any formula T and any literal l, let

T (l) = {C ∈ R(T ) | l, l̄ 6∈ C}. If T is unsatisfiable, then so is T (l).

Proof: Assume T is unsatisfiable and suppose, for the sake of a

contradiction, that A is any assignment that satisfies T (l) and is defined

on all the literals (of T ) other than l. Let A1 = A ∪ {l} and A2 = A ∪ {l̄}.
As T is unsatisfiable, there are clauses C1 and C2 in T such that A1 6|= C1

and A2 6|= C2. Now as l ∈ A1 and A1 6|= C1, l 6∈ C1. If l̄ is also not in C1,

then C1 ∈ T (l) by definition. As this would contradict our assumption that

A |= T (l), l̄ ∈ C1. Similarly, l ∈ C2. Thus, we may resolve C1 and C2 on l

to get a clause D not containing l and hence in T (l). (As a resolvent of two

clauses in T, D is certainly in R(T )). Then, by our choice of A, A |= D. If

A satisfies the resolvent D, however, it must satisfy one of the parents C1

or C2. Thus, we have the desired contradiction. �
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Completeness (2/2)

Theorem 8.12 [Completeness of resolution] If S is unsatisfiable, then

there is a resolution refutation of S.

Proof: By the compactness theorem (Theorem 6.13), there is a finite

subset S′ of S that is unsatisfiable. As any refutation deduction from S′ is

one from S, we may assume that S is finite, i.e., it contains only finitely

many clauses. If there are only finitely many clauses in S and each clause

is finite, there are only finitely many literals, say l1, l2, ..., ln which are in

any clause in S.Then we consider only clauses and formulas based on these

n literals.

We wish to consider the set of clauses C ∈ R(S) and prove that it contains

�. We proceed by eliminating each literal in turn by applying

Lemma 8.11. We begin with Sn = S(ln) = {C ∈ R(S) | ln, l̄n 6∈ C}. By
definition, it is a collection of resolution consequences of S none of which
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contain ln or l̄n. By Lemma 8.11 it is unsatisfiable. Next we let

Sn−1 = Sn(ln−1). It is an unsatisfiable collection of resolution

consequences of Sn (and hence of S) none of which contain

ln−1, l̄n−1, ln, l̄n. Continuing in this way we define Sn−2, ..., S0. By

repeated applications of the definitions and Lemma 8.11, we see that S0 is

an unsatisfiable set of resolution consequences of S containing no literals at

all. As the only formulas with no literals are ∅ and {�} and ∅ is satisfiable,

� ∈ S0. Thus, � is a resolution consequence of S as required. �

Logic for Applications Y. Deng@SJTU 100



An abstract formulation of completeness

Definition 8.13 If S is a formula and l a literal, we let

Sl = {C − {l̄} | C ∈ S ∧ l 6∈ C}

So Sl consists of those clauses C of S containing neither l nor l̄, plus those

clauses (not containing l) such that C ∪ {l̄} ∈ S. Note that if the singleton

clause {l̄} is in S, then � is in Sl.

Intuition: assuming l to be true, we may omit any clause containing l from

S as far as satisfiability is concerned, l̄ can be omitted from any clause C

containing it without changing the satisfiability of C. If l is false, then l̄ is

true and the same analysis applies to S l̄. As one of l and l̄ must be true, S

is satisfiable if and only if one of Sl and S l̄ is satisfiable.
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Example: constructing Sl

Let S = {{p}, {¬q}, {¬p,¬q}}. The analysis in which we eliminate first p

and then q can be represented below:
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Example: constructing Sl
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Satisfiability of S

Lemma 8.14 S is satisfiable if and only if either Sl or S l̄ is satisfiable.

Proof: (⇒) Suppose that A |= S. If A were a complete assignment, we

could conclude that it must make one of l, l̄ true, say l. We could then

show that A |= Sl. If we do not wish to make this assumption on A, we

instead start with the fact that, by definition, one of l or l̄ does not belong

to A. For the sake of definiteness assume that l̄ 6∈ A. We now also claim

that A |= Sl. We must show that A satisfies every clause in Sl. Consider

any C ∈ Sl. By the definition of Sl, either C ∪ {l̄} ∈ S or C ∈ S

(depending on whether or not l̄ is in the clause of S which “puts” C into

Sl). Thus, by hypothesis, A |= C or A |= C ∪ {l̄}. As an assignment

satisfies a clause only if it contains one of its literals, there is a literal k

such that either k ∈ C ∩ A or k ∈ (C ∪ {l̄}) ∩ A. As l̄ 6∈ A by our

assumption, in either case we must have k ∈ C ∩ A, i.e., A |= C as
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required. The case that l 6∈ A is handled similarly.

(⇐) Suppose for definiteness that A |= Sl. Now neither l nor l̄ appear in

any clause of Sl and so we may adjust A on l as we choose without

disturbing the satisfiability of Sl. More precisely, if we let

A′ = (A− {l̄}) ∪ {l}, then A′ |= Sl as well. We claim that A′ |= S.

Consider any C ∈ S. If l ∈ C, then A′ |= C as l ∈ A′. If l 6∈ C then

C − {l̄} ∈ Sl by definition of Sl. As A |= Sl, there is some literal

k ∈ (C − {l̄}) ∩ A. Now A and A′ differ at most at l and l̄. As k 6= l or l̄,

we see that k ∈ A′ ∩ C as required. �

Corollary 8.15 S is unsatisfiable iff both Sl and S l̄ are.
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Unsatisfiability

Theorem 8.16 If UNSAT = {S | S is an unsatisfiable formula}, then UNSAT

is the collection U of formulas defined inductively by the following clauses:

(i) � ∈ S ⇒ S ∈ U and

(ii) Sl ∈ U ∧ S l̄ ∈ U ⇒ S ∈ U
Proof: As � is unsatisfiable, UNSAT satisfies (i). By the above corollary it

also satisfies (ii). Thus, U ⊆ UNSAT. We must show that UNSAT ⊆ U . We

prove the contrapositive by showing that if S 6∈ U , then S is satisfiable.

Let {pi} list the propositional letters such that pi or p̄i occurs in a clause

of S. Define by induction the sequence {li} such that li = pi or p̄i and

Sl1,...,li 6∈ U . (Property (ii) guarantees that we can always find such an li.)

Now let A = {li | i ∈ N}. We claim that A satisfies S. Suppose C ∈ S. We

must show that C ∩ A 6= ∅. As C is finite, there is an n such that for all
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propositional letters pi occurring in C, i < n. If C ∩ A = ∅, then
∀i < n(li 6∈ C) and so a clause corresponding to C is passed on to each

Sl1,...,li , for i < n. At each such transfer, say to Sl1,...,ln , we remove l̄i from

the clause. As all literals in C are among the l̄i, the clause deriving from C

becomes � in Sl1,...,ln . By our choice of the li, S
l1,...,ln 6∈ U . On the other

hand, any S containing � is in U by Clause (i) and we have our desired

contradiction. �

Logic for Applications Y. Deng@SJTU 107



Completeness of the resolution method

Theorem 8.17 [Completeness] If S is unsatisfiable, then there is a

resolution refutation of S (equivalently, � ∈ R(S)).

Proof: We proceed by induction according to the characterization of

UNSAT provided by Theorem 8.16. Of course, if � ∈ S, then � ∈ R(S). For

the inductive step, suppose that, for some l and S, � ∈ R(Sl) and

� ∈ R(S l̄). We must show that � ∈ R(S). By assumption, we have tree

proofs T0 and T1 of � from Sl and S l̄. Consider T0. If every leaf in T0 is

labeled with a clause in S, then T0 is already a proof of � from S. If not,

we define a tree T ′
0 by changing every label C on T0 that is above a leaf

labeled with a clause not in S to C ∪ {l̄}. We claim that T ′
0 is a tree proof

of {l̄} from S. Clearly, by the definition of Sl, every leaf of T ′
0 is in S. We

must now check that every nonleaf node of T ′
0 is labeled with a resolvent

C ′ of its immediate successors C ′
0 and C ′

1. Suppose they correspond to
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clauses C,C0 and C1, respectively, on T0. As T0 is a resolution tree proof,

C is a resolvent of C0 and C1. Note first that no resolution in T0 is on l or

l̄ as neither appear in any label on T0 (by the definition of Sl). Next,

consider the possible forms of clauses C ′
0, C

′
1 and C ′ on T ′

0. If, for example,

both C0 and C1 (and hence certainly C) are above leaves labeled with

clauses not in S, then C ′ = C ∪ {l̄} is the resolvent of C ′
0 = C0 ∪ {l̄} and

C ′
1 = C1 ∪ {l̄}, as is required for T ′

0 to be a resolution tree proof. The other

cases to consider either keep all three clauses the same in T ′
0 as they were

in T0 or change C and precisely one of C0 and C1 by adding on {l̄}. In all

these cases C ′ is still clearly the resolvent of C ′
0 and C ′

1 and we again verify

that T ′
0 is a tree proof. Similarly, if we replace every label C on a node of

T1 above a leaf labeled with a clause not in S by C ∪ {l}, we get T ′
1, a tree

proof of {l} from S (or, if all leaves were in S, one of �). We can now

define a tree proof T of � from S by simply attaching T ′
0 and T ′

1 to the

immediate successors of the root node of T which we label with �. As � is

a resolvent of {l} and {l̄}, the resulting tree T is a proof of � from S. �
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Compactness revisited

Theorem 8.18 If S is unsatisfiable, so is some finite subset of S.

Proof: Let T = {S | ∃S1 ⊆ S[S1 is finite ∧ S1 is unsatisfiable ]}. If we
can show that T satisfies (i) and (ii) of Theorem 8.16, then we are done for

it will then contain all unsatisfiable formulas.

(i) If � ∈ S, then S1 = {�} ⊆ S shows that S ∈ T as required.

(ii) Suppose Sl, S l̄ ∈ T . We must show that S ∈ T . By definition of T , Sl

and S l̄, there are finite formulas S1, S2 ⊆ S such that Sl
1 ⊆ Sl, S l̄

2 ⊆ S l̄,

and Sl
1 and S l̄

2 are unsatisfiable. Let S3 = S1 ∪ S2. S3 is a finite subset of

S. It suffices to show that it is unsatisfiable. If not, then there would be an

assignment A satisfying S3. Now A must omit either l or l̄. Thus, A would

satisfy either S l̄
3 or Sl

3, respectively. As it would then satisfy S l̄
2 or Sl

1 (as

S3 ⊃ S2, S1), we have the desired contradiction. �
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Exercises

1. Exercise 9 in page 61

2. Exercise 10 in page 61

3. Exercise 11 in page 62

4. Exercise 12 in page 62
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9 Refining Resolution

Resolution means to search systematically for a resolution refutation of a

given S. A major concern is then developing ways to limit the search space

(preferably without giving up soundness or completeness although in

actual applications both are often sacrificed).

Note that SAT = {S | S is satisfiable} is NP-complete in the sense of

complexity theory. Nonetheless, in practice smaller search spaces tend to

correspond to faster run times.
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T-Resolutions

Definition 9.1 T-resolutions are resolutions in which neither of the parent

clauses is a tautology. RT (S) is the closure of S under T-resolutions.

Lemma 9.2 Any restriction of a sound method, i.e., one that allows fewer

deductions than the sound method, is itself sound. In particular, as

resolution is sound, so is RT , i.e., if � ∈ RT (S), S is unsatisfiable.

Proof: As any deduction in the restricted system is one in the original

system and by soundness there is no deduction of � in the original one,

there is none in the restricted system. �
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Completeness of T-Resolution

Theorem 9.3 If S is unsatisfiable, then � ∈ RT (S).

Proof: The proof of the completeness of resolution given in Theorem 8.17

remains correct for RT . The only remark needed is that if T0 and T1 have

no tautologies on them, then neither do the trees T ′
0 and T ′

1 gotten by

adding l̄ and l, respectively, to the appropriate clauses. The point here is

that no clause on T0 (T1) contains l (l̄) by assumption as T0 (T1) is a proof

from Sl (S l̄). �
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A-resolutions

Definition 9.4 Let A be an assignment. An A-resolution is a resolution

in which at least one of the parents is false in A. RA is the closure of S

under A-resolutions. This procedure is often called semantic resolution.
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Completeness of A-resolutions

Theorem 9.5 For any A and S, if S ∈ UNSAT, then � ∈ RA(S).

Proof: Fix an assignment A and let T A = {S | � ∈ RA(S)}. We must

show that UNSAT ⊆ T A. By the characterization of UNSAT of Theorem 8.16

it suffices to prove that

(i) � ∈ S ⇒ S ∈ T A and

(ii) For any S and l, if Sl ∈ T A and S l̄ ∈ T A, then S ∈ T A.

(i) is immediate. For (ii) consider the A-resolution proofs T0 and T1 of �

from Sl and S l̄, respectively. We can form T ′
0 (T ′

1) as in the proof of

Theorem 9.3 before by adding l̄(l) to the appropriate clauses of T0 (T1).

The resulting trees are, of course, resolution proofs of {l̄} and {l},
respectively (or perhaps of �). They may not, however, be A-resolutions

since one of l̄, l may be true in A. On the other hand, as at most one of l, l̄
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is true in A, at least one of T ′
0 and T ′

1 is an A-resolution proof. For

definiteness say that l 6∈ A and so T ′
1 is an A-resolution proof of {l} or �

from S. In the latter case we are done. In the former, we can combine this

proof of {l} with T0 to get the desired A-resolution proof of � as follows:

To each leaf C of T0 that is not in S attach as children C ∪ {l̄} and {l}. As
l 6∈ A, this is an A-resolution. Since C 6∈ S, C ∪ {l̄} is in S. Thus, except

for the fact that {l} may not be in S, we have the desired A-resolution

proof of � from S. We finish the construction of the required proof by

attaching a copy of the tree T ′
1 below each leaf labeled with {l}. The

resulting tree is now easily seen to represent an A-resolution deduction of

� from S. Other than the resolutions of {l} and nodes of the form C ∪ {l̄}
that we have just considered, all the resolutions appearing in this new

proof appear in one of the A-resolution deduction trees T0 or T ′
1. Thus,

every resolution appearing on the tree is an A-resolution. �
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Ordered resolution

Definition 9.6 Assume that we have indexed all the propositional letters.

We define R<(S), for ordered resolution, as usual except that we only

allow resolutions of C1 ⊔ {p} and C2 ⊔ {p̄} when p has a higher index than

any propositional letter in C1 or C2.
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Completeness of ordered resolution

Theorem 9.7 UNSAT is equal to the class of formulas U< defined

inductively by the following clauses:

(i) � ∈ S ⇒ S ∈ U< and

(ii<) If no propositional letter with index strictly smaller than that of p

occurs in S, Sp ∈ U< and Sp̄ ∈ U<, then S ∈ U<.

Proof: As the inductive clause (ii<) is weaker than (ii) of Theorem 8.16,

U< is surely contained in U = UNSAT. On the other hand, if we list the {pi}
occurring in S in ascending order of their indices, then the original proof of

the characterization of UNSAT (Theorem 8.16) actually shows that any

S 6∈ U< is satisfiable and so UNSAT is also contained in U<. �

Theorem 9.8 [Completeness of ordered resolution] If S is unsatisfiable,

then there is an ordered resolution refutation of S, i.e., � ∈ R<(S).
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10 Linear Resolution, Horn Clauses and

PROLOG

Definition 10.1 (i) A linear (resolution) deduction or proof of C from S

is a sequence of pairs 〈C0, B0〉, ..., 〈Cn.Bn〉 such that C = Cn+1 and

(1) C0 and each Bi are elements of S or some Cj with j < i,

(2) each Ci+l, i ≤ n, is a resolvent of Ci, and Bi.

(ii) As usual we say that C is linearly deducible (or provable) from

S, S ⊢L C, if there is a linear deduction of C from S. There is a linear

refutation of S if S ⊢L �. L(S) is the set of all clauses linearly

deducible from S.
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Linear Resolution
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Example: Linear Resolution

Let S = {A1, A2, A3, A4}, A1 = {p, q}, A2 = {p,¬q}, A3 = {¬p, q}, A4 =

{¬p,¬q}. Below is a linear refutation of S.
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Linear Resolution

Definition 10.2 In the context of linear resolution, the elements of the

set S from which we are making our deductions are frequently called input

clauses. The Ci are called center clauses and the Bi side clauses. C0 is

called the starting clause of the deduction.
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Horn Clause

Definition 10.3 (i) A Horn clause is a clause that contains at most one

positive literal.

(ii) A program clause is one that contains exactly one positive literal. (In

PROLOG notation it looks like A : −B1, B2, ..., Bn.)

(iii) If a program clause contains some negative literals it is called a rule (n > 0

in the notation of (ii)).

(iv) A fact (or unit clause) is one that consists of exactly one positive literal

(Notation: A. or A : −.).

(v) A goal clause is one that contains no positive literals. (Thus, in PROLOG it

is entered as a question with the symbol ?−.)

(vi) A PROLOG program is a set of clauses containing only program clauses

(rules or facts).

Horn clauses are either program or goal clauses while program clauses are either

rules or facts.
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Horn Clause

Lemma 10.4 If a set of Horn clauses S is unsatisfiable, then S must

contain at least one fact and one goal clause.

Proof: The assignment that makes every propositional letter true satisfies

every program clause. The assignment that makes every propositional

letter false satisfies every goal clause and every rule. Thus, any

unsatisfiable set of Horn clauses must contain both a fact and a goal

clause. �
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Horn Clause

Lemma 10.5 If P is a PROLOG program and G = {¬q1,¬q2, ...,¬qn} a

goal clause, then all of the qi are consequences of P if and only if P ∪ {G}
is unsatisfiable.

Proof: The proof simply consists of tracing through the definitions. First

note that P ∪ {G} is unsatisfiable if and only if any assignment satisfying

P makes G false. Next note that the goal clause G is false iff none of the

¬qi are true, i.e., G is false iff all the qi are true. Thus, our desired

conjunction of facts is a consequence of our assumptions P just in case

P ∪ {G} is unsatisfiable. �
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Completeness of linear resolution for Horn Clause

Theorem 10.6 If S is an unsatisfiable set of Horn clauses, then there is a

linear resolution deduction of � from S, i.e., � ∈ L(S).
Proof: By the compactness theorem (Theorem 8.18) we may assume that

S is finite. We proceed by induction on the number of literals in S. By

Lemma 10.4 we know that there is at least one positive literal p occurring

as a fact {p} in S. Consider the formula Sp as described in Definition 8.16.

Each clause in Sp is a subset of one in S and so is Horn by definition. We

claim that Sp is unsatisfiable. The point here is that, if A |= Sp, then

A ∪ {p} |= S contradicting the unsatisfiability of S. As Sp contains fewer

literals than S (we omit any clause containing p and remove p̄ from every

other clause), we may apply the induction hypothesis to Sp to get a linear

resolution deduction of � from Sp. As in the inductive step of the proof of

the completeness theorem for the general resolution method given for
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Theorem 8.17, either this is already a linear proof of � from S or we can

convert it into one of {p̄} from S by adding p̄ to every clause below one not

in S. We can now extend this proof one step by adding on {p} ∈ S as a

new side clause and resolving against the last center clause {p̄} to get � as

required. �
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Linear input (LI) resolution

Definition 10.7 Let P be a set of program clauses and G a goal clause.

A linear input (LI) resolution refutation of S = P ∪ {G} is a linear

resolution refutation of S that starts with G and in which all the side

clauses are from P (input clauses).
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LI-resolution

The method of LI-resolution is not complete in general as may be seen from the

following example.

Recall the clauses of Example 10.2:

S = {A1, A2, A3, A4}, A1 = {p, q}, A2 = {p,¬q}, A3 = {¬p, q}, A4 = {¬p,¬q}.

The only goal clause here is A4 which we set equal to G. The remaining clauses

are, however, not all program clauses. If we set P = {A1, A2, A3} and try to

produce a linear input resolution refutation of S = P ∪ {G} beginning with G,

we are always thwarted.
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LI-resolution

Lemma 10.8 If T is a set of Horn clauses, G a goal clause such that

T ∪ {G} ∈ UNSAT but T ∈ SAT, then there is a linear resolution deduction

of � from T ∪ {G} starting with G.

Proof: As before, we may assume that T is finite by the compactness

theorem. We proceed by induction on the number of literals in T . As in

the proof of Theorem 10.6, we know that T contains a fact {p} for some

positive literal p and that T ′ = (T ∪ {G})p = T p ∪ {G}p is an unsatisfiable

set of Horn clauses. (As G is a goal clause, it contains no positive literals

and so {G}p is just {G−{p̄}}.) As T was satisfiable and contained {p}, T p

is satisfiable by the same assignment that satisfied T (by the proof of the

“only if” direction of Lemma 8.14). Thus, we may apply the induction

hypothesis to T ′ to get a linear proof of � from T ′ starting with G− {p̄}.
If this proof is not already the desired one of � from T starting with G, we
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may, as in the proofs of Theorem 8.17 or 10.6, convert it into a proof of

{p̄} from T starting with G. We can again extend this proof one step by

adding on {p} ∈ T as a new side clause at the end to do one more

resolution to get � as desired. �
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LI-resolution

Theorem 10.9 Let P be a set of program clauses and G be a goal clause.

If S = P ∪ {G} ∈ UNSAT, there is a linear input resolution refutation of S.

Proof: As any set of program clauses is satisfiable by Lemma 10.5, the

above lemma suffices to prove this theorem. �
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LD-resolution refutation

Definition 10.10 Let P ∪ {G} be a set of program clauses, then an

LD-resolution refutation of P ∪ {G} is a sequence 〈G0, C0〉, ..., 〈Gn, Cn〉 of
ordered clauses Gi, Ci such that G0 = G, Gn+1 = �, and

(i) Each Gi, i ≤ n, is an ordered goal clause {¬Ai,0, ...,¬Ai,n(i)} of length

n(i) + 1.

(ii) Each Ci = {Bi,¬Bi,0, ...,¬Bi,m(i)} is an ordered program clause of

length m(i) + 2 from P . (We include the possibility that Ci = {Bi},
i.e., m(i) = −1.)

(iii) For each i < n, there is a resolution of Gi and Ci as ordered clauses

with resolvent the ordered clause Gi+1 (of length n(i) +m(i) + 1)

given by {¬Ai,0, ...,¬Ai,k−1,¬Bi,0, ...,¬Bi,m(i),¬Ai,k+1, ...,¬Ai,n(i)}.
(In this resolution we resolve on Bi = Ai,k.)
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LD-resolution refutation

Lemma 10.11 If P ∪ {G} ∈ UNSAT, then there is an LD-resolution

refutation of P ∪ {G} starting with G.

Proof: Proceed by induction on the length of the LI-resolution refutation

of P ∪ {G}. (Note that we can only resolve a program clause and a goal

clause at each step of the resolution. Each center clause must be a goal

clause and each side one a program clause.) �
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SLD-resolution refutation

Definition 10.12 An SLD-resolution refutation of P ∪ {G} via (the

selection rule) R is an LD-resolution proof 〈G0, C0〉, ..., 〈Gn, Cn〉 with
G0 = G and Gn+1 = � in which R(Gi) is the literal resolved on at the

(i+ 1) step of the proof. (If no R is mentioned we assume that the

standard one of choosing the leftmost literal is intended.)
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Completeness of SLD-refutation

Theorem 10.13 If P ∪ {G} ∈ UNSAT and R is any selection rule, then

there is an SLD-resolution refutation of P ∪ {G} via R.

