
Trusta: Reasoning about Assurance Cases with Formal Methods
and Large Language Models
Zezhong Chena, Yuxin Denga,∗ and Wenjie Dub

aShanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai, 200062, China
bShanghai Normal University, Shanghai, 200233, China

A R T I C L E I N F O
Keywords:
Assurance cases
Trustworthiness derivation trees
Large language models
Formal methods
Constraint solving

A B S T R A C T
Assurance cases can be used to argue for the safety of products in safety engineering. In
safety-critical areas, the construction of assurance cases is indispensable. We introduce the
Trustworthiness Derivation Tree Analyzer (Trusta), a tool designed to enhance the development
and evaluation of assurance cases by integrating formal methods and large language models
(LLMs). The tool incorporates a Prolog interpreter and solvers like Z3 and MONA to handle
various constraint types, enhancing the precision and efficiency of assurance case assessment.
Beyond traditional formal methods, Trusta harnesses the power of LLMs including ChatGPT-
3.5, ChatGPT-4, and PaLM 2, assisting humans in the development of assurance cases and
the writing of formal constraints. Our evaluation, through qualitative and quantitative analyses,
shows Trusta’s impact on improving assurance case quality and efficiency. Trusta enables junior
engineers to reach the skill level of experienced safety experts, narrowing the expertise gap
and greatly benefiting those with limited experience. Case studies, including automated guided
vehicles (AGVs), demonstrate Trusta’s effectiveness in identifying subtle issues and improving
the overall trustworthiness of complex systems.

1. Introduction
In critical safety domains such as healthcare, automotive, and aviation, longstanding adoption of assurance cases has

proven essential for aligning system reliability and safety with industry standards [1–3]. An assurance case comprises
a systematically documented collection of evidences supporting a set of claims about a product’s features, ensuring
their adequacy for specific applications in designated environments. It is often visualized as a tree diagram, with the
root node symbolizing the primary system claim and leaf nodes representing evidence. Assurance cases are pivotal
in risk management, identifying system risks and demonstrating effective mitigations to uphold safety performance.
Additionally, they facilitate consensus among diverse stakeholders regarding the system’s requisite attributes, serving
as a vital communication tool. Internationally recognized safety standards, including ISO 26262 [4] for automotive
safety and DO-178C [5] for aviation software, advocate for the use of assurance cases. Their application spans various
sectors [6, 7]—nuclear, healthcare, defense, and beyond—underscoring their adaptability.

Creating and assessing assurance cases for complex systems is labor-intensive and time-consuming, demanding
significant manual effort from detailed documentation to comprehensive evaluation by safety assessors [8]. This
process is not only prone to human error but also grapples with scalability and adaptability amid evolving system
requirements or regulatory changes. These challenges highlight the need for automation and artificial intelligence
integration, combined with human expertise for more efficient assurance case development.

To enhance reasoning in assurance cases, we introduced Trustworthiness Derivation Trees (TDTs) [9], utilizing
formal methods for a streamlined approach. TDTs distill assurance cases to their essence: claims and evidences.
Conversion from traditional assurance cases to TDTs involves: (i) Translating auxiliary components of Goal Structuring
Notation (GSN) [10, 11] and Claim-Argument-Evidence (CAE) [12] into node descriptions while maintaining core
components (goals and solutions). (ii) Enhancing principal components with formal expressions and parameters for
precise representation. Formal expressions enable the automation of reasoning, advancing the evaluation of system
properties through TDTs. Figure 1(a) shows the widely recognized GSN representation of assurance cases, while
Figure 1(b) shows the CAE notation. In contrast, Figure 1(c) gives a TDT representation. The unique aspect of the

∗Corresponding author
Email address: yxdeng@sei.ecnu.edu.cn (Y. Deng)

Chen, Deng, and Du Page 1 of 35

TDT, distinct from the GSN and CAE notations, is the incorporation of formal expressions. This makes it possible to
perform automatic reasoning from bottom to top.

(a) GSN (b) CAE

(c) TDT

Figure 1: Three graphical representations of assurance cases.

We present Trustworthiness Derivation Tree Analyzer (Trusta), a desktop application designed for the automatic
construction and verification of TDTs. Trusta offers a graphical interface for user-friendly interaction with TDTs and
incorporates a lightweight Prolog interpreter and solvers like Z3 [13] and MONA [14] for addressing formal constraints.
Furthermore, supported by large language models (LLMs), Trusta aids in decomposing complex claims into sub-
claims and converting natural language-formulated goals into constraint-based expressions1. This dual-step approach
streamlines node creation and the translation of textual goals into formal constraints, marrying machine intelligence
with human expertise to overcome traditional challenges in assurance case development.

Through case studies, including automated guided vehicles, Trusta has proven effective in identifying subtle issues,
demonstrating its utility in error analysis and risk identification. The tool not only simplifies the creation of assurance
cases but also enhances their expressiveness and accuracy by leveraging formal methods and automated reasoning.

The main contributions of this work include the following:
1. We introduce Trusta, integrating formal methods and large language models to innovate assurance case creation

and verification. It leverages the rationality of formal methods to mitigate the hallucinations of LLMs, while
utilizing the intelligence of LLMs to reduce the high usage costs of formal methods.

1Obvious or abstract claims do not need to be transformed into detailed constraint expressions; they can simply be represented by Boolean
values.

Chen, Deng, and Du Page 2 of 35

2. We conduct a cross-domain evaluation of language models (ChatGPT-3.5 [15], ChatGPT-4 [16], PaLM 2 [17])
and find that AI-generated assurance cases effectively guide humans in creating and optimizing them.

3. Through real-world applications, we validate Trusta’s effectiveness in identifying potential risks and streamlining
the assurance case development process.

The rest of the article is structured as follows. Section 2 delves into the theoretical background. Section 3 introduces
the architecture and functionalities of Trusta. Section 4 explores strategies for developing prompts in assurance case
creation and verification. Section 5 demonstrates how Trusta expands from an initial claim node to generate the entire
TDT. Section 6 describes an experiment validating Trusta’s benefits and showcases a real-world application of Trusta.
Section 7 offers a comparative analysis of Trusta with existing methodologies. Finally, Section 8 summarizes the key
contributions and discusses possible future work.

Our tool Trusta is available at https://gitlab.com/TysonSir/Trusta.

2. Background
In this section, we review some background knowledge about assurance cases, trustworthiness derivation trees,

large language models, and constraint solvers.
2.1. Assurance Cases

The assurance case [18], also known as safety case, is an essential construct within safety-critical systems
for demonstrating the safety and reliability of a system within specific operational contexts. These cases typically
encompass aspects of system design, development, and maintenance, with an ultimate aim to ensure that the system
meets safety and reliability criteria to achieve expected performance in real-world operation. The theoretical origin of
assurance cases is traced to the domain of logical reasoning, notably introduced by the British philosopher Stephen
Toulmin in 1958 [19]. The concept gained prominence with the rapid development in complex industries and the wide
use of novel automation technologies, as humans faced unprecedented technological risks [20]. The evolution and
widespread practical application of the assurance case were notably influenced by the 1988 Piper Alpha oil platform
disaster [21], underscoring the vital role of systematic, structured argumentation in assessing and establishing system
safety in increasingly intricate and risk-prone technological landscapes.

Today, assurance cases, or safety cases, play a crucial role across various domains, particularly in industries that
demand high standards of safety, reliability, and compliance. Representative application fields include:

• Aerospace industry [22, 23]: Due to stringent safety requirements, aerospace engineering employs assurance
cases to verify and assure the safety and reliability of airplanes [24], satellites [25], and spacecraft systems [26].

• Railway industry [27, 28]: Assurance cases are used to substantiate the safety and reliability of railway systems,
such as signaling, train control, and operating equipment, reducing accident risk and ensuring passenger and staff
safety.

• Automotive industry [29, 30]: With the advent of autonomous driving [31], assurance cases are deployed to
argue for the safety and reliability of self-driving systems.

• Medical devices [32]: Medical device manufacturers (e.g., infusion pumps [33], pacemakers [34]) utilize
assurance cases to demonstrate the safety and compliance of the design, manufacturing, and usage processes
of their products.

• Nuclear energy industry [2, 35, 36]: Given stringent demands for safety and compliance, assurance cases are
employed to assess the safety of nuclear power stations, facilities, and nuclear material management systems.

• Oil and chemical industry [37–39]: In the oil, gas, and chemical sectors, assurance cases are utilized to evaluate
and ensure safety and reliability throughout the process, preventing major accidents, averting environmental
disasters, and safeguarding workers and environmental safety.

• Military and defense [40]: In the highly security-sensitive military and defense sector, assurance cases are used
to evaluate the safety and reliability of weapon systems, communication systems, and defensive mechanisms.

Chen, Deng, and Du Page 3 of 35

• Finance and banking [41]: Financial and banking industries leverage assurance cases to verify the security and
compliance of financial transaction systems, safeguarding financial data and transactions.

• Safety management and regulation development [42]: In shaping safety management and regulations, such
as cybersecurity regulation [42], school disaster prevention [43], and pandemic control policies [44], assurance
cases play a role in risk assessment, design, and confirmation of control measures, provision of safety evidence,
and promoting continuous improvement, thereby ensuring system safety and effective risk management.

The purpose of an assurance case is to articulate a clear, comprehensive, and dependable argument that a
system’s operation meets acceptable safety within a specific environment [18]. An assurance case serves as a tool
for communicating ideas and information, often conveying content to a third party such as regulatory authorities. To
achieve this convincingly, it must be as clear as possible. The system referred to by an assurance case can be any
object, such as a pipeline network, software configuration, or a set of operating procedures; the concept is not confined
to considerations of traditional engineering “design". Absolute safety is an unattainable goal, and the existence of an
assurance case is to persuade others that the system is sufficiently safe, embodying acceptable safety with tolerable
risks. Safety argumentation must take premises into consideration, as nearly any system might be unsafe if used
improperly or unexpectedly, such as arguing for the safety of conventional house bricks [45]. Therefore, part of the
work of an assurance case is defining the context or specific environment of safety. An assurance case consists of
three main elements, namely goals, argumentation, and evidence, and the relationship between these three elements is
depicted in Figure 2 (a).

(a) Structure [10] (b) Creation process

Figure 2: A overview of assurance cases, illustrating their structural components and creation process.

The process of creating an assurance case consists of four basic steps: identifying goals, gathering evidence,
constructing arguments, and evaluating the assurance case [46]. As shown in Figure 2 (b), these steps build the
fundamental framework of the assurance case, providing directions for safety engineers and project managers. This
structured approach ensures a coherent and transparent connection between the goals, argumentation, and evidence,
facilitating a clear and persuasive presentation of the system’s safety and reliability. It is noteworthy that these four steps
are not completed all at once but are iteratively performed throughout the project development process. As the project
evolves and requirements change, the assurance case may need to be updated and modified. Furthermore, to ensure the
quality and effectiveness of the assurance case, these four steps require good collaboration among the team members.
This iterative and collaborative approach ensures that the assurance case remains aligned with the project’s ongoing
development and continues to reflect an accurate and robust representation of the system’s safety and reliability.
2.2. Trustworthiness Derivation Trees

In our previous work, we introduced Trustworthiness Derivation Trees (TDTs) [9], an evidence-based model
designed to analyze and enhance the trustworthiness of complex software systems. TDTs systematically refine
overarching trustworthiness properties into key components and further decompose them until basic evidences are
attained. This hierarchical structuring facilitates effective communication among stakeholders and rigorous verification
of system properties.
2.2.1. Application in Software Development Life Cycle

TDTs serve as a robust framework for ensuring system trustworthiness throughout the software development life
cycle. During the requirement analysis phase, TDTs provide a clear communication medium for stakeholders to agree
Chen, Deng, and Du Page 4 of 35

(a) 𝐶 ∶ −𝐶1, 𝐶2. (b)
⎡

⎢

⎢

⎣

𝐶 ∶ −𝐶1, 𝐶2.
𝐶1 ∶ −𝐶11, 𝐶12.

𝐶2 ∶ −𝐶21, 𝐶22, 𝐶23.

⎤

⎥

⎥

⎦

Figure 3: Two examples of rule texts and TDT skeletons

on the system’s trustworthiness properties. In the product validation phase, TDTs enable deductive reasoning to verify
that the system meets the specified trustworthiness criteria. This dual functionality not only enhances the clarity and
consistency of requirements but also supports rigorous validation processes.

Our approach has been piloted in over a dozen real-world software development scenarios, where TDTs have proven
effective in identifying and resolving subtle issues related to system trustworthiness. The ability to systematically
decompose trustworthiness into verifiable sub-properties and evidence has demonstrated significant benefits in
improving both the development process and the final system quality.
2.2.2. Construction of TDTs

TDTs can be constructed in two primary ways:
1. Interactive Editing: Users can create and edit TDTs using our visualization tool which provides a graphical user

interface for manipulating the tree structure. This approach allows for intuitive construction and modification of
TDTs through actions such as adding or deleting nodes, modifying node content, and rearranging the tree layout.

2. Prolog Rule Import: Alternatively, TDTs can be generated by importing Prolog rules into a tool. These rules,
written in Prolog’s Horn clause syntax, define the relationships between nodes and can automatically construct
the tree skeleton based on predefined implications. A single rule can define a two-level subtree, while multiple
rules can construct more complex multi-level trees, as illustrated in Figure 3.

This flexibility ensures that TDTs are accessible to users with varying preferences and expertise, whether they prefer
manual construction or automated rule-based generation.
2.2.3. Automated Reasoning

TDTs leverage first-order predicate logic to specify properties and the implications between nodes. By utilizing
Prolog for rule definition and inference, TDTs benefit from automated reasoning capabilities, ensuring that each
derivation step maintains logical soundness. This formal foundation allows for rigorous validation of trustworthiness
properties, making TDTs a powerful tool in the arsenal of software engineering methodologies focused on system
assurance and reliability.
2.3. Large Language Models

Large language models [47] have their origins in the progressive evolution of machine learning algorithms
and natural language processing techniques. They mark a significant advancement from traditional rule-based
systems, employing deep learning architectures such as Transformers [48], introduced by Vaswani et al. in 2017.
Application domains for these models are diverse, encompassing machine translation, text generation, sentiment
analysis, summarization, and more. The implementation rationale of large language models lies in their ability to
process and generate human-like text by learning from vast amounts of textual data, capturing intricate patterns and
dependencies in languages. Advantages of these models include their high versatility and adaptability across various
tasks, often outperforming task-specific models. However, they are not without disadvantages; their large-scale nature
demands extensive computational resources for both training and inference. Additionally, concerns regarding ethical
considerations, biases embedded within the training data, and the potential lack of interpretability and transparency
make the deployment and use of large language models a complex consideration.