Proof: By Lemma 10.11, there is an LD-resolution refutation of P ∪ {G}
starting with G. We prove by induction on the length n of such proofs (for

any P and G) that there is an SLD one via R. For n = 1 there is nothing

to prove as G = G0 is a unit clause and so every R makes the same choice

from G0. Let 〈G0, C0〉, ..., 〈Gn, Cn〉, with the notation for these clauses as

in Definition 10.12, be an LD-resolution refutation of length n of {G0} ∪ P .
Suppose that the selection rule R chooses the clause ¬A0,k from G0. As

Gn+1 = � there must be a j < n at which we resolve on ¬A0,k. If j = 0,

we are done by induction. Suppose then that j ≥ 1. Consider the result C

of resolving G0 and Cj = {Bj ,¬Bj,0, ...,¬Bj,m(j)} on Bj = A0,k:
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C = {¬A0,0, ...,¬A0,k−1,¬Bj,0, ...,¬Bj,m(j),¬A0,k+1, ...,¬A0,n(0)}
We claim that there is an LD-resolution refutation of length n− 1 from

P ∪ {C} that begins with C. One simply resolves in turn with C0, ..., Cj−1

on the same literals as in the original proof that started with G. The only

change is that we carry along the sequence of clauses ¬Bj,0, ...,¬Bj,m(j) in

place of ¬A0,k in the center clauses of the resolution. After resolving with

each side clause C0, ..., Cj−1, we have precisely the same result Gj+1 as we

had in the original resolution after resolving with Cj . We can then

continue the resolution deduction exactly as in the original resolution with

Cj+1, ..., Cn. This procedure produces an LD-resolution refutation of

length n− 1 beginning with C. By induction, it can be replaced by an

SLD-resolution refutation via R. Adding this SLD-resolution via R onto

the single step resolution of G0 with Cj described above produces the

desired SLD-resolution refutation from P ∪ {G} via R starting with

G = G0. �
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SLD-Trees

We can display the space of all possible SLD-derivations as a labeled tree

T . The root of T is labeled G. If any node of T is labeled G′, then its

immediate successors are labeled with the results of resolving on the

leftmost literal of G′ with the various possible choices of clauses in P . We

call such trees SLD-trees for P and G.
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Example: SLD-Trees

Consider the program P0:

p : − q, r. (1)

p : − s. (2)

q. (3)

q : − s. (4)

r. (5)

s : − t. (6)

s. (7)
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Backtracking

If we omit clause (3) from the above program P0 to produce P1 we get a

new SLD-tree.

In this case, the theorem prover first tries the path (1), (4), (6), failure. It

then backtracks to ¬s,¬r and tries (7), (5), success, to give the answer yes.
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Failure of depth-first searching

Consider the following simple program:

q : − r. (1)

r : −q. (2)

q. (3)

The usual search procedure applied to the starting clause ¬q will loop back

and forth between ¬q and ¬r. It will never find the contradiction supplied

by (3).
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Exercises

1. Exercise 3 in page 77

2. Exercise 6 in page 78
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Chapter II. Predicate Logic
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1. Predicates and Quantifiers

A predicate represents a property holding of an object or a relation holding

between objects.

Let ϕ(x, y) denote the relation (predicate) “x is less than y”. Then ϕ(3, y)

denotes the property (unary predicate) of y “3 is less than y” and ϕ(3, 4)

denotes the proposition (0-ary predicate) “3 is less than 4”.

Terms stand for the symbols generated by the function symbols, constants

and variables such as f(x, g(y, y)).

The universal quantifier, ∀
The existential quantifier, ∃
0-ary predicates are usually called sentences rather than propositions.
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Predicates and Quantifiers

Let the domain of discourse consist of all rational numbers Q. ϕ(x, y)

denotes x < y, f(x, y) represents addition (x+ y), g(x, y) division (x/y)

and c is the constant representing 2.

(∀x)(∀y)(ϕ(x, y) → (ϕ(x, g(f(x, y), c)) ∧ ϕ(g(f(x, y), c), y))))) is a sentence

saying that for every x and y, if x < y then x < x+y
c

< y.
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2. The Language: Terms and Formulas

Definition 2.1: A language L consists of the following disjoint sets of

distinct primitive symbols:

(i) Variables: x, y, z, v, x0, x1, ..., y0, y1, ..., ... (an infinite set)

(ii) Constants: c, d, c0, d0, ... (any set of them)

(iii) Connectives: ∧,¬,∨,→,↔
(iv) Quantifiers: ∀, ∃
(v) Predicate symbols: P,Q,R, P1, P2, ... (some set of them for each arity

n = 1, 2, .... There must be at least one predicate symbol in the

language but otherwise there are no restrictions on the number of

them for each arity).

(vi) Function symbols: f, g, h, f0.f1, ..., g0, ... (any set of them for each arity
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n = 1, 2, .... The 0-ary function symbols are simply the constants listed

by convention separately in (ii). The set of constant symbols may also

be empty, finite or infinite).

(vii) Punctuation: the comma , and (right and left) parentheses ) , ( .
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Terms

Definition 2.2: Terms.

(i) Every variable is a term.

(ii) Every constant symbol is a term.

(iii) If f is an n-ary function symbol (n = 1, 2, ... ) and t1, ..., tn are terms,

then f(t1, ..., tn) is also a term.

Definition 2.3: Terms with no variables are called variable-free terms or

ground terms.

Ground terms are the constants and the terms built up from the constants

by applications of function symbols as in (iii) above.
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Formulas

Definition 2.4: An atomic formula is an expression of the form

R(t1, ..., tn) where R is an n-ary predicate symbol and t1, ..., tn are terms.

Definition 2.5: Formulas.

(i) Every atomic formula is a formula.

(ii) If α, β are formulas, then so are (α ∧ β), (α→ β), (α↔ β), (¬α) and
(α ∨ β).

(iii) If v is a variable and α is a formula, then ((∃v)α) and ((∀v)α) are also

formulas.
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Subformulas

Definition 2.6:

(i) A subformula of a formula ϕ is a consecutive sequence of symbols from

ϕ which is itself a formula.

(ii) An occurrence of a variable v in a formula ϕ is bound if there is a

subformula ψ of ϕ containing that occurrence of v such that ψ begins

with (∀v) or (∃v). (This includes the v in ∀v or ∃v that are bound by

this definition.) An occurrence of v in ϕ is free if it is not bound.

(iii) A variable v is said to occur free in ϕ if it has at least one free

occurrence there.

(iv) A sentence of predicate logic is a formula with no free occurrences of

any variable, i.e., one in which all occurrences of all variables are

bound.

(v) An open formula is a formula without quantifiers.
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Substitution

Definition 2.7: Substitution (or Instantiation) If ϕ is a formula and v a

variable, we write ϕ(v) to denote the fact that v occurs free in ϕ. If t is a

term, then ϕ(t), or ϕ(v/t), is the result of substituting (or instantiating) t

for all free occurrences of v in ϕ. We call ϕ(t) an instance of ϕ. If ϕ(t)

contains no free variables, we call it a ground instance of ϕ.

Definition 2.8: If the term t contains an occurrence of some variable x

(which is necessarily free in t ) we say that t is substitutable for the free

variable v in ϕ(v) if all occurrences of x in t remain free in ϕ(v/t).
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Example: substitution

(i) ((∀x)R(x, y)) is a formula in which y occurs free but x does not. The

formula ((∃y)((∀x)R(x, y))) has no free variables; it is a sentence.

(ii) A variable may have both a free and a bound occurrence in a single

formula as do both x and y in (((∀x)R(x, y)) ∨ ((∃y)R(x, y))).

(iii) If ϕ(x) is (((∃y)R(x, y)) ∧ ((∀z)¬Q(x, z))) and t is f(w, u), then

ϕ(t) = ϕ(x/t) is (((∃y)R(f(w, u), y)) ∧ ((∀z)¬Q(f(w, u), z))). The

term g(y, s(y)) would, however, not be substitutable for x in ϕ(x).
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Unique readability for terms

Proposition 2.11: If a term s is an initial segment of a term t, s ⊆ t,

then s = t.

Proof: If s is a variable or constant symbol, then the proposition is clear.

Otherwise s must be of the form f(s1, ..., sn) and so of length at least two.

Now if s 6= t, then s is a proper initial segment of t, s ⊂ t, and we would

contradict the properties of parentheses in terms (equal number of left and

right parentheses). �

Theorem 2.12: (Unique readability for terms): Every term s is either a

variable or constant symbol or of the form f(s1, ..., sn) in which case f, n

and the si for 1 ≤ i ≤ n are all uniquely determined.
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Unique readability for formulas

Proposition 2.13: If a formula α is an initial segment of a formula γ,

α ⊆ γ, then α = γ.

Theorem 2.12: (Unique readability for formulas): Each formula ϕ is of

precisely one of the following forms: an atomic formula (i.e., of the form

R(t1, ..., tn) for an n-ary predicate symbol R and terms t1, ..., tn),

(α ∧ β), (α→ β), (a↔ β), (¬α), (α ∨ β), ((∃v)α) or ((∀v)α) (where α and β

are formulas and v a variable). Moreover, the relevant “components” of ϕ

as displayed in each of these forms are uniquely determined (i.e., R, n and

the ti for 1 ≤ i ≤ n for an atomic formula ϕ and the formulas α, β and

variable v as appropriate to the other possible forms for ϕ).

Proof: Exercise. �
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3. Formation Trees, Structures and Lists

Definition 3.1:

(i) Term formation trees are ordered, finitely branching trees T labeled

with terms satisfying the following conditions:

(1) The leaves of T are labeled with variables or constant symbols.

(2) Each nonleaf node of T is labeled with a term of the form

f(t1, ..., tn).

(3) A node of T that is labeled with a term of the form f(t1, ..., tn) has

exactly n immediate successors in the tree. They are labeled in

(lexicographic) order with t1, ..., tn.

(ii) A term formation tree is associated with the term with which its root

node is labeled.
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Example: Formation Tree

Associated with h(f(d, z), g(c, a), w) we have the term formation tree
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Formation Trees

Proposition 3.3: Every term t has a unique formation tree associated

with it.

Proposition 3.4: The ground terms are those terms whose formation

trees have no variables on their leaves.
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Atomic Formula Formation Trees

Definition 3.5:

(i) The atomic formula auxiliary formation trees are the labeled, ordered,

finitely branching trees of depth one whose root node is labeled with

an atomic formula. If the root node of such a tree is labeled with an

n-ary relation R(t1, ..., tn), then it has n immediate successors which

are labeled in order with the terms t1, ..., tn.

(ii) The atomic formula formation trees are the finitely branching, labeled,

ordered trees gotten from the auxiliary trees by attaching at each leaf

labeled with a term t the rest of the formation tree associated with t.

Such a tree is associated with the atomic formula with which its root is

labeled.
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Example: Atomic Formula Formation Trees

Proposition 3.7: Every atomic formula is associated with a unique

formation tree.
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Formula Formation Trees

Definition 3.5:

(i) The formula auxiliary formation trees are the labeled, ordered, binary

branching trees T such that

(1) The leaves of T are labeled with atomic formulas.

(2) If σ is a nonleaf node of T with one immediate successor σ · 0 which is

labeled with a formula ϕ, then σ is labeled with ¬ϕ, ∃vϕ or ∀vϕ for some

variable v.

(3) If σ is a nonleaf node with two immediate successors, σ · 0 and σ · 1,

which are labeled with formulas ϕ and ψ, then σ is labeled with

ϕ ∧ ψ, ϕ ∨ ψ,ϕ→ ψ or ϕ↔ ψ.

(ii) The formula formation trees are the ordered, labeled trees gotten from the

auxiliary ones by attaching to each leaf labeled with an atomic formula the

rest of its associated formation tree. Each such tree is again associated with

the formula with which its root is labeled.

(iii) The depth of a formula: depth of the associated auxiliary formation tree.
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Example: Formula Formation Trees

Proposition 3.10: Every formula is associated with a unique (auxiliary)

formation tree.
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Subformula

Proposition 3.11: The subformulas of a formula ϕ are the labels of the

nodes of the auxiliary formation tree associated with ϕ.

Proposition 3.12:

(i) The occurrences of a variable v in a formula ϕ are in one-one

correspondence with the leaves of the associated formation tree that

are labeled with v. (The correspondence is given by matching the

typographical ordering of the occurrences of v in ϕ with the left-right

ordering given by the tree to the leaves labeled with v.) We may also

refer to the appropriate leaf labeled with v as the occurrence of v in ϕ.

(ii) An occurrence of the variable v in ϕ is bound if there is a formula ψ

beginning with (∀v) or (∃v) which is the label of a node above the

corresponding leaf of the formation tree for ϕ labeled with v.
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Substitution

Proposition 3.13: If ϕ is a formula and v a variable, then ϕ(v/t) is the

formula associated with the formation tree gotten by replacing each leaf in

the tree for ϕ(v) which is labeled with a free occurrence of v with the

formation tree associated with t and propagating this change through the

tree.

Proposition 3.14: The term t is substitutable for v in ϕ(v) if all

occurrences of x in t remain free in ϕ(t), i.e., any leaf in the formation tree

for t which is a free occurrence of a variable x remains free in every location

in which it appears in the formation tree described in Proposition 3.9.
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Structure

Except for the distinction we have made in our alphabet between function

symbols and predicate symbols, the formation trees for terms and atomic

formulas are indistinguishable. Terms and atomic formulas are all lumped

together and called structures.
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4. Semantics: Meaning and Truth

Definition 4.1: A structure A for a language L consists of a nonempty

domain A, an assignment, to each n-ary predicate symbol R of L, of an
actual predicate (i.e., a relation) RA on the n-tuples (a1, ..., an) from A, an

assignment, to each constant symbol c of L, of an element cA of A and, to

each n-ary function symbol f of L, an n-ary function fA from An to A.

Logic for Applications Y. Deng@SJTU 168



10 LINEAR

The interpretation of ground terms

Definition 4.2:

(i) Each constant term c names the element cA.

(ii) If the terms t1, ..., tn of L name the elements tA1 , ..., t
A
n of A and f is an

n-ary function symbol of L, then the term f(t1, ..., tn) names the

element f(t1, ..., tn)
A = fA(tA1 , ..., t

A
n ) of A. (Remember that fA is an

n-ary function on A and that tA1 , ..., t
A
n are elements of A so that

fA(tA1 , ..., t
A
n ) is in fact an element of A.)

E.g. if f is interpreted as multiplication of integers and cA = 1, then

(f(c, f(c, c)))A = 1.
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The interpretation of ground terms

Definition 4.3: The truth (satisfaction) of a sentence ϕ of L in a

structure A in which every a ∈ A is named by a ground term of L is

defined by induction.

(i) For an atomic sentence R(t1, ..., tn), A |= R(t1, ..., tn) iff R
A(tA1 , ..., t

A
n ),

i.e., the relation RA on An assigned to R holds of the elements named

by the terms t1, ..., tn. Note that, as R(t1, ..., tn) is a sentence, the ti

are all ground terms and so name particular elements of A.

(ii) A |= ¬ϕ ⇔ it is not the case that A |= ϕ (We also write this as

A 6|= ϕ).

(iii) A |= (ϕ ∨ ψ) ⇔ A |= ϕ or A |= ψ.

(iv) A |= (ϕ ∧ ψ) ⇔ A |= ϕ and A |= ψ.
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(v) A |= (ϕ→ ψ) ⇔ A 6|= ϕ or A |= ψ.

(vi) A |= (ϕ↔ ψ) ⇔ (A |= ϕ and A |= ψ) or (A 6|= ϕ and A 6|= ψ).

(vii) A |= ∃vϕ(v) ⇔ for some ground term t,A |= ϕ(t).

(viii) A |= ∀vϕ(v) ⇔ for all ground terms t,A |= ϕ(t).
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Satisfaction of sentences

Definition 4.4: Fix some language L.

(i) A sentence ϕ of L is valid, |= ϕ, if it is true in all structures for L.

(ii) Given a set of sentences Σ = {α1, ...}, we say that α is a logical

consequence of Σ,Σ |= α, if α is true in every structure in which all of

the members of Σ are true.

(iii) A set of sentences Σ = {α1, ...} is satisfiable if there is a structure A in

which all the members of Σ are true. Such a structure is called a

model of Σ. If Σ has no model it is unsatisfiable.
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Validity of formulas

Definition 4.5: A formula ϕ of a language L with free variables v1, ..., vn

is valid in a structure A for L (also written A |= ϕ) if the universal closure

of ϕ, i.e., the sentence ∀v1∀v2, ...∀vnϕ gotten by putting ∀vi in front of ϕ

for every free variable vi in ϕ, is true in A. The formula ϕ of L is valid if it

is valid in every structure for L.

As long as we are in a situation in which every element of the structure A
is named by a ground term, this definition of validity in A is equivalent to

saying that every ground instance of ϕ is true in A, i.e., A |= ϕ(t1, ..., tn)

for all ground terms t1, ..., tn of L. Also note that as sentences have no free

variables, a sentence is true in a structure iff it is valid in the structure.
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Validity of formulas

Warning: For a sentence ϕ and structure A either ϕ or ¬ϕ is true in A
(and the other false). It is not true, however, for an arbitrary formula ψ

that ψ or ¬ψ must be valid in A. It may well be that some ground

instances of ψ are true while others are false. Similarly, one can have a

sentence such that neither it nor its negation is valid. It is true in some

structures but not in others.

Definition 4.6: A set Σ of formulas with free variables is satisfiable if

there is a structure in which all of the formulas in Σ are valid (i.e., their

universal closures are true). Again such a structure is called a model of Σ.

If Σ has no models it is unsatisfiable.
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Example: Validity of formulas

Consider a language L specified by a binary relation symbol R and

constants c0, c1, c2, .... Here are two possible structures for L corresponding

to two different interpretations of the language.

(i) Let the domain A consist of the natural numbers, let RA be the usual

relation <, and cA0 = 0, cA1 = 1, .... The sentence (∀x)(∃y)R(x, y) says
that for every natural number there is a larger one, so it is true in this

structure.

(ii) Let the domain of A consist of the rational numbers Q = {q0, q1, ...};
let RA again be <, and let cA0 = q0, c

A
1 = q1, .... The sentence

(∀x)(∀y)(R(x, y) → (∃z)(R(x, z) ∧R(z, y))) is true in this structure.

(It says that the rationals are dense.) It is not, however, valid as it is

false in the structure of (i) for the natural numbers.
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Embedding of propositional logic

Theorem 4.8: Let ϕ be an open (i.e., quantifier-free) formula of predicate

logic. We may view ϕ as a formula ϕ′ of propositional logic by regarding

every atomic subformula of ϕ as a propositional letter. With this

correspondence, ϕ is a valid formula of predicate logic if and only if ϕ′ is

valid in propositional logic.

Logic for Applications Y. Deng@SJTU 176



10 LINEAR

5. Interpretations of PROLOG Programs

Definition 5.1 (Clausal notation):

(i) Literals are atomic formulas or their negations. The atomic formulas

are called positive literals and their negations, negative literals.

(ii) A clause is a finite set of literals.

(iii) A clause is a Horn clause if it contains at most one positive literal.

(iv) A program clause is a clause with exactly one positive literal. If a

program clause contains some negative literals it is a rule; otherwise, it

is a fact.

(v) A goal clause is a clause with no positive literals.

(vi) A formula is a not necessarily finite set of clauses.
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PROLOG notation

Definition 5.1 (Clausal notation):

(i) In PROLOG, the fact {p( ~X)} consisting of the single positive literal

p( ~X) appears in PROLOG programs as follows:

p( ~X).

(ii) The rule C = {p( ~X),¬q1( ~X, ~Y ), ...,¬qn( ~X, ~Y )} appears in PROLOG

programs as follows:

p( ~X) : − q1( ~X, ~Y ), ..., qn( ~X, ~Y ).

(iii) For a rule C as in (ii), we call p( ~X) the goal or head of C. We call the

q1( ~X, ~Y ), ..., qn( ~X, ~Y ) the subgoals or body of C. When the head-body

terminology is used, the symbol :- which connects the head and body

of C is called the neck.

(iv) A (PROLOG) program is a formula (set of clauses) containing only

program clauses (i.e., rules and facts).
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Meaning of clauses and formulas

Each clause is interpreted as the universal closure of the disjunction of its

elements. Thus the intended meaning of C1 = {q(X, Y ), r(Y )} is

∀X∀Y [q(X, Y ) ∨ r(Y )]. In this vein the intended meaning of the rule C

given by p(X) : −q1(X, Y ), ..., qn(X, Y ) (in clausal notation

C = {p(X),¬q1(X, Y ), ...,¬qn(X, Y )}) is
∀X∀Y [p(X) ∨ ¬q1(X, Y ) ∨ ... ∨ ...,¬qn(X, Y )]. This is equivalent to

∀X [∃Y (q1(X, Y ) ∧ ... ∧ qn(X, Y )) → p(X)].

A formula S is interpreted as the conjunction of its clauses. Thus if

S = {C1, C2} where C1 is as above and C2 = {q(X, Y ),m(Y )}, then S has

the same meaning as ∀X∀Y [q(X, Y ) ∨ r(Y )] ∧ ∀X∀Y [q(X, Y ) ∨m(Y )].

Logic for Applications Y. Deng@SJTU 179



10 LINEAR

Meaning of goal clauses

The intended meaning of, e.g., “?− p(X1, X2), q(X2, X3).” is “are there

objects a1, a2, a3 such that p(a1, a2) and q(a2, a3)”.

As in the propositional case, PROLOG implements the search for such

witnesses a1, a2 and a3 by adding the goal clause

G = {¬p(X1, X2),¬q(X2, X3)} to the current program P and then

deciding if the result is an unsatisfiable formula.

The meaning of the clause G is ∀X1∀X2∀X3[¬p(X1, X2) ∨ ¬q(X2, X3)]. If

adding it to the program P produces an unsatisfiable formula P ∪ {G},
then P |= ¬∀X1∀X2∀X3[¬p(X1, X2) ∨ ¬q(X2, X3)] which is equivalent to

P |= ∃X1∃X2∃X3[p(X1, X2) ∧ q(X2, X3)]

The implementation of PROLOG tries to establish this consequence

relation by producing a resolution refutation of P ∪ {G}.
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Exercises

1. Exercise 2 in page 94

2. Exercises 6,7 in page 99

3. Exercise 10 in page 100

4. Exercise 7 in page 107

5. Exercise 8 in page 108
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6. Proofs: Complete Systematic Tableaux

The proofs are labeled binary trees called tableaux. The labels on the trees

are signed sentences (i.e., sentences preceded by T or F to indicate that, for

the sake of the analysis, we are assuming them true or false, respectively).

For a language L, we expand it to LC by adding on a set of constant

symbols c0, c1, c2, ... not used in L.
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Atomic tableaux
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Atomic tableaux

Logic for Applications Y. Deng@SJTU 184



10 LINEAR

Tableaux

Definition 6.1: We define tableaux as binary trees labeled with signed

sentences (of LC) called entries by induction:

(i) All atomic tableaux are tableaux. The requirement that c be new in

Cases 7b and 8a here simply means that c is one of the constants ci
added on to L to get LC (which therefore does not appear in ϕ).

(ii) If τ is a finite tableau, P a path on τ , E an entry of τ occurring on P

and τ ′ is obtained from τ by adjoining an atomic tableau with root

entry E to τ at the end of the path P , then τ ′ is also a tableau. Here

the requirement that c be new in Cases 7b and 8a means that it is one

of the ci that do not appear in any entries on P . (In actual practice it

is simpler in terms of bookkeeping to choose one not appearing at any

node of τ .)
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(iii) If τ0 is a finite tableau and τ0, τ1, ..., τn, ... is a sequence of tableaux

such that, for every n ≥ 0, τn+1 is constructed from τn by an

application of (ii), then τ = ∪τn is also a tableau.
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Tableaux

Definition 6.1 (Continued): Tableaux from S. The definition for tableaux

from S is the same as for ordinary tableaux except that we include an

additional formation rule:

(ii’) If τ is a finite tableau from S, ϕ a sentence from S, P a path on τ and

τ ′ is obtained from τ by adjoining Tϕ to the end of the path P , then

τ ′ is also a tableau from S.

Note: It is clear from the definition that every tableau τ (from S) is the

union of a finite or infinite sequence τ0, τ1, ..., τn, ... of tableaux (from S) in

which τ0 is an atomic tableau and each τn+1 is gotten from τn by an

application of (ii) (or (ii’)).
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Tableau proofs

Definition 6.2 Let τ be a tableau and P a path in τ .

(i) P is contradictory if, for some sentence α, Tα and Fα both appear as

labels of nodes of P .

(ii) τ is contradictory if every path on τ is contradictory.

(iii) τ is a proof of α (from S) if τ is a finite contradictory tableau (from S)

with its root node labeled Fα. If there is proof τ of α (from S), we say

α is provable (from S) and write ⊢ α(S ⊢ α).

(iv) S is inconsistent if there is a proof of α ∧ ¬α from S for some sentence

α.
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Example: Tableau proof
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Example: Tableau proof
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Example: Tableau proof
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Example: A bad tableau proof
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Reduced entry

Definition 6.7: Let τ = ∪τn be a tableau (from S), P a path in τ , E an entry

on P and w the ith occurrence of E on P (i.e., the ith node on P labeled with E).

(i) w is reduced on P if

(1) E is neither of the form T (∀x)ϕ(x) nor F (∃x)ϕ(x) and, for some j, τj+1

is gotten from τj by an application of Rule (ii) of Definition 6.1 to E and

a path on τj which is an initial segment of P . (In this case we say that E

occurs on P as the root entry of an atomic tableau.) or

(2) E is of the form T (∀x)ϕ(x) or F (∃x)ϕ(x), Tϕ(ti) or Fϕ(ti), respectively,

is an entry on P and there is an (i+ 1)st occurrence of E on P .