Large language models are capable of accomplishing a wide range of tasks. Their utilization is straightforward,
necessitating only an input box through which “prompts" are sent to guide the model’s responses. However, truly

Chen, Deng, and Du Page 5 of 35

harnessing the full potential of these models is less straightforward. It requires a certain expertise in crafting these
prompts. We have categorized several techniques for making effective use of large language models, as summarized
in Section 4.
2.4. Constraint Solvers

Constraint solvers [49] originated from the field of artificial intelligence and mathematical programming in the
latter half of the 20th century, becoming an essential tool for solving problems expressed through constraints. The
application fields of constraint solvers are manifold, including scheduling, planning, resource allocation, and various
optimization problems. The implementation principle relies on techniques such as backtracking, consistency checking,
and local search, often coupled with heuristics, to explore the solution space systematically and efficiently. Advantages
of constraint solvers include their flexibility in modeling complex relationships and the ability to find optimal or near-
optimal solutions. However, their disadvantages may involve high computational costs for large or complex problems
and difficulty in modeling some real-world scenarios.

For example, constraint solvers are widely used in airline scheduling [50], where constraints like the maximum
number of working hours for pilots, mandatory rest periods, and aircraft maintenance schedules must be simultaneously
satisfied. In this application, constraint solvers enable the creation of feasible schedules that adhere to all necessary
regulations, though the complexity and size of the problem may present computational challenges.

3. Tool Architecture and Implementation
Figure 4 provides an overview of Trusta’s execution flow and architecture. Developed using Python’s PyQt

library [51], Trusta serves as a desktop application, functioning as an IDE for constructing TDTs, graphical
representations of assurance cases, with support for various graphical transformations. Trusta comprises three key
modules: TDT Creator, TDT Evaluator, and Report Generator, each detailed below.

Figure 4: Execution flow and architecture of Trusta.

Chen, Deng, and Du Page 6 of 35

3.1. TDT Creator
The TDT Creator consists of four sub-modules: (1) a UI controller is in charge of responding to users’ actions, (2) a

node creator utilizes a large language model to derive child nodes from the upper layer, (3) a data manager can modify
the data in a tree, (4) a graphic operation module uses the data of a tree to render TDT graphics and interactively modify
the tree.
UI Controller Figure 5 showcases the TDT creation interface in Trusta. It features dynamic rendering of TDTs,
with functionalities for node manipulation, color adjustment, tree rotation, and subtree management. Selected node
information is editable in the panel’s lower section, accompanied by a project explorer and node information outline
on the sides.

Figure 5: Main interface of Trusta with example nodes demonstrating three types of constraints.

Node Creator Utilizing Prolog’s syntax for rules and axioms [9], this sub-module enables structured TDT construc-
tion through large language model integration, simplifying node division with immediate feedback and adjustability for
user precision. The invocation of a large language model, particularly for complex tasks like assurance case generation,
requires carefully crafted prompts. The specifics of these prompts are outlined in Section 4.
Data Manager Responsible for storing and editing TDTs, this module facilitates node addition, deletion, and modi-
fication, supporting users in refining node content with descriptions, types, and formal expressions for comprehensive
TDT creation.
Graphic Operation Module Transforming TDT data into visual diagrams, this module employs the GoJS li-
brary [52] for interactive chart creation, embedded within a PyQt framework for enhanced user interaction.

Chen, Deng, and Du Page 7 of 35

3.2. TDT Evaluator
This is the module where formal methods are used for automatic reasoning about TDTs. We use three constraint

solvers [53] to check the validity of the properties specified by the formal expression in each node of a TDT. Since
different solvers are good at different types of reasoning, we use the Type field in every node to indicate the evaluation
type. For example, the type “AbstractSet” in a node means that the formal expression in the node involves set operations
about abstract sets, so we are going to employ MONA to solve the constraints. The process involves the translation
of the natural language descriptions within nodes into formalized constraints, a task that can be undertaken through
manual translation or through interactive translation with the assistance of a large language model [47].
Constraint Formalizer According to our experience with industrial case studies, we have summarized four types of
constraints commonly encountered: logical relations, arithmetic, abstract sets, and concrete sets. The first three require
the use of constraint solvers, whereas the last can be managed using Python’s built-in set syntax. To design prompts for
the LLM that generate constraint expressions for the first three types, it is essential to understand the formal languages
supported by Trusta. Below, we present the formal syntax of each language.

- Logical relations capture the dependencies and conditions between different expressions. They are used to model
the logical flow and conditions within assurance cases. The syntax definition of logical relations is as follows:

𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ∶∶= 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 | ∖ + 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒
𝑟𝑢𝑙𝑒 ∶∶= 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 ∶ − 𝑏𝑜𝑑𝑦.
𝑏𝑜𝑑𝑦 ∶∶= 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 | ∖ + 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 | 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒, 𝑏𝑜𝑑𝑦
𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 ∶∶= 𝑎𝑡𝑜𝑚 (𝑡𝑒𝑟𝑚_𝑙𝑖𝑠𝑡)
𝑡𝑒𝑟𝑚_𝑙𝑖𝑠𝑡 ∶∶= 𝑡𝑒𝑟𝑚 | 𝑡𝑒𝑟𝑚, 𝑡𝑒𝑟𝑚_𝑙𝑖𝑠𝑡
𝑡𝑒𝑟𝑚 ∶∶= 𝑎𝑡𝑜𝑚 | 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 | 𝑛𝑢𝑚𝑏𝑒𝑟 | 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 | 𝑙𝑖𝑠𝑡
𝑎𝑡𝑜𝑚 ∶∶= 𝑙𝑜𝑤𝑒𝑟_𝑐𝑎𝑠𝑒_𝑎𝑡𝑜𝑚 | 𝑞𝑢𝑜𝑡𝑒𝑑_𝑎𝑡𝑜𝑚 | 𝑠𝑝𝑒𝑐𝑖𝑎𝑙_𝑠𝑦𝑚𝑏𝑜𝑙

- Arithmetic constraints involve mathematical relationships between variables and constants. They are evaluated
to ensure numerical properties hold true. The syntax definition of arithmetic constraints is as follows:

𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ∶∶= 𝑒𝑥𝑝𝑟 | 𝑒𝑥𝑝𝑟 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝑒𝑥𝑝𝑟
𝑒𝑥𝑝𝑟 ∶∶= 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 | 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 | 𝑒𝑥𝑝𝑟 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝑒𝑥𝑝𝑟
𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 ∶∶= + | − | ∗ | ∕ | ∕∕ | % | ∗∗ | > | < | == | >= | <= | ! = | 𝐴𝑛𝑑 | 𝑂𝑟 | 𝑁𝑜𝑡

- Abstract sets represent collections of entities. Operations like union, intersection, and subset are used to
manipulate these sets. The syntax definition of abstract sets is as follows:

𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ∶∶= 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝑠𝑒𝑡 | 𝑠𝑒𝑡 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝑠𝑒𝑡
𝑠𝑒𝑡 ∶∶= {𝑒𝑙𝑒𝑚𝑒𝑛𝑡, ...} | 𝑒𝑚𝑝𝑡𝑦
𝑒𝑙𝑒𝑚𝑒𝑛𝑡 ∶∶= 𝑎𝑛𝑦_𝑖𝑑𝑒𝑛𝑡𝑖𝑓 𝑖𝑎𝑏𝑙𝑒_𝑒𝑛𝑡𝑖𝑡𝑦
𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 ∶∶= 𝑢𝑛𝑖𝑜𝑛 | 𝑖𝑛𝑡𝑒𝑟 | ∖ | 𝑠𝑢𝑏 | 𝑖𝑛 | 𝑛𝑜𝑡𝑖𝑛 | = | ∼=

Interactive Translation To facilitate the conversion of natural languages into constraint expressions, the interactive
translation interface within Trusta is illustrated in Figure 6. The underlying conceptual framework draws inspiration
from Cosler’s work (nl2spec) [47] on translating natural language into temporal logics. We referenced the workflow
of nl2spec and have adapted the original prompt words designed for translating temporal logics, as shown in Listing 8
in Appendix A. These adjustments facilitate the seamless transition from descriptive languages to formal constraints,
enhancing the applicability and efficacy of the translation process.

In a TDT, the generated formulas are not standalone; they need to be reasoned about jointly with sibling and child
nodes. Therefore, we have incorporated information from these related nodes into the prompt input for the large model
Chen, Deng, and Du Page 8 of 35

responsible for generating the formulas. This information consists of sub-translations of sibling and child nodes [47],
which are fragments of formulas output by previous node translations, as shown in Figure 7. As a result, the nodes in a
TDT require a bottom-up approach to formal translation, where leaf nodes only need to include the information from
their sibling nodes, and the translation of the first node does not require any input from other nodes. The information
from child and sibling nodes is automatically added to the entries under “Adding subtranslations” when opening
the interactive translation interface (Figure 6), eliminating the need for manual operations. This augmentation of the
translation mechanism contributes to the broader goal of enhancing automated reasoning within the Trusta framework.

Figure 6: Interactive translation interface within Trusta powered by LLMs.

Data Controller In order to verify that the whole TDT is sound, it suffices to show the soundness of each two-level
subtree in the TDT. A two-level subtree consists of a parent node and several child nodes. These child nodes represent
the premises, and the parent node stands for the conclusion of the rule. Suppose𝐹1, 𝐹2, ..., 𝐹𝑛 are the formal expressions
of premises, and 𝐹 is the formal expression of the conclusion. In addition, we allow two types of logical relations
between the child nodes and their parent node. The “And” relation means that all the premises need to be combined to
lead to the conclusion. In this case, we check if the formula 𝐹1 ∧ 𝐹2 ∧ ... ∧ 𝐹𝑛 ∧ ¬𝐹 is satisfiable. If it is unsatisfiable
then the rule is sound. Otherwise, a solution exists and witnesses the unsoundness of the rule. The “Or” relation means
that any one of the premises can lead to the conclusion. In that case, we need to check the satisfiability of the formula
(𝐹1 ∨ 𝐹2 ∨ ... ∨ 𝐹𝑛) ∧ ¬𝐹 .
Constraint Solvers The satisfiability of the formulas given above is determined by constraint solvers. According to
our experience with industrial case studies, we have summarized four types of constraints commonly encountered:
logical relations, arithmetic, abstract sets, and concrete sets. Unfortunately, there exists no single solver that can solve
all those types of constraints. Therefore, we have to call different solvers for different constraints. If the constraints are
about logical relations, we resort to a lightweight Prolog built in Trusta. For arithmetic related to first-order theories,
we take advantage of Z3. For some reasoning about abstract sets, i.e. unassigned sets whose elements are not explicitly
known, we make use of MONA. For concrete sets whose elements are given in terms of arrays or lists, we use Python
to deal with set operations. Below we examine the first three constraint types through examples within the context of
a TDT depicted in Figure 5.

The node IDs from the set {16, 17, 18} correspond to a two-level subtree. The constraint for this subtree is captured
by the expression 𝐸𝐿𝑜𝑔𝑖𝑐𝑎𝑙 in (1). It is the conjunction of three parts: the first part says that a merge request with the
same developer and committer is called self-reviewed; the second part is an evidence, a list of records showing the
developers and committers of some merge requests; the third part is the negation of the property in the parent node,

Chen, Deng, and Du Page 9 of 35

Figure 7: Sibling and child node sub-translations are integrated into the prompt inputs to generate cohesive formalized
formulas.

concerning about the absence of self-reviewed merge request, where the symbol ‘∖+’ is the Prolog syntax for negation.
The satisfiability of the formula 𝐸𝐿𝑜𝑔𝑖𝑐𝑎𝑙 can be checked by the lightweight Prolog built in Trusta.

𝐸𝐿𝑜𝑔𝑖𝑐𝑎𝑙 = “𝑠𝑒𝑙𝑓_𝑟𝑒𝑣𝑖𝑒𝑤𝑒𝑑(𝑀) ∶ − 𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑒𝑟(𝑀, 𝐼𝐷), 𝑐𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑟(𝑀, 𝐼𝐷).”
∧ “𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑒𝑟(𝑚𝑟𝑎, 𝐴𝑙𝑖𝑐𝑒). 𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑒𝑟(𝑚𝑟𝑏, 𝐵𝑜𝑏).

𝑐𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑟(𝑚𝑟𝑎, 𝐷𝑎𝑣𝑖𝑑). 𝑐𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑟(𝑚𝑟𝑏, 𝐸𝑣𝑒).”
∧ ¬“∖ + 𝑠𝑒𝑙𝑓_𝑟𝑒𝑣𝑖𝑒𝑤𝑒𝑑(𝑀).”

(1)

Now consider the node IDs from the set {19, 20, 21, 22}. They correspond to a two-level subtree whose constraints
are about arithmetics and captured by the formula 𝐸𝐴𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐 in (2). The formula is a conjunction of four parts: the first
part defines the relationship between the variables 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒_𝑡𝑖𝑚𝑒, 𝑝𝑟𝑜𝑐_𝑎𝑙𝑙_𝑡𝑖𝑚𝑒, and 𝑠𝑒𝑛𝑑_𝑡𝑖𝑚𝑒; the second and third
parts define the constraints on the last two variables; the last part is again the negation of the property in the parent
node. The satisfiability of the formula 𝐸𝐴𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐 can be checked by Z3.

𝐸𝐴𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐 = “𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒_𝑡𝑖𝑚𝑒 = 𝑝𝑟𝑜𝑐_𝑎𝑙𝑙_𝑡𝑖𝑚𝑒 + 𝑠𝑒𝑛𝑑_𝑡𝑖𝑚𝑒”
∧ “𝑝𝑟𝑜𝑐_𝑎𝑙𝑙_𝑡𝑖𝑚𝑒 < 1” ∧ “𝑠𝑒𝑛𝑑_𝑡𝑖𝑚𝑒 < 0.5”
∧ ¬“𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒_𝑡𝑖𝑚𝑒 < 2”

(2)

Then we consider the node IDs from the set {9, 10, 11, 12}. They correspond to a two-level subtree that talks
about abstract sets. Their constraints are captured by the formula 𝐸𝐴𝑏𝑠𝑡𝑟𝑎𝑐𝑡𝑆𝑒𝑡 in (3). The formula is a conjunction of
four parts: the first part defines the sets 𝐶 and 𝐷 together with an element 𝑏; the second and third parts define the
constraints between 𝐶 , 𝐷, and 𝑏. The last part is the negation of the property in the parent node. We can employ
MONA to check the satisfiability of the formula 𝐸𝐴𝑏𝑠𝑡𝑟𝑎𝑐𝑡𝑆𝑒𝑡.