(ii) τ is finished if every occurrence of every entry on τ is reduced on every

noncontradictory path containing it (and Tϕ appears on every

noncontradictory path of τ for every ϕ in S). It is unfinished otherwise.
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Level-lexicographic ordering

Definition 6.8: Suppose T is a tree with a left-right ordering on the

nodes at each of its levels. We define the level-lexicographic ordering ≤LL

on the nodes ν, µ of T as follows:

ν ≤LL µ ⇔ the level of ν in T is less than that of µ or ν and µ are on the

same level of T and ν is to the left of µ.

Logic for Applications Y. Deng@SJTU 194



10 LINEAR

Complete systematic tableau

Definition 6.9: We construct the CST, the complete systematic tableau,

with any given signed sentence as the label of its root, by induction.

(i) We begin with τ0 an atomic tableau with root the given signed

sentence. This atomic tableau is uniquely specified by requiring that in

Cases 7a and 8b we use the term t1 and that in Cases 7b and 8a we

use ci for the least allowable i.

Let τn is a (finite, labeled) binary tree. If every occurrence of every entry

on T is reduced, we terminate the construction. Otherwise, let w be the

level-lexicographically least node of τn that contains an occurrence of an

entry E which is unreduced on some noncontradictory path P of τm. We

now proceed according to one of the following cases:

(ii) If E is not of the form T (∀x)ϕ(x) or F (∃x)ϕ(x), we adjoin the atomic

tableau with apex E to the end of every noncontradictory path in τ
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that contains w. For E of the form T (∃x)ϕ(x) or F (∀x)ϕ(x), we use

the least constant cj not yet appearing in the tableau.

(iii) If E is of the form T (∀x)ϕ(x) or F (∃x)ϕ(x) and w is the ith

occurrence of E on P we adjoin

respectively, to the end of every noncontradictory path in T containing

w.
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CST from premises

The CST from a set of premises S with a given root is defined like the

ordinary CST above with one change to introduce the elements of S. At

even stages (n = 2k) we proceed as in (i), (ii) and (iii) above. At odd

stages (n = 2k + 1) we adjoin Tαk for αk the kth element of S to every

noncontradictory path in τn to get τn+1. We do not terminate the

construction of the CST from S unless all elements of S have been put on

every noncontradictory path in this way and every occurrence of every

entry is reduced on every path containing it.

In general, a CST will be an infinite tableau (even if S is finite).
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Every CST is finished

Proposition 6.10: Every CST is finished.

Proof: Consider any unreduced occurrence w of an entry E in τk ⊆ τ that

is on a noncontradictory path P of the given CST T. (If there is none, τ is

finished by definition.) Suppose there are n nodes of τ that are

level-lexicographically less than w. It is clear from the definition of the

CST that we must reduce w on P by the time we form τk+n+1 Thus, every

occurrence of each entry on a noncontradictory path in τ is reduced as

required.

If we consider the CST from S, the same considerations apply to show that

every entry is reduced on every path. (It just takes twice as many steps to

get there.) The procedure of adding on the kth member of S at stage

2k + 1 guarantees that every element of S is put on every path of the CST

from S. It is therefore a finished tableau from S. �
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Exercises

1. Exercises 10,11,12,13 in page 118
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7. Soundness and Completeness of Tableau Proofs

Lemma 7.1: If τ = ∪τn is a tableau from a set of sentences S with root Fα,

then any L-structure A that is a model of S ∪ {¬α} can be extended to one

agreeing with every entry on some path P through τ . (Recall that A agrees with

Tα (Fα) if α is true (false) in A.)

Proof: The only expansion of A that is necessary to make it a structure for all

the sentences appearing in τ is to define cAi for the constants ci in LC − L

appearing on P .

We define P and cAi by an induction on the sequence τn giving the construction

of τ . At each step n we have a path Pn through τn and an extension An of A

(with the same domain) which interprets all the ci on Pn and agrees with Pn.

This clearly suffices to prove the lemma. When τn+1 is gotten from τn by

extending some path other than Pn we need make no changes in Pn or An.

Suppose then that τn+1 is gotten by adding on to the end of Pn either an atomic

tableau with root E an entry on Pn or an element αk of S. In the latter case we

extend Pn in the only way possible by attaching αk to its end. No extension of

An is necessary and it agrees with αk (and hence Pn+1) by hypothesis. We
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consider then the case of extending τn by adding on an atomic tableau τ ′ with

root E. By induction we may assume that An agrees with E. We wish to extend

An to An+1 and find a path Pn+1 extending Pn through τn+1 agreeing with

An+1. (The base case of our induction is the atomic tableau τ0 whose root Fα

agrees with A by hypothesis. The analysis of the base case is then exactly as in

the inductive step: We wish to extend A to A0 and find a path P0 through τ0

agreeing with A0.) We consider each type of atomic tableau τ ′.

(i) The situation for the propositional connectives is the same as in the proof of

soundness for propositional logic (Lemma 1.5.4). In particular, no extension

of An is necessary. E.g. if we added on the atomic tableau with root

T (α ∨ β) then we know by induction that An |= α ∨ β and so An |= α or

An |= β. We choose to extend Pn accordingly.

(ii) If we added on
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we again have no problem. An |= ∀xϕ(x) (or An |= ¬∃ϕ(x)) and so

An |= ϕ(t)) (An |= ¬ϕ(t)). (Note that if tA is not yet defined by our

inductive procedure we can now define it arbitrarily and still maintain our

inductive hypothesis as we know that An |= ∀xϕ(x) (or An |= ¬∃xϕ(x)).)

(iii) Finally, if we added on

for some new constant symbol c (i.e., one not appearing either in S or in an

entry on Pn ), we must define cA. By induction, we know that An |= ∃xϕ(x)
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(An |= ¬∀xϕ(x)) and so we may choose an element a ∈ A (= An by

construction) such that, if we extend An to An+1 by letting cA = a, we have

An+1 |= ϕ(c) (An+1 |= ¬ϕ(c)) as required.

�
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Soundness

Theorem 7.2: If there is a tableau proof τ of α from S, then S |= α.

Proof: If not, then there is a structure A |= ¬α in which every αk in S is

true. Lemma 7.1 then tells us that there is a path P through τ and an

expansion A′ of A that agrees with every node on P . As P is contradictory

by assumption, we have our desired contradiction. �
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Structure from noncontradictory path

Theorem 7.3: Suppose P is a noncontradictory path through a complete

systematic tableau τ from S with root Fα. There is then a structure A in which

α is false and every sentence in S is true.

Proof: Let the domain of this structure be the set A of ground terms ti on the

master list of ground terms of our expanded language LC . We define the

functions fA associated with the n-ary function symbols f of our language in the

natural way corresponding to the syntax of LC : f
A(ti1,ti2 ,...,tin

) = f(ti1 , ..., ti2)

Remember that the elements of our structure are the ground terms and so the ti

appearing on the left-hand side of this equation are being viewed as elements of

our structure to which we apply the function fA. On the right-hand side we have

another term, and so an element of our structure, which we declare to be the

value of this function. If R is an n-ary predicate letter, we define RA as dictated

by the path P : RA(ti1 , ti2 , ..., tin) ⇔ TR(ti1 , ..., ti2) is an entry on P .

We now prove the theorem by establishing a slightly stronger assertion by

induction. �
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Structure from noncontradictory path

Lemma 7.4: Let the notation be in Theorem 7.3.

(i) If Fβ occurs on P , then β is false in A.

(ii) If Tβ occurs on P , then β is true in A.

Proof: First recall that, by Proposition 6.10, every occurrence of every entry on

P is reduced on P . We now proceed by induction on the depth of β (more

precisely, on the depth of the associated auxiliary formation tree as given in

Definition 3.8).

(i) If β is an atomic sentence, then β is of the form R(ti1 , ..., tin). If Tβ occurs

on P , then RA has been declared true of ti1 , ..., tin . If Fβ occurs on P , then,

as P is noncontradictory, Tβ does not occur on P and RA has been declared

false of ti1 , ..., tin .

(ii) Suppose β is built using a connective, e.g., β is (β1 ∨ β2). As τ is finished, we

know that if Tβ occurs on P , then either Tβ1 or Tβ2 occurs on P . By the

induction hypothesis, if Tβ1 occurs on P , then β1 is true in A (and similarly

for β2). Thus, one of β1, β2 is true so (β1 ∨ β2) is true in A (by the inductive
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definition of truth). On the other hand, if F (β1 ∨ β2) appears on P , then we

know that both Fβ1 and Fβ2 appear on P . Our inductive hypothesis then

tells us that both β1 and β2 are false in A. We then have that (β1 ∨ β2) is

false in A as required. The cases for the other connectives are similar.

(iii) Suppose β is of the form (∀v)ϕ(v). If w is the ith occurrence of T ((∀v)ϕ(v))

on P , then Tϕ(ti) occurs on P and there is an i+ 1st occurrence of

T ((∀v)ϕ(v)) on P . Thus, if T ((∀v)ϕ(v)) appears on P , then ϕ(t) appears on

P for every ground term t. As the depth of ϕ(t) is less than that of

(∀v)ϕ(v), the inductive hypothesis tells us that ϕ(t) is true in A for every

ground term t. As these terms constitute the universe of our structure A,

(∀v)ϕ(v) is true in A as required.

If F (∀v)ϕ(v) occurs on P , then, again as τ is finished, Fϕ(t) occurs on P for

some t. By induction hypothesis ϕ(t) is false in A. So (∀v)ϕ(v) is false in A.

(iv) The case for ∃vϕ(v) is similar.

�

This also completes the proof of Theorem 7.3. �
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Contradictory CST is finite

Proposition 7.5: If every path of a complete systematic tableau is

contradictory, then it is a finite tableau.

Proof: By construction, we never extend a path on a CST once it is

contradictory. Thus, every contradictory path on a CST is finite. The theorem

then follows from König’s lemma (Theorem I.1.4). �

Corollary 7.6: For every sentence α and set of sentences S of L, either

(i) the CST from S with root Fα is a tableau proof of α from S or

(ii) there is a noncontradictory branch through the complete systematic tableau

that yields a structure in that α is false and every element of S is true.
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Skolem-Löwenheim theorem and Completeness

Theorem 7.7: (Skolem-Löwenheim): If a countable set of sentences S is

satisfiable (that is, it has some model), then it has a countable model.

Proof: Consider the CST from S that starts with a contradiction α ∧ ¬α at its

root. By the soundness theorem (Theorem 7.2) it cannot be a tableau proof of

α ∧ ¬α from S. Thus, it must have a noncontradictory path P . As there are only

countably many ground terms in LC , the structure defined in the proof of

Theorem 7.4 is the desired countable model of S. �

Theorem 7.8: (Completeness and Soundness):

(i) α is tableau provable from S ⇔ α is a logical consequence of S.

(ii) If we take α to be any contradiction such as β ∧ ¬β in (i), we see that S is

inconsistent if and only if S is unsatisfiable.
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Compactness

Theorem 7.9: Let S = {α1, α2, ...} be a set of sentences of predicate logic. S is

satisfiable if and only if every finite subset of S is satisfiable.

Proof: The only if direction is immediate. For the if direction consider the CST

from S with root entry F (α ∧ ¬α). If the CST is contradictory, it is finite by

Proposition 7.5. If it is infinite, it has a noncontradictory path and so by

Corollary 7.6 there is a structure in which every αi is true. If it is contradictory

and finite, then α ∧ ¬α is a logical consequence of the finite subset of S whose

elements are those appearing on this tableau. This finite subset can have no

model as α ∧ ¬α has no model. �
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Exercises

1. Exercises 1, 2, 3 in page 125

2. Exercises 10, 11 in page 126
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8. An Axiomatic Approach

Axioms: Let α, β and γ be any formulas of L. The axioms of our system

are all formulas of L of the following forms:

(i) (α→ (β → α))

(ii) ((α→ (β → γ)) → ((α→ β) → (α→ γ)))

(iii) ((¬α) → (α→ β))

(iv) (∀x)α(x) → α(t) for any term t that is substitutable for x in α

(v) (∀x)(α→ β) → (α→ (∀x)β) if α contains no free occurrences of x.

The rules of inference:

(i) Modus Ponens: From α and α→ β, we can infer β for any formulas α

and β.

(ii) Generalization: From ∀xα infer α.
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Proofs from premises

Definition 8.3: Let Σ be a set of formulas of L.
(i) A proof from Σ is a finite sequence α1, α2, , αn of formulas of L such

that, for each i ≤ n, one of the following is true:

(1) αi is a member of Σ

(2) αi is an axiom

(3) αi can be inferred from some of the previous αj by an application

of a rule of inference.

(ii) α is provable (a theorem) from Σ if there is a proof α1, ..., αn from Σ

with αn = α.

(iii) A proof of α is simply a proof from ∅. α is provable if it is provable

from ∅.
The standard soundness, completeness and compactness theorems can be

proven for the system presented here.
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9. Prenex Normal Form and Skolemization

Basic ideas: to eliminate quantifiers by introducing new function symbols

and terms. E.g. the formula

ϕ = ∀x1...∀xn∃y1...∃ymR(x1, ..., xn, y1, ..., ym)

will be replaced by

ψ = ∀x1...∀xnR(x1, ..., xn, f1(x1, ..., xn), f2(x1, ..., xn), ..., fn(x1, ..., xn))
Here fi is a new function that chooses, for any given x1, ..., xn, a yi that

makes the formula true if one exists.

The ultimate goal is to get a universal formula ψ (i.e., one with only

universal quantifiers which all occur as the initial symbols of ψ) that is

equisatisfiable with the original ϕ. (Two formulas are equisatisfiable if

both are satisfiable or if neither is.)
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Provable equivalences

Lemma 9.1: For any string of quantifiers
−→
Qx = Q1x1Q2x2...Qnxn (each

Qi is ∀ or ∃) and any formulas ϕ, ψ we have the following provable

equivalences:

(1a) ⊢ −→
Qx¬∀yϕ↔ −→

Qx∃y¬ϕ
(1a) ⊢ −→

Qx¬∃yϕ↔ −→
Qx∀y¬ϕ

(2a) ⊢ −→
Qx(∀yϕ ∨ ψ) ↔ −→

Qx∀z(ϕ(y/z) ∨ ψ)
(2a’) ⊢ −→

Qx(ϕ ∨ ∀yψ) ↔ −→
Qx∀z(ϕ ∨ ψ(y/z))

(2b) ⊢ −→
Qx(∃yϕ ∨ ψ) ↔ −→

Qx∃z(ϕ(y/z) ∨ ψ)
(2b’) ⊢ −→

Qx(ϕ ∨ ∃yψ) ↔ −→
Qx∀∃z(ϕ ∨ ψ(y/z))

where z is a variable not occurring in ϕ or ψ or among the xi.

The practice of renaming variables as in (2a) and (2b) to avoid possible

conflicts is often called standardizing the variables apart.
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Prenex normal form

Theorem 9.2: For every formula ϕ there is an equivalent formula ϕ′ with

the same free variables in which all quantifiers appear at the beginning.

Such an equivalent of ϕ is called a prenex normal form (PNF) of ϕ.

Proof: By induction on the depth of ϕ. Remember that, by Corollary

I.2.11, we may assume that the only propositional connectives occurring in

ϕ are ¬ and ∨. If ϕ is atomic, there is nothing to prove. If ϕ is ∀yψ or ∃yψ
and ψ′ is a PNF of ψ, then ∀yψ′ or ∃yψ′ is one for ψ. If ϕ = ¬ψ and ψ′ is

a PNF of ψ, then repeated applications of the clauses (1a) and (1b) of the

lemma will produce the desired PNF for ϕ. If ϕ = ψ ∨ θ, then repeated

applications of the clauses (2a), (2a’), (2b) and (2b’) will give the result for

ϕ. �
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Prenex normal form

One can easily introduce prenexing rules that deal directly with the other

connectives.

(3a) ⊢ −→
Qx(∀yϕ ∧ ψ) ↔ −→

Qx∀z(ϕ(y/z) ∧ ψ)
(3a’) ⊢ −→

Qx(ϕ ∧ ∀yψ) ↔ −→
Qx∀z(ϕ ∧ ψ(y/z))

(3b) ⊢ −→
Qx(∃yϕ ∧ ψ) ↔ −→

Qx∃z(ϕ(y/z) ∧ ψ)
(3b’) ⊢ −→

Qx(ϕ ∧ ∃yψ) ↔ −→
Qx∃z(ϕ ∧ ψ(y/z))

(4a) ⊢ −→
Qx(∀yϕ→ ψ) ↔ −→

Qx∃z(ϕ(y/z) → ψ)

(4a’) ⊢ −→
Qx(ϕ→ ∀yψ) ↔ −→

Qx∀z(ϕ→ ψ(y/z))

(4b) ⊢ −→
Qx(∃yϕ→ ψ) ↔ −→

Qx∀z(ϕ(y/z) → ψ)

(4b’) ⊢ −→
Qx(ϕ→ ∃yψ) ↔ −→

Qx∃z(ϕ→ ψ(y/z))

where z is a variable not occurring on the left-hand side of the equivalences.

Logic for Applications Y. Deng@SJTU 217



10 LINEAR

Example: PNF’s

∀x∀y[(∃z)(P (x, z) ∧ P (y, z)) → ∃uQ(x, y, u)]

∀x∀y∀w[P (x,w) ∧ P (y, w) → ∃uQ(x, y, u)]

∀x∀y∀w∃z[P (x,w) ∧ P (y, w) → Q(x, y, z)]
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Example: PNF’s

Alternatively

∀x∃yP (x, y) ∨ ¬∃x∀yQ(x, y) : ∀x∃yP (x, y) ∨ ¬∃x∀yQ(x, y) :

∀u[∃yP (u, y) ∨ ¬∃x∀yQ(x, y)] ∀u[∃yP (u, y) ∨ ¬∃x∀yQ(x, y)]

∀u∃v[P (u, v) ∨ ¬∃x∀yQ(x, y)] ∀u[∃yP (u, y) ∨ ∀x¬∀yQ(x, y)]

∀u∃v[P (u, v) ∨ ∀x¬∀yQ(x, y)] ∀u∀w[∃yP (u, y) ∨ ¬∀yQ(w, y)]

∀u∃v[P (u, v) ∨ ∀x∃y¬Q(x, y)] ∀u∀w∃v[P (u, v) ∨ ¬∀yQ(w, y)]

∀u∃v∀w[P (u, v) ∨ ∃y¬Q(w, y)] ∀u∀w∃v[P (u, v) ∨ ∃y¬Q(w, y)]

∀u∃v∀w∃z[P (u, v) ∨ ¬Q(w, z)]. ∀u∀w∃v∃z[P (u, v) ∨ ¬Q(w, z)]
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Skolemization

Theorem 9.4: For every sentence ϕ in a given language L there is a

universal formula ϕ′ in an expanded language L′ gotten by the addition of

new function symbols such that ϕ and ϕ′ are equisatisfiable.

(Note that the formulas are not necessarily equivalent. The procedure will

always produce a ϕ′ such that ϕ′ → ϕ is valid but ϕ→ ϕ′ need not always

hold.)

Proof: By Theorem 9.2 we may assume that ϕ is in prenex normal form.

Let y1, ..., yn be the existentially quantified variables of ϕ in the order in

which they appear in ϕ from left to right and, for each i ≤ n, let x1, ..., xni

be all the universally quantified variables preceding yi. We expand L to L′

by adding new ni-ary function symbols fi for each i ≤ n. We now form ϕ′

by first deleting each ∃yi and then replacing each remaining occurrence of

yi by fi(x1, ..., xni
). We claim that ϕ′ is the desired sentence equisatisfiable

with ϕ. To verify this claim it suffices to apply the next lemma n times. �
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Skolemization

Lemma 9.5: For any sentence ϕ = ∀x1...∀xn∃yψ of a language L, ϕ and

ϕ′ = ∀x1...∀xnψ(y/f(x1, ..., xn)) are equisatisfiable when f is a function

symbol not in L.

Proof: Let L′ be the language obtained from L, by adding the function

symbol f . It is clear that if A′ is a structure for L′, A is the structure

obtained from A′ by omitting the function interpreting f and A′ |= ϕ′,

then A |= ϕ. On the other hand, if A is a structure for L, and A |= ϕ, we

can extend A to a structure A′ by defining fA
′

so that for every

a1, ..., an ∈ A = A′,A |= ψ(y/f(a1, ..., an)). Of course. A′ |= ϕ′. Note that

n may be 0; that is, f may be a constant symbol. �
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Skolemization

Corollary 9.6: For any set S of sentences of a language L, we can

construct a set S′ of universal sentences of a language L′ which is an

expansion of L gotten by adding on new function symbols such that S and

S′ are equisatisfiable.

Proof: Apply the construction supplied by Theorem 9.4 to each sentence

ϕ of S separately to introduce new function symbols fϕ for each sentence ϕ

of S and form the corresponding universal sentence ϕ′. Let S′ be the

collection of all of these sentences ϕ′ and L′ the corresponding expansion

of L. As in the proof of the theorem it is clear that, if a structure A′ for L′

is a model of S′. then it is one of S. The proof also shows how to extend

any model of S to one of S′ by defining each new function symbol fϕ

independently of what is done for the others. �
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Example: Skolemization

Possible Skolemizations corresponding to ∀u∃v∀w∃z[P (u, v) ∨ ¬Q(w, z)]

and ∀u∀w∃v∃z[P (u, v)∨¬Q(w, z)] are ∀u∀w[P (u, f1(u))∨¬Q(w, f2(u,w))]

and ∀u∀w[P (u, f1(u,w)) ∨ ¬Q(w, f2(u,w))] respectively.
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Skolemization

Corollary 9.9: For any set S of sentences of L, there is a set T of clauses

in a language L′ gotten by adding new function symbols to L such that S

and T are equisatisfiable.

Proof: Consider the set S′ of universal sentences ∀~xϕ′(~x) equisatisfiable

with S given by Corollary 9.6. Let T ′ consist of the equivalent open

formulas ϕ′(~x) gotten by dropping the initial universal quantifiers from the

elements of S′. If we view each atomic formula of L′ as a propositional

letter and form the CNF equivalent ψϕ = ∧ψϕ,i of each formula ϕ′ ∈ T ′,

we get a set of formulas T ′′ each in CNF and each equivalent to the one of

T ′ : ∧ψϕ,i = ψϕ ≡ ϕ′ ≡ ϕ for each ϕ ∈ S. (For each ϕ, ψϕ is equivalent to

ϕ′ by Theorem 4.8.) The desired set T of clauses then consists precisely of

the set of all conjuncts from all of the formulas ϕ in

T ′′ : T = {ψϕ,i | ϕ ∈ S}. �
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10. Herbrand’s Theorem

Definition 10.1: The set of ground (i.e., variable-free) terms of a

language L, is called the Herbrand universe of L. A structure A for L is an

Herbrand structure if its universe A is the Herbrand universe of L and, for

every function symbol f of L and elements t1, ..., tn of A,

fA(t1, ..., tn) = f(t1, ..., tn). (We include here the requirement that cA = c

for each constant symbol c of L.)

Definition 10.2: If S is a set of sentences of L, then an Herbrand model

M of S is an Herbrand structure for L which is a model of S, i.e., every

sentence of S is true in M.
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Example: Herbrand universe

If our language L contains the constants a and c, a unary function symbol

f and a binary one g and predicates P,Q,R, then the Herbrand universe

H for L is

{a, c, f(a), f(c), g(a, c), ff(a), ff(c), f(g(a, c)), g(a, f(a)), g(a, f(c)),
...g(a, g(a, c)), ..., g(f(a), f(c)), ..., fff(a), ...}.
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Herbrand’s theorem

Theorem 10.4: Let S = {ϕi(x1, ..., xni)} be a set of open formulas of a

language L. Either

(i) S has an Herbrand model or

(ii) S is unsatisfiable and, in particular, there are finitely many ground instances

of elements of S whose conjunction is unsatisfiable.

The latter case, (ii), is equivalent to

(ii’) There are finitely many ground instances of the negations of formulas of S

whose disjunction is valid. (As we may view these ground instances as built

from propositional letters, the disjunction being valid is equivalent to its

being a truth-functional tautology.)

Proof: Let S′ consist of all ground instances from L of formulas from S.

Consider the CST from S′ (in the language L alone, i.e., with no additional

constant symbols added on) starting with F (α ∧ ¬α) for any sentence α. There

are two possible outcomes. First, there might be a (possibly infinite)

noncontradictory path in the tableau. In this case, the proof of Theorem 7.3
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supplies us with a model A of S′ whose elements are the ground terms of L, i.e.,

an Herbrand model for S′. By definition of S′ and of tableau proofs from S′,

ϕ(t1, ..., tn) is true in A for every ϕ ∈ S and every t1, , tn in the Herbrand

universe. Thus the structure A defined on the Herbrand universe by the path is a

model for S.

The other possibility is that the tableau is finite and contradictory. In this case,

the tableau is, by definition, a proof of the unsatisfiability of the set of elements

of S′ appearing in the tableau and so we have the unsatisfiable conjunction

required in (ii). Moreover, S cannot be satisfiable: A model for S is one in which

ϕi(x1, ..., xni) is valid, i.e., true for every instance of the free variables x1, ..., xni

for every ϕi ∈ S. Any example of (ii), however, directly exhibits a set of such

instances that cannot be simultaneously satisfied in any model.

Finally, by Theorem 4.8 we may manipulate the variable-free formulas as propo-

sitional letters. The unsatisfiability of the conjunction as required in (ii) is then

equivalent by propositional rules to the disjunction of their negations being valid

or a tautology. Thus, (ii) and (ii’) are equivalent. �
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Variations on Herbrand’s theorem

Corollary 10.5: If ϕ(~x) is a quantifier-free formula in a language L with

at least one constant symbol, then ∃~xϕ(~x) is valid if and only if there are

ground terms ~ti of L such that ϕ(~t1) ∨ ... ∨ ϕ(~tn) is a tautology.

Proof: First, note that ∃~xϕ(~x) is valid ⇔ ∀~x¬ϕ(~x) is unsatisfiable
⇔ ¬ϕ(~x) is unsatisfiable. By Theorem 10.4 (ii), ¬ϕ(~x) is unsatisfiable iff

there are finitely many ground terms ~ti of L such that ϕ(~t1) ∨ ... ∨ ϕ(~tn) is
a tautology. �
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Variations on Herbrand’s theorem

Theorem 10.6: A set S of clauses is unsatisfiable if and only if the set S′

of all ground instances from the Herbrand universe of the clauses in S is

unsatisfiable.

Proof: If some set of instances of elements of S (instantiated with terms

from the Herbrand universe) is unsatisfiable, then S, which asserts the

validity of its member clauses, is surely unsatisfiable. In the other

direction, if S is unsatisfiable, then, by Herbrand’s theorem (ii), there is, in

fact, a finite set of instances of clauses of S that is unsatisfiable. �

Logic for Applications Y. Deng@SJTU 230



10 LINEAR

Variations on Herbrand’s theorem

Theorem 10.7: Let ϕ be a sentence in prenex normal form in a language

L, ψ a prenex equivalent of ¬ϕ and θ(~x) an open Skolemization of ψ in the

language L′ as in Theorem 9.4. (Note that the free variables in ψ are

precisely the existentially quantified ones of ϕ.) Then ϕ is valid if and only

if there are terms ~t1, ..., ~tn of L′ such that ¬θ(~t1) ∨ ... ∨ ¬θ(~tn) is a
tautology.

Proof: By Corollary 10.5, it suffices to prove that ϕ is valid if and only if

∃~x¬θ(~x) is valid. Now ϕ is valid iff ¬ϕ is not satisfiable. On the other

hand, Theorem 9.4 says that ¬ϕ is satisfiable if and only if θ(~x) is

satisfiable. Thus, ϕ is valid iff θ(~x) is not satisfiable. Finally, note that

θ(~x) (or, equivalently, ∀~xθ) is not satisfiable iff ∃~x¬θ(~x) is valid. �
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11. Unification

Consider how to resolve the two clauses in resolution theorem proving:

C1 = {P (f(x), y),¬Q(a, b, x)} and C2 = {¬P (f(g(c)), g(d)}. We can

resolve C1 and C2 by directly substituting g(c) for x and g(d) for y to get

{¬Q(a, b, g(c))}.
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Substitution

Definition 11.1: A substitution θ is a finite set of the form

{x1/t1, x2/t2, ..., xn/tn} where the xi are distinct variables and each ti is a

term other than xi. If the ti are all ground terms, we call θ a ground

substitution. If the ti are distinct variables, we call θ a renaming

substitution.

Definition 11.2: An expression is any term or literal. Given a

substitution θ and an expression E (or a set of expressions S) we write

Eθ (Sθ) for the result of replacing each occurrence of xi in E (in every

element of S), by ti for every i ≤ n. If the resulting expression Eθ (set of

expressions Sθ) is ground, i.e., variable-free, then the substitution is called

a ground instance of E (S).
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Example: Substitution

(i) Let S = {f(x, g(y)), P (a, x), Q(y, z, b),¬P (y, x)},
θ = {x/h(a), y/g(b), z/c}. Then
Sθ = {f(h(a), g(g(b))), P (a, h(a)), Q(g(b), c, b),¬P (g(b), h(a))}. Here θ
is a ground substitution and Sθ is a ground instance of S.

(ii) Let S be as in (i) and let σ = {x/h(y), y/g(z), z/c}. Then
Sσ = {f(h(y), g(g(z))), P (a, h(y)), Q(g(z), c, b),¬P (g(z), h(y))}.
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Example: Composition of substitutions

Let E = P (x, y, w, u) and consider the two substitutions

θ = {x/f(y), y/g(z), w/v} and σ = {x/a, y/b, z/f(y), v/w, u/c}. Then
Eθ = P (f(y), g(z), v, u) and (Eθ)σ = P (f(b), g(f(y)), w, c). We have

θσ = {x/f(b), y/g(f(y)), u/c, z/f(y), v/w}
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Composition of substitutions

(i) If θ = {x1/t1, ..., xn/tn} and σ = {y1/s1, ..., ym/sm}, then θσ is the

substitution {x1/t1σ, ..., xn/tnσ, y1/s1, ..., ym/sm} with any xi/tiσ for

which xi = tiσ and any yj/sj for which yj ∈ {x1, ..., xn} removed.

(ii) The empty substitution ǫ (which does nothing to any expression) is an

identity for this operation, i.e., θǫ = ǫθ = θ for every substitution θ.
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Composition of substitutions

Proposition 11.6: For any expression E and substitutions θ, ψ and σ:

(i) (Eθ)σ = E(θσ) and

(ii) (ψθ)σ = ψ(θσ)

Proof: Let θ and σ be as in Definition 11.5 and let ψ = {z1/r1, ..., zk/rk}.
As the result of a substitution consists simply of replacing each variable in

an expression by some term, it suffices to consider the case in which E is a

variable, say v, in (i) and the result of applying (ψθ)σ and ψ(θσ) to v in

(ii).

(i) We divide the argument into two cases.

Case 1: v 6∈ {x1, ..., xn}. In this case vθ = v and (vθ)σ = vσ. If

v 6∈ {y1, ..., ym}, then vσ = v = v(θσ) as v 6∈ {x1, ..., xn, y1, ..., ym} and so
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no substitution is made. If, on the other hand, v = yj for some j ≤ n, then

yj 6∈ {x1, ..., xn}, (vθ)σ = vσ = sj = v(θσ).

Case 2: v = xi for some i ≤ n. In this case vθ = ti and (vθ)σ = tiσ but

this is exactly v(θσ) by definition.

(ii) The result follows from several applications of (i):

v((ψθ)σ) = (v(ψθ))σ

= ((vψ)θ)σ

= (vψ)(θσ)

= v(ψ(θσ))

�
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Unifier

Definition 11.7: If S = {E1, , En} is a set of expressions, we say a

substitution θ is a unifier for S if E1θ = E2θ = ... = Enθ, i.e., Sθ is a

singleton. S is said to be unifiable if it has a unifier.

(i) Neither {P (x, a), P (b, c)} nor {P (f(x), z), P (a, w)} is unifiable.

(ii) S1 = {P (x, c), P (b, c)} and S2 = {P (f(x), y), P (f(a), w)} are both

unifiable. The first can be unified by {x/b} and only by this substitution.

For S2, θ = {x/a, y/w} unifies S2 but so do σ = {x/a, y/a, w/a} and

ψ = {x/a, y/b, w/b} as well as many others.

Logic for Applications Y. Deng@SJTU 239



10 LINEAR

Most general unifier

Definition 11.9: A unifier θ for S is a most general unifier (mgu) for S if,

for every unifier σ for S, there is a substitution λ such that θλ = σ.

Up to renaming variables there is only one result of applying an mgu:

Theorem 11.10: If θ and ψ are both mgu’s for S, then there are

renaming substitutions σ and λ (i.e., ones that consist solely of

replacements of distinct variables by other distinct variables) such that

Sθσ = Sψ and Sθ = Sψλ.

Proof: By the definition of an mgu there are σ and λ such that Sθσ = Sψ

and Sψλ = Sθ. Clearly, we may assume that σ and λ make substitutions

only for variables occurring in Sθ and Sψ, respectively. (They consist of

the single terms Eθ and Eψ, respectively, as θ and ψ both unify S.)

Suppose σ makes some substitution xi/ti where ti is not a variable or a
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constant. In this case the complexity (e.g., length) of the expression Eθσ

in Sθσ = {Eθσ} must be strictly larger than that of Eθ in Sθ. As no

substitutions of terms for variables (e.g., λ) can decrease the length of an

expression we could not then have Sψλ = Sθσλ = Sθ as required. If there

were in σ a substitution xi/c, for some constant c, then no further

substitution (e.g., λ) could return the resulting instances of c in an

expression Eθσ in Sθσ back to instances of the variable xi in Eθ ∈ Sθ.

Thus, once again, we could not have Sθσλ = Sθ for any λ. We now know

that σ can contain only substitutions of one variable by another. If σ

identified distinct variables by such a substitution, then λ could not

distinguish them again. Thus σ (and similarly λ) is simply a renaming

substitution. �
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Exercises

1. Exercises 4, 5 in page 133

2. Exercise 2, 4 in page 136

3. Exercises 1, 3 in page 141
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The Unification Algorithm

Consider the example S1 = {f(x, g(x)), f(h(y), g(h(z)))}. The unification

of S1 requries to unify T1 = {x, h(y)} and T2 = {g(x), g(h(z))}. The
former gives the substitution {x/h(y)}, then the elements in T2 becomes

g(h(y)) and g(h(z)). Then we can unify them by applying {y/z}. Thus the
composition {x/h(y)}{y/z} = {x/h(z), y/z} is our desired unifier.

However, the example S2 = {f(h(x), g(x)), f(g(x), h(x))} is not unifiable.
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Disagreement set

Definition 12.1: Let S be a finite nonempty set of expressions. To define

the disagreement set of S find the first (i.e., leftmost) position at which not

all elements E of S have the same symbol. The set of subexpressions of

each E ∈ S that begin at this position is the disagreement set D(S) of S.

(In terms of formation trees, we find the lexicographically least node of the

formation trees associated with each expression such that not all the labels

of these nodes begin with the same symbol. D(S) is then the set of labels

of these nodes.)

E.g., For the sets of expressions S1 = {f(x, g(x)), f(h(y), g(h(z)))} and

S2 = {f(h(x), g(x)), f(g(x), h(x))} considered above, the disagreement sets

are D(S1) = {x, h(y)} and D(S2) = {h(x), g(x)}. For
T1 = S1{x/h(y)} = {f(h(y), g(h(y))), f(h(y), g(h(z)))} the disagreement

set is {y, z}.
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The Unification Algorithm

Let S be a set of expressions. We unify it as follows:

Step 0. Set S0 = S, σ0 = ǫ.

Step k + 1. If Sk is a singleton, terminate the algorithm with the

announcement that σ0σ1...σk is an mgu for S. Otherwise, see if there is a

variable v and a term t not containing v both of which are in D(Sk). If

not, terminate the algorithm with the announcement that S has no mgu.

(Note that, in this case, it is at least clear that Sk is not unifiable.) If so,

let v and t be the least such pair (in any fixed ordering of terms). (Indeed,

we could nondeterministically choose any such t and v as will become clear

from the proof that the algorithm succeeds.) Set σk+1 = {v/t} and

Sk+1 = Skσk+1 and go on to step k + 2.
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Example: the unification algorithm

Let S = {P (f(y, g(z)), h(b)), P (f(h(w), g(a)), t), P (f(h(b), g(z)), y)}.

Step 1. S = Sǫ = S0σ0 is not a singleton. D(S0) = {y, h(w), h(b)}. Depending on

the ordering of terms, there are two possibilities for σ1 : {y/h(w)} and

{y/h(b)}. It is better to choose the second (see Step 2) but suppose we are

not so clever and blindly set σ1 = {y/h(w)}. We then get S1 = S0σ1 which is

{P (f(h(w), g(z)), h(b)), P (f(h(w), g(a)), t), P (f(h(b), g(z)), h(w))}.

Step 2. D(S1) = {w, b}, σ2 = {w/b} (so we get to {y/h(b)} after all). Then S2 is

{P (f(h(b), g(z)), h(b)), P (f(h(b), g(a)), t), P (f(h(b), g(z)), h(b))}.

Step 3. D(S2) = {z, a}, σ3 = {z/a}. Then S3 is

{P (f(h(b), g(a)), h(b)), P (f(h(b), g(a)), t), P (f(h(b), g(a)), h(b))}.

Step 4. D(S3) = {h(b), t}, σ4 = {t/h(b)}. Then S4 is

{P (f(h(b), g(a)), h(b)), P (f(h(b), g(a)), h(b)), P (f(h(b), g(a)), h(b))}.

Step 5. S4 is a singleton and the mgu for S is

{y/h(w)}{w/b}{z/a}{t/h(b)} = {y/h(b), w/b, z/a, t/h(b)}.
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Correctness of the unification algorithm

Theorem 12.5: For any S, the unification algorithm terminates at some step

k + 1 with a correct solution, i.e., either S is not unifiable as announced or

ψ = σ0σ1...σk is in fact an mgu for S. Moreover, ψ has the special property that

for any unifier θ of S, θ = ψθ.

Proof: First of all, the algorithm always terminates as each nonterminal step

eliminates all occurrences of one of the finitely many variables in S. It is obvious

that if the algorithm terminates with an announcement that there is no unifier,

then S is not unifiable. On the other hand, if the algorithm terminates with the

announcement that ψ = σ0...σn is an mgu for S, then it is at least clear that ψ is

a unifier for S. Suppose then that θ is any unifier for S. We must show that

θ = ψθ. We prove by induction that, for every i, θ = σ0...σiθ.

For i = 0, the claim clearly holds. Suppose we have θ = σ0σ1...σiθ and

σi+1 = {v/t}. It suffices to show that the substitutions σi+1θ and θ are equal.

We show that their actions on each variable are the same. For x 6= v, xσi+1θ is

clearly the same as xθ. For v itself vσi+1 = tθ. As θ unifies Sσ0...σi and v and t

belong to D(Sσ0...σi), θ must unify v and t as well, i.e., tθ = vθ as required. �
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The unification algorithm

The unification algorithm given here is simple but inefficient. The search

for a v and t with v not occurring in t can take excessive amount of time.

Let S = {P (x1, ..., xn), P (f(x0, x0), ..., f(xn−1, xn−l))} :

D(S0) = {x1, f(x0, x0)}; σ1 = {x1/f(x0, x0)};
S1 = {P (f(x0, x0), x2, ..., xn), P (f(x0, x0),

f(f(x0, x0), f(x0, x0)), f(x2, x2), ..., f(xn−1, xn−1))}
D(S1) = {x2, f(f(x0, x0), f(x0, x0))}; σ2 = {x2/f(f(x0, x0), f(x0, x0))};

...

Before announcing σ1 we had to check that x1 was not either of the two

occurrences of variables in f(x0, x0). For σ2 there were four occurrences to

check. In general D(Si+1) will have twice as many occurrences of variables

as D(Si) and so the “occurs check” takes exponential time.
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Resolution

Consider formulas in clausal form. Each clause is understood as its

universal closure. There are no connections between the variables of

distinct clauses. To reflect this syntactically, we generally rename variables

when using two clauses together so that they have no variables in common.

(This procedure is called standardizing the variables apart.)

Definition 13.2: Suppose that we can rename the variables of C1 and C2

so that they have no variables in common and are of the form

C ′
1 ⊔ {P ~t1, ..., P ~tn} and C ′

2 ⊔ {¬P ~s1, ...,¬P ~sm}, respectively. If σ is an mgu

for {P ~t1, ..., P ~tn, P ~s1, ..., P ~sm}, then C ′
1σ ∪ C ′

2σ is a resolvent of C1 and

C2. ( C
′
1σ ∪ C ′

2σ is also called the child of the parents C1 and C2.)

Logic for Applications Y. Deng@SJTU 249



10 LINEAR

Resolution proofs

Resolution proofs of C from S and resolution refutations of S in both

linear and tree form are defined as in the propositional case (Definitions

I.8.4 and I.8.6) except that we use the version of the resolution rule given

above and allow the premises inserted from S, or equivalently the leaves of

the tree proof, to be Cσ for any renaming substitution σ and any C ∈ S.

Similarly, we define R(S) as the closure under resolution of the set of all

renamings of elements of S.
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Resolution proofs

Note that the renaming of variables is necessary. For example,the sentence

{{P (x)}, {¬P (f(x))}} is (unsatisfiable and) resolution refutable but the

clauses cannot be unified without renaming the variables.

We cannot assume in Definition 13.2 that n or m are equal to 1 as we did

in propositional logic. We must be able to eliminate several literals at

once. (This aspect of the procedure is often called factoring.) For example,

S = {{P (x), P (y)}, {¬P (x)}} is (unsatisfiable and) resolution refutable but

no resolution proof from S that eliminates only one literal at a time can

produce �.
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Exampple: resolution proofs

We can resolve

C1 = {Q(x),¬R(y), P (x, y), P (f(z), f(z))} and

C2 = {¬N(u),¬R(w),¬P (f(a), f(a)),¬P (f(w), f(w))} to get

C3 = {Q(f(a)),¬R(f(a)),¬N(u),¬R(a)}.
To do this we unify

{P (x, y), P (f(z), f(z)), P (f(a), f(a)), P (f(w), f(w))}
via the mgu {x/f(a), y/f(a), z/a, w/a} and perform the appropriate

substitutions and union on C1 and C2.
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Exampple: resolution proofs

From (a) and (b) below we wish to conclude (c):

(a) ∀x∀y∀z[P (x, y) ∧ P (y, z) → P (x, z)] (transitivity)

(b) ∀x∀y[P (x, y) → P (y, x)] (symmetry)

(c) ∀x∀y∀z[P (x, y) ∧ P (z, y) → P (x, z)].

In clausal form, we can derive C3 from S = {C1, C2} where

C1 = {¬P (x, y),¬P (y, z), P (x, z)},
C2 = {¬P (u, v), P (v, u)} and

C3 = {¬P (x, y),¬P (z, y), P (x, z)}.
(Note that we have standardized the clauses of S apart.)
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Correct answer substitution

Definition 13.5: If P is a program and G = {¬A1, ...,¬An} a goal clause,

we say that the substitution θ (for the variables of G ) is a correct answer

substitution if (A1 ∧A2 ∧ ... ∧An)θ is a logical consequence of P (that is,

of its universal closure).
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Soundness of resolution

Theorem 13.6 If � ∈ R(S), then S is unsatisfiable.

Proof: Suppose, for the sake of a contradiction, that A |= S. It suffices to

show that if A |= C1, C2 and C is a resolvent of C1, C2 then A |= C, i.e.,

A |= Cτ for every ground substitution τ . (If so, we could show by

induction that A |= C for every C ∈ R(S). As R(S) contains �, we would

have the desired contradiction.) The only point to notice here is that if

A |= Ci, then A |= Ciσi for any Ci as the Ci are open. For every ground

instantiation τ of the variables of C = C ′
1σ ∪ C ′

2σ we can argue as in the

propositional case. (See Lemma I.8.12 and Theorem I.8.11.) As, for each

ground instantiation τ , either C ′
1στ or C ′

2στ is true in A (depending on

whether the literal resolved on is true in A or not and in which of the C ′
iτ

it appears positively), then so is their union Cτ . �
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Completeness of resolution

Lemma 13.7 If C ′
1 and C ′

2 are ground instances (via the substitutions θ1
and θ2) of C1 and C2, respectively, and C

′ is a resolvent of C ′
1 and C ′

2,

then there is a resolvent C of C1 and C2 such that C ′ is a ground instance

of C (via θ1θ2 if C1 and C2 have no variables in common).

Proof: As the resolution rule allows us to rename the variables in C1 and

C2 as part of the resolution, we may as well assume that they (and so also

θ1 and θ2) have no variables in common. As C ′
1 = C1θ1 and C ′

2 = C2θ2 are

resolvable, say on the ground literal P (t1, ..., tn), there are sets of literals

A1 = {P (~s1,1), ..., P (~s1,n1)} ⊆ C1} and

A2 = {¬P (~s2,1), ..., P (~s2,n2)} ⊆ C2}
which become unified to {P (t1, ..., tn)} and {¬P (t1, ..., tn)} by θ1 and θ2,

respectively. As the sets of variables in θ1 and θ2 are disjoint, θ1θ2 unifies

Logic for Applications Y. Deng@SJTU 256



10 LINEAR

both sets of literals A1 and A2 simultaneously. Thus, by the definition of

resolution for the predicate calculus (Definition 13.2),

C = ((C1 −A1) ∪ (C2 −A2))σ is a resolvent of C1 and C2 where σ is the

mgu for

{¬P (~s1,1), ...,¬P (~s1,n1)} ∪ {¬P (~s2,1), ...,¬P (~s2,n2)}
given by the unification algorithm. The only point left to verify is that C ′

is an instance of C. We claim that C ′ = Cθ1θ2. Note that as θ1θ2 unifies

¬A1 ∪A2, the special property of the mgu given by our algorithm

(Theorem 12.5) guarantees that σθ1θ2 = θ1θ2. Thus

Cθ1θ2 = ((C1 −A1) ∪ (C2 −A2))σθ1θ2

= ((C1 −A1) ∪ (C2 −A2))θ1θ2

= (C1θ1 −A1θ1) ∪ (C2θ2 − A2θ2) (by disjointness of variables)

= (C ′
1 − {P (t1, ..., tn)}) ∪ (C ′

2 − {¬P (t1, ..., tn)})
= C ′ (by definition)

�
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Lifting Lemma

Lemma 13.8 Let S be a formula in a language L and let S′ be the set of

all ground instances of clauses in S in the Herbrand universe for L. If T ′ is

a resolution tree proof of C ′ from S′, then there is a clause C of L, a
resolution tree proof T of C from S and a substitution θ such that Tθ = T ′

(i.e., T and T ′ are labelings of the same tree and Ciθ = C ′
i for Ci, C

′
i the

respective labels of each node of the common tree underlying T and T ′.

Thus, in particular, C ′ = Cθ). Moreover, if the leaves of T ′ are labeled Ri

and each Ri is an instance of an Si in S, then we may arrange it so that the

corresponding leaves of T are labeled with renamings of the appropriate Si.

Proof: We proceed by induction on the depth of resolution tree proofs

from S′. For the base case of elements Ri of S
′, the lemma is immediate as

each such Ri is a substitution instance of an element of S. Consider now a

proof of C ′ from S′ of depth n+ 1. It consists of two proofs, T ′
1 and T ′

2 (of
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depth ≤ n) of ground clauses C ′
1, C

′
2 from S′ and a final resolution of

C ′
1, C

′
2 to get C ′. Suppose that P (t1, ..., tn) ∈ C ′

1, ¬P (t1, ..., tn) ∈ C ′
2 and

that we resolved on this literal to get

C ′ = C ′
1 ∪ C ′

2 − {P (t1, ..., tn),¬P (t1, ..., tn)}.
By induction, we have predicate clauses C1 and C2, proof trees T1 and T2
of C1 and C2 and substitutions θ1 and θ2 such that Tiθi = T ′

i . (The leaves

of Ti are also labeled appropriately by induction.) At the cost perhaps of

renaming variables in T1 and T2, we may assume that θ1 and θ2 have no

variables in common. (As the resolution rule allows for arbitrary

renamings of the parents, the Ti remain resolution proofs. As our lemma

only calls for the leaves to be labeled with some renamings of the given

clauses from S, this renaming does not alter the fact that we have the

leaves appropriately labeled.) We now apply Lemma 13.7 to get a resolvent

C of C1 and C2 with C ′ = Cθ1θ2. We can now form a resolution tree proof

T from S of C by combining T1 and T2. As θ1 and θ2 are disjoint, Tθ1θ2
restricted to T1 and T2 simply gives us back T1θ1 and T2θ2. Of course, on
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the remaining node C of T we have Cθ1θ2 = C ′. Thus T is the required

predicate logic resolution proof from S of C and θ1θ2 is the substitution

required in our lemma. �

Corollary 13.9: If T ′ is a resolution tree proof of � each of whose leaves

Li is labeled with a ground instance Ri of the clause Si, then there is a

relabeling T of the underlying tree of T ′ that gives a resolution proof of �

each of whose leaves Li is labeled with (a renaming) of Si.