𝐸𝐴𝑏𝑠𝑡𝑟𝑎𝑐𝑡𝑆𝑒𝑡 = “𝑆𝑒𝑡 𝐶,𝐷;𝐸𝑙𝑒𝑚 𝑏; ” ∧ “𝑏 𝑛𝑜𝑡𝑖𝑛 𝐷; ”
∧ “𝐶 𝑖𝑛𝑡𝑒𝑟 𝐷 = 𝑒𝑚𝑝𝑡𝑦; 𝑏 𝑖𝑛 (𝐶 𝑢𝑛𝑖𝑜𝑛 𝐷); ”
∧ ¬“𝑏 𝑖𝑛 𝐶; ”

(3)

Chen, Deng, and Du Page 10 of 35

To evaluate the formal languages supported by Trusta, we analyzed their use in real-world assurance cases. The
primary languages include: (1) abstract sets, used for set operations and membership criteria; (2) arithmetic constraints,
prevalent in performance metrics, timing constraints, and resource allocation; and (3) logical relations, capturing
dependencies and conditions for safety requirements and fault tree analysis. It is possible to increase the expressiveness
of Trusta with more languages in the future.
3.3. Report Generator

Based on the results of constraint solving, Trusta reports on the vulnerabilities in the systems modeled by TDTs.
More specifically, if a property is invalid, the constraint solvers generate counterexamples to witness the invalidity of
the property. For example, if we change the third part of the formula 𝐸𝐴𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐 into 𝑠𝑒𝑛𝑑_𝑡𝑖𝑚𝑒 < 1.5, then that formula
is satisfiable. One solution is (𝑝𝑟𝑜𝑐_𝑎𝑙𝑙_𝑡𝑖𝑚𝑒 = 0.9, 𝑠𝑒𝑛𝑑_𝑡𝑖𝑚𝑒 = 1.4, 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒_𝑡𝑖𝑚𝑒 = 2.3). In that case, the goal
𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒_𝑡𝑖𝑚𝑒 < 2 does not hold, so the TDT is unsound. This kind of feedback from the constraint solvers provides
TDT developers with more explicit information about the unsafe scenarios so they can quickly fix the problems.

4. Prompt Design
Large language models have shown remarkable versatility across a wide range of tasks. However, unlocking

their full potential requires a nuanced understanding of prompt engineering. This section delves into the strategic
development of prompts that enhance LLMs’ utility in the creation and verification of assurance cases.

Based on various prompt engineering literature [54–57] and our experience with LLMs usage, we have summarized
18 prompt techniques. They are detailed in Table 1, ranging from improving instruction quality to systematic testing.
Techniques like Being Specific (T1) refine query relevance, while Solution Strategy (T12) encourages diverse solution
exploration. Systematic testing, including comparison to gold standard answers (T17) and A/B testing (T18), is crucial
for assessing model performance. These strategies, whether standalone or combined, aim to elicit meaningful output
from LLMs based on task complexity and user goals. Additionally, Chen et al. [58] highlighted that aggregating results
from multiple runs significantly enhances outcomes compared to those from a single run.

Table 1
Classification and summary of usage techniques for LLMs

Category Technique Technique ID
Optimizing Instruction Quality Being Specific T1

Role-play T2
Instruction Segmentation T3
Specifying Steps T4
Providing Examples T5
Setting Length T6

Leveraging Reference Text Answer Reference T7
Citation Reference T8

Task Decomposition Intent Classification T9
Information Filtering T10
Paragraph Summarization T11

Making the Model “Think” Solution Strategy T12
Simulate Thinking Process T13
Asking for Omissions T14

Combining External Tools Embedding-based Search T15
Code Execution T16

Systematic Testing Comparing to Gold Standard Answers T17
Conducting A/B Tests T18

• T1 (Being Specific): Make queries more targeted by providing the model with detailed information for more
relevant answers.

• T2 (Role-play): Assign a role to the model within the query for more creative answers.

Chen, Deng, and Du Page 11 of 35

• T3 (Instruction Segmentation): Use delimiters to distinguish different parts in the query.
• T4 (Specifying Steps): List out the steps needed to complete the task to help the model generate accurate answers.
• T5 (Providing Examples): Assist the model in understanding requirements through examples.
• T6 (Setting Length): Specify the desired length of output in the query.
• T7 (Answer Reference): Allow the model to generate more accurate answers by referring to a specific text.
• T8 (Citation Reference): Instruct the model to quote specific parts from the reference text for more in-depth

answers.
• T9 (Intent Classification): Decompose complex queries by analyzing the main objective in user queries.
• T10 (Information Filtering): For applications requiring long conversations, summarize or filter out previous

dialogue, keeping only the key information.
• T11 (Paragraph Summarization): If dealing with long documents, split them into multiple paragraphs for

summarization, and then combine these summaries.
• T12 (Solution Strategy): Make the model generate possible solutions before producing the final answer.
• T13 (Simulate Thinking Process): Allow the model to conduct an internal monologue, simulating a “thinking”

process.
• T14 (Asking for Omissions): Ask the model if it has omitted important information in the problem-solving

process.
• T15 (Embedding-based Search): Use embedding-based search for effective knowledge retrieval.
• T16 (Code Execution): Leverage the model’s code generation capability to perform calculations or call APIs.
• T17 (Comparing to Gold Standard Answers): Evaluate the quality of the model output by comparing it with

preset gold standard answers.
• T18 (Conducting A/B Tests): Compare the effects of different prompts on the model output to find the most

effective prompting strategy.
4.1. Prompt for Claim Decomposition

The prompts for claim decomposition are divided into four segments: requirement description, theoretical
introduction, case studies, and content pending. Each segment is thoroughly detailed below. The complete content
of these prompts can be found in Listing 7, Appendix A.

The first segment, detailed in Listing 1, focuses on requirement description. This part sets the context and defines
the role of the language model as an expert in assurance cases. It provides a general format that the model’s output
should follow and instructs the model to break down a given goal into various sub-goals. This section also asks the
model to provide explanations for the breakdown as well as potential solutions for the sub-goals, setting up the stage
for structured assurance case generation. This segment utilizes techniques T1, T2, and T4, as detailed in Table 1.

Listing 1: A prompt segment with requirement description.
1 You are an expert proficient in the Assurance Case.
2 Your answers always need to follow the following output format and you always have to try to provide a

set of sub -goals. You may repeat your answers.
3 Break down the following goal into several sub -goals , these sub -goals should be able to support the

parent goal , and explain the reasoning behind the breakdown. Finally , provide solutions that support
these sub -goals.

Chen, Deng, and Du Page 12 of 35

Listing 2: A prompt segment with theoretical introduction.
1 Goal(claim): A goal is a claim in the argument , usually supported by sub -goals(sub -claims), strategies(

arguments) or solutions(evidences). Goals describe assertions about system characteristics , performance ,
safety , etc.

2 Strategy(argument): A strategy describes
3 Solution(evidence):
4
5 The five basic CAE(claim -argument -evidence) building blocks that we have identified are:
6 1. Decomposition: partitions some aspect of the claim.
7 2. Substitution:

The second segment, detailed in Listing 2, focuses on theoretical introduction. This part provides an in-depth
look at the definitions and terminologies employed in assurance cases. This section not only defines what a “Goal”,
“Strategy”, and “Solution” are but also outlines the five basic CAE (Claim-Argument-Evidence) building blocks [12]
essential for creating assurance cases. These blocks are Decomposition, Substitution, Concretion, Calculation or Proof,
and Evidence Incorporation. By introducing these conceptual tools, this segment equips the model with the necessary
framework to understand and generate assurance cases more effectively. This segment utilizes technique T7.

The third segment, detailed in Listing 3, focuses on case studies. This part offers multiple examples that individually
highlight the use of each of the five building blocks: Decomposition, Substitution, Concretion, Calculation or Proof, and
Evidence Incorporation. These examples cover various domains and goals such as self-driving cars, medical devices,
and data encryption. For each example, the section details the building blocks employed, the breakdown strategy,
the sub-goals, and solutions. Additionally, it provides explanations on how these elements are interconnected. These
examples serve as both a comprehensive guide and a template for the model, aiding it in understanding how to structure
and approach different types of assurance cases. This segment utilizes techniques T5 and T12.

Listing 3: A prompt segment with case studies.
1 Goal G1: The self -driving car is safe to operate on public roads.
2 Building Blocks: Decomposition
3 Break down Strategy: {" strategy ": "The safety of the self -driving car can be determined by examining its

hardware and software components ."}
4 Sub -goals dictionary: {"G1.1": "The sensor system is reliable.", "G1.2": "The navigation algorithm is

accurate.", "G1.3": "The emergency systems function correctly ."}
5 Solutions dictionary: {"Sn1 .1": "Manufacturer test reports , third -party evaluations .", "Sn1 .2": "Code

audits , simulation results.", "Sn1 .3": "Test scenarios , independent assessments ."}
6 Explanation: G1.1, G1.2 and G1.3 can support G1, Sn1.1 can support G1.1, Sn1.2 can support G1.2, Sn1.3

can support G1.3.
7 FINISH
8
9 Goal G1: The new version of the medical device is safe.

10 Building Blocks: Substitution
11

The fourth and final segment, detailed in Listing 4, focuses on content pending. This part presents an incomplete
example that consists solely of a placeholder for a goal, denoted as ⟨A_NEW_GOAL⟩, which is intended to be
decomposed. This incomplete example follows the same format as the examples in the third segment and is designed
for completion by a large language model. When invoking the model, ⟨A_NEW_GOAL⟩ is replaced with a specific
goal, as illustrated in the first line of Listing 5. This segment utilizes technique T3.

Listing 4: A prompt segment with content pending.
1 Goal G1: <A_NEW_GOAL >
2 Building Blocks: Break down Strategy:
3 Solutions dictionary: Explanation:
4 FINISH

Listing 5: LLM output when splitting nodes.
1 Goal G1: The automatic guided vehicle can stop safely when encountering obstacles.
2 Building Blocks: Decomposition
3 Break down Strategy: {" strategy ": "The safe stopping capability of the automatic guided vehicle can be

determined by examining its perception system , control system , and braking system ."}
4 Sub -goals dictionary: {"G1.1": "The perception system can accurately detect obstacles.", "G1.2": "The

control system can make timely and appropriate decisions to stop the vehicle.", "G1.3": "The braking
system can reliably bring the vehicle to a stop ."}

5 Solutions dictionary: {"Sn1 .1": "Sensor test reports , performance evaluations .", "Sn1 .2": "Algorithm
validations , simulations .", "Sn1 .3": "Brake performance tests , safety certifications ."}

6 Explanation: G1.1, G1.2, and G1.3 can support G1 , Sn1.1 can support G1.1, Sn1.2 can support G1.2, Sn1.3
can support G1.3.

Chen, Deng, and Du Page 13 of 35

The model’s output, as shown in Listing 5, is then parsed by the Trusta tool to generate the TDT nodes. This
effectively bridges the gap between theoretical modeling and practical implementation, demonstrating that the model’s
output is in a format compatible with Trusta for seamless integration into a workflow.
4.2. Prompt for Formalizing Constraints

The approach for converting natural languages into constraint expressions utilizes prompts structurally similar
to those for claim decomposition, encompassing sections on requirement description, theoretical introduction, case
studies, and content pending. However, due to the need for higher precision in constraint expressions, the theoretical
introduction section includes more detailed descriptions, such as symbolic representations and standardized units of
measurement, as exemplified in Listing 6.

Listing 6: Prompt segment of LLM translation from natural language to constraint expressions.
1 The formula should only contain variables , numbers or operators +, -, *, /, //, %, **, >, <, ==, >=, <=,

!=, And , Or, Not.
2 Using the International System of Units (SI) to standardize the units of numerical quantities. For

example , When we describe distance or length , we typically use meters (m) as the unit. When we measure
mass , we use kilograms (kg). Time is usually measured in seconds (s)... ...

The complete prompts and the outputs from a LLM are presented in Listings 8 and 9 in Appendix A. This
methodology translates natural languages into constraint expressions and then employs a constraint solver to find the
solution, leverages technique T16.

5. Case Study
Together with our industrial partners, we have built TDTs in more than a dozen real-world scenarios, such as

checking software build consistency and the credibility of software implementation. In fact, Trusta helped us identify
some subtle issues that had previously gone unnoticed. In this section, we present a case demonstration of TDT creation
and evaluation for the braking scenario of Automated Guided Vehicles (AGVs) in a warehouse. This case uses the large
language model ChatGPT-4 [16].

Figure 8: Braking scenario of an AGV in a warehouse.

AGVs autonomously move goods between different areas of a warehouse, as shown in Figure 8. They travel along
predetermined routes, carrying several items on top of the vehicle. However, the path of one AGV intersects with
another AGV or a pedestrian walkway, creating potential risks. Despite various precautions, it is still necessary to
evaluate the safety and reliability of warehouses equipped with AGVs. For this purpose, we have created a TDT.
Figure 8 shows the braking scenario of the AGV. The AGV on the left moves to the right at a speed of 𝑣, detecting
an obstacle at a distance of 𝑠 meters. After a reaction time of 𝑑𝑡 seconds, the AGV begins to decelerate and applies
brakes within a distance of 𝑥 meters. To avoid colliding with the obstacle, the AGV on the left must generate sufficient
deceleration. However, if the deceleration is too high, it may cause the goods on the AGV to slide or even fall off,
posing a safety hazard.
Chen, Deng, and Du Page 14 of 35

5.1. TDT Creation
Before formally creating the TDT, we used Trusta for a fully automated preliminary decomposition of the top-level

goal. This helps users test the usability of the LLM, assess its performance, and also guides them in understanding
more details related to safety goals, providing ideas for subsequent formal TDT creation.
5.1.1. Preliminary Decomposition

When building the TDT with Trusta, we first created a top-level goal, as shown in Figure 9. We established a goal
node with the objective: "The AGV should be able to stop safely when encountering an obstacle." We instructed Trusta
to decompose the goal into three levels, using a language model temperature setting of 0.8. This setting promotes more
creativity and can uncover subgoals that might otherwise be overlooked. In the context of large language models [59],
the sampling temperature is a value between 0 and 2. Higher values, such as 0.8, produce more random outputs, while
lower values, such as 0.2, lead to more focused and deterministic outputs.

Figure 9: Screenshot of the input for the creation of TDT using Trusta in the context of AGV.

Once the specified input was prepared, Trusta efficiently generated a structured sequence of 36 nodes—23 subgoals
and 13 solutions, as shown in Figure 10. The process involved 11 decompositions, each taking about 10 seconds,
totaling less than 2 minutes. These decompositions strictly outlined the details that the top-level goal might involve.
Figure 11 illustrates the decomposition of the top-level goal: "The AGV can stop safely when encountering obstacles"
(Node 1), which was decomposed into three subgoal nodes. These subgoals collectively define the strategy for achieving
the main goal, highlighting key functions and safety measures. Specifically, these include: "The AGV’s sensors can
accurately and timely detect obstacles." (Node 2), "The AGV’s braking system can start quickly and safely upon
receiving sensor signals." (Node 3), and "The AGV’s control system can execute safety strategies, such as deceleration
or stopping, after detecting obstacles." (Node 4). Subsequent node decompositions, similar to those in Figure 11, and
the leaf node solutions are derived from higher-level nodes. Further decompositions can be found in Figures 23, 24,
and 25 in Appendix B.

The above example demonstrates the use of Trusta to generate a multi-layer TDT in one go. However, in practice,
we can ask the tool to decompose subgoals layer by layer, allowing users to adjust in real-time and create more granular
subgoals. As the decomposition progresses, there are typically two cases that indicate further decomposition may not
be necessary: (1) when the generated nodes begin to have the same meaning as their parent nodes or other existing
nodes, and (2) when experts believe the current goal node can be supported with evidence. This approach to TDT
creation better aligns with user expectations and ensures the process does not consume excessive time.

Chen, Deng, and Du Page 15 of 35

Figure 10: Screenshot of the output for the creation of TDT using Trusta in the context of AGV.

Figure 11: Top-level node decomposition: The AGV can stop safely when encountering obstacles.

5.1.2. Formal Creation
After browsing the preliminary decomposition of the TDT by Trusta, users have gained a preliminary understanding

of the factors affecting the safety of AGV braking, such as the AGV’s distance sensors, braking reaction time, and the
performance of the brakes. However, the LLM did not address the safety of the goods carried on the AGV, which
requires human intervention to add corresponding content to the TDT. The reason the LLM overlooked the goods is
that the description of the top-level goal did not involve the goods, which is implicit information about the AGV.

At this point, after user intervention with Trusta, the top-level goal is decomposed into "Able to decelerate to a
standstill before impact." and "The goods on the shelf will not slide." as shown in Figure 12.

Inevitably, AGVs moving in a warehouse may encounter obstacles ahead, such as people, goods, or other AGVs.
The moving AGV should be able to recognize these obstacles and start decelerating and stopping before a collision
occurs.

Further, we used Trusta to decompose node 2 "Able to decelerate to a standstill before impact." as shown in
Figure 13(a). "Strategy" and "Solution" references were also generated. After manual analysis, redundant information
in node 6 was deleted, keeping the other two nodes (nodes 4 and 5). After manual adjustment of the expressions,
we obtained the arguments related to braking, i.e., braking reaction time and braking process safety, as shown in
Figure 13(b).
Chen, Deng, and Du Page 16 of 35

Figure 12: Human-revised top-level goals for AGV braking safety and goods stability.

(a) LLM generate (b) Human goals adjustment

(c) Human solutions adjustment

Figure 13: Human intervention in the decomposition and refinement of braking goals and solutions for AGV safety.

After each decomposition step, we need to consider whether the existing evidence can support the decomposed
goal nodes. For nodes 4 and 5, Trusta has provided the required evidence descriptions as shown in nodes 7 and 8
of Figure 13(a). Users familiar with the AGV context can determine that the parameters (braking distance, speed,
acceleration, time) required in nodes 7 and 8 can be obtained from the AGV’s manual. Thus, we can combine actual
evidence to refine nodes 7 and 8, as shown in Figure 13(c). If relevant evidence cannot be found, further decomposition
of the goal nodes is needed until they can be supported by evidence. Sometimes, we also need to collect more evidence

Chen, Deng, and Du Page 17 of 35

to satisfy the reasoning. If evidence cannot be collected, it is likely that a system vulnerability has been discovered,
requiring system adjustments to make it safer and obtain the evidence.

With evidence and arguments, we use the evidence to infer the validity of nodes 4 and 5, ultimately inferring the
validity of node 2. This evaluation process is discussed in the next subsection. Additionally, the goods on the AGV
should remain stable and not slide. We use Trusta to decompose node 3 "The goods on the shelf will not slide." and
make manual adjustments, similar to the decomposition of node 2.
5.2. TDT Evaluation

To automatically evaluate the TDT using the constraint solver, we first need to create formal constraint expressions
for each node. However, creating formal expressions from natural language is a high-difficulty and time-consuming
task. Fortunately, the LLM can help us complete part of the task. First, the LLM generates a draft of the constraint
expression, which is then adjusted by humans. Trusta then reads the constraint information and calls the constraint
solver to provide evaluation conclusions. If each subnode can support its parent node, it gives "No Error"; otherwise,
it provides an error prompt and counterexamples. If there are errors, the human user needs to continue adjusting the
TDT (including goals, evidence, formal formulas, and even the system being evaluated) until there are no errors in the
TDT, at which point the evaluation is complete, as shown in Figure 14.

Figure 14: Flowchart of TDT evaluation using constraint solver with human intervention.

Figure 15 shows an example where manual adjustment of constraint expressions is needed. Blue nodes represent
normal nodes, checked by Trusta with no logical issues. The yellow node with ID 2 indicates that the subgoals
cannot fully support the goal, posing a logical risk. The "Error Report" dialog at the top of the image gives an error
prompt. When the variables are as follows, [𝑏𝑟𝑎𝑘𝑖𝑛𝑔_𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒 = 1∕16, 𝑟𝑎𝑡𝑒 = −2, 𝑎𝑐𝑐𝑒𝑙 = 1∕4, 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
8, 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 3], the expression 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 < 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 − 𝑟𝑎𝑡𝑒 ∗ 𝑏𝑟𝑎𝑘𝑖𝑛𝑔_𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒 of node 2
is not satisfied. At this point, we notice that node 5’s formal expression lacks an implicit condition: 𝑟𝑎𝑡𝑒 > 0. After
manually adding this condition (as shown in node 5 of Figure 16), Trusta indicates “No Error”. This completes an
iteration of automatic checking and manual adjustment, further enhancing this TDT’s safety.

After multiple iterations of the above process, the AGV automatic braking case is refined, and the updated TDT is
shown in Figure 16. The strategy details generated during node creation are now hidden to prioritize the translation of
constraint expressions in the evaluation stage. The TDT fragment shown in Figure 16 aims to prove that the AGV can
brake safely when encountering obstacles. The top node has two subtrees: the left subtree argues that the AGV will
not collide with obstacles, and the right subtree proves that the goods on the AGV will not slide. The left subtree relies
on the equations of uniformly accelerated linear motion, which are given in Table 2. The data for these parameters
can be obtained from the AGV’s reference manual. The maximum operating speed is 𝑣 = 1𝑚∕𝑠, and the maximum
deceleration is 𝑎 = 0.5𝑚∕𝑠2. The right subtree uses static friction equations for the argument. Typically, the friction
coefficient between the goods and the AGV’s top shelf is greater than 0.2.

The development of the TDT revealed some details that need careful consideration. For example, on one hand,
we should set the minimum deceleration parameter for the AGV; otherwise, collisions may occur during braking. On
the other hand, it is more important to consider the materials of the cargo packaging and the shelf. The static friction
coefficient of the corresponding materials should exceed a certain value to ensure the stability of the goods. Trusta has

Chen, Deng, and Du Page 18 of 35

Figure 15: UI display of counterexamples and manual adjustment in TDT evaluation. Each node’s white area is described
using formal formulas, constraining the solver to provide counterexamples for reasoning.

Table 2
Physical kinematic equations used in the AGV example

Equation Detail
𝑠 = 𝑣𝑡 𝑠 (displacement), 𝑣 (velocity), 𝑡 (time)

𝑣2 = 2𝑎𝑥 𝑣 (velocity), 𝑎 (acceleration), 𝑥 (displacement)
𝐹𝑁 = 𝑚𝑔 𝐹𝑁 (normal force), 𝑚 (mass), 𝑔 (acceleration of gravity)
𝐹 = 𝑢𝐹𝑁 𝐹 (sliding friction force), 𝑢 (frictional coefficient)

been very helpful in adjusting these parameters. The construction and automatic evaluation of the TDT in this case
study have strengthened our confidence in the safe operation of the AGV.

6. Tool Evaluation
This section evaluates two primary functions of Trusta: 1) Claim Decomposition, and 2) Formalizing and Solving

Constraints. Claim decomposition is assessed both qualitatively and quantitatively through human experiments of
assurance cases development. Formalizing and solving constraints is qualitatively evaluated through a case study.

Chen, Deng, and Du Page 19 of 35

Figure 16: Final TDT for the AGV’s automatic braking case: Illustration of the refined structure after adjustments,
emphasizing the translation result of constraint expressions in the evaluation stage.

6.1. Evaluation of Claim Decomposition
6.1.1. Experimental Design
Objectives and Motivation This study evaluates Trusta’s impact on ease of use, learning curve, training require-
ments, effort reduction, and issue discovery within safety engineering. We aim to demonstrate how Trusta, by
integrating formal methods with large language models, streamlines the development and verification of assurance
cases.
Participant Selection Participants were selected to represent Trusta’s diverse user base, including safety engineering
experts, software developers, and engineering graduate students. Table 3 details the participant demographics.

Table 3
Participant Demographics and Distribution for Trusta Evaluation Study

Participant Group Description Total
Number

Without
Trusta

With
Trusta

Safety Engineering Experts Professionals with extensive experience in safety
engineering

20 10 10

Software Developers Developers experienced in safety-critical applications 20 10 10
Graduate Students Individuals with knowledge of formal methods but

limited practical experience
20 10 10

Training Session Prior to commencing the experimental tasks, participants underwent a training session designed
to equip them with the necessary skills to utilize Trusta effectively. This session included a one-hour presentation on
Trusta’s functionalities followed by a Q&A segment, ensuring all participants were proficient in using the tool.

Chen, Deng, and Du Page 20 of 35

Table 4
Comparison of semantic similarity between baseline assurance cases and fully automated Trusta-generated assurance case
fragments. In the 𝑥-𝑦 format, the left number 𝑥 indicates the similarity between the model-generated assurance case
fragments and the baseline, while the right number 𝑦 represents 𝑥 as a percentage of 𝛼 (S2S column). Specifically, 𝑦 > 80
serves as the target for the human-based assurance case fragment reconstruction task. The relationship between 𝑥 and 𝑦
is given by the formula: 𝑦 = 𝑥

S2S
× 100, where 𝑦 is the percentage similarity, and S2S is the value from the S2S column.

ID Domain GPT-3.5 GPT-4 PaLM 2 S2S ID Domain GPT-3.5 GPT-4 PaLM 2 S2S

1 UAV 6-8 22-26 35-42 85 32 Automobile 26-30 0-0 21-24 89
2 UAV 24-31 15-19 13-17 79 33 Automobile 1-2 5-7 7-9 83
3 UAV 0-0 11-14 32-39 83 34 Automobile 37-46 35-44 38-47 81
4 UAV 34-46 26-35 45-60 75 35 Automobile 20-30 41-62 36-54 67
5 UAV 15-25 23-39 41-69 60 36 Automobile 35-52 0-0 18-27 68
6 AutoRobot 46-80 48-83 25-44 58 37 Automobile 12-27 21-46 6-14 46
7 AutoRobot 33-43 37-49 60-78 77 38 Automobile 36-47 19-25 35-45 78
8 AutoRobot 10-24 11-26 0-0 43 39 Automobile 21-36 40-68 27-46 59
9 AutoRobot 21-31 0-0 33-49 68 40 Automobile 18-30 37-60 52-84 62

10 AutoRobot 32-46 38-55 53-76 70 41 Automobile 41-57 36-50 48-67 72
11 CubeSat 51-59 20-23 25-29 87 42 Pacemaker 0-0 0-0 13-17 79
12 CubeSat 2-4 3-5 8-13 63 43 Pacemaker 25-29 36-41 47-54 88
13 CubeSat 24-28 33-39 33-39 86 44 Pacemaker 23-35 15-23 56-84 67
14 CubeSat 14-16 31-36 32-37 88 45 Pacemaker 8-10 32-40 20-25 80
15 CubeSat 14-19 20-27 16-22 75 46 Pacemaker 37-47 56-71 25-32 79
16 CyberSecurity 32-39 15-18 19-23 84 47 Pacemaker 25-27 42-44 25-27 96
17 CyberSecurity 47-64 51-69 79-107 74 48 Pacemaker 33-48 42-60 20-29 70
18 CyberSecurity 40-52 37-48 86-111 78 49 Pacemaker 36-48 30-40 30-40 76
19 CyberSecurity 47-50 48-52 62-66 94 50 Pacemaker 44-71 32-52 31-50 62
20 CyberSecurity 29-44 29-44 22-34 66 51 Pacemaker 44-103 37-87 47-110 43
21 CyberSecurity 14-27 30-58 9-18 52 52 Aircraft 29-45 41-64 27-42 65
22 CyberSecurity 32-73 9-21 40-91 44 53 Aircraft 35-57 11-18 51-83 62
23 CyberSecurity 22-50 14-32 25-57 44 54 Aircraft 29-38 52-67 40-52 78
24 CyberSecurity 43-55 36-46 29-37 79 55 Aircraft 24-34 12-17 45-63 72
25 CyberSecurity 47-79 16-27 47-79 60 56 Aircraft 31-56 29-52 21-38 56
26 CyberSecurity 20-63 18-57 38-119 32 57 Aircraft 29-32 26-29 33-36 92
27 CyberSecurity 11-17 32-49 18-28 66 58 AGV 0-0 8-10 23-27 86
28 CyberSecurity 53-87 25-41 51-84 61 59 AGV 27-30 27-30 24-27 91
29 Automobile 15-20 1-2 0-0 78 60 AGV 22-27 20-25 59-72 82
30 Automobile 6-10 15-25 12-20 62 61 AGV 59-61 72-74 74-76 98
31 Automobile 22-46 6-13 37-78 48 AVERAGE 26-[39] 25-[37] 33-[48] 71

Experimental Tasks Participants were tasked with reconstructing three randomly selected assurance case snippets
from a pool of 57 options. These snippets served as the baseline for similarity comparisons. These snippets were
collected from the following papers covering seven domains: UAV (Unmanned Aerial Vehicle) [26], AutoRobot [31],
CubeSat [25], CyberSecurity [42], Automobile [30], Pacemaker [34], and Aircraft [24].

While there are numerous methods for determining semantic similarity [60], we employ Baidu’s commercial short
text similarity service [61], which is based on the ERNIE pre-trained language model [62]. In current similarity
algorithms, only sentences that are completely identical, where every word and punctuation mark matches, are assigned
a similarity of 100% (omitting the “%” sign for later references). Mathematically, let the baseline sentence be 𝐵. Then,
we have

⎧

⎪

⎨

⎪

⎩

Sim(

𝐵,𝐵
)

= 100,
Sim(

𝐵,S2S(𝐵)) = 𝛼 < 100,
Mean(𝐵) = Mean(S2S(𝐵)),

where S2S(𝐵) is the sentence obtained by applying a Sequence-to-Sequence (S2S) transformation to 𝐵. Since
neither humans nor LLMs can precisely duplicate 𝐵 word-for-word (and punctuation-for-punctuation) to achieve
Sim(𝐵,𝐵) = 100, we instead employ the S2S approach to generate a sentence with the same meaning Mean(𝐵) =
Mean(S2S(𝐵)) but a lower similarity score Sim(𝐵,S2S(𝐵)) = 𝛼 < 100. We then use 𝛼, rather than 100, as the target
similarity for reconstructing assurance case snippets.
Chen, Deng, and Du Page 21 of 35

Specifically, we employ a two-step translation process to generate S2S(𝐵). First, we use the Baidu translation
API [63] to translate the English sentence 𝐵 into a Chinese sentence 𝐵′. Then, we translate 𝐵′ back into English using
the Youdao translation API [64], resulting in 𝐵′′. This ensures that 𝐵′′ ≠ 𝐵, as 𝐵′ and 𝐵′′ are likely to differ due to
the use of two distinct translation systems.