Proof: This is simply the special case of the theorem with C ′ = �. The

only point to notice is that the only clause C that can have � as a

substitution instance is � itself. �
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Completeness of resolution

Theorem 13.10 If S is unsatisfiable, then � ∈ R(s).

Proof: Let S′ be the set of all ground instances of clauses in S in the

Herbrand universe for the language L of S. By one of the consequences

(Theorem 10.6) of Herbrand’s theorem, S and S′ are equisatisfiable. Thus

if we assume that S is unsatisfiable, then so is S′. By the completeness of

resolution for propositional logic (Theorem I.8.15 or I.8.22) we then know

that � ∈ Rp(S
′) where we use Rp to represent the resolution procedure in

propositional logic. (As usual we consider the atomic formulas as

propositional letters in this situation.) The completeness of resolution for

predicate logic (i.e., � ∈ R(s) if S is unsatisfiable) is now immediate from

Corollary 13.9. �
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Exercises

1. Exercise 2 in page 144

2. Exercises 5, 6 in page 152
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14. Refining resolution: Linear resolution

Definition 14.1: Let C be a clause and S a formula.

(i) A linear deduction of C from S is a sequence 〈C0, B0〉, ..., 〈Cn, Bn〉 of
pairs of clauses such that C0 and each Bi are either renaming

substitutions of elements of S or some Cj for j < i; each Ci+1, i ≤ n, is

a resolvent of Ci and Bi and Cn+1 = C.

(ii) C is linearly deducible from S, S ⊢L C, if there is a linear deduction of

C from S. There is a linear resolution refutation of S if � is linearly

deducible from S. L(S) is the set of all clauses linearly deducible from

S.

The elements of S are frequently called input clauses. The Ci are called

center clauses and the Bi side clauses.
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Supports of formula

Definition 14.3: U ⊆ S is a set of support for S if S − U is satisfiable.

We say that a linear resolution proof 〈Ci, Bi〉, i ≤ n, of C from S has

support U if C0 ∈ U .

The intuition here is that we consider a formula S ∈ UNSAT. In this case

the “cause” of the unsatisfiability has been isolated in U (which “supports”

the fact that S ∈ UNSAT).
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Minimal unsatisfiability

Definition 14.5: S is minimally unsatisfiable if it is unsatisfiable but

every proper subset is satisfiable, i.e., {C} is a set of support for S for

every C ∈ S.

Lemma 14.6: If S ∈ UNSAT, then there is a minimally unsatisfiable

S′ ⊆ S. Moreover, if U is a set of support for S, U ∩ S′ is one for S′.

Proof: By compactness, some finite subset of S is unsatisfiable. If S′ is an

unsatisfiable subset of S with the least possible number of clauses, S′ is

certainly a minimally unsatisfiable subset of S. Let U be any set of

support for S. If U ∩ S′ = ∅, S′ would be contained in the satisfiable set

S − U for a contradiction. Thus S′ − (S′ ∩ U) is a proper subset of S′ and

so, by the minimality of S′, is satisfiable. �
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Completeness of linear resolution

Theorem 14.4: If S ∈ UNSAT and U is a set of support for S, then there is

a linear refutation of S with support U .

Proof: Our plan now is once again to reduce the proof to the case of

propositional logic. As in the case of general resolution, we apply

Herbrand’s theorem. If S is unsatisfiable and has support U , so is S′, the

set of all ground instances of elements of S, and it has support U ′, the set

of all ground instances of elements of U . We wish to show that any linear

resolution proof T ′ of � from S′ with support U ′ lifts to one from S with

support U . This is immediate from Corollary 13.9 to the lifting lemma.

The lifting lemma preserves the shape of the resolution tree and so lifts

linear proofs to linear proofs. It also lifts instances Ri of clauses Si on the

leaves of the tree to (renamings of) Si. Thus if the clause C ′
0 of the proof

T ′ is in U ′ and so is an instance of a clause C in U , then it lifts to a

(renaming of) the same clause C. �
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Completeness of linear resolution

Proof: (of the propositional version of Theorem 14.4): By Lemma 14.6, it

suffices to consider only those S that are minimally unsatisfiable. (Any linear

resolution refutation of S′ ⊆ S with support U ∩S′ is one of S with support U by

definition.) We proceed by induction on E(S) = the excess literal number of S,

that is, the number of occurrences of literals in all clauses of S minus the number

of clauses in S. (Note that we need S to be finite to even define the excess literal

number.) We in fact prove by induction that, for any C ∈ S, there is a linear

refutation of S that begins with C, i.e. C = C0 in the proof tree. At the bottom,

if E(S) = −1, � ∈ S and there is nothing to prove. Suppose now that E(S) ≥ 0.

Case 1. C is a unit clause, i.e., it contains exactly one literal l. There must be a

clause C ′ ∈ S with l̄ ∈ C ′ as otherwise any assignment satisfying S − C (which is

satisfiable by the minimality of S ) could be extended to one satisfying S by

adding on l. Note that l 6∈ C ′ for if it did, C ′ would be a tautology and S would

not be minimally unsatisfiable contrary to our assumption. Thus C ′ −{l̄} is in Sl

by the definition of Sl (Definition I.8.16). If C ′ = {l̄}, we are done as we can
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simply resolve C and C ′ to get �. Suppose then that C ′ = {l̄, ...} has more than

one literal. As S ∈ UNSAT, Sl ∈ UNSAT by Lemma I.8.19. Each clause removed

from S in forming Sl has at least one literal (l) (again by definition). Thus their

removal cannot increase the excess literal number. On the other hand, at least

C ′ loses one literal (l̄) in its transition to Sl. Thus E(Sl) < E(S).

We next claim that Sl is also minimally unsatisfiable: Suppose D ∈ Sl but

Sl − {D} is unsatisfiable. Now, by the definition of Sl, D ∈ S or D ∪ {l̄} ∈ S and

in either case l 6∈ D. Let D′ represent whichever clause belongs to S. We know,

by the minimal unsatisfiability of S, that S − {D′} is satisfiable. Let A be an

assignment satisfying it. As C = {l} ∈ S − {D′}, A |= l. Consider now any

F ∈ Sl − {D} and the associated F ′ ∈ S − {D′}. As A |= l and A |= F ′, A |= F

in either case of the definition of F ′. (F ′ is defined from F as D′ was defined

from D.) Thus A |= Sl − {D} contrary to our assumption.

Our induction hypothesis now gives us a linear resolution deduction of � from Sl

starting with C ′ − {l̄} : 〈C0, B1〉, ..., 〈Cn, Bn〉 with C0 = C ′ − {l̄}. Each Bi is a

member of Sl or is Cj for some j < i and Cn, Bn resolve to �. We construct a

new proof 〈Dj , Aj〉 in segments with the ith one ending with Dk = Ci. We begin
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by setting D0 = {l} = C and A0 = C ′. Of course, they can be resolved to get

D1 = C0. Now we proceed by induction. Suppose we have Aj , j < k and

Dk = Ci. If Bi = Cj for some j < i, we let Ak = Cj (which by induction is a

previous Dm) and resolve to get Dk+1 = Ck+1. Otherwise, Bi ∈ Sl and we have

two cases to consider. If Bi ∈ S we set Ak = Bi and resolve to get Dk+1 = Ci+1.

If Bi 6∈ S, then Bi ∪ {l̄} ∈ S. We set Ak = Bi ∪ {l̄} and resolve to get

Dk+1 = Ci+1 ∪ {l̄}. In this case, we set Ak+1 = {l} and resolve to get

Dk+2 = Ci+1 and so continue the induction. As {l} = D0, we now have a linear

resolution refutation of S as required.

Case 2. C = {l, ...} has more than one literal. Now consider S l̄. As above, it is

minimally unsatisfiable and has lower excess literal number than S. We thus

have, by induction, a linear resolution deduction of � from S l̄ starting with

C − {l}. If we add on l to every center clause and to any side clause which is in

S l̄ but not S, we get a linear proof of {l} from S starting with C. Consider now

S′ = S − {C} ∪ {{l}}. It too is unsatisfiable. (Any assignment satisfying it

satisfies S.) As C has more than one literal, E(S′) < E(S). Now as � 6∈ S′, for

any S′′ ⊆ S′, E(S′′) ≤ E(S′). If we take S′′ ⊆ S′ to be minimally unsatisfiable
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we have, by induction, a linear resolution proof of � from S′′ ⊆ S ∪ {{l}}

beginning with {l}. (Note that S′ − {l} = S − {C} is satisfiable by the minimal

unsatisfiability of S. Thus, any unsatisfiable subset S′′ of S′ must contain {l}.)

Attaching this proof to the end of the one of {l} from S gives the desired linear

refutation of S starting with C. �
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Chapter IV. Modal Logic
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1. Possibility and Necessity; Knowledge or Belief

Formal modal logics were developed to make precise the mathematical

properties of differing conceptions of such notions as possibility, necessity,

belief, knowledge and temporal progression which arise in philosophy and

natural languages.

Definition 1.1: If L is a language for (classical) predicate logic, we extend

it to a modal language L�,♦ by adding (to Definition II.2.1) two new

primitive symbols � and ♦. We add a new clause to the definition (II.2.5)

of formulas:

(iv) If ϕ is a formula, then so are �ϕ and ♦ϕ.

We write L for L�,♦ if no confusion arises.
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Possibility and Necessity

� : “it is necessary that”, “it will always be true that”, “ I know” or “I

believe”

♦ : “it is possible that”, “it will eventually be true that”,

The semantics for a modal language L�,♦ is based on a generalization of

the structures for classical predicate logic of II.4 known as Kripke frames.

Consider a collection W of “possible worlds”. Each world w ∈W

constitutes a view of reality as represented by a structure C(w) associated
with it. w 
 ϕ means ϕ is true in the possible world w, read “w forces ϕ”

or “ϕ is true at w”.
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Possibility and Necessity

In dynamic logic of sequential programs, the “possible worlds” are the

states of the machine.

• s 
α �αϕ asserts that ϕ is true at any state s′ s.t. there exists a legal

execution sequence for α which starts in state s and eventually reaches

state s′.

• s 
α ♦αϕ asserts that ϕ is true at (at least) one state s′ such that

there exists α legal execution sequence for a which starts in state s and

eventually reaches state s′.

The intended accessibility relation, Sα, is that s
′ is accessible from s,

sSαs
′, if and only if some execution of program α starting in state s ends

in state s′.
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2. Frames and Forcing

Fix a modal language L and assume that it has at least one constant

symbol but no function symbols other than constants.

The elimination of function symbols does not result in a serious loss of

expressiveness. We can systematically replace function symbols with

relations. The work of a binary function symbol f(x, y), for example, can

be taken over by a ternary relation symbol Rf (x, y, z) whose intended

interpretation is that f(x, y) = z. A formula ϕ(f(x, y)) can then be

systematically replaced by the formula ∃z(Rf (x, y, z) ∧ ϕ(z)).
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Frames

Definition 2.1: Let C = (W,S, {C(p)}p∈W ) consist of a set W , a binary

relation S on W and a function that assigns to each p in W a (classical)

structure C(p) for L (in the sense of Definition II.4.1). To simplify the

notation we write C = (W,S, C(p)) instead of the more formally precise

version, C = (W,S, {C(P )}p∈W ). As usual, we let C(p) denote the domain

of the structure C(p). We also let L(p) denote the extension of L gotten by

adding on a name ca for each element a of C(p) in the style of the

definition of truth in II.4. We write either pSq or (p, q) ∈ S to denote the

fact that the relation S holds between p and q. We also describe this state

by saying that q is accessible from (or a successor of) p. We say that C is a

frame for the language L, or simply an L-frame if, for every p and q in W ,

pSq implies that C(p) ⊆ C(q) and the interpretations of the constants in

L(p) ⊆ L(q) are the same in C(p) as in C(q).
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Forcing for frames

Definition 2.2: Let C = (W,S, C(P )) be a frame for a language L, p be in

W and ϕ be a sentence of the language L(p). We give a definition of p

forces ϕ, written p 
 ϕ by induction on sentences ϕ.

(i) For atomic sentences ϕ, p 
 ϕ ⇔ ϕ is true in C(p).
(ii) p 
 (ϕ→ ψ) ⇔ p 
 ϕ implies p 
 ψ.

(iii) p 
 ¬ϕ ⇔ p does not force ϕ (written p 6
 ϕ).

(iv) p 
 (∀x)ϕ(x) ⇔ for every constant c in L(p), p 
 ϕ(c).

(v) p 
 (∃x)ϕ(x) ⇔ there is a constant c in L(p) such that p 
 ϕ(c).

(vi) p 
 (ϕ ∧ ψ) ⇔ p 
 ϕ and p 
 ψ.

(vii) p 
 (ϕ ∨ ψ) ⇔ p 
 ϕ or p 
 ψ.
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(viii) p 
 �ϕ ⇔ for all q ∈W such that pSq, q 
 ϕ.

(ix) p 
 ♦ϕ ⇔ there is a q ∈W such that pSq and q 
 ϕ.

If we need to make the frame explicit, we say that p forces ϕ in C and write

p 
C ϕ.

Definition 2.3: Let ϕ be a sentence of the language L. We say that ϕ is

forced in the L-frame C, 
C ϕ, if every p in W forces ϕ. We say ϕ is valid,

|= ϕ, if ϕ is forced in every L-frame C.
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Example: Forcing for frames

For any sentence ϕ, the sentence �ϕ→ ¬♦¬ϕ is valid: Consider any frame

C = (W,S, C(p)) and any p ∈W . We must verify that p 
 �ϕ→ ¬♦¬ϕ in

accordance with Clause (ii) of Definition 2.2. Suppose then that p 
 �ϕ. If

p 6
 ¬♦¬ϕ, then p 
 ♦¬ϕ (by (iii)). By Clause (ix), there is a q ∈W such

that pSq and q 
 ¬ϕ. Our assumption that p 
 �ϕ and Clause (viii) then

tell us that q 
 ϕ, contradicting Clause (iii).
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Example: Forcing for frames

We claim that �∀xϕ(x) → ∀x�ϕ(x) is valid. If not, there is a frame C and

a p such that p 
 �∀xϕ(x) but p 6
 ∀x�ϕ(x). If p 6
 ∀x�ϕ(x), there is, by

Clause (iv), a c ∈ L(p) such that p 6
 �ϕ(c). There is then, by Clause (ix),

a q ∈W such that pSq and q 6
 ϕ(c). As p 
 �∀xϕ(x), q 
 ∀xϕ(x) by (ix).

Finally, q 
 ϕ(c) by (iv) for the desired contradiction. Note that the

assumption that the domains C(p) are monotonic, in the sense that

pSq ⇒ C(p) ⊆ C(q), plays a key role in this argument.
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Example: Forcing for frames

�ϕ(c) → ϕ(c) is not valid: Consider any frame in which the atomic

sentence ϕ(c) is not true in some C(p) and there is no q such that pSq. In

such a frame p 
 �ϕ(c) but p 6
 ϕ(c).

∀xϕ(x) → �∀xϕ(x) is not valid: Let C be the frame in which

W = {p, q}, S = {(p, q)}, C(p) = {c}, C(q) = {c, d}, C(p) 
 ϕ(c) and

C(q) 
 ϕ(c) ∧ ¬ϕ(d). Now p 
 ∀xϕ(x) but p 6
 �∀xϕ(x) as q 6
 ϕ(d). It is

crucial in this example that the domains C(p) of a frame C are not

assumed to all be the same.
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Logical consequence

Definition 2.8: Let Σ be a set of sentences in a modal language L and ϕ

a single sentence of L. ϕ is a logical consequence of Σ, Σ |= ϕ, if ϕ is

forced in every L-frame C in which every ψ ∈ Σ is forced.

Warning: This notion of logical consequence is not the same as requiring

that, in every L-frame C, ϕ is true (forced) at every world w at which

every ψ ∈ Σ is forced (Exercise 11). In particular, the deduction theorem

(Σ |= ϕ ⇒ |= ∧Σ → ϕ) fails, as witnessed by Examples 2.7 and 2.9.
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Example: Logical consequence

∀xϕ(x) |= �∀xϕ(x): Suppose C is a frame in which p 
 ∀xϕ(x) for every
possible world p ∈W . If q ∈W , we claim that q 
 �∀xϕ(x). If not, there
would be a p ∈W such that qSp and p 6
 ∀xϕ(x) contradicting our

assumption.

If ϕ is an atomic unary predicate, �ϕ(c) 6|= ♦ϕ(c): Consider a frame C in

which S = ∅ and in which C(p) 6|= ϕ(c) and so p 6
 ϕ(c) for every p. In C,
every p forces �ϕ(c) but none forces ϕ(c) and so none forces ♦ϕ(c).
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3. Modal Tableaux

The labels (the entries of the tableau) are either signed forcing assertions

(i.e., labels of the form Tp 
 ϕ or Fq 
 ϕ for ϕ a sentence of any given

appropriate language) or accessibility assertions pSq. We read Tp 
 ϕ as p

forces ϕ and Fp 
 ϕ as p does not force ϕ.
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Atomic tableaux
We first fixing a modal language L and an expansion to LC given by adding new constant symbols ci for

i ∈ N .
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Atomic tableaux

Warning: In (T�) and (F♦) we allow for the possibility that there is no appropriate q by admitting

Tp 
 �ϕ and Fp 
 ♦ϕ as instances of (T�) and (F♦), respectively.
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Modal tableaux

Definition 3.2: We continue to use our fixed modal language L and its

extension by constants LC . We also fix a set {pi | i ∈ N} of potential

candidates for the p’s and q’s in our forcing assertions. A modal tableau

(for L) is a binary tree labeled with signed forcing assertions or

accessibility assertions; both sorts of labels are called entries of the tableau.

The class of modal tableaux (for L) is defined inductively as follows.

(i) Each atomic tableau τ is a tableau. The requirement that c be new in

cases (T∃) and (F∀) here means that c is one of the constants ci added

on to L to get Lc which does not appear in ϕ. The phrase “any

appropriate c” in (F∃) and (T∀) means any constant in L or in ϕ. The

requirement that q be new in (F�) and (T♦) here means that q is any

of the pi other than p. The phrase “any appropriate q” in (T�) and

(F♦) in this case simply means that the tableau is just Tp 
 �ϕ or

Fp 
 ♦ϕ as there is no appropriate q.
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(ii) If τ is a finite tableau, P a path on τ , E an entry of τ occurring on P

and τ ′ is obtained from τ by adjoining an atomic tableau with root

entry E to τ at the end of the path P , then τ ′ is also a tableau.

The requirement that c be new in cases (T∃) and (F∀) here means

that it is one of the ci (and so not in L) that do not appear in any

entry on τ . The phrase “any appropriate c” in (F∃) and (T∀) here
means any c in L or appearing in an entry on P of the form Tq 
 ψ or

Fq 
 ψ such that qSp also appears on P .

In (F�) and (T♦) the requirement that q be new means that we choose

a pi not appearing in τ as q. The phrase “any appropriate q” in (T�)

and (F♦) means we can choose any q such that pSq is an entry on P .

(iii) If τ0, τ1, ..., τn, ... is a sequence of finite tableaux such that, for every

n ≥ 0, τn+1 is constructed from τn by an application of (ii), then

τ = ∪τn is also a tableau.
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Tableau proofs

Definition 3.3: Let τ be a modal tableau and P a path in τ .

(i) P is contradictory if, for some forcing assertion p 
 ϕ, both Tp 
 ϕ

and Fp 
 ϕ appear as entries on P .

(ii) τ is contradictory if every path through τ is contradictory.

(iii) τ is a proof of ϕ if τ is a finite contradictory modal tableau with its

root node labeled Fp 
 ϕ for some p. ϕ is provable, ⊢ ϕ, if there is a

proof of ϕ.
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Example: tableau proofs

There is a natural correspondence between the tableaux of classical

predicate logic and those of modal logic beginning with sentences without

modal operators. One goes from the modal tableau to the classical one by

replacing signed forcing assertions Tp 
 ϕ and Fp 
 ϕ by the

corresponding signed sentences Tϕ and Fϕ, respectively.
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Example: tableau proofs

ϕ→ �ϕ is not valid.

This failed attempt at a proof suggests a frame counterexample C for

which W = {w, v}, S = {(w, v)} and structures such that ϕ is true at w

but not at v. Such a frame demonstrates that ϕ→ �ϕ is not valid as in

this frame, w does not force ϕ→ �ϕ.
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Example: tableau proofs

�ϕ→ ϕ is not valid.

The frame counterexample suggested here consists of a one world

W = {w} with empty accessibility relation S and ϕ false at w. It shows

that �ϕ→ ϕ is not valid.
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Example: tableau proofs

�(∀x)ϕ(x) → (∀x)�ϕ(x) is provable.
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Example: tableau proofs
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Example: An incorrect proof

The false step occurs at line 7.
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Example: tableau proof

(∀x)¬�ϕ→ ¬�(∃x)ϕ is not valid. We have the counterexample with constant

domain C = {c, d}; two worlds w and v with v accessible from w; no atomic

sentences true at w and the sentence ϕ(d) true at v.
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Tableaux from premises

The definition of modal tableaux from Σ, a set of sentences of a modal

language called premises, is the same as for simple modal tableaux in

Definition 3.2 except that we allow one additional formation rule:

(ii’) If τ is a finite tableau from Σ, ϕ ∈ Σ, P a path in τ and p a possible

world appearing in some signed forcing assertion on P , then appending

Tp 
 ϕ to the end of P produces a tableau τ ′ from Σ.
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Example: Tableaux from premises

A tableau proof of �∀ϕ(x) from the premise ∀xϕ(x).
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Exercises

1. Exercise 7, 9, 11 in page 228

2. Exercise 4, 5, 7, 10 in page 239
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4. Soundness and Completeness

Definition 4.1: Suppose C = (V, T, C(p)) is a frame for a modal language L, τ is

a tableau whose root is labeled with a forcing assertion about a sentence ϕ of L

and P is a path through τ . Let W be the set of p’s appearing in forcing

assertions on P and let S be the accessibility relation on W determined by the

assertions pSq occurring on P . We say that C agrees with P if there are maps f

and g such that

(i) f is a map from W into V that preserves the accessibility relation, i.e.,

pSq ⇒ f(p)Tf(q). (Note that f is not assumed to be one-one.)

(ii) g sends each constant c occurring in any sentence ψ of a forcing assertion

Tp 
 ψ or Fp 
 ψ on P to a constant in L(f(p)). Moreover, g is the identity

on constants of L. We also extend g to be a map on formulas in the obvious

way: To get g(ψ) simply replace every constant c in ψ by g(c).

(iii) If Tp 
 ψ is on P , then f(p) forces g(ψ) in C and if Fp 
 ψ is on P , then

f(p) does not force g(ψ) in C.
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Agreement of a frame with a tableau

Lemma 4.5: If f and g are witnesses that a path P of a tableau τ agrees with C

and τ ′ is gotten from τ by an application of Clause (ii) of Definition 3.2, then

there are extensions P ′, f ′ and g′ of P, f and g, respectively, such that f ′ and g′

are witnesses that the path P ′ through τ ′ also agrees with C.

Proof: First note that if τ ′ is gotten by extending τ somewhere other than at

the end of P , then the witnesses for τ work for τ ′ as well. Thus, we may assume

that we form τ ′ by adjoining one of the atomic tableaux at the end of P in τ . We

now consider the sixteen cases given by the atomic tableaux of Definition 3.1.

The cases other than (T∃), (F∀), (F�) and (T♦) require no extension of f or g.

In each of these cases it is obvious from the induction hypothesis and the

corresponding case of the definition of forcing (Definition 2.2) (and the

monotonicity assumption on the domains C(p) for cases (F∃) and (T∀)) that one

of the extensions of P to a path through τ ′ satisfies the requirements of the

lemma.

We present cases (T∃) and (T♦) in detail. Cases (F∀) and (F�) are similar. In
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case (T∃) the entry of P being developed is Tp 
 (∃x)ϕ(x). Then P ′, the

required extension of P , is the only one possible. It is determined by adding

Tp 
 ϕ(c) to the end of P . By our induction hypothesis, f(p) 
C g((∃)ϕ(x)). By

the definition of forcing an existential sentence (2.2(v)), there is a c′ ∈ L(p) such

that f(p) 
 g(ϕ(c′)). Fix such a c′ and extend g to g′ by setting g′(c) = c′. It is

now obvious that P ′, f ′ = f and g′ satisfy the requirements of the lemma, i.e., f ′

and g′ witness that P ′ agrees with C.

Finally, in case (T♦) the entry of P being developed is Tp 
 ♦ϕ. The required

extension of P to P ′ is the only possible one. It is determined by adding both

pSq and Tq 
 ϕ onto the end of P . By our induction hypothesis, f(p) 
C g(♦ϕ).

As g(♦ϕ) = ♦g(ϕ), there is, by the definition of forcing for ♦ (2.2(ix)), a q′ ∈ V

such that f(p)Tq′ and q′ 
 g(ϕ). Fix such a q′ and extend f to f ′ by setting

f ′(q) = q′. It is now obvious that P ′, f ′ and g′ = g satisfy the requirements of

the lemma, i.e., f ′ and g′ witness that P ′ agrees with C. �
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Agreement of a frame with an atomic tableau

Lemma 4.4: Suppose C = (V, T, C(p)) is a frame for a language L and τ is an

atomic tableau whose root is labeled with a forcing assertion about a sentence ϕ

of L. If q ∈ V and either

(i) Fr 
 ϕ is the root of τ and q does not force ϕ in C, or

(ii) Tr 
 ϕ is the root of τ and q does force ϕ in C,

then there is a path P through τ that agrees with C with a witness function f (as

required in Definition 4.1) that sends r to q.

Proof: We begin by defining f(r) = q and g to be the identity on the constants

of LC. With this choice of f and g, the root itself agrees with C by the

hypothesis of the theorem. This completes the argument for T At and F At. The

argument needed for each of the other atomic tableaux is precisely the same as

the one for the corresponding case of Lemma 4.5. The inductive argument

applied to the rest of the atomic tableau then provides the required extensions.

(The degenerate cases of (T�) and (F♦) are exceptions but in those cases the

conclusion is precisely the hypothesis.) �
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Agreement of a frame with a tableau

Theorem 4.2: Suppose C = (V, T, C(p)) is a frame for a language L and τ is a

tableau whose root is labeled with a forcing assertion about a sentence ϕ of L. If

q ∈ V and either

(i) Fr 
 ϕ is the root of τ and q does not force ϕ in C, or

(ii) Tr 
 ϕ is the root of τ and q does force ϕ in C,

then there is a path P through τ that agrees with C with a witness function f (as

required in Definition 4.1) that sends r to q.

Proof: Lemma 4.4 establishes the theorem for atomic tableau. Lemma 4.5 then

proves the theorem for all finite tableaux by induction. In fact, it proves it for

infinite tableaux as well: Suppose τ = ∪τn is an infinite tableau as defined by

Clause (iii) of Definition 3.2. We begin by applying the appropriate case of

Lemma 4.4 to τ0 to get suitable P0, f0 and g0. We then apply Lemma 4.5 to each

τn in turn to construct Pn, fn and gn. The required P, f and g for τ are then

simply the unions of the Pn, fn and gn, respectively. �
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Soundness

Theorem 4.3 (⊢ ϕ ⇒ |= ϕ): If there is a (modal) tableau proof of a

sentence ϕ (of modal logic), then ϕ is (modally) valid.

Proof: A modal tableau proof of ϕ is a tableau τ with a root of the form

Fr 
 ϕ in which every path is contradictory. If ϕ is not valid, then there is

a frame C = (V, T, C(p)) and a q ∈ V such that q does not force ϕ in C.
Now apply Theorem 4.2 to get a path P through τ and functions f and g

with the properties listed in Definition 4.1. As τ is contradictory, there is a

p and a sentence ψ such that both Tp 
 ψ and Fp 
 ψ occur on P .

Definition 4.1(iii) then provides an immediate contradiction. �
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Reduced entries

Recall that c1, ..., cn, ... is a list of all the constants of our expanded language LC

and p1, p2, ... a list of our stock of possible worlds. For convenience we assume

that c1 is in L.

Definition 4.6: Let τ = ∪τn be a tableau, P a path in τ , E an entry on P and

w the ith occurrence of E on P (i.e., the ith node on P labeled with E).

(i) w is reduced on P if one of the following situations hold:

(1) E is not of the form of the root of an atomic tableau of type (F∃), (T∀),

(T�) or (F♦) (of Definition 3.1) and, for some j, τj+1 is gotten from τj

by an application of Rule (ii) of Definition 3.2 to E and a path on τj

which is an initial segment of P . [In this case we say that E occurs on P

as the root entry of an atomic tableau.]

(2) E is of the form Fp 
 (∃x)ϕ(x) or Tp 
 (∀x)ϕ(x) (cases (F∃) and (T∀),

respectively); there is an i+ 1st occurrence of E on P and either
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(a) ci does not occur in any assertion on P about a possible world q such

that qSp occurs on P or

(b) Fp 
 ϕ(ci) or Tp 
 ϕ(ci) is an entry on P .

(3) E is of the form Tp 
 �ϕ or Fp 
 ♦ϕ (Cases (T�) and (F♦),

respectively); there is an i+ 1st occurrence of E on P and either

(a) pSpi is not an entry on P or

(b) Tpi 
 ϕ or Fpi 
 ϕ is an entry on P .

(4) E is of the form pSq.

(ii) τ is finished if every occurrence of every entry on τ is reduced on every

noncontradictory path containing it. It is unfinished otherwise.
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Unreduced entries

Lemma 4.7: Suppose w is the ith occurrence of an entry E on a path P

of a tableau τ and is reduced on P in τ . If τ ′ is an extension of τ and P ′ is

an extension of P to a path in τ ′, the only way w could fail to be reduced

on P ′ in τ ′ is if

(i) E is of the form Fp 
 ∃xϕ(x) (Tp 
 ∀xϕ(x)) and ci does not occur in
any assertion on P about a possible world q such that qSp occurs on P

but ci does occur in such an assertion on P ′ and Fp 
 ϕ(ci)

(Tp 
 ϕ(ci)) is not an entry on P ′; or

(ii) E is of the form Tp 
 �ϕ (Fp 
 ♦p) and pSpi occurs on P
′ but not on

P and Fpi 
 ϕ (Tpi 
 ϕ) does not occur on P ′.

Proof: Obvious from the definitions. �
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Complete systematic modal tableau (CSMT)

Definition 4.8: We define the complete systematic modal tableau (the CSMT)

starting with a sentence ϕ by induction as follows.

(i) τ0 is the atomic tableau with root Fp1 
 ϕ. This atomic tableau is uniquely

specified by requiring that in cases (F∃) and (T∀) we use the constant c1, in

cases (T∃) and (F∀) we use ci for the least allowable i and in cases (F�)

and (T♦) we use the least pi not occurring in the root. (Note that in Cases

(T�) and (F♦) the tableau consists of just the root entry. It is finished and

constitutes our CSMT.)

At stage n we have, by induction, a tableau τn. If τn is finished, we terminate

the construction. Otherwise, we let w be the level-lexicographically least node of

τn that contains an occurrence of an entry E which is unreduced on some

noncontradictory path P of τn. We now extend τn to a tableau τn+1 by applying

one of the following procedures:

(ii) If E is not of the form occurring in the root node of case (F∃), (T∀), (T�)

or (F♦), we adjoin the atomic tableau with root E to the end of every
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noncontradictory path in τ that contains w. For E of type (T∃) or (F∀) we

use the least constant cj not yet appearing in the tableau. If E is of type

(F�) or (T♦), we choose pj for q where j is least such that pj does not

appear in the tableau.

(iii) If E is of type (F∃) or (T∀) and w is the ith occurrence of E on P , we

adjoin the corresponding atomic tableau with cj as the required c, where j is

least such that cj is appropriate and Fp 
 ϕ(cj) or Tp 
 ϕ(cj), respectively,

does not appear as an entry on P . We take c to be c1 if there is no such cj .

(iv) If E is of type (T�) or (F♦) and w is the ith occurrence of E on P , we

adjoin the corresponding atomic tableau with qj as the required q where j is

least such that qj is appropriate and Tqj 
 ϕ or Fqj 
 ϕ, respectively, does

not appear as an entry on P . If Tqj 
 ϕ (or Fqj 
 ϕ) already appears on P

for every appropriate qj , we simply repeat the assertion Tqj 
 ϕ (or

Fqj 
 ϕ), where j is least such that qj is appropriate. (There is at least one

appropriate qj by the assumption that E is not reduced on P .)

The union τ of the sequence of tableaux τn is the CSMT starting with ϕ.
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CSMT

Lemma 4.9: If piSpj appears as an entry on a CSMT, then i < j.

Proof: New possible worlds pj and new instances of the accessibility

relation appear on a CSMT τ = ∪τn only when an entry of the form piSpj

is put on the tableau by an application of Clause (ii) of Definition 4.8 for

Cases (F�) or (T♦). Thus they are put on the CSMT in numerical order

and so when piSpj is put on the tree, i < j as required. �
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Every CSMT is finished

Proposition 4.10: Every CSMT is finished.

Proof: Consider any entry E and any unreduced occurrence w of E on a

noncontradictory path P of the given CSMT τ . (If there is no such w, τ is

finished by definition.) Suppose that E makes a forcing assertion about some

possible world pm, w is the ith occurrence of E on P and that there are n nodes

of τ that are level-lexicographically less than w. Let k be large enough so that

(i) The occurrence w of E is in τk.

(ii) pmSpi is on P in τk if it is on P at all.

(iii) If any assertion about a possible world pj (for which pjSpm occurs on P )

and the constant ci appear on P , then pjSpm and some occurrence of an

assertion involving both pj and ci occurs on P in τk.

Note that by Lemma 4.9 there are only finitely many pj that are relevant to (iii)

and so we can find a k large enough to accommodate them all.

It is clear from the definition of the CSMT that we must reduce w on P by the

time we form τk+n+1. �
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Frames from noncontradictory path

Theorem 4.11: Suppose that τ = ∪τn is a CSMT and P is a noncontradictory

path in τ . We define a frame C = (W,S, C(p)) associated with P as follows:

W is the set of all pi appearing in forcing assertions on P . S is the set of all

pairs (pi, pj) such that piSpj appears on P .

For each pi ∈W,C(pi) is defined by induction on i as the set consisting of all

the constants of L, and all other constants appearing in forcing assertions

Tq 
 ψ or Fq 
 ψ on P such that qSpi. (Note that by Lemma 4.10, if pjSpi

appears on P , then j < i. Thus C(pi) is well defined by induction.)

For each p ∈W, C(p) is defined by setting each atomic sentence ψ true in

C(p) if and only if Tp 
 ψ occurs on P . (Warning: We are using the

convention that every c ∈ C(p) is named by itself in L(p).)

If we let f and g be the identity functions on W and on the set of constants

appearing on P , respectively, then they are witnesses that C agrees with P .

Proof: First note that the clauses of the definition of C are designed to

guarantee that C is a frame for L, according to Definition 2.1. Just remember
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that every constant c in L(p) names itself.

We now wish to prove that (f and g witness that) P agrees with C. We use

induction on the depth of sentences ϕ appearing in forcing assertions on P . The

key point in the induction is that, by Proposition 4.10, every occurrence of every

entry is reduced on P .

(i) Atomic ϕ: If Tp 
 ϕ appears on P , then ϕ is true in C(p), and so forced by

p. If Fp 
 ϕ appears on P , then Tp 
 ϕ does not appear on P as P is

noncontradictory. As this is the only way that p could come to force ϕ in C,

we can conclude that p does not force ϕ, as required.

The inductive cases are each handled by the corresponding clauses of Definition

4.6 and the definition of forcing (Definition 2.2) together with the induction

hypothesis for the theorem. We consider some representative cases.

(ii) The propositional connectives: Suppose ϕ is built using a connective, e.g., ϕ

is (ϕ1 ∨ ϕ2). As τ is finished, we know that if Tp 
 ϕ occurs on P , then

either Tp 
 ϕ1 or Tp 
 ϕ2 occurs on P . By the induction hypothesis if, say,

Tp 
 ϕ1 occurs on P , then p forces ϕ1 and so, by the definition of forcing
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(Definition 2.2(vii)), p forces ϕ, as required. Similarly, if Fp 
 ϕ occurs on

P , then both Fp 
 ϕ1 and Fp 
 ϕ2 appear on P . Thus, by induction and

Definition 2.2(vii), p does not force ϕ, as required. The other classical

propositional connectives are treated similarly.

(iii) Quantifiers: Suppose ϕ is of the form (∀v)ψ(v). If w is the ith occurrence of

Tp 
 (∀v)ψ(v) on P , then there is an i+ 1st occurrence of Tp 
 (∀v)ψ(v) on

P . Moreover, if ci ∈ C(p), then Tp 
 ψ(ci) occurs on P . Thus, if

Tp 
 (∀v)ψ(v) appears on P , then Tp 
 ψ(c) appears on P for every

constant c ∈ C(p). As the depth of ψ(c) is less than that of (∀v)ψ(v), p

forces ψ(c) for every c ∈ C(p). Thus, p forces ∀vψ(v) by Definition 2.2(iv).

If Fp 
 (∀v)ψ(v) occurs on P , then again as τ is finished, Fp 
 ψ(c) occurs

on P for some c. By induction hypothesis, p does not force ψ(c). Thus, by

Definition 2.2(iv), p does not force ∀vψ(v) as required.

The analysis for the existential quantifier is similar.

(iv) The modal operators: If Tp 
 �ϕ and pSq appear on P , then Tq 
 ϕ

appears on P as the tableau is finished. (Note that being finished guarantees

that if there is one occurrence of Tp 
 �ϕ, there are infinitely many and so
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in particular a jth one where q = pj .) Thus, q forces ϕ by induction and p

forces �ϕ by Definition 2.2(viii).

If Fp 
 ϕ appears on P , then both pSq and Fq 
 ϕ appear on P for some q.

Thus, q does not force ϕ by induction and q is a successor of p by definition.

So by Definition 2.2(ix), p does not force �ϕ.

The cases for ♦ are similar.

�
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Completeness

Theorem 4.12 (|= ϕ ⇒ ⊢ ϕ): If a sentence ϕ of modal logic is valid (in

the frame semantics), then it has a (modal) tableau proof.

Proof: Suppose ϕ is valid. Consider the CSMT τ starting with root

Fp1 
 ϕ. By definition, every contradictory path of τ is finite. Thus, if

every path of τ is contradictory, τ is finite by König’s lemma. In

particular, if τ is not a tableau proof of ϕ, it has a noncontradictory path

P . Theorem 4.9 then provides a frame C in which p1 does not force ϕ.

Thus, ϕ is not valid and we have the desired contradiction. �
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Tableaux from premises

Theorem 4.13 (Σ ⊢ ϕ ⇒ Σ |= ϕ): If there is a modal tableau proof of ϕ

from a set Σ of sentences, then ϕ is a logical consequence of Σ.

Proof: The proof of the basic ingredient (Theorem 4.2) of the soundness

theorem (Theorem 4.3) shows that if τ is a tableau from Σ and C is a frame

that forces every ϕ ∈ Σ which agrees with the root of τ , then C agrees with

some path P of τ . The only new point is that a tableau can be extended

by adding, for any ϕ ∈ Σ, the assertion Tp 
 ψ to the end of any path

mentioning p. The proof of Lemma 4.5 is easily modified to incorporate

this difference. As q 
C ψ for every possible world q of C (by assumption),

the inductive hypothesis of the proof of Lemma 4.5 can be immediately

verified in this new case as well. The deduction of the theorem from this

result is now the same as that of Theorem 4.3 from Theorem 4.2. �
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CSMT from premises

Definition 4.14: We define the complete systematic modal tableau

(CSMT) from a set Σ of sentences starting with a sentence ϕ by induction

as follows. τ0 is the atomic tableaux with root Fp1 
 ϕ. For the inductive

step, we modify Definition 4.8 in much the same way that the notion of a

CST was modified in Definition II.6.9 to accommodate premises. Let

Σ = {ψj | j ∈ N}. At even stages of the construction we proceed as in

(i)-(iv) of Definition 4.8 as appropriate. At odd stages n = 2k + 1, we

adjoin Tpi 
 ψj for every i, j < k to every noncontradictory path P in τn

on which pi occurs. We do not terminate the construction unless, for every

ψ ∈ Σ, T p 
 ψ appears on every noncontradictory path P on which p is

mentioned.
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Completeness of tableaux from premises

Theorem 4.15 (Σ |= ϕ ⇒ Σ ⊢ ϕ): If ϕ is a logical consequence of a set

Σ of sentences of modal logic, then there is a modal tableau proof of ϕ

from Σ.

Proof: Suppose ϕ is a logical consequence of Σ. The argument for

Proposition 4.10 still shows that the CSMT from Σ is finished. Its

definition also guarantees that, for every ψ ∈ Σ, Tp 
 ψ appears on any

noncontradictory path P on which p is mentioned. The argument for

Theorem 4.11 now shows that if the CSMT from Σ with root node

Fp1 
 ϕ is not a tableau proof of ϕ from Σ, then there is a frame C in

which every ψ ∈ Σ is forced but in which ϕ is not forced. So we have the

desired contradiction. �

Logic for Applications Y. Deng@SJTU 320



10 LINEAR

Exercise

1. Exercise 5 in page 248
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Chapter V. Intuitionistic Logic
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1. Intuitionism and Constructivism

As a variety of constructive mathematics, intuitionism is essentially a

philosophy of the foundations of mathematics. It is sometimes and rather

simplistically characterized by saying that its adherents refuse to use the

law of excluded middle (for every sentence A, A ∨ ¬A is true) in

mathematical reasoning.
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Example: Nonconstructive proof

We wish to prove that there are two irrational numbers a and b such that

ab is rational. Let c =
√
2
√
2
. If c is rational, then we may take

a =
√
2 = b. On the other hand, if c is not rational, then c

√
2 = 2 is

rational and we may take a = c and b =
√
2. Thus, in either case, we have

two irrational numbers a and b such that ab is rational. This proof depends

on the law of the excluded middle in that we assume that either c is

rational or it is not. It gives us no clue as to which of the two pairs

contains the desired numbers.
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Intuitionistic logic

L. E. J. Brouwer: Proponent of an extreme constructivist point of view.

He rejected much of early twentieth century mathematics on the grounds

that it did not provide acceptable existence proofs.

A formal logic that attempts to capture Brouwer’s philosophical position

was developed by his student Heyting. This logic is called intuitionistic

logic. It is an important attempt at capturing constructive reasoning. In

particular, the law of the excluded middle is not valid in intuitionistic logic.
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Intuitionistic logic

Theorem 2.20: If ϕ ∨ ψ is intuitionistically valid, then either ϕ or ψ is

intuitionistically valid.

Theorem 2.21: If ∃xϕ(x) is intuitionistically valid, then so is ϕ(c) for

some constant c.
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2. Frames and Forcing

Our language is the same as that for classical predicate logic in Chapter II

except that we make one modification and two restrictions that simplify

the technical details in the development of forcing.

Modification: omit the logical connective ↔ and view ϕ↔ ψ as an

abbreviation for (ϕ→ ψ) ∧ (ψ → ϕ).

Restrictions: assume throughout this chapter that (i) every language L
has at least one constant symbol but (ii) no function symbols other than

constants.
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Frames

Definition 2.1: Let C = (R,≤, {C(p)}p∈R) consist of a partially ordered

set (R,≤) together with an assignment, to each p in R, of a structure C(p)
for L (in the sense of Definition II.4.1). To simplify the notation, we write

C = (R,≤, C(p)) instead of the more formally precise version,

C = (R,≤, {C(p)}p∈R). As usual, we let C(p) denote the domain of the

structure C(p). We also let L(p) denote the extension of L gotten by

adding on a name ca for each element a of C(p) in the style of the

definition of truth in II.4. A(p) denotes the set of atomic formulas of L(p)
true in C(p). We say that C is a frame for the language L, or simply an

L-frame if, for every p and q in R, p ≤ q implies that C(p) ⊆ C(q), the

interpretations of the constants in L(p) ⊆ L(q) are the same in C(p) as in
C(q) and A(p) ⊆ A(q).

Often p ≤ q is read “q extends p”, or “q is a future of p”. The elements of

R are called forcing conditions, possible worlds or states of knowledge.
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Forcing for rames

Definition 2.2: Let C = (R,≤, {C(p)}) be a frame for a language L, p be in R

and ϕ be a sentence of the language ϕ(p). We give a definition of p forces ϕ ,

written p 
 ϕ by induction on sentences ϕ.

(i) For atomic sentences ϕ, p 
 ϕ ⇔ ϕ is in A(p).

(ii) p 
 (ϕ→ ψ) ⇔ for all q ≥ p, q 
 ϕ implies q 
 ψ.

(iii) p 
 ¬ϕ ⇔ for all q ≥ p, q does not force ϕ.

(iv) p 
 (∀x)ϕ(x) ⇔ for every q ≥ p and for every constant c in L(q), q 
 ϕ(c).

(v) p 
 (∃x)ϕ(x) ⇔ there is a constant c in L(p) such that p 
 ϕ(c).

(vi) p 
 (ϕ ∧ ψ) ⇔ p 
 ϕ and p 
 ψ.

(vii) p 
 (ϕ ∨ ψ) ⇔ p 
 ϕ or p 
 ψ.

If we need to make the frame explicit, we say that p forces ϕ in C and write

p 
C ϕ.
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Forcing for rames

Clause (ii) describes a sort of permanence of implication in the face of

more knowledge.

Clause (iii) says that ¬ϕ is forced if ϕ cannot be forced by supplying more

knowledge than p supplies.

Clause (iv) describes a permanence of forcing universal sentences in the

face of any new knowledge beyond that supplied by p.

Definition 2.3: Let ϕ be a sentence of the language L. We say that ϕ is

forced in the L-frame C if every p in R forces ϕ. We say ϕ is

intuitionistically valid if it is forced in every L-frame.
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Restriction lemma

Another aspect of the permanence of forcing that says the past does not

count in forcing, only the future counts.

Lemma 2.4: Let C = (R,≤, {C(p)}p∈R) be a frame, let q be in R and let

Rq = {r ∈ R | r ≥ q}. Then
Cq = (Rq,≤, C(p))

is a frame, where ≤ and the function C(p) are restricted to Rq. Moreover,

for r in Rq, r forces ϕ in C iff r forces ϕ in Cq.
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Degeneracy lemma

Lemma 2.5: Let C be a frame for a language L and ϕ a sentence of L. If
p is a maximal element of the partial ordering R associated with C, then ϕ
is classically true in C(p), i.e., C(p) |= ϕ, if and only if p 
 ϕ. In particular,

if there is only one state of knowledge p in R, then C(p) |= ϕ if and only if

p 
 ϕ.
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Intuitionistic validity

Theorem 2.6: Any intuitionistically valid sentence is classically valid.

Proof: By the degeneracy lemma (Lemma 2.5), every classical model is a

frame model with a one-element partially ordered set in which forcing and

classical truth are equivalent. As a sentence is classically valid if true in all

classical models, it is valid if forced in every frame. �
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Notational conventions

Examples 2.7-2.11 below have orderings that are suborderings of the full

binary tree. We can therefore view the associated frames as labeled binary

trees with the label of a node p being the structure C(p), or equivalently,
the pair consisting of C(p) and A(p). We thus draw frames as labeled

binary trees in our usual style and display the labels in the form

〈C(p), A(p)〉. C(∅) is C with all the constants of L interpreted as c.
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Intuitionistic invalidity

Example 2.7: The sentence ϕ ∨ ¬ϕ is not intuitionistically valid. Let the

frame C be

(Thus we have taken C as the domain at both nodes, ∅ and 0, of the

frame.) At the bottom node, no atomic facts are true, i.e., A(∅) is empty.

At the upper node 0, we have made the single atomic fact ϕ true by setting

A(0) = {ϕ}.
Consider now whether or not ∅ 
 ϕ ∨ ¬ϕ. Certainly ∅ does not force ϕ

since ϕ is atomic and not true in C(∅), i.e., not in A(∅). On the other

hand, 0 
 ϕ since ϕ ∈ A(0). Thus ∅ does not force ¬ϕ since it has an

extension 0 forcing ϕ. So by definition, ∅ does not force ϕ ∨ ¬ϕ and this

sentence is not intuitionistically valid.
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Intuitionistic invalidity

Example 2.8: The sentence (¬ϕ→ ¬ψ) → (ψ → ϕ) is not

intuitionistically valid. Let the frame C be

Suppose, for the sake of a contradiction, that ∅ 
 (¬ϕ→ ¬ψ) → (ψ → ϕ).