Participants performed these tasks using both traditional methods (Trusta without LLMs—a graphical assurance
case editor) and Trusta enhanced with LLMs. The tasks were considered complete when participants achieved at
least 80% similarity to the S2S similarity. During the experiment, users edit node content within Trusta, and the tool
recalculates similarity scores until they reach the desired threshold. The study focused on comparing the efficiency and
quality of traditional methods against those facilitated by Trusta.
Data Collection Methods Quantitative data on task completion times and identified issues were recorded, alongside
qualitative data from post-experiment surveys on Trusta’s usability and user satisfaction. This mixed-method approach
aims to provide a comprehensive assessment of Trusta’s benefits in safety engineering workflows.
6.1.2. Experimental Results

Figure 17: Comparative analysis of similarity between baseline assurance cases and Trusta-generated assurance cases across
different domains. The domains examined include UAV (Unmanned Aerial Vehicle) [26], AutoRobot [31], CubeSat [25],
CyberSecurity [42], Automobile [30], Pacemaker [34], and Aircraft [24]. The LLMs applied were ChatGPT-3.5, ChatGPT-4
and PaLM 2. Similarity measurement was performed using Baidu’s commercial text similarity service [61].

First, our experiments explored the effectiveness of Trusta and cutting-edge language models, such as ChatGPT-3.5,
ChatGPT-4, and PaLM 2, in generating assurance case fragments across seven domains, including UAVs, AutoRobot,
and CubeSat, among others. We quantified the semantic similarity between baseline assurance cases and Trusta-
generated without human intervention, as shown in Table 4. Each row corresponds to a different assurance case
fragment from a particular domain. The values in the cells provide the similarities calculated for each model (GPT-
3.5, GPT-4, PaLM 2) for that specific fragment. The final S2S column shows the target percentage of similarity for
human-based assurance case reconstruction. In the 𝑥-𝑦 format, the number 𝑥 stands for the similarity between the
model-generated assurance case fragments and the baseline, and the number 𝑦 represents 𝑥 as a percentage of 𝛼 in the
S2S column.

We found an average similarity range of 30%-50% (Figure 17), with instances exceeding 50% of similarity in 12 out
of 57 fragments, and a maximum similarity of 86%. These results highlight the LLMs’ potential in producing accurate
assurance case content. Although most subgoals initially generated by Trusta using general-purpose LLMs exhibit less
than 50% similarity compared to the baseline data, Trusta still provides two key benefits: 1) It guides the direction
Chen, Deng, and Du Page 22 of 35

for subsequent human intervention. 2) It advances approximately 40% in the proposed decomposition direction, as
illustrated in Figure 18. Figure 19 presents examples of assurance case fragments created by different models.

Figure 18: Trusta’s role in guiding human intervention and enhancing decomposition progress.

(a) Baseline (b) S2S generated, similarity 58.

(c) GPT-3.5 generated, similarity 46-80. (d) PaLM 2 generated, similarity 25-44.

(e) GPT-4 generated, similarity 48-83.

Figure 19: Examples of assurance case fragments generated by different models (ID=6 in Table 4).

Based on the data in Table 4, we present a heatmap of the automatic success rates across different domain-model
combinations (Figure 20), which visually demonstrates the percentage of assurance cases generated by each model with
𝑦 > 80 in various domains. Analysis of the success rate heatmap reveals significant performance differences across
Chen, Deng, and Du Page 23 of 35

models in different domains. PaLM 2 shows a notable advantage in complex system validation scenarios, with a success
rate of 38.5% in the CyberSecurity domain, far outperforming other models. It also maintains a relative advantage in the
Medical Device (Pacemaker, 20%) and Avionics (Aircraft, 16.7%) domains, while GPT-4 only achieves a near-optimal
performance in the Autonomous Driving (AutoRobot, 20%) domain. Notably, 75% of domain-model combinations
have an automatic success rate of less than 10%, indicating that automated generation technology still requires human
verification in most safety-critical scenarios. This distribution suggests a correlation between model performance and
domain complexity, implying that model selection should be tailored to the specific characteristics of the domain.

Figure 20: Heatmap of automatic success rates across domain-model combinations.

Figure 21: Experimental results demonstrate the impact of using LLMs in Trusta on task completion time, task accuracy,
and average similarity scores. The results include those from three LLMs: ChatGPT-3.5, ChatGPT-4, and PaLM 2.

Then, human intervention further refined the initial assurance cases generated by Trusta with LLMs. Human
improvements fall into three categories: adding content, modifying content, and deleting content. We have provided
examples of human improvements in the AGV case to help readers better understand this step, as shown in Table 5.
Assurance cases are represented in Prolog format as “C :- C1, C2.” with similarity provided at the end.

Chen, Deng, and Du Page 24 of 35

Table 5
Human refinements in assurance case automatic generation using Trusta.

Baseline Trusta automatic generation Human adjustment results Human improvement
"The automatic guided trolley
can stop safely when encounter-
ing obstacles" :- "Able to decel-
erate to a standstill before im-
pact", "The goods on the shelf
will not slide".

"The automatic guided trolley
can stop safely when encoun-
tering obstacles" :- "The sen-
sors detecting the presence of
an obstacle are reliable", "The
collision detection algorithm can
process accurate detection data
to send out prompt and ac-
curate movement commands to
the trolley". (23-27)

"The automatic guided trolley
can stop safely when encounter-
ing obstacles" :- "The sensors
can detect obstacles, allowing
the trolley to slow to a standstill
before impact", "The goods on
the shelf remain stable". (70-
81)

Considering the safety
of the goods on the
shelf. (adding con-
tent)

"Able to decelerate to a stand-
still before impact" :- "The trol-
ley can start braking at the
appropriate time", "The perfor-
mance of the trolley brake mod-
ule meets the requirements".

"Able to decelerate to a stand-
still before impact" :- "The brak-
ing system is effective and re-
liable", "Sensors accurately de-
tect obstacles and measure dis-
tance", "Control algorithms en-
sure timely and appropriate de-
celeration". (27-30)

"Able to decelerate to a stand-
still before impact" :- "The trol-
ley ensure timely and appropri-
ate deceleration", "The braking
module performance meets the
requirements". (71-79)

The second and third
goals are summarized.
(deleting content)

"The goods on the shelf will
not slide" :- "The friction force
generated by the goods during
braking is less than 0.5 N", "The
friction force that the shelf can
give to the goods is greater than
0.5 N".

"The goods on the shelf will
not slide" :- "The coefficient of
friction between the goods and
the shelf is greater than or equal
to 0.5.". (59-72)

"The goods on the shelf will
not slide" :- "The friction force
generated by the goods during
braking is greater than the fric-
tion force that the shelf can give
to the goods.". (92-112)

The direct effect of
the friction coefficient
is refined. (modifying
content)

"The friction force that the shelf
can give to the goods is greater
than 0.5 N" :- "The friction
coefficient between goods and
shelves is greater than 0.2",
"The pressure of goods on the
shelf is 9.8 N", "Friction = fric-
tion coefficient * pressure".

"The friction force that the shelf
can give to the goods is greater
than 0.5 N" :- "The coefficient
of friction between the shelf and
the goods is greater than 0.5.",
"The normal force acting on the
goods is greater than 1 N.". (74-
76)

"The friction force that the shelf
can give to the goods is greater
than 0.5 N" :- "The coefficient
of friction between the shelf and
the goods is greater than 0.5",
"The pressure on the goods is
greater than 1 N". (87-89)

Only the expression
has been changed.
(modifying content)

Figure 22: User satisfaction levels with
Trusta usability.

This approach assisted by LLM significantly reduced task comple-
tion times across various participant groups, demonstrating Trusta’s
effectiveness in streamlining safety engineering processes (Figure 21).
Furthermore, users of Trusta with LLMs not only completed more
assurance case construction tasks but also improved the average sim-
ilarity of those that remained incomplete. This underscores the tool’s
ability to enhance both precision and quality. Notably, the performance
of the student group using Trusta with LLMs approached that of the
expert group working without LLM support.

User satisfaction with Trusta was high (Figure 22), though feed-
back highlighted areas for improvement, including adaptive scaling,
GSN diagram aesthetics, and the need for progress indicators. These
insights are crucial for Trusta’s future development, emphasizing the
importance of user-centric design for the tool.
6.1.3. Findings

Notably, Trusta’s impact was most pronounced among Engineering Graduate Students, elevating their performance
closer to that of Safety Engineering Experts. This suggests Trusta’s potential to bridge expertise gaps, particularly
benefiting those with less experience. For Safety Engineering Experts, Trusta provided valuable support by improving
efficiency and enhancing capability. Software developers experienced intermediate benefits, reflecting Trusta’s broad

Chen, Deng, and Du Page 25 of 35

applicability. Furthermore, although the content generated by LLMs often requires manual adjustments, using these
generated materials as a starting point is far better than beginning from scratch, greatly reducing the mental burden on
users.
6.2. Evaluation of Formalizing and Solving Constraints
6.2.1. Experimental Design
Objective Evaluate the effectiveness of the Trusta tool in translating natural language TDT node descriptions into
formal constraint expressions.
Experimental Subjects Node contents from the AGV vehicle case study in Section 5, involving natural language
descriptions of physical concepts like pressure, gravity, mass, friction, force, and acceleration.
Procedure

1. Data Collection: Gather for each node: 1) The initial formal expressions generated by Trusta. 2) The manually
adjusted expressions.

2. Manual Review: Experts review and record the data before and after manual adjustments for each node using
the evaluation metrics (Logical and Variable).

3. Comparison and Analysis: Compare Trusta’s expressions with the manually corrected versions. Analyze
differences in logical correctness and variable naming accuracy.

Evaluation Metrics

• Logical Correctness: Whether the expression accurately reflects the relationships described in the original
natural language.

• Variable Naming Accuracy: Whether variable names are appropriate and consistent.
6.2.2. Experimental Results

Table 6 summarizes the node translations depicted in Figure 16, achieved by using Trusta with LLM (GPT-3.5)
to convert natural language into constraint expressions. Human-adjusted expressions are provided for comparison.
The check marks in the “Logical” column indicate that the LLM’s translations are logically consistent with human
adjustment results. The check marks in the “Variable” column show that the variable names are contextually coherent
and suitable for direct input into constraint solvers.

The manual adjustment of formal statements includes “variable adjustment” and “logical adjustment”. This step
verifies that the description of each node aligns with its formal expression and ensures that, after running the solver
for evaluation, the formal relationship between each node and its child nodes is logical and consistent.

Table 7 presents five typical examples from Table 6, along with suggested human adjustments. For the last two
types, the natural language descriptions lack explicit constraint information, leading to translation failures by the
LLM. In such cases, Boolean values can serve as formal representations for obvious or abstract claims, or manual
modifications are necessary to ensure correct solver execution.
6.2.3. Findings

The study underscored the importance of careful parameter tuning, such as setting minimum deceleration values
for AGVs to prevent collisions and considering the materials of goods and shelves to ensure stability. Trusta proved
instrumental in this tuning process, enhancing our confidence in the safe operation of AGVs. During the generation of
formal statements, safety engineers often lack familiarity with the specific syntax of formal expressions. When Trusta
generates a draft, engineers can then make necessary modifications. This not only lowers the barrier for formalizing
assurance cases but also improves efficiency. Trusta can also attempt to solve existing constraints, and the generated
error reports can guide engineers in modifying the formal content or optimizing deficiencies in the assurance cases.

Chen, Deng, and Du Page 26 of 35

Ta
bl

e
6

Su
m

m
ar

y
of

no
de

tr
an

sl
at

io
ns

:
co

m
pa

rin
g

au
to

m
at

ed
an

d
m

an
ua

la
pp

ro
ac

he
s

in
co

ns
tr

ai
nt

ex
pr

es
si
on

ge
ne

ra
ti
on

us
in

g
G

P
T

-3
.5

.

N
o.

N
at

ur
al

la
ng

ua
ge

LL
M

tr
an

sl
at

io
n

Lo
gi

ca
l

V
ar

ia
bl

e
H

um
an

ad
ju

st
m

en
t

re
su

lt
s

1
P
re

ss
ur

e
of

ob
je

ct
on

ho
riz

on
ta

l
pl

an
e

=
m

as
s

*
gr

av
it
at

io
na

la
cc

el
er

at
io

n
𝑝𝑟
𝑒𝑠
𝑠𝑢
𝑟𝑒

=
=
𝑚
𝑎𝑠
𝑠
∗
𝑔𝑟
𝑎𝑣

𝑖𝑡𝑦
✓

✓
𝑝𝑟
𝑒𝑠
𝑠𝑢
𝑟𝑒

=
=
𝑚
𝑎𝑠
𝑠
∗
𝑔𝑟
𝑎𝑣

𝑖𝑡𝑦

2
T

he
ac

ce
le

ra
ti
on

of
gr

av
ity

is
9.

8
N

/k
g

𝑔𝑟
𝑎𝑣

𝑖𝑡𝑦
=
=
9.
8

✓
✓

𝑔𝑟
𝑎𝑣

𝑖𝑡𝑦
=
=
9.
8

3
C
ar

go
m

as
s

is
1k

g
𝑐𝑎
𝑟𝑔
𝑜_

𝑚
𝑎𝑠
𝑠
=
=
1

✓
𝑚
𝑎𝑠
𝑠
=
=
1

4
T

he
pr

es
su

re
of

go
od

s
on

th
e

sh
el

f
is

9.
8

N
𝑝𝑟
𝑒𝑠
𝑠𝑢
𝑟𝑒

=
=
9.
8

✓
✓

𝑝𝑟
𝑒𝑠
𝑠𝑢
𝑟𝑒

=
=
9.
8

5
Fr

ic
ti
on

=
fr
ic

ti
on

co
effi

ci
en

t
*

pr
es

su
re

𝑓
𝑟𝑖
𝑐𝑡
𝑖𝑜
𝑛
=
=
𝑓
𝑟𝑖
𝑐𝑡
𝑖𝑜
𝑛_

𝑐𝑜
𝑒𝑓

𝑓
∗
𝑝𝑟
𝑒𝑠
𝑠𝑢
𝑟𝑒

✓
𝑠ℎ

𝑒𝑙
𝑓
_
𝑓
𝑟𝑖
𝑐𝑡
𝑖𝑜
𝑛_

𝑓
𝑜𝑟
𝑐𝑒

=
=

𝑓
𝑟𝑖
𝑐𝑡
𝑖𝑜
𝑛_

𝑐𝑜
𝑒𝑓

𝑓
𝑖𝑐
𝑖𝑒
𝑛𝑡

∗
𝑝𝑟
𝑒𝑠
𝑠𝑢
𝑟𝑒

6
T

he
fr
ic

ti
on

co
effi

ci
en

t
be

tw
ee

n
go

od
s

an
d

sh
el

ve
s

is
gr

ea
te

r
th

an
0.