Then ∅ 
 (¬ϕ→ ¬ψ) would imply ∅ 
 (ψ → ϕ) by Clause (ii) of the

definition of forcing (Definition 2.2). Now by Clause (iii) of the definition,

neither ∅ nor 0 forces ¬ϕ since ϕ is in A(0) and so forced at 0. Thus we see

that ∅ does in fact force (¬ϕ→ ¬ψ) by applying Clause (ii) again and the

fact that ∅ and 0 are the only elements ≥ ∅. On the other hand, ∅ does not

force (ψ → ϕ) because ∅ forces ψ but not ϕ and so we have our desired

contradiction.
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Intuitionistic invalidity

Example 2.9: The sentence (ϕ→ ψ) ∨ (ψ → ϕ) is not intuitionistically

valid. Let the frame C be

In this frame, ∅ forces neither ϕ nor ψ, 0 forces ϕ but not ψ and 1 forces ψ

but not ϕ. Since there is a node above ∅, namely 0, which forces ϕ but not

ψ, 0 does not force ϕ→ ψ. Similarly, ∅ does not force ψ → ϕ. So ∅ does

not force (ϕ→ ψ) ∨ (ψ → ϕ).
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Intuitionistic invalidity

Example 2.10: The sentence ¬(∀x)ϕ(x) → (∃x)¬ϕ(x) is not
intuitionistically valid. Let the frame C be

Now by Clause (iv) of Definition 2.2, neither ∅ nor 0 forces (∀x)ϕ(x) since
b ∈ C(0) but 0 does not force ϕ(b). Thus ∅ 
 ¬(∀x)ϕ(x). If
∅ 
 ¬(∀x)ϕ(x) → (∃x)¬ϕ(x), as it would were our given sentence valid,

then ∅ would also force (∃x)¬ϕ(x). By Clause (v) of the definition this can

happen only if there is a c ∈ C such that ∅ 
 ¬ϕ(c). As c is the only

element of C and 0 
 ϕ(c), ∅ does not force (∃x)¬ϕ(x).
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Intuitionistic invalidity

Example 2.11: The sentence (∀x)(ϕ ∨ ψ(x)) → ϕ ∨ (∀x)ψ(x) is not
intuitionistically valid. The required frame is

We first claim that ∅ 
 (∀x)(ϕ ∨ ψ(x)). As ∅ 
 ψ(c) and 0 
 ϕ, combining

the clauses for disjunction (vii) and universal quantification (iv) we see

that ∅ 
 (∀x)(ϕ ∨ ψ(x)) as claimed. Suppose now for the sake of a

contradiction that ∅ 
 (∀x)(ϕ ∨ ψ(x)) → ϕ ∨ (∀x)ψ(x). We would then

have that ∅ 
 ϕ ∨ (∀x)ψ(x). However, ∅ does not force ϕ and, as 0 does

not force ψ(b), ∅ does not force (∀x)ψ(x) either. Thus ∅ does not force the

disjunction ϕ ∨ (∀x)ψ(x), so we have the desired contradiction.
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Monotonicity lemma

Lemma 2.12: For every sentence ϕ of L and every p, q ∈ R, if p 
 ϕ and

q ≥ p, then q 
 ϕ.

Proof: By induction on the logical complexity of ϕ.

(i) If ϕ is atomic and p 
 ϕ, then ϕ is in A(p). By the definition of a

frame, however, A(p) ⊆ A(q), and so ϕ is in A(q). Thus, by definition,

q 
 ϕ.

(ii) Suppose p 
 ϕ→ ψ and q ≥ p. We show that q 
 ϕ→ ψ by showing

that if r ≥ q and r 
 ϕ, then r 
 ψ. Now r ≥ p by transitivity and so

our assumptions that p 
 ϕ→ ψ and r 
 ϕ imply that r 
 ψ, as

required.

(iii) Suppose p 
 ¬ϕ and q ≥ p. We show that q 
 ¬p by showing that if

r ≥ q, then r does not force ϕ. Again by transitivity, r ≥ p. The

definition of p 
 ¬ϕ then implies that r does not force ϕ.
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(iv) Suppose p 
 (∀x)ϕ(x) and q ≥ p. We show that q 
 (∀x)ϕ(x) by
showing that, for any r ≥ q and any c ∈ C(r), r 
 ϕ(c). Again, r ≥ p

by transitivity. The definition of p 
 (∀x)ϕ(x) then implies that for

any c in C(r), r 
 ϕ(c).

(v) Suppose p 
 (∃x)ϕ(x) and q ≥ p. Then by the definition of forcing

there is a c in C(p) such that p 
 ϕ(c). By the inductive hypothesis,

q ≥ p and p 
 ϕ(c) imply that q 
 ϕ(c). Thus q 
 (∃x)ϕ(x).
(vi) Suppose p 
 (ϕ∧ ψ) and q ≥ p. Then by the definition of forcing p 
 ϕ

and p 
 ψ. By the inductive hypothesis, q 
 ϕ and q 
 ψ. Thus

q 
 (ϕ ∧ ψ).
(vii) Suppose p 
 (ϕ ∨ ψ), and q ≥ p. Then by the definition of forcing

either p 
 ϕ or p 
 ψ. By the inductive hypothesis, we get that either

q 
 ϕ or q 
 ψ. By the definition of forcing a disjunction, this says

that q 
 (ϕ ∨ ψ).
�
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Double negation lemma

Lemma 2.13: p 
 ¬¬ϕ if and only if for any q ≥ p there is an r ≥ q such

that r 
 ϕ.

Proof: p 
 ¬¬ϕ if and only if every q ≥ p fails to force ¬ϕ, or
equivalently, if and only if every q ≥ p has an r ≥ q forcing ϕ. �
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Weak quantifier lemma

Lemma 2.14:

(i) p 
 ¬(∃x)¬ϕ(x) if and only if for all q ≥ p and for all c ∈ C(q), there is

an r ≥ q such that r 
 ϕ(c).

(ii) p 
 ¬(∀x)¬ϕ(x) if and only if for all q ≥ p, there exists an s ≥ q and a

c ∈ C(s) such that s 
 ϕ(c).

Proof: (i) This claim follows immediately from the definition.

(ii) q 
 (∀x)¬ϕ(x) if and only if for all r ≥ q and all c ∈ C(r) there is no

s ≥ r such that s 
 ϕ(c). Thus q does not force (∀x)¬ϕ(x) if and only

if there is an r ≥ q and a c ∈ C(r) such that for some s ≥ r, s 
 ϕ(c).

So p 
 ¬(∀x)¬ϕ(x) if and only if for all q ≥ p, there is an r ≥ q and a

c ∈ C(r) such that for some s ≥ r, s 
 ϕ(c). By transitivity s ≥ q and

c is in C(s) as required in the claim.

�
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Intuitionistic validity

Example 2.15: ϕ→ ¬¬ϕ is intuitionistically valid. To see that any p

forces ϕ→ ¬¬ϕ we assume that q ≥ p and q 
 ϕ. We must show that

q 
 ¬¬ϕ. By the double negation lemma, it suffices to show that for every

r ≥ q there is an s ≥ r such that s 
 ϕ. By the monotonicity lemma r 
 ϕ,

and so r is the required s.
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Intuitionistic validity

Example 2.16: ¬(ϕ ∧ ¬ϕ) is intuitionistically valid. To show that any p

forces ¬(ϕ ∧ ¬ϕ) we need to show that no q ≥ p forces ϕ ∧ ¬ϕ, or
equivalently no q ≥ p forces both ϕ and ¬ϕ. Suppose then that q forces

both ϕ and ¬ϕ. Now q 
 ¬ϕ means no r ≥ q forces ϕ. Since q ≥ q, we

have both q forces ϕ and q does not force ϕ for the desired contradiction.
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Intuitionistic validity

Example 2.17: (∃x)¬ϕ(x) → ¬(∀x)ϕ(x) is intuitionistically valid. To see

that any p forces (∃x)¬ϕ(x) → ¬(∀x)ϕ(x), we need to show that if q ≥ p

and q 
 (∃x)¬ϕ(x), then q 
 ¬(∀x)ϕ(x). Now q 
 (∃x)¬ϕ(x) says there is

a c in C(q) such that q 
 ¬ϕ(c). By monotonicity, any r ≥ q forces ¬ϕ(c)
as well, so no such r forces (∀x)ϕ(x), thus q 
 ¬(∀x)ϕ(x).
Note that the contrapositive of this example (Example 2.10) is classically

but not intuitionistically valid.
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Intuitionistic validity

Example 2.18: ¬(∃x)ϕ(x) → (∀x)¬ϕ(x) is intuitionistically valid. To see

that any p forces ¬(∃x)ϕ(x) → (∀x)¬ϕ(x) we have to show that for any

q ≥ p, if q 
 ¬(∃x)ϕ(x), then q 
 (∀x)¬ϕ(x). Now q 
 ¬(∃x)ϕ(x) says
that, for every r ≥ q and every c in C(r), r does not force ϕ(c). By

transitivity s ≥ r implies s ≥ q. So for every r ≥ q and every c in C(r), no

s ≥ r forces ϕ(c). This says q 
 (∀x)¬ϕ(x).
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Intuitionistic validity

Example 2.19: If x is not free in ϕ, then ϕ ∨ (∀x)ψ(x) → (∀x)(ϕ ∨ ψ(x))
is intuitionistically valid. To see that any p forces

ϕ ∨ (∀x)ψ(x) → (∀x)(ϕ ∨ ψ(x)) we must show that, for any q ≥ p, if q 
 ϕ

or q 
 (∀x)ψ(x), then q 
 (∀x)(ϕ ∨ ψ(x)). There are two cases. If q 
 ϕ,

then for any r ≥ q and any c in C(r), r 
 ϕ ∨ ψ(c), so q 
 (∀x)(ϕ ∨ ψ(x)).
If q 
 (∀x)ψ(x), then for all r ≥ q and all c in C(r), r 
 ψ(c), so

r 
 ϕ ∨ ψ(c). This says that q 
 (∀x)(ϕ ∨ ψ(x)). Compare this example

with Example 2.11.
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Disjunction property

Theorem 2.20: If (ϕ1 ∨ ϕ2) is intuitionistically valid, then one of ϕ1, ϕ2 is

intuitionistically valid.

Proof: We prove the theorem by establishing its contrapositive. So suppose

neither ϕ1 nor ϕ2 is intuitionistically valid. Thus there are, for i = 1, 2, frames Ci

and elements pi of the associated partial orderings Ri such that ϕ1 is not forced

by p1 in C1 and ϕ2 is not forced by p2 in C2. By the restriction lemma (2.4), we

may assume that pi is the least element of Ri. By Exercise 11 we may assume

that no two distinct constants of the language L are interpreted as the same

element in anyone of the structures in either frame Ci(p). Now simply by

relabeling the elements of Ci(p) (and so of all the other structures in the frames

Ci) and Ri we may assume that the interpretation of each constant c of L is the

same in the two structures Ci(pi) and that the Ri are disjoint. Let R be the

union of R1, R2, and {pb}, with pb not in either Ri. Make R into a partial order

by ordering R1 and R2 as before and putting pb below p1 and p2.
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We define a frame C with this ordering on R by setting C(p) equal to Ci(p) for

p ∈ Ri and C(pb) equal to the structure defined on the set of the interpretations

of the constants of L in Ci(pi) (remember these interpretations are the same for

i = 1, 2) by setting A(pb) = ∅. (Our standing assumption that L has at least one

constant guarantees that this structure is nonempty.) In this frame C, p1 does

not force ϕ1 by the restriction lemma (2.4). Thus, pb does not force ϕ1 by the

monotonicity lemma (2.12). Similarly, pb does not force ϕ2 as p2 does not. Thus,

pb does not force ϕ1 ∨ ϕ2; hence ϕ1 ∨ ϕ2 is not intuitionistically valid:

contradiction. �
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Existence property

Theorem 2.20: If (∃x)ϕ(x) is an intuitionistically valid sentence of a

language L, then for some constant c in L, ϕ(c) is also intuitionistically

valid. (Remember that, by convention, L has at least one constant.)

Proof: Suppose that, for each constant a in L, ϕ(a) is not
intuitionistically valid. Then, for each such constant, there is an L-frame

Ca with a partially ordered set Ra containing an element pa that does not

force ϕ(a). As in the previous proof, we may, without loss of generality,

assume that pa is the least element of Ra and all the Ra’s are pairwise

disjoint. We also assume that the interpretation of some fixed constant c of

L is the same element d in every C(pa). We now form a new partial

ordering R by taking the union of all Ra and the union of the partial

orders and adding on a new bottom element pb under all the pa. We next

define an L-frame associated with R, as in the previous proof, by letting

C(pb) = {d}, A(pb) = ∅ and C(p) = Ca(p) for every p ∈ Ra and every

constant a of L. We can now imitate the argument in Theorem 2.20. As
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we are assuming that ∃xϕ(x) is intuitionistically valid, we must have

pb 
C ∃xϕ(x). Then, by definition, pb 
 ϕ(a) for some constant a in L.
Applying first the monotonicity lemma and then the restriction lemma we

would have pa forcing ϕ(a) first in C and then in Ca; this contradicts our
initial hypothesis that pa and Ca show that ϕ(a) is not intuitionistically

valid. �
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Exercises

1. Exercises 5, 6, 11 in page 274
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3. Intuitionistic Tableaux

Intuitionistic tableaux and tableau proofs are labeled binary trees. The

labels (again called the entries of the tableau) are now signed forcing

assertions, i.e., labels of the form Tp 
 ϕ or Fp 
 ϕ for ϕ a sentence of any

appropriate language. We read Tp 
 ϕ as p forces ϕ and Fp 
 ϕ as p does

not force ϕ. If we begin with Fp 
 ϕ, we either find a frame in which p

does not force ϕ or decide that we have an intuitionistic proof of ϕ.
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Atomic intuitionistic tableaux

Definition 3.1: We begin by fixing a language L and an expansion LC

given by adding new constant symbols ci for i ∈ N . We list below the

atomic intuitionistic tableaux (for the language L). In the tableaux in this

list, ϕ and ψ, if unquantified, are any sentences in the language LC . If

quantified, they are formulas in which only x is free.
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Atomic intuitionistic tableaux
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Atomic intuitionistic tableaux
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Intuitionistic tableaux

Definition 3.2: We continue to use our fixed language L and extension by

constants LC . We also fix a set S = {pi | i ∈ N} of potential candidates for the

p’s and q’s in our forcing assertions. An intuitionistic tableau (for L) is a binary

tree labeled with signed forcing assertions which are called the entries of the

tableau. The class of all intuitionistic tableaux (for L) is defined by induction.

We simultaneously define, for each tableau τ , an ordering ≤τ on the elements of

S appearing in τ .

(i) Each atomic tableau τ is a tableau. The requirement that c be new in cases

(T∃) and (F∀) here simply means that c is one of the constants ci added on

to L to get LC which does not appear in ϕ. The phrase “any c” in (F∃) and

(T∀) means any constant in L or in ϕ. The requirement that p′ be new in

(F →), (F¬) and (F∀) here means that p′ is any of the pi other than p. We

also declare p′ to be larger than p in the associated ordering. The phrase

“any p′ ≥ p” in (T →), (T¬), (T∀) and (TAt) in this case simply means that

p′ is p. (Of course we always declare p ≤ p for every p in every ordering we

define.)
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(ii) If τ is a finite tableau, P a path on τ , E an entry of τ occurring on P and τ ′

is obtained from τ by adjoining an atomic tableau with root entry E to τ at

the end of the path P , then τ ′ is also a tableau. The ordering ≤τ ′ agrees

with ≤τ on the pi appearing in τ . Its behavior on any new element is

defined below when we explain the meaning of the restrictions on p′ in the

atomic tableaux for cases (F →), (F¬) and (F∀).

The requirement that c be new in cases (T∃) and (F∀) here means that it is

one of the ci (and so not in L) that do not appear in any entry on τ . The

phrase “any c” in (F∃) and (T∀) here means any c in L or appearing in an

entry on P of the form Tq 
 ψ or Fq 
 ψ with q ≤τ p.

In (F →), (F¬) and (F∀) the requirement that p′ ≥ p be new means that we

choose a pi not appearing in τ as p′ and we declare that it is larger than p in

≤τ ′ . (Of course, we ensure transitivity by declaring that q ≤τ p
′ for every

q ≤τ p.) The phrase “any p′ ≥ p” in (T →), (T¬), (T∀) and (TAt) means we

can choose any p′ that appears in an entry on P and has already been

declared greater than or equal to p in ≤τ .

(iii) If τ0, τ1, ..., τn, ... is a sequence of finite tableaux such that, for every
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n ≥ 0, τn+1 is constructed from τn by an application of (ii), then τ = ∪τn is

also a tableau.

As in predicate logic, we insist that the entry E in Clause (ii) formally be

repeated when the corresponding atomic tableau is added on to P .
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The ordering ≤τ

Lemma 3.3: For any intuitionistic tableau τ with associated ordering ≤τ

if p′ ≤τ p, then p and p′ both appear on some common path through τ .

Proof: The proof proceeds by an induction on the definition of τ and ≤τ .

�
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Intuitionistic tableau proofs

Definition 3.4: Let τ be a intuitionistic tableau and P a path in τ .

(i) P is contradictory if, for some forcing assertion p 
 ϕ, both Tp 
 ϕ

and Fp 
 ϕ appear as entries on P .

(ii) τ is contradictory if every path through τ is contradictory.

(iii) τ is an intuitionistic proof of ϕ if τ is a finite contradictory

intuitionistic tableau with its root node labeled Fp 
 ϕ for some

p ∈ S. ϕ is intuitionistically provable, ⊢ ϕ, if there is an intuitionistic

proof of ϕ.
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Example: Intuitionistic tableau proofs

Let ϕ and ψ be any atomic sentences of L.
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Example: Intuitionistic tableau proofs

Any sentence of L of the following form is intuitionistically provable:

(∃x)(ϕ(x) ∨ ψ(x)) → (∃x)ϕ(x) ∨ (∃x)ψ(x).
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Example: Intuitionistic tableau proofs

Logic for Applications Y. Deng@SJTU 365



10 LINEAR

Exercises

1. Exercises 17, 24, 28 in page 284
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4. Soundness and Completeness

Definition 4.1: Suppose C = (R,≤R, C(p)) is a frame for a language L, τ is a

tableau whose root is labeled with a forcing assertion about a sentence ϕ of L

and P is a path through τ . Let S be the set of p’s appearing in forcing assertions

on P and let ≤S be the ordering on S defined in the construction of τ . We say

that C agrees with P if there are maps f and g such that

(i) f is an order preserving (but not necessarily one-to-one) map from S into R.

(ii) g sends each constant c occurring in any sentence ψ of a forcing assertion

Tp 
 ψ or Fp 
 ψ on P to a constant in L(f(p)). Moreover, g is the identity

on constants of L. We also extend g to be a map on formulas in the obvious

way: To get g(ψ) simply replace every constant c in ψ by g(c).

(iii) If Tp 
 ψ is on P , then f(p) forces g(ψ) in C and if Fp 
 ψ is on P , then

f(p) does not force g(ψ) in C.

Logic for Applications Y. Deng@SJTU 367



10 LINEAR

Soundness

Lemma 4.5: If f and g witness that a path P of a tableau τ agrees with C and

τ ′ is gotten from τ by an application of Clause (ii) of Definition 3.2, then there

are extensions P ′, f ′ and g′ of P, f and g, respectively, such that f ′ and g′

witness that the path P ′ through τ ′ also agrees with C.

Proof: First, note that, if τ ′ is gotten by extending τ somewhere other than at

the end of P , then the witnesses for τ work for τ ′ as well. Thus, we may assume

that we form τ ′ by adjoining one of the atomic tableaux at the end of P in τ . We

now consider the fourteen cases given by the atomic tableaux of Definition 3.1.

Cases (T∨), (F∨), (T∧), (F∧), (T →), (T¬), (F∃), (T∀) and (FAt) require no

extension of f or g. In each of these cases it is obvious from the induction

hypothesis and the corresponding case of the definition of forcing (Definition 2.2)

that one of the extensions of P to a path through τ ′ satisfies the requirements of

the lemma. Note that (TAt) also requires the monotonicity assumption on A(p).
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The arguments for the remaining cases are all illustrated by that for Case (F∀).

Here the entry of P being developed is Fp 
 (∀x)ϕ(x). The required extension of

P to P ′ is the only possible one. It is determined by adding Fp′ 
 ϕ(c) to the

end of P . By our induction hypothesis, f(p) 
C g((∀x)ϕ(x)). By the definition of

forcing a universal sentence (2.2(iv)), there is a q′ ∈ R and a c′ ∈ L(q′) such that

q′ ≥ f(p) and q′ does not force g(ϕ(c′)). Fix such q′ and c′ and extend f and g

to f ′ and g′ by setting f ′(p′) = q′ and g′(c) = c′. It is now obvious that P ′, f ′

and g′ satisfy the requirements of the lemma, i.e., f ′ and g′ witness that P ′

agrees with C.

Other cases are similar. �
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Soundness

Lemma 4.4: Suppose C = (R,≤R, C(p)) is a frame for a language L, τ is

an atomic tableau whose root is labeled with a forcing assertion about a

sentence ϕ of L. If either
(i) Fr 
 ϕ is at the root of τ and q ∈ R does not force ϕ in C, or
(ii) Tr 
 ϕ is at the root of τ and q ∈ R does force ϕ in C,
then there is a path P through τ that agrees with C; moreover, there is a

witness function f (as required in Definition 4.1) that sends r to q.

Proof: We begin by defining f(r) = q and g to be the identity on the

constants of L. The argument now needed for each atomic tableau is

precisely the same as the one for the corresponding case of Lemma 4.5.

The point here is that, with this choice of f and g, the root itself agrees

with C by the hypothesis of the theorem. The inductive argument applied

to the rest of the atomic tableau then provides the required extensions. �
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Soundness

Theorem 4.2: Suppose C = (R,≤R, C(p)) is a frame for a language L, τ is a

tableau whose root is labeled with a forcing assertion about a sentence ϕ of L. If

either

(i) Fr 
 ϕ is at the root of τ and q ∈ R does not force ϕ in C, or

(ii) Tr 
 ϕ is at the root of τ and q ∈ R does force ϕ in C,

then there is a path P through τ that agrees with C; moreover, there is a witness

function f (as required in Definition 4.1) that sends r to q.

Proof: Lemma 4.4 establishes the theorem for atomic tableaux. Lemma 4.5

then proves the theorem for all finite tableaux by induction. In fact, it proves it

for infinite tableaux as well. Suppose τ = ∪τn is an infinite tableau as defined by

Clause (iii) of Definition 3.2. We begin by applying the appropriate case of

Lemma 4.4 to τ0 to get suitable P0, f0 and g0. We then apply Lemma 4.5 to

each τn in turn to construct Pn, fn and gn. The required P, f and g for τ are

then simply the unions of the Pn, fn and gn, respectively. �
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Soundness

Theorem 4.3: If there is an intuitionistic tableau proof of a sentence ϕ,

then ϕ is intuitionistically valid.

Proof: An intuitionistic proof of ϕ is an intuitionistic tableau τ with a

root of the form Fr 
 ϕ in which every path is contradictory. If ϕ is not

intuitionistically valid, then there is a frame C = (R,≤R, C(p)) and a q ∈ R

such that q does not force ϕ in C. Now apply Theorem 4.2 to get a path P

through τ and functions f and g with the properties listed in Definition

4.1. As τ is contradictory, there is a p and a sentence ψ such that both

Tp 
 ψ and Fp 
 ψ occur on P . Definition 4.1(iii) then provides an

immediate contradiction. �
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Complete systematic intuitionistic tableaux

Definition 4.6: Let ϕ be a sentence of a language L. Let d1, d2, ..., dn, ... be a

listing of the set D consisting of all the constants of our standard extension LC

of L by new constants. For convenience we assume that d1 is in L. Let

p1, p2, ..., pn, ... be a listing of the set S of all finite sequences of elements of N

that we partially order by extension and let v1, v2, ..., vk, ... be a listing of the set

V of all pairs 〈di, pj〉 consisting of an element from D and one from S. From now

on, when we speak of the least element of D, S or V with some property, we

mean the first one in the above lists for the appropriate sets.

We define a sequence τn of tableaux and what it means for an occurrence w of an

entry E of τn to be properly developed. The union τ of our sequence of tableaux

τn is the complete systematic intuitionistic tableau (the CSIT) starting with ϕ.

τ0 is the atomic tableau with root F∅ 
 ϕ. If this tableau requires a partial

ordering element p′ or a constant c we choose the least elements of S or D that

make it into a tableau according to Clause (i) of the Definition 3.2.

Suppose we have constructed τn. Let m be the least level of τn containing an

occurrence of an entry that has not been properly developed and let w be the
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leftmost such occurrence (say of entry E) on level m of τn. We form τn+1 by

adding an atomic tableau with root E to the end of every noncontradictory path

P through τn that contains w. To be precise, we list the noncontradictory paths

P1, P2, ..., Pk of τn that contain w. We deal with each Pj in turn by appending

an atomic tableau with root E to the end of Pj . Suppose we have reached some

Pj on our list. We must now describe the atomic tableau with root E added on

to the end of Pj . Cases (T∨), (F∨), (T∧), (F∧) and (FAt) of the list of atomic

tableaux require no further information to determine the added tableau. Each of

the other cases requires fixing some p′ and/or some c:

(T →) Let p′ be the least q in S that is on Pj , extends p and is such that neither

Fq 
 ϕ nor Tq 
 ϕ occurs on Pj . If there is no such q, let p′ = p.

(F →) Let k ∈ N be least such that p̂ k has not occurred in the construction so far

and let p′ = p̂ k. (Note that p′ is incomparable with everything that has

occurred so far except those that are initial segments of p.)

(T¬) Let p′ be the least q in S that is on Pj , extends p and is such that Fq 
 ϕ

does not occur on Pj . If there is no such q, let p′ = p.
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(F¬) Proceed as in Case (F →).

(T∃) Let c be the least element of D not occurring in the construction so far.

(F∃) Let c be the least element d of D that is either in L or else occurs in a

forcing assertion Tq 
 ψ or Fq 
 ψ on Pj for any q ≤ p such that Fp 
 ϕ(d)

does not appear on Pj . If there is no such d ∈ D, let c = d1.

(T∀) Let 〈p′, c〉 be the least v = 〈r, d〉 in V such that r appears on Pj , d is either

in L or else occurs in a forcing assertion Tq 
 ψ or Fq 
 ψ on Pj for any

q ≤ p, r extends p and Tr 
 ϕ(d) does not appear on Pj . If there is no such

pair, we let p′ = p and c = d1.

(F∀) Let k ∈ N be least such that p̂ k has not occurred in the construction so far.

We set p′ = p̂ k and let c be the least element of D not occurring in the

construction so far.

(TAt) Let p′ be the least q in S on Pj such that Tq 
 ϕ does not appear on Pj . If

there is no such q, let p′ = p.

In all of these cases we say that we have properly developed the occurrence w of

entry E.
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CSIT

Lemma 4.7: Let τ = ∪τn be a CSIT as defined above and P a path through τ .

(i) If a sequence p ∈ S occurs in an assertion at level n of P , then every initial

segment q of p occurs on P at some level m ≤ n of τ .

(ii) τ is a tableau in accordance with Definition 3.2.

Proof: (i) We proceed by induction through the construction of τ . The only

cases in which we actually introduce a new p on P are (F →), (F¬) and

(F∀). In those cases we introduce some sequence p̂ k for a p already on P .

(ii) The only point to verify is that, in the construction of τn+1 if we add on an

atomic tableau with root entry E to the end of some path Pj in τn, the p
′

and c used (if any) satisfy the conditions of Definition 3.2(ii). Otherwise, we

obviously are following the prescription for building new tableaux from old

ones given in that definition. A simple inspection of the cases shows that we

are obeying these restrictions.

�
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CSIT

Lemma 4.8: Let τ = ∪τn be a CSIT as defined above and P a noncontradictory

path through τ .

(T∨) If Tp 
 ϕ ∨ ψ appears on P , then either Tp 
 ϕ or Tp 
 ψ appears on P .

(F∨) If Fp 
 ϕ ∨ ψ appears on P , then both Fp 
 ϕ and Fp 
 ψ appear on P .

(T∧) If Tp 
 ϕ ∧ ψ appears on P , then both Tp 
 ϕ and Tp 
 ψ appear on P .

(F∧) If Fp 
 ϕAψ appears on P , then either Fp 
 ϕ or Fp 
 ψ appears on P .

(T →) If Tp 
 ϕ→ ψ and p′ appear on P with p′ ≥ p, then either Fp′ 
 ϕ or

Tp′ 
 ψ appears on P .

(F →) If Fp 
 ϕ→ ψ appears on P , then for some p′ ≥ p both Tp′ 
 ϕ and

Fp′ 
 ψ appear on P.

(T¬) If Tp 
 ¬ϕ and p′ appear on P with p′ ≥ p, then Fp′ 
 ϕ appears on P .

(F¬) If Fp 
 ¬ϕ appears on P , then Tp′ 
 ϕ appears on P for some p′ ≥ p.

(T∃) If Tp 
 ∃xϕ(x) appears on P , then Tp 
 ϕ(c) appears on P for some c.
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(F∃) If Fp 
 ∃xϕ(x) appears on P and c is in L or occurs in a forcing assertion

Tq 
 ψ or Fq 
 ψ on P for any q ≤ p, then Fp 
 ϕ(c) appears on P .

(T∀) If Tp 
 ∀xϕ(x) appears on P, c is in L or occurs in a forcing assertion

Tq 
 ψ or Fq 
 ψ on P for any q ≤ p and p′ appears on P with p′ ≥ p, then

Tp′ 
 ϕ(c) appears on P .

(F∀) If Fp 
 ∀xϕ(x) appears on P , then Fp′ 
 ϕ(c) appears on P for some c and

p′ ≥ p.

(TAt) If p and Tq 
 ϕ appear on P for any atomic ϕ and q ≤ p, then Tq 
 ϕ

appears on P .

Proof: First note that every occurrence w in τ of any entry E is properly

developed at some stage of the construction. (Consider any w at level n of τ . It is

clear that, by the first stage s after all w′ at levels m ≤ n which are ever properly

developed have been so developed, we would have properly developed w.)

Cases (T∨), (F∨), (T∧), (F∧), (F →), (F¬), (T∃) and (F∀) are now almost

immediate. Let w be the occurrence of the appropriate signed forcing condition

on P . Suppose we properly develop w at stage n of the construction. As w is on
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P (which is noncontradictory), one of the Pj that we deal with at stage n is an

initial segment of P . We add the appropriate atomic tableau to the end of this

Pj as part of our construction of τn. Thus P must go through one of the

branches of this atomic tableau. This immediately gives the desired conclusion.

Next, note that every entry E occurring on P occurs infinitely often on P . The

point here is that each occurrence w of E on P is properly developed. When we

properly develop w, we add on another occurrence of E to the end of every

noncontradictory path in τn that goes through w. Thus we make sure that there

there is another occurrence of E on P . As every occurrence of each entry E on P

is properly developed, the entry itself is properly developed infinitely often. It is

now easy to deal with the remaining cases of the lemma. We choose a few

examples.

(T →) Suppose for the sake of a contradiction that p′ is the least (in our master

listing of S) extension of p that occurs on P such that neither Fp′ 
 ϕ nor

Tp′ 
 ψ occurs on P . Let Q be the finite set of q ≥ p that precede p in our

master listing of S. For each q ∈ Q, either Fq 
 ϕ or Tq 
 ψ occurs on P by

our choice of p′. Let m be a stage in the construction of τ by which, for each
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q ∈ Q, either Fq 
 ϕ or Tq 
 ψ occurs on the initial segment of P

constructed so far. Consider the first stage n ≥ m at which we properly

develop an occurrence on P of E = Tp 
 ϕ→ ψ. (As we properly develop

an occurrence of E infinitely often in our construction, there must be such a

stage.) The definition of the CSIT then guarantees that we add on the

atomic tableau with root E using the given p′ to the end of some path Pj

which is an initial segment of P . As Pj is an initial segment of P , one of the

branches through this atomic tableau must also be an initial segment of P as

required.

(T∀) Suppose, for the sake of a contradiction, that v = 〈p′, e〉 is the least pair (in

our master listing of V ) satisfying the hypotheses of (T∀) but not the

conclusion, i.e., Tp′ 
 ϕ(c) does not occur on P . Let Q be the finite set of

pairs 〈q, d〉 that precede v and satisfy the hypotheses of T∀. Let m be a stage

by which, for each 〈q, d〉 ∈ Q, we already have an occurrence of Tq 
 ϕ(d) on

the initial segment of P defined so far. Consider the first stage n ≥ m at

which we properly develop an occurrence on P of E = Tq 
 ∀xϕ(x). The

definition of the CSIT then guarantees that we add on the atomic tableau
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with root E using the given p′ and c to the end of some path Pj which is an

initial segment of P . As Pj is an initial segment of P , the unique branch

through this atomic tableau must also be an initial segment of P as required.

All the remaining cases, (T¬), (F∃) and (TAt), are proved in a similar fashion. �
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Frames from noncontradictory paths

Theorem 4.9: Suppose that τ = ∪τn is a CSIT and P is a noncontradictory

path in τ . We define a frame C = (R,≤, C(p)) associated with P as follows:

1. R is the set of all sequences in S appearing in forcing assertions on P . The

partial ordering on R is the same as that on S - extension.

2. For each p ∈ R, C(p) is the set consisting of the constants of L and all other

constants appearing in forcing assertions Tq 
 ψ or Fq 
 ψ on P with q ≤ p.

3. For each p ∈ R, A(p) is the set of all atomic sentences ψ such that Tq 
 ψ

occurs on P for some q ≤ p. (Warning: We are using the convention that

every c ∈ C(p) is named by itself in L(p).)

If we set f and g to be the identity functions on R and on the set of constants

appearing on P , respectively, then they are witnesses that C agrees with P .

Proof: First, note that the clauses of the definition of C are designed to

guarantee that C is a frame for L according to Definition 2.1. Just remember

that every constant c in L(p) names itself.

We now wish to prove that P agrees with C; we use induction on the complexity
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of sentences ϕ appearing in forcing assertions on P .

Atomic ϕ: If Tp 
 ϕ appears on P , then ϕ is in A(p) and so forced by p. If

Fp 
 ϕ appears on P , then we must show that Tq 
 ϕ does not appear on P for

any q ≤ p. (This is the only way that p could come to force ϕ in C.) If there were

such an occurrence of Tq 
 ϕ on P then, by Lemma 4.8 (TAt), Tp 
 ϕ would

also occur on P contradicting the assumption that P is noncontradictory.

The inductive cases are each handled by the corresponding clauses of Lemma 4.8

and of the definition of forcing (Definition 2.2) together with the induction

assumption for the theorem, i.e. the requirements for C to agree with P are met

for sentences of lower complexity.

As a sample we consider F∀ : Fp 
 ∀xϕ(x) appears on P . By Lemma 4.8 (F∀),

Fp′ 
 ϕ(c) appears on P for some c and p′ ≥ p. The inductive hypothesis then

says that p′ does not force ϕ(c) in C. The definition of forcing a universal

sentence (2.2(v)) then tells us that p does not force ∀xϕ(x) in C, as required. �
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Completeness

Theorem 4.10: If ϕ is intuitionistically valid, then it has an intuitionistic

tableau proof.

Proof: Consider the CSIT τ starting with an intuitionistically valid ϕ. If

τ is not an intuitionistic tableau proof of ϕ, then it has by definition a

noncontradictory path P . Theorem 4.9 then provides a frame C in which ∅
does not force ϕ. Thus ϕ can not be intuitionistically valid for a

contradiction. �
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5. Decidability and Undecidability

The CSIT gives us a systematic method for searching for either an

intuitionistic proof of a given sentence ϕ or a frame counterexample. If ϕ is

not intuitionistically valid, the frame counterexample constructed in the

proof of the completeness theorem will usually be infinite.

Intuitionistic logic, like classical logic, is undecidable: There is no

algorithm that is guaranteed to terminate in a finite time and to tell us if

ϕ is intuitionistically valid (Theorem 5.16). Nonetheless, there are special

classes of sentences whose intuitionistic validity can be decided and there

are ways of improving our chances of finding both proofs and finite

counterexamples in many cases.
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Finished tableaux

Definition 5.1: If τ is a tableau and ≤ is the ordering defined on the p’s

and q’s appearing in τ , then τ is finished if every noncontradictory path P

through τ has the thirteen properties listed in Lemma 4.8.
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Finished tableaux

Theorem 5.2: If τ is a finished tableau with root Fp 
 ϕ and P is a

noncontradictory path through τ , then there is a frame C that agrees with

P (and so ϕ is not intuitionistically valid).

Proof: We proceed exactly as in Theorem 4.9 except that the ordering on

the p’s occurring in forcing assertions on P is now defined by τ (rather

than being given in advance by extension of sequences). The proof of

Theorem 4.9 then makes no use of any properties of the CSIT other than

those specified in Lemma 4.8. These properties of P are now guaranteed

by the definition of τ being finished. �
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Example: Counterexample from finished tableau

ϕ→ (ϕ→ ψ) is not intuitionistically valid for atomic sentences ϕ and ψ.
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Example: Counterexample from finished tableau

Consider ϕ ∨ ¬ϕ and the tableau below.

Assume that ϕ and ψ are atomoc sentences. The frame counterexample

corresponding to this finished tableau is the same one produced in

Example 2.7.
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Example: Counterexample from finished tableau
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This is not a finished tableau but has as much information as we need to

build the counterexample.

A(∅) = A(0) = ∅, A(00) = {ψ}, A(000) = {ϕ, ψ}
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Example: A sentence with no finite counterexample

Logic for Applications Y. Deng@SJTU 392



10 LINEAR

A counterexample is as follows.
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Proposition 5.8: ∀x¬¬ϕ(x) → ¬¬∀xϕ(x) is forced by every node p in

every frame C with a finite partial ordering R.

Proof: Let p, C and R be as in the proposition. To verify that

p 
 ∀x¬¬ϕ(x) → ¬¬∀xϕ(x) consider any q ≥ p such that q 
 ∀x¬¬ϕ(x).
We must show that q 
 ¬¬∀xϕ(x). By Lemma 2.13, this is equivalent to

the assertion that, for every r ≥ q, there is an s ≥ r such that s 
 ∀xϕ(x).
Fix any r ≥ q. As R is finite, there is a maximal extension s of r in R.

Now by monotonicity, s 
 ∀x¬¬ϕ(x). Thus, for any c ∈ C(s), s 
 ¬¬ϕ(c).
Applying Lemma 2.13 again, as well as the maximality of s, gives us that

s 
 ϕ(c). Thus (again by the maximality of s), s 
 ∀xϕ(x) as required. �
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Finite model property

Theorem 5.9 A quantifier-free sentence is forced in all frames if and only if it is

forced in all finite frames.

Proof: Consider any quantifier-free formula ϕ. We must show that if it is not

forced by some p ∈ R in a frame C, then there is some finite frame C′ in which it

is not forced. Let X be the set of all subformulas of ϕ. For p in R, define a class

[P ] of elements of R that force the same elements of X as p:

[p] = {q ∈ R | (∀ψ ∈ X)(p 
 ψ ↔ q 
 ψ)}

Let R′ be the set of all such [p] for p in R. Now different classes [p] ∈ R′

correspond to different subsets of X. As X, the set of subformulas of ϕ, is finite,

so is R′. Partially order R′ by [q] ≤ [p] if every formula in X forced by q is forced

by p. (Due to the definition of [p] and [q], this is the same as the requirement that

every formula in X forced by some r in [q] is also forced by some s in [p].) Define

a finite frame C′ with R′ as its partially ordered set by setting A([p]) = A(p) ∩X

and C ′([p]) to be the set of constants appearing in A([p]). We claim that for all

p ∈ R and all ψ in X, [p] 
C′ ψ if and only if p 
C ψ. This claim clearly suffices

to prove the theorem. We proceed to prove the claim by induction on formulas:
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Atomic ψ: A([p]) = A(p) ∩X says that if ψ is an atomic formula in X, then

[p] 
C′ ψ if and only if ψ is in A(p) ∩X, or equivalently, if and only if p 
 ψ.

Induction Step: Suppose θ and ψ are in X. Suppose, by induction, that for all

q ∈ R, q 
C ψ if and only if [q] 
C′ θ and q 
C ψ if and only if [q] 
C′ ψ.

(1) Disjunction: p 
C θ ∨ ψ ⇔ p 
C θ or p 
C ψ ⇔ [p] 
C′ θ or [p] 
C′ ψ (by

induction) ⇔ [p] 
C′ θ ∨ ψ.

(2) Conjunction: p 
C θ ∧ ψ ⇔ p 
C θ and p 
C ψ ⇔ [p] 
C′ θ and [p] 
C′ ψ

(by induction) ⇔ [p] 
C′ θ ∧ ψ.

(3) Implication: Suppose [p] 
C′ θ → ψ. We must show that p 
C θ → ψ. If

q ≥ p and q 
C θ, then by induction [q] 
C′ θ, so by our assumption and the

fact that [q] ≥ [p] follows from q ≥ p, [q] 
C′ ψ. The induction hypothesis

then says that q 
C ψ as required. Conversely, suppose p 
C θ → ψ and

θ → ψ is in X. We must prove that [p] 
C′ θ → ψ, that is, if [q] ≥ [p] and

[q] 
C′ θ, then [q] 
C′ ψ. Now as θ → ψ is in X and p 
C θ → ψ by

assumption, [q] ≥ [p] implies that q 
C θ → ψ. By our assumption that

[q] 
C′ θ and the induction hypothesis, q 
C θ. Thus q 
C ψ and again by
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induction, [q] 
C′ ψ, as required.

(4) Negation is similar to implication.

�
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Validity of quantifier-free sentences

Theorem 5.10: The intuitionistic validity of any quantifier-free sentence

can be effectively decided.

Proof: We know by the properties of the CSIT expressed in the

completeness theorem (Theorems 4.9 and 4.10) that if a given sentence ϕ is

intuitionistically valid then the CSIT will give a (necessarily) finite tableau

proof of ϕ. On the other hand, if ϕ is not valid then there is, by the finite

model property (5.9), a finite frame counterexample. We can thus

simultaneously search for a finite frame counterexample to ϕ and develop

the CSIT for ϕ. We must eventually find either a finite counterexample to

ϕ or an intuitionistic tableau proof that ϕ is intuitionistically valid. �
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Gödel formula

If A is an atomic formula, then ¬¬A is a Gödel formula. If ϕ and ψ are

Gödel formulas, then so are ¬ϕ, ϕ ∧ ψ and ∀xϕ.
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Gödel formula

Lemma 5.12: If ϕ is a Gödel sentence and p is a forcing condition in a

frame C, then either p 
 ϕ or (∃q ≥ p)(q 
 ¬ϕ). In particular, if p does not

force ϕ, then one of the following cases holds:

(1) If ϕ = ¬ψ, then ∃q ≥ p(q 
 ψ).

(2) If ϕ = ψ ∧ θ, then ∃q ≥ p(q 
 ¬ψ or q 
 ¬θ).
(3) If ϕ = ∀xψ, then (∃q ≥ p)(∃c ∈ C(q))(q 
 ¬ψ(c)).
Proof: We proceed by induction on ϕ. The base case is that ϕ is ¬¬A for

some atomic sentence A. In this case, if p does not force ϕ, there is, by the

definition of forcing a negation (Definition 2.2 (iii)), a q ≥ p that forces ¬A
as required in (1). Note that, in general, if ϕ = ¬ψ and q 
 ψ, then

q 
 ¬¬ψ (i.e., q 
 ¬ϕ) by the intuitionistic validity of ψ → ¬.¬ψ (Example

2.15).
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If ϕ is ¬ψ and p does not force ¬ψ, then, as in the base case, there is a

q ≥ p that forces ψ and so ¬¬ψ.
If ϕ is ψ ∧ θ and p does not force ϕ, then either p does not force ψ or p

does not force θ. Thus by induction there is a q ≥ p that forces ¬ψ or ¬θ.
(Again, note that by the basic facts about forcing this implies that

q 
 ¬(ψ ∧ θ).)
If ϕ is ∀xψ(x) and p does not force ϕ, then, by the definition of forcing,

there is an r ≥ p and a c ∈ C(r) such that r does not force ψ(c). The

induction hypothesis then tells us that there is a q ≥ r such that

q 
 ¬ψ(c), as required. Of course any such q forces ¬ϕ as well. �

Logic for Applications Y. Deng@SJTU 401



10 LINEAR

Generic sequence

Definition 5.13: A sequence 〈pi〉 of forcing conditions in a frame C is a

generic sequence extending p if p0 = p and the following conditions hold:

(i) For every i, pi ≤ pi+1.

(ii) For every atomic sentence ψ, there is an i such that pi forces ψ or pi

forces ¬ψ.

(iii) For every Gödel sentence ϕ, there is an i such that pi 
 ϕ or pi+1 is a

condition q ≥ pi as required for ϕ in the appropriate clause of Lemma

5.12.
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Generic sequence

Lemma 5.14: For every forcing condition p in a frame C, there is a

generic sequence extending p.

Proof: Let {ϕi | i ∈ N} be an enumeration of all the Gödel sentences. We

define a sequence 〈pi | i ∈ N〉 by induction. Set p0 = p. If pi 
 ϕi and ϕi is

¬¬ψ for some atomic sentence ψ, then, by the definition of forcing, there is

a q ≥ pi that forces ψ. Let pi+1 be such a q. If pi 
 ϕi but ϕi is not of this

form, let pi+1 = pi. If pi does not force ϕi, let pi+1 be a condition

extending pi as guaranteed in the clause of Lemma 5.12 corresponding to

ϕi. (So, in particular, if ϕi is ¬¬ψ for an atomic ψ and pi does not force

ϕi, then pi+1 
 ¬ψ.) It is clear that the sequence pi satisfies the definition

of a generic sequence extending p. �
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Gödel sentence

Theorem 5.15: For every Gödel sentence ϕ, ϕ is classically valid if and

only if ϕ is intuitionistically valid.

Proof: As we remarked, if ϕ is intuitionistically valid, it is classically valid

(Theorem 2.6). To prove the converse suppose that ϕ is not

intuitionistically valid, i.e., there is a frame C and a forcing condition p

such that p does not force ϕ. We must build a classical model A in which

ϕ is false. By Lemma 5.14 we can choose an enumeration of Gödel

sentences in which ϕ0 = ϕ and a generic sequence 〈pi | i ∈ N〉 in C
extending p. Note that, by our assumption that p does not force ϕ and the

definition of a generic sequence, p1 
 ¬ϕ. We let the universe A of our

required classical model A be ∪{C(pi) | i ∈ N}. We define the relations of

A by A 
 R(~c) iff ∃i(pi 
 R(~c))
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We claim that, for every Gödel sentence ϕ, A 
 ϕ ⇔ ∃i(pi 
 ϕ). As

p1 
 ¬ϕ (and ¬ϕ is a Gödel sentence), this gives us the desired classical

model of ¬ϕ. The proof is by induction on the formation of the sentence ϕ.

(Note that we specify the levels of formation of formulas in the order given

in Definition 5.11 so that ∀xψ(x) follows ¬ψ(c) for each constant c.)

The base case is that ϕ is ¬¬ψ for some atomic sentence ψ. As pi is a

generic sequence, there is an i such that pi forces ψ or p forces ¬ψ. In the

former case, A satisfies ψ (and so ¬¬ψ) by definition. In the latter case, no

pj can force ψ. So by the definition of A, ψ is false in A.

If ϕ is ψ ∧ θ, then A |= ϕ ⇔ A |= ψ and A |= θ. By induction this

condition holds iff there are j and k such that pj 
 ψ and pk 
 θ. As the pi

form an increasing sequence of forcing conditions, this is equivalent to the

existence of an i such that pi 
 ψ ∧ θ, i.e., one such that pi 
 ϕ.

If ϕ is ¬ψ, then A |= ϕ⇔ A 6|= ψ. By induction this is true if and only if

there is no j such that pj 
 ψ. By the definition of generic sequence, this
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last condition is equivalent to the existence of an i such that pi 
 ¬ψ, i.e.,
pi 
 ϕ.

If ϕ is ∀xψ(x), suppose first that A 
 ϕ. If there is no pi forcing ϕ, then

by the definition of a generic sequence, there is an i and a c such that

pi 
 ¬ψ(c). Then, by induction, A |= ¬ψ(c) for the desired contradiction.

For the converse, suppose that there is an i such that pi 
 ∀xψ(x).Then,
for every c ∈ A,there is a j ≥ i such that c ∈ C(pj) and pj 
 ψ(c). By

induction, we then know that A |= ψ(c) for every c ∈ A, i.e., A |= ϕ as

required. �
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Undecidability

Theorem 5.16: The validity problem for intuitionistic logic is

undecidable.

Proof: If we could effectively decide if any given sentence ψ is

intuitionistically valid, then we could decide if any sentence ϕ is classically

valid by checking if ϕ◦ (as defined in 5.11) is intuitionistically valid. This

would contradict the undecidability of validity for classical predicate logic

(Corollary III.7.10). �
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Undecidability

Corollary 5.17: Not every sentence is intuitionistically equivalent to a

sentence in prenex form.

Proof: If every sentence had an intuitionistically equivalent prenex form,

a systematic search for a tableau proof of such an equivalence would find

one. The decision procedure for the validity of prenex sentences (Exercise

17) would then supply one for all sentences. �
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Exercises

1. Exercises 11, 12, 14 in page 306
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