2
𝑓
𝑟𝑖
𝑐𝑡
𝑖𝑜
𝑛_

𝑐𝑜
𝑒𝑓

𝑓
𝑖𝑐
𝑖𝑒
𝑛𝑡

>
0.
2

✓
✓

𝑓
𝑟𝑖
𝑐𝑡
𝑖𝑜
𝑛_

𝑐𝑜
𝑒𝑓

𝑓
𝑖𝑐
𝑖𝑒
𝑛𝑡

>
0.
2

7
T

he
fr
ic

ti
on

fo
rc

e
th

at
th

e
sh

el
f

ca
n

gi
ve

to
th

e
go

od
s

is
gr

ea
te

r
th

an
0.

5
N

𝑠ℎ
𝑒𝑙
𝑓
_
𝑓
𝑟𝑖
𝑐𝑡
𝑖𝑜
𝑛_

𝑓
𝑜𝑟
𝑐𝑒

>
0.
5

✓
✓

𝑠ℎ
𝑒𝑙
𝑓
_
𝑓
𝑟𝑖
𝑐𝑡
𝑖𝑜
𝑛_

𝑓
𝑜𝑟
𝑐𝑒

>
0.
5

8
E
xt

er
na

lf
or

ce
on

ob
je

ct
=

m
as

s
*

ac
ce

le
ra

-
ti
on

𝑒𝑥
𝑡_

𝑓
𝑜𝑟
𝑐𝑒

_
𝑜𝑏
𝑗

=
=

𝑚
𝑎𝑠
𝑠_

𝑜𝑏
𝑗

∗
𝑎𝑐
𝑐𝑒
𝑙_

𝑜𝑏
𝑗

✓
𝑒𝑥
𝑡_

𝑓
𝑜𝑟
𝑐𝑒

=
𝑚
𝑎𝑠
𝑠
∗
𝑎𝑐
𝑐𝑒
𝑙

9
T

he
m

ax
im

um
ac

ce
le

ra
ti
on

of
th

e
tr

ol
le

y
is

0.
5𝑚

∕𝑠
2

𝑡𝑟
𝑜𝑙
𝑙𝑒
𝑦_

𝑎𝑐
𝑐𝑒
𝑙=

=
0.
5

𝑎𝑐
𝑐𝑒
𝑙<

=
0.
5

10
T

he
fr
ic

ti
on

fo
rc

e
ge

ne
ra

te
d

by
th

e
go

od
s

du
rin

g
br

ak
in

g
is

le
ss

th
an

0.
5

N
𝑓
𝑟𝑖
𝑐𝑡
𝑖𝑜
𝑛_

𝑓
𝑜𝑟
𝑐𝑒

<
0.
5

𝑒𝑥
𝑡_

𝑓
𝑜𝑟
𝑐𝑒

<
=
0.
5

11
T

he
go

od
s

on
th

e
sh

el
f
w

ill
no

t
sl
id

e
𝑒𝑥
𝑡_

𝑓
𝑜𝑟
𝑐𝑒

<
=
𝑠ℎ

𝑒𝑙
𝑓
_
𝑓
𝑟𝑖
𝑐𝑡
𝑖𝑜
𝑛_

𝑓
𝑜𝑟
𝑐𝑒

✓
✓

𝑒𝑥
𝑡_

𝑓
𝑜𝑟
𝑐𝑒

<
𝑠ℎ

𝑒𝑙
𝑓
_
𝑓
𝑟𝑖
𝑐𝑡
𝑖𝑜
𝑛_

𝑓
𝑜𝑟
𝑐𝑒

12
R
at

e
*

R
at

e
=

2
*

A
cc

el
er

at
io

n
*

D
is
ta

nc
e

𝑟𝑎
𝑡𝑒

∗
𝑟𝑎
𝑡𝑒

=
=
2
∗
𝑎𝑐
𝑐𝑒
𝑙∗

𝑑𝑖
𝑠𝑡
𝑎𝑛
𝑐𝑒

✓
✓

𝑟𝑎
𝑡𝑒

∗
𝑟𝑎
𝑡𝑒

=
=
2
∗
𝑎𝑐
𝑐𝑒
𝑙∗

𝑑𝑖
𝑠𝑡
𝑎𝑛
𝑐𝑒

13
T

he
m

in
im

um
ac

ce
le

ra
ti
on

of
th

e
tr

ol
le

y
is

0.
18

𝑚
∕𝑠

2
𝑡𝑟
𝑜𝑙
𝑙𝑒
𝑦_

𝑎𝑐
𝑐𝑒
𝑙>

=
0.
18

✓
𝑎𝑐
𝑐𝑒
𝑙>

=
0.
18

14
T

he
m

ax
im

um
ru

nn
in

g
sp

ee
d

of
th

e
tr

ol
le

y
is

1
m

/s
𝑡𝑟
𝑜𝑙
𝑙𝑒
𝑦_

𝑠𝑝
𝑒𝑒
𝑑
<
=
1

✓
𝑟𝑎
𝑡𝑒

<
=
1

15
T

he
pe

rf
or

m
an

ce
of

th
e

tr
ol

le
y

br
ak

e
m

od
ul

e
m

ee
ts

th
e

re
qu

ire
m

en
ts

𝑟𝑎
𝑡𝑒

<
=

1
𝑎𝑛
𝑑
𝑎𝑐
𝑐𝑒
𝑙
>
=

0.
18

𝑎𝑛
𝑑
𝑟𝑎
𝑡𝑒

∗
𝑑𝑖
𝑠𝑡
𝑎𝑛
𝑐𝑒
∕(
2
∗
𝑎𝑐
𝑐𝑒
𝑙)
<
=
0.
5

0
<

𝑟𝑎
𝑡𝑒
𝑟𝑎
𝑡𝑒

<
=

1;
0.
18

<
=

𝑎𝑐
𝑐𝑒
𝑙;
𝑎𝑐
𝑐𝑒
𝑙
<
=

0.
5;
𝑟𝑎
𝑡𝑒

∗
𝑟𝑎
𝑡𝑒

=
2
∗
𝑎𝑐
𝑐𝑒
𝑙∗

𝑑𝑖
𝑠𝑡
𝑎𝑛
𝑐𝑒

16
B

ra
ki

ng
re

ac
ti
on

ti
m

e
is

le
ss

th
an

0.
1

s
𝑏𝑟
𝑎𝑘

𝑖𝑛
𝑔_

𝑟𝑒
𝑎𝑐
𝑡𝑖𝑜

𝑛_
𝑡𝑖𝑚

𝑒
<
0.
1

✓
0

<
br

ak
in

g_
re

ac
ti
on

_
ti
m

e;
br

ak
in

g_
re

ac
ti
on

_
ti
m

e
<

0.
1

17
O

bs
ta

cl
e

de
te

ct
io

n
di

st
an

ce
is

3m
𝑜𝑏
𝑠𝑡
𝑎𝑐
𝑙𝑒

_
𝑑𝑖
𝑠𝑡
𝑎𝑛
𝑐𝑒

=
=
3

✓
✓

𝑜𝑏
𝑠𝑡
𝑎𝑐
𝑙𝑒

_
𝑑𝑖
𝑠𝑡
𝑎𝑛
𝑐𝑒

=
=
3

18
T

he
tr

ol
le

y
ca

n
st

ar
t
br

ak
in

g
at

th
e

ap
pr

op
ri-

at
e

ti
m

e
𝑡𝑟
𝑜𝑙
𝑙𝑒
𝑦

=
=

𝑠𝑡
𝑎𝑟
𝑡_

𝑏𝑟
𝑎𝑘

𝑖𝑛
𝑔

<
𝑎𝑝
𝑝𝑟
𝑜𝑝

_
𝑡𝑖𝑚

𝑒
ob

st
ac

le
_

di
st

an
ce

=
3;

0
<

br
ak

-
in

g_
re

ac
ti
on

_
ti
m

e;
br

ak
in

g_
re

ac
ti
on

_
ti
m

e
<

0.
1

19
A

bl
e

to
de

ce
le

ra
te

to
a

st
an

ds
ti
ll

be
fo

re
im

pa
ct

𝑓
𝑖𝑛
𝑎𝑙

_
𝑣𝑒
𝑙𝑜
𝑐𝑖
𝑡𝑦

=
=

0
𝑎𝑛
𝑑
𝑑𝑒

𝑐𝑒
𝑙𝑒
𝑟𝑎
𝑡𝑖𝑜

𝑛_
𝑡𝑖𝑚

𝑒
<
𝑖𝑚

𝑝𝑎
𝑐𝑡

_
𝑡𝑖𝑚

𝑒
𝑑𝑖
𝑠𝑡
𝑎𝑛
𝑐𝑒

<
𝑜𝑏
𝑠𝑡
𝑎𝑐
𝑙𝑒

_
𝑑𝑖
𝑠𝑡
𝑎𝑛
𝑐𝑒

−
𝑟𝑎
𝑡𝑒

∗
𝑏𝑟
𝑎𝑘

𝑖𝑛
𝑔_

𝑟𝑒
𝑎𝑐
𝑡𝑖𝑜

𝑛_
𝑡𝑖𝑚

𝑒
20

T
he

au
to

m
at

ic
gu

id
ed

tr
ol

le
y

ca
n

st
op

sa
fe

ly
w

he
n

en
co

un
te

rin
g

ob
st

ac
le

s
𝑡𝑟
𝑜𝑙
𝑙𝑒
𝑦_

𝑚
𝑎𝑠
𝑠
∗
𝑡𝑟
𝑜𝑙
𝑙𝑒
𝑦_

𝑎𝑐
𝑐𝑒
𝑙𝑒
𝑟𝑎
𝑡𝑖𝑜

𝑛
=
=

𝑒𝑥
𝑡_

𝑓
𝑜𝑟
𝑐𝑒

+
𝑠ℎ

𝑒𝑙
𝑓
_
𝑓
𝑟𝑖
𝑐𝑡
𝑖𝑜
𝑛_

𝑓
𝑜𝑟
𝑐𝑒

Chen, Deng, and Du Page 27 of 35

Table 7
Representative examples from node translations using GPT-3.5.

Natural Language Statements (NL), LLM Translations, and Human
Adjustments

Check Suggestion

NL: The friction coefficient between goods and shelves is greater than 0.2
LLM: 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛_𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 > 0.2
Human: 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛_𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 > 0.2

Logical: ✓
Variable: ✓ No human adjustment re-

quired.

NL: Cargo mass is 1kg
LLM: 𝑐𝑎𝑟𝑔𝑜_𝑚𝑎𝑠𝑠 == 1
Human: 𝑚𝑎𝑠𝑠 == 1

Logical: ✓
Variable: Variable name needs hu-

man adjustment.

NL: Braking reaction time is less than 0.1 s
LLM: 𝑏𝑟𝑎𝑘𝑖𝑛𝑔_𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒 < 0.1
Human: 0 < 𝑏𝑟𝑎𝑘𝑖𝑛𝑔_𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒; 𝑏𝑟𝑎𝑘𝑖𝑛𝑔_𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒 < 0.1

Logical:
Variable: ✓ The logic needs human

adjustment, or the nat-
ural language description
is inaccurate and requires
correction.

NL: Able to decelerate to a standstill before impact
LLM: 𝑓𝑖𝑛𝑎𝑙_𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 == 0 𝑎𝑛𝑑 𝑑𝑒𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒 < 𝑖𝑚𝑝𝑎𝑐𝑡_𝑡𝑖𝑚𝑒
Human: 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 < 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 − 𝑟𝑎𝑡𝑒 ∗ 𝑏𝑟𝑎𝑘𝑖𝑛𝑔_𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒

Logical:
Variable: The natural language de-

scription is too abstract
and requires manual cre-
ation of the formal ex-
pression.

NL: The automatic guided trolley can stop safely when encountering
obstacles
LLM: 𝑡𝑟𝑜𝑙𝑙𝑒𝑦_𝑚𝑎𝑠𝑠 ∗ 𝑡𝑟𝑜𝑙𝑙𝑒𝑦_𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 == 𝑒𝑥𝑡_𝑓𝑜𝑟𝑐𝑒 +
𝑠ℎ𝑒𝑙𝑓_𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛_𝑓𝑜𝑟𝑐𝑒
Human:

Logical:
Variable: Cannot be precisely rep-

resented with formal con-
straints; use Boolean val-
ues to indicate correct-
ness vaguely.

6.3. Threats to Validation
Although LLM-generated content can assist in creating and verifying assurance cases, several factors may affect

the validity of our findings:
Hallucination in LLM-Generated Content LLMs may produce text that appears coherent but is factually incorrect,
known as “hallucination.” We mitigate this by verifying LLM-generated constraint expressions using a solver, ensuring
erroneous or contradictory statements are identified before integrating them into assurance cases.
Limited Scope of Domains and Participants We evaluated our approach using a small set of domains and
participants (safety engineering experts, software developers, and graduate students). Future studies involving a broader
range of domains (e.g., medical devices, autonomous vehicles) and additional stakeholders (e.g., product managers,
system testers) would provide more comprehensive insights.
LLM Integration and Adaptability Trusta currently supports ChatGPT-3.5, ChatGPT-4, and PaLM 2, but its
modular design allows integration with other or newer LLMs, including domain-specific ones. As LLM technologies
evolve, our findings may change accordingly.
Potential Overlooked Threats Despite quantitative comparisons (Table 4) and constraint-based verification, further
threats may remain, such as biases in training data, variations in participants’ domain expertise, or unanticipated
limitations when scaling to more complex assurance cases. Addressing these in future work will help enhance the
robustness of our approach.

Chen, Deng, and Du Page 28 of 35

7. Related Work
Several assurance case editors have been developed to support GSN [65–69]. They facilitate the development

and maintenance of assurance cases. Some of them offer assurance case patterns for users to reuse existing assurance
cases [66, 69]. Luo et al. [70] provided an excellent survey of assurance case tools and summarized a systematic process
of assurance case assessment. They also developed a tool to facilitate human evaluation. Chowdhury et al. [71] proposed
a set of rules that semi-formally define the structure and content of assurance cases. These rules guide the work of
assurance cases developers and reviewers. Assurance cases developers are instructed to use a more rigorous approach
to their arguments. External reviewers have a basic checklist that guides them in assessing the rigor of arguments.
Maksimov et al. [72] surveyed ten assurance case tools with evaluation capabilities. These tools can examine both the
structure and content of assurance cases. Structural checks include structural constraints, correctness, integrity checks,
and user queries. Content checks include argument evaluation, evidence evaluation, evaluation tracking, evaluation
report, and evaluation interaction. Different tools utilize different approaches for content checks such as type checking,
Bayesian belief networks and Dempster-Shafer Theory.

Recent research has focused on integrating formal methods with assurance case development. The integration of
formal proof into unified assurance cases using Isabelle/SACM demonstrates how formal methods can enhance the
rigor and traceability of assurance cases [73]. The semantic analysis of assurance cases using s(CASP) shows how
logical constraints can improve the consistency and integrity of assurance arguments [74]. The ForeMoSt approach
leverages Lean theorem proving to ensure the correctness of safety arguments, facilitating the creation of rigorous and
verifiable assurance cases [75]. The inspection rover case study illustrates how integrating formal verification with
assurance can improve the reliability of both system-level and component-level properties [31]. Similar to Trusta,
Resolute [76] is inspired by logic programming and accompanies claims with user-defined logical rules for formal
analysis; however, it does not incorporate SMT solvers.

Trusta represents a significant advancement by combining assurance cases with LLMs. This integration automates
the extraction and interpretation of formal constraints from natural language texts and facilitates the decomposition of
claims into more easily provable sub-claims. Trusta’s real-world application has demonstrated its ability to uncover
nuanced issues often overlooked in manual inspections, thereby improving quality, increasing efficiency, and reducing
the burden on safety engineers, thus enhancing the overall assurance case development workflow.

8. Conclusion and Future Work
We have presented Trusta, a tool that supports safety modeling and semi-automated validation, along with a detailed

report on safety vulnerabilities. The TDTs created by this tool can be adapted from assurance cases by adding formal
expressions, which can be used by constraint solvers to perform formal reasoning. With the integration of large language
models, Trusta also brings convenience in creating safety cases, and assists users in translating natural language into
constraint expressions, streamlining the overall process. In fact, within the Trusta tool, TDT and traditional GSN
can be mutually converted. It can be observed that, without losing any information, the TDT representation is more
compact, emphasizing key points, making it more easily readable. In assessing Trusta’s usability, it markedly improves
assurance case creation for all users, especially aiding novices by improving efficiency and quality, highlighting its
value in addressing the expertise gap. Our experiments with more than a dozen industrial cases show that Trusta is
helpful to identify issues that are easily overlooked by manual inspection. In summary, a comprehensive analysis of
the experimental results indicates that Trusta can reduce human costs. By using Trusta to complete tasks related to
creating assurance cases, the overall human time costs were reduced by over 50%. Moreover, hiring senior safety
experts is challenging; Trusta enables lower-level safety engineers to accomplish higher-level tasks. Trusta proves to
be a potent tool in the construction and evaluation of assurance cases, offering substantial improvements in accuracy,
efficiency, and quality across diverse user groups within safety-critical engineering domains.

Looking forward to the future development of Trusta, several promising directions emerge. First, there is an
opportunity to trial and compare various large language models to discern the most effective ones for specific
tasks among a few assurance cases. Such comparative studies may pave the way for nuanced insights and enhanced
efficiencies. Second, by integrating more theoretical knowledge, we can optimize prompt words to guide the models
more effectively, harnessing their potential in a more targeted manner. Third, the fine-tuning of these large language
models to tailor their performance in specialized tasks is an exciting avenue for research. By customizing these models
to the unique requirements of the safety domain, we anticipate significant advancements in their applicability and
accuracy. Finally, the integration and development of additional formal languages within Trusta will broaden the
Chen, Deng, and Du Page 29 of 35

horizons of automatic reasoning within TDTs, making it more versatile and universally applicable. These future
endeavors signal a robust pathway towards more comprehensive, adaptable, and intelligent safety modeling and
validation.

Acknowledgements
This work was supported by the National Natural Science Foundation of China under Grant Nos. 62072176 and

62472175, Shanghai Trusted Industry Internet Software Collaborative Innovation Center, and the “Digital Silk Road”
Shanghai International Joint Lab of Trustworthy Intelligent Software under Grant No. 22510750100.

References
[1] Peter Bishop and Robin Bloomfield. A methodology for safety case development. In In Proceedings of the sixth safety-critical systems

symposium, 1998.
[2] Robin Bloomfield and Peter Bishop. Safety and assurance cases: Past, present and possible future–an adelard perspective. In In Proceedings

of the Making Systems Safer, pages 51–67. Springer London, 2009.
[3] ISO/IEC 15026. Systems and software engineering-systems and software assurance-Part 2: Assurance case, 2011.

https://www.iso.org/standard/52926.html.
[4] ISO 26262-1:2018. Road vehicles-functional safety part 1: Vocabulary, 2018. https://www.iso.org/standard/68383.html.
[5] DO-178C. Software considerations in airborne systems and equipment certification, 2011. https://www.do178.org/.
[6] David J Rinehart, John C Knight, and Jonathan Rowanhill. Current practices in constructing and evaluating assurance cases with applications

to aviation. National Aeronautics and Space Administration, Langley Research Center, 2015.
[7] David J Rinehart, John C Knight, and Jonathan Rowanhill. Understanding what it means for assurance cases to “work”. Technical report,

2017.
[8] Robert Lewis. Safety case development as an information modelling problem. In Safety-Critical Systems: Problems, Process and Practice,

pages 183–193. Springer, 2009.
[9] Yuxin Deng, Zezhong Chen, Wenjie Du, Bifei Mao, Zhizhang Liang, Qiushi Lin, and Jinghui Li. Trustworthiness derivation tree: A model of

evidence-based software trustworthiness. In In Proceedings of the 21st International Conference on Software Quality, Reliability and Security
Companion (QRS-C), pages 487–493. IEEE, 2021.

[10] Tim Kelly and Rob Weaver. The goal structuring notation–a safety argument notation. In In Proceedings of the Dependable Systems and
Networks 2004 Workshop on Assurance Cases. Citeseer, 2004.

[11] The Assurance Case Working Group. Goal structuring notation community standard version 3, 2021. https://scsc.uk/r141C:1?t=1.
[12] Kateryna Netkachova, Oleksandr Netkachov, and Robin Bloomfield. Tool support for assurance case building blocks. In In Proceedings of

the International Conference on Computer Safety, Reliability, and Security, pages 62–71. Springer, 2014.
[13] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In In Proceedings of the International conference on Tools and

Algorithms for the Construction and Analysis of Systems, pages 337–340. Springer, 2008.
[14] Nils Klarlund and Anders Møller. Mona version 1.4: User manual. BRICS, Department of Computer Science, University of Aarhus Denmark,

2001.
[15] OpenAI. GPT-3.5 documentation, 2023. https://platform.openai.com/docs/models/gpt-3-5.
[16] OpenAI. GPT-4 documentation, 2023. https://platform.openai.com/docs/models/gpt-4.
[17] Google. Introducing PaLM 2, 2023. https://ai.google/discover/palm2/.
[18] Tim Kelly. Arguing safety: a systematic approach to managing safety cases. Phd thesis, University of York, Heslington, York, England, 1999.
[19] Stephen Toulmin. The Uses of Argument. Cambridge university press, England, 2003.
[20] George Cleland, Mark-Alexander Sujan, Ibrahim Habli, and John Medhurst. Evidence: using safety cases in industry and healthcare. The

Health Foundation, 2012.
[21] Vladimir Sklyar and Vyacheslav Kharchenko. Assurance case for safety and security implementation: a survey of applications. International

Journal of Computing, 19(4):610–619, 2020.
[22] Tim Kelly, Iain Bate, John McDermid, and Alan Burns. Building a preliminary safety case: An example from aerospace. In In Proceedings

of the Australian Workshop on Industrial Experience with Safety Critical Systems and Software, pages 1–10. Not available, 1997.
[23] John Rushby, Xidong Xu, Murali Rangarajan, and Thomas Weaver. Understanding and evaluating assurance cases. Technical report, NASA

Langley Research Center, 2015.
[24] Patrick Graydon, John Knight, and Elisabeth Strunk. Assurance based development of critical systems. In In Proceedings of the 37th Annual

IEEE/IFIP International Conference on Dependable Systems and Networks, pages 347–357. IEEE, 2007.
[25] Rebekah Austin, Nagabhushan Mahadevan, Brian Sierawski, Gabor Karsai, Arthur Witulski, and John Evans. A cubesat-payload radiation-

reliability assurance case using goal structuring notation. In In Proceedings of the 2017 Annual Reliability and Maintainability Symposium,
pages 1–8. IEEE, 2017.

[26] Michael Vierhauser, Sean Bayley, Jane Wyngaard, Wandi Xiong, Jinghui Cheng, Joshua Huseman, Robyn Lutz, and Jane Cleland-Huang.
Interlocking safety cases for unmanned autonomous systems in shared airspaces. IEEE transactions on software engineering, 47(5):899–918,
2019.

[27] John Medhurst and David Embrey. Safety case use in the railway industry. In Supplements to: Using safety cases in industry and healthcare,
pages 65–74. The Health Foundation, London, 2012.

Chen, Deng, and Du Page 30 of 35

[28] Julie Beugin, Cyril Legrand, Juliette Marais, Marion Berbineau, and El-Miloudi El-Koursi. Safety appraisal of gnss-based localization systems
used in train spacing control. IEEE Access, 6:9898–9916, 2018.

[29] Gerhard Griessnig and Adam Schnellbach. Development of the 2nd edition of the iso 26262. In In Proceedings of the Systems, Software and
Services Process Improvement, pages 535–546. Springer International Publishing, 2017.

[30] Robert Palin and Ibrahim Habli. Assurance of automotive safety–a safety case approach. In In Proceedings of the Computer Safety, Reliability,
and Security, pages 82–96. Springer Berlin Heidelberg, 2010.

[31] Hamza Bourbouh, Marie Farrell, Anastasia Mavridou, Irfan Sljivo, Guillaume Brat, Louise Dennis, and Michael Fisher. Integrating formal
verification and assurance: an inspection rover case study. In In Proceedings of the NASA Formal Methods, pages 53–71. Springer International
Publishing, 2021.

[32] Robin Bloomfield, Nick Chozos, George Cleland, and LLP Adelard. Safety case use within the medical devices industry. In Supplements to:
Using safety cases in industry and healthcare, pages 75–91. The Health Foundation, London, 2012.

[33] Brian Larson, John Hatcliff, and Patrice Chalin. Open source patient-controlled analgesic pump requirements documentation. In In Proceedings
of the 5th International Workshop on Software Engineering in Health Care, pages 28–34. IEEE, 2013.

[34] Eunkyoung Jee, Insup Lee, and Oleg Sokolsky. Assurance cases in model-driven development of the pacemaker software. In In Proceedings
of the Leveraging Applications of Formal Methods, Verification, and Validation, pages 343–356. Springer Berlin Heidelberg, 2010.

[35] Nancy Leveson. The use of safety cases in certification and regulation. Technical Report Technical Report ESD-WP-2011-13, Massachusetts
Institute of Technology Engineering Systems Division, 2011.

[36] Alan Wassyng, Tom Maibaum, Mark Lawford, and Hans Bherer. Software certification: Is there a case against safety cases? In In Proceedings
of the Foundations of Computer Software. Modeling, Development, and Verification of Adaptive Systems, pages 206–227. Springer Berlin
Heidelberg, 2011.

[37] Jamie Henderson. Safety case use in the petrochemical industry. In Supplements to: Using safety cases in industry and healthcare, pages
55–64. The Health Foundation, London, 2012.

[38] Michael Baram. Preventing accidents in offshore oil and gas operations: the us approach and some contrasting features of the norwegian
approach. Technical report, Boston University School of Law, 2010.

[39] Pietro Mendes, Jeremy Hall, Stelvia Matos, and Bruno Silvestre. Reforming Brazil’s offshore oil and gas safety regulatory framework: Lessons
from norway, the united kingdom and the united states. Energy Policy, 74:443–453, 2014.

[40] Tim Kelly. Safety case use in the defence industry. In Supplements to: Using safety cases in industry and healthcare, pages 19–23. The Health
Foundation, London, 2012.

[41] Bob Duncan and Mark Whittington. Compliance with standards, assurance and audit: does this equal security? In In Proceedings of the 7th
International Conference on Security of Information and Networks, pages 77–84. Association for Computing Machinery, 2014.

[42] Robin Bloomfield, Peter Bishop, Eoin Butler, and Kate Netkachova. Using an assurance case framework to develop security strategy and
policies. In In Proceedings of the Computer Safety, Reliability, and Security, pages 27–38. Springer International Publishing, 2017.

[43] Evi Widowati, Adi Sutomo, and Wahyudi Istiono. Are elementary schools ready for disaster preparedness and safety? E3S Web Conf.,
317:1–13, 2021.

[44] Ibrahim Habli, Rob Alexander, Richard Hawkins, Mark Sujan, John McDermid, Chiara Picardi, and Tom Lawton. Enhancing covid-19
decision-making by creating an assurance case for simulation models. arXiv preprint arXiv:2005.08381, 2020.

[45] Tim Kelly. A systematic approach to safety case management. Journal of Passenger Cars: Electronic and Electrical Systems, 113(7):257–266,
2004.

[46] Robin Bloomfield and John Rushby. Assurance 2.0: A manifesto. arXiv preprint arXiv:2004.10474, 2020.
[47] Matthias Cosler, Christopher Hahn, Daniel Mendoza, Frederik Schmitt, and Caroline Trippel. nl2spec: Interactively translating unstructured

natural language to temporal logics with large language models. In In Proceedings of the International Conference on Computer Aided
Verification. Springer, 2023.

[48] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention
is all you need. Advances in neural information processing systems, 30, 2017.

[49] Joxan Jaffar and Michael J Maher. Constraint logic programming: A survey. The journal of logic programming, 19:503–581, 1994.
[50] Atoosa Kasirzadeh, Mohammed Saddoune, and François Soumis. Airline crew scheduling: models, algorithms, and data sets. EURO Journal

on Transportation and Logistics, 6(2):111–137, 2017.
[51] Joshua Willman. Overview of PyQt5. In Modern PyQt, pages 1–42. Springer, 2021.
[52] Farrukh Shahzad, Tarek R Sheltami, Elhadi M Shakshuki, and Omar Shaikh. A review of latest web tools and libraries for state-of-the-art

visualization. Procedia Computer Science, 98:100–106, 2016.
[53] Francesca Rossi, Peter Van Beek, and Toby Walsh. Constraint programming. Foundations of Artificial Intelligence, 3:181–211, 2008.
[54] Jules White, Quchen Fu, Sam Hays, Michael Sandborn, Carlos Olea, Henry Gilbert, Ashraf Elnashar, Jesse Spencer-Smith, and Douglas C

Schmidt. A prompt pattern catalog to enhance prompt engineering with chatgpt. arXiv preprint arXiv:2302.11382, 2023.
[55] Sabit Ekin. Prompt engineering for chatgpt: a quick guide to techniques, tips, and best practices. Authorea Preprints, 2023.
[56] Ggaliwango Marvin, Nakayiza Hellen, Daudi Jjingo, and Joyce Nakatumba-Nabende. Prompt engineering in large language models. In In

Proceedings of the International Conference on Data Intelligence and Cognitive Informatics, pages 387–402. Springer, 2023.
[57] Michael Desmond and Michelle Brachman. Exploring prompt engineering practices in the enterprise. arXiv preprint arXiv:2403.08950, 2024.
[58] Boqi Chen, Kua Chen, Shabnam Hassani, Yujing Yang, Daniel Amyot, Lysanne Lessard, Gunter Mussbacher, Mehrdad Sabetzadeh, and

Dániel Varró. On the use of gpt-4 for creating goal models: an exploratory study. In In Proceedings of the 31st International Requirements
Engineering Conference Workshops, pages 262–271. IEEE, 2023.

[59] OpenAI. Create chat completion, 2023. https://platform.openai.com/docs/api-reference/chat.
[60] Dhivya Chandrasekaran and Vijay Mago. Evolution of semantic similarity—a survey. ACM Computing Surveys (CSUR), 54(2):1–37, 2021.
[61] Baidu. Short text similarity algorithm - baidu ai open platform, 2024. https://ai.baidu.com/tech/nlp_basic/simnet.

Chen, Deng, and Du Page 31 of 35

[62] Yu Sun, Shuohuan Wang, Shikun Feng, Siyu Ding, Chao Pang, Junyuan Shang, Jiaxiang Liu, Xuyi Chen, Yanbin Zhao, Yuxiang Lu, et al.
Ernie 3.0: Large-scale knowledge enhanced pre-training for language understanding and generation. arXiv preprint arXiv:2107.02137, 2021.

[63] Baidu. Baidu text translation api, 2024.
[64] Youdao. Youdao translation api, 2024.
[65] Ewen Denney, Ganesh Pai, and Josef Pohl. Advocate: An assurance case automation toolset. In In Proceedings of the International Conference

on Computer Safety, Reliability, and Security, pages 8–21. Springer, 2012.
[66] Yutaka Matsuno. D-case editor: A typed assurance case editor. University of Tokyo, 2011.
[67] George Despotou, Aris Apostolakis, and Dimitris Kolovos. Acedit, 2016. https://code.google.com/p/acedit/.
[68] NASA. Certware, 2016. http://nasa.github.io/CertWare/.
[69] Sebastian Voss, Bernhard Schätz, Maged Khalil, and Carmen Carlan. Towards modular certification using integrated model-based safety

cases. In In Proceedings of the Proc. VeriSure: Verification and Assurance Workshop, 2013.
[70] Yaping Luo, Mark van den Brand, Zhuoao Li, and Arash Khabbaz Saberi. A systematic approach and tool support for GSN-based safety case

assessment. Journal of Systems Architecture, 76:1–16, 2017.
[71] Thomas Chowdhury, Alan Wassyng, Richard F Paige, and Mark Lawford. Systematic evaluation of (safety) assurance cases. In In Proceedings

of the International Conference on Computer Safety, Reliability, and Security, pages 18–33. Springer, 2020.
[72] Mike Maksimov, Sahar Kokaly, and Marsha Chechik. A survey of tool-supported assurance case assessment techniques. ACM Computing

Surveys, 52(5):1–34, 2019.
[73] Simon Foster, Yakoub Nemouchi, Mario Gleirscher, Ran Wei, and Tim Kelly. Integration of formal proof into unified assurance cases with

isabelle/sacm. Formal Aspects of Computing, 33(6):855–884, 2021.
[74] Anitha Murugesan, Isaac Hong Wong, Robert Stroud, Joaquín Arias, Elmer Salazar, Gopal Gupta, Robin Bloomfield, Srivatsan Varadarajan,

and John Rushby. Semantic analysis of assurance cases using s (casp). In In Proceedings of the To appear at Goal Directed Execution of
Answer Set Programs (GDE) Workshop in Int’l Conf. on Logic Programming (ICLP), 2023.

[75] Torin Viger, Logan Murphy, Alessio Di Sandro, Claudio Menghi, Ramy Shahin, and Marsha Chechik. The foremost approach to building
valid model-based safety arguments. Software and Systems Modeling, 22(5):1473–1494, 2023.

[76] Michael Whalen and Andrew Gacek. Resolute, 2016. https://github.com/smaccm/smaccm/.

Chen, Deng, and Du Page 32 of 35

A. Complete Prompt Words and Explanatory Notes
LLMs excel in a broad spectrum of tasks, requiring simple “prompts” for operation. However, maximizing their

potential involves expert prompt crafting.
The invocation of a large language model, particularly for complex tasks like assurance case generation, requires

carefully crafted prompts, with the complete content of the prompts shown in Listing 7.
Listing 7: Prompt with domain knowledge of assurance case.

1 You are an expert proficient in the Assurance Case.
2 Your answers always need to follow the following output format and you always have to try to provide a

set of sub -goals. You may repeat your answers.
3 Break down the following goal into several sub -goals , these sub -goals should be able to support the

parent goal , and explain the reasoning behind the breakdown. Finally , provide solutions that support
these sub -goals.

4
5 Goal(claim): A goal is a claim in the argument , usually supported by sub -goals(sub -claims), strategies(

arguments) or solutions(evidences). Goals describe assertions about system characteristics , performance ,
safety , etc.

6 Strategy(argument): A strategy describes the reasoning relationship between a goal and its supporting
goals. Strategies clarify how to satisfy a higher -level goal through sub -goals , solutions , or other
evidence.

7 Solution(evidence): A solution provides references to evidence items. Evidence can be experimental data ,
historical records , analytical reports , simulation results , or other materials supporting the argument.

8
9 The five basic CAE(claim -argument -evidence) building blocks that we have identified are:

10 1. Decomposition: partitions some aspect of the claim.
11 2. Substitution: refines a claim about an object into another claim about an equivalent object.
12 3. Concretion: gives a more precise definition to some aspect of the claim.
13 4. Calculation or proof: used when some value of the claim can be computed or proved.
14 5. Evidence incorporation: incorporates evidence that directly supports the claim.
15 In practice , some of the basic blocks are often merged together into composite blocks.
16
17 Goal G1: The self -driving car is safe to operate on public roads.
18 Building Blocks: Decomposition
19 Break down Strategy: {" strategy ": "The safety of the self -driving car can be determined by examining its

hardware and software components ."}
20 Sub -goals dictionary: {"G1.1": "The sensor system is reliable.", "G1.2": "The navigation algorithm is

accurate.", "G1.3": "The emergency systems function correctly ."}
21 Solutions dictionary: {"Sn1 .1": "Manufacturer test reports , third -party evaluations .", "Sn1 .2": "Code

audits , simulation results.", "Sn1 .3": "Test scenarios , independent assessments ."}
22 Explanation: G1.1, G1.2 and G1.3 can support G1, Sn1.1 can support G1.1, Sn1.2 can support G1.2, Sn1.3

can support G1.3.
23 FINISH
24
25 Goal G1: The new version of the medical device is safe.
26 Building Blocks: Substitution
27 Break down Strategy: {" strategy ": "The new version is equivalent to the old version in terms of safety

features ."}
28 Sub -goals dictionary: {"G1.1": "The old version of the medical device is safe ."}
29 Solutions dictionary: {"Sn1 .1": "Prior safety certification for the old version , documentation showing

equivalence of safety features between old and new versions ."}
30 Explanation: G1.1 can support G1, Sn1.1 can support G1.1.
31 FINISH
32
33 Goal G1: The banking app ’s data encryption is secure.
34 Building Blocks: Evidence Incorporation
35 Break down Strategy: {" strategy ": "The encryption algorithm used is up to industry standards ."}
36 Sub -goals dictionary: {"G1.1": "The app uses AES -256 encryption ."}
37 Solutions dictionary: {"Sn1 .1": "Code review reports , security assessments confirming AES -256 encryption

."}
38 Explanation: G1.1 can support G1, Sn1.1 can support G1.1.
39 FINISH
40
41 Goal G1: The airline ’s booking system is highly reliable.
42 Building Blocks: Concretion
43 Break down Strategy: {" strategy ": "’High reliability ’ in this context means 99.99% uptime ."}
44 Sub -goals dictionary: {"G1.1": "The system has 99.99% uptime ."}
45 Solutions dictionary: {"Sn1 .1": "System logs , third -party uptime monitoring reports ."}
46 Explanation: G1.1 can support G1, Sn1.1 can support G1.1.
47 FINISH
48
49 Goal G1: The emergency hotline ’s average response time is less than 30 seconds.
50 Building Blocks: Calculation
51 Break down Strategy: {" strategy ": "The average response time can be calculated from the time taken to

pick up the call and the time taken to dispatch emergency services ."}

Chen, Deng, and Du Page 33 of 35

52 Sub -goals dictionary: {"G1.1": "The time taken to pick up the call is less than 10 seconds.", "G1.2": "
The time taken to dispatch emergency services is less than 20 seconds ."}

53 Solutions dictionary: {"Sn1 .1": "Call logs , staff rosters.", "Sn1 .2": "Dispatch records , GPS logs from
emergency vehicles ."}

54 Explanation: G1.1 and G1.2 can support G1 , Sn1.1 can support G1.1, Sn1.2 can support G1.2.
55 FINISH
56
57 Goal G1: <A_NEW_GOAL >
58 Building Blocks:
59 Break down Strategy:
60 Solutions dictionary:
61 Explanation:
62 FINISH

We referenced the workflow of nl2spec and have adapted the original prompt words designed for translating
temporal logics, as shown in Listing 8, to facilitate the conversion of natural language into constraint expressions.

Listing 8: Prompt of LLM translation from natural language to constraint expressions.
1 You are an expert proficient in the Z3 constraint solver and the Python language.
2 Your answers always need to follow the following output format and you always have to try to provide a

constraint formula. You may repeat your answers.
3 Translate the following natural language sentences into a constraint formula and explain your

translation step by step.
4
5 Remember that + means "Addition", - means "Subtraction", * means "Multiplication", / means "Division",

// means "Integer Division", % means "Modulus", ** means "Exponentiation", > means "greater than", <
means "less than", == means "equal to", >= means "greater than or equal to", <= means "less than or
equal to", != means "not equal to", And(x, y) means "x and y", Or(x, y) means "x or y", Not(x) means "
not x".

6
7 The formula should only contain variables , numbers or operators +, -, *, /, //, %, **, >, <, ==, >=, <=,

!=, And , Or, Not.
8
9 Using the International System of Units (SI) to standardize the units of numerical quantities. For

example , When we describe distance or length , we typically use meters (m) as the unit. When we measure
mass , we use kilograms (kg). Time is usually measured in seconds (s). Speed can be described in meters
per second (m/s). When we talk about the magnitude of force , we use newtons (N, defined as kg*m/s^2).

10
11 Natural Language: The maximum running speed of the trolley is 1 m/s.
12 Given translations: {}
13 Explanation: "speed of the trolley" from the input translates to the variable trolley_speed. "maximum

running" from the input translates to the operators <=. "1 m/s" translates to a number 1.
14 Explanation dictionary: {"speed of the trolley" : "trolley_speed", "maximum running" : "<=", "1 m/s" :

"1"}
15 So the final constraint translation is: trolley_speed <= 1. FINISH
16
17 Natural Language: Fan 2 speed range 1900~2200 rpm.
18 Given translations: {}
19 Explanation: "Fan 2 speed" from the input translates to the variable fan_2_speed. "1900~" from the input

translates to the subformula 1900 <=. "~2200 rpm" from the input translates to the subformula <= 2200,
so "range 1900~2200 rpm" translates to a formula And (1900 <= fan_2_speed , fan_2_speed <= 2200).

20 Explanation dictionary: {"Fan 2 speed" : "fan_2_speed", "1900~" : "1900 <=", "~2200 rpm" : "<= 2200" , "
range 1900~2200 rpm" : "And (1900 <= fan_2_speed , fan_2_speed <= 2200) "}

21 So the final constraint translation is: And (1900 <= fan_2_speed , fan_2_speed <= 2200).FINISH
22
23 Natural Language: Response time = processing time + message sending time.
24 Given translations: {}
25 Explanation: "Response time" from the input translates to the variable response_time. "=" from the input

translates to the operator ==. "processing time" from the input translates to the variable
proc_all_time. "message sending time" translates to a variable send_time.

26 Explanation dictionary: {" Response time" : "response_time", "=" : "==", "processing time" : "
proc_all_time", "message sending time" : "send_time "}

27 So the final constraint translation is: response_time == proc_all_time + send_time.FINISH
28
29 Natural Language: The pressure of goods on the shelf is 9.8 N.
30 Given translations: {"9.8 N": "9.8", "The pressure of goods on the shelf ": "pressure", "is": "=="}
31 Explanation:

Listing 9: Output of large language model translation from natural language to constraint expressions.
1 "The pressure of goods on the shelf" from the input translates to the variable pressure. "is" from the

input translates to the operator ==. "9.8 N" translates to a number 9.8.
2 Explanation dictionary: {"The pressure of goods on the shelf" : "pressure", "is" : "==", "9.8 N" :

"9.8"}
3 So the final constraint translation is: pressure == 9.8.

Chen, Deng, and Du Page 34 of 35

We have revised the introduction of the problem context to focus on constraint expression considerations (lines
1-3). Symbol conventions have been adjusted to align with comprehensible notations for constraint solvers (lines 5-7).
A novel provision regarding numeric units has been introduced, mandating a standardized adoption of international
units (line 9). Furthermore, we present three illustrative examples of constraint translation challenges (lines 11-27).
Conclusively, we furnish pending translations that encompass both natural language and manually generated sub-
translation cues (lines 29-31). This framework is seamlessly extended by a large language model, adhering to the
format of the provided examples, as demonstrated in Listing 9. The approach of using large language models to translate
natural language into constraint expressions, and then solving the answer with a constraint solver, employed technique
T16.

B. Detailed Case Study
In Appendix B, Figures 23, 24, and 25 provide a deeper view of the decomposition process for the AGV’s obstacle

detection and safety control mechanisms. Figure 23 presents further breakdowns of the sensor system’s capabilities,
ensuring timely and accurate obstacle detection. Figure 24 focuses on the braking system, detailing how it can respond
to sensor inputs and initiate braking actions swiftly and safely. Finally, Figure 25 illustrates the control system’s
decision-making process, showing how it implements safety strategies, including deceleration and stopping, to mitigate
collision risks. These figures collectively offer a comprehensive view of the AGV’s goal decomposition and the
solutions needed to ensure safe and efficient operations in complex environments.

Figure 23: Second-level node decomposition: The sensors of the AGV can accurately and timely detect obstacles.

Chen, Deng, and Du Page 35 of 35

Figure 24: Second-level node decomposition: The braking system of the AGV can start quickly and safely after receiving
sensor signals.

Figure 25: Second-level node decomposition: The control system of the AGV can execute safety strategies, such as
deceleration or stopping, after detecting obstacles.

Chen, Deng, and Du Page 36 of 35

