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In this paper, we systematically investigate the nonlocal Hirota equation with nonzero boundary
conditions via Riemann-Hilbert method and multi-layer physics-informed neural networks algorithm.
Starting from the Lax pair of nonzero nonlocal Hirota equation, we first give out the Jost function,
scattering matrix, their symmetry and asymptotic behavior. Then, the Riemann-Hilbert problem with
nonzero boundary conditions are constructed and the precise formulae of N-double poles solutions
and N-simple poles solutions are written by determinants. Different from the local Hirota equation,
the symmetry of scattering data for nonlocal Hirota equation is completely different, which results
in disparate discrete spectral distribution. In particular, it could be more complicated and difficult
to obtain the symmetry of scattering data under the circumstance of double poles. Besides, we also
analyze the asymptotic state of one-double poles solution as t — oo. Whereafter, the multi-layer
physics-informed neural networks algorithm is applied to research the data-driven soliton solutions
of the nonzero nonlocal Hirota equation by using the training data obtained from the Riemann-Hilbert
method. Most strikingly, the integrable nonlocal equation is firstly solved via multi-layer physics-
informed neural networks algorithm. As we all know, the nonlocal equations contain the 77 symmetry
P : X —> —x,or T :t — —t, which are different with local ones. Adding the nonlocal term
into the neural network, we can successfully solve the integrable nonlocal Hirota equation by multi-
layer physics-informed neural networks algorithm. The numerical results show that the algorithm can
recover the data-driven soliton solutions of the integrable nonlocal equation well. Noteworthily, the
inverse problems of the integrable nonlocal equation are discussed for the first time through applying
the physics-informed neural networks algorithm to discover the parameters of the equation in terms
of its soliton solution.
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1. Introduction 1967, Gardner et al. came up with this method first to handle the
KdV equation with initial value problem [4]. The critical point of

It is well-known that nonlinear partial differential equation classic IST method is to solve the Gel'fand-Levitan-Marchenko

(PDE) plays a prominent role in the subjects of mathematical
physics, such as fluid mechanics, nonlinear optics, ocean com-
munication, etc. In the history of soliton theory, finding exact
solutions of integrable PDE is still a crucial issue. During the past
several decades, in order to solve nonlinear evolution equations,
more and more methods and techniques have been presented in-
cluding inverse scattering transformation (IST) [1], Hirota bilinear
method [2], Darboux transformation (DT) [3], etc. Among them,
IST method is one of the most powerful techniques to analyze the
Cauchy problems of integrable nonlinear evolution equations. In
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(GLM) integral equations. Later on, Zakharov et al. developed
a Riemann-Hilbert (RH) formulation which simplifies the IST
method [5]. After that, the RH formulation has been constantly
applied to numerous integrable equations with zero boundary
conditions (ZBCs), such as coupled nonlinear Schrodinger (NLS)
equation, derivative Schrédinger equation, Sasa-Satsuma equa-
tion, and so on [6-13]. Recently, the RH method was also ap-
plied to construct the soliton solutions [14-18] and the rogue
waves [19-21] for the integrable equations with nonzero bound-
ary conditions (NZBCs). Specially, through using the Laurent’s
series and generalization of the residue theorem, multiple high-
order poles solutions have been studied for the NLS equation
under ZBCs [22] and the focusing NLS under NZBCs [23]. Also, the
d-dressing method is developed to study the three-component
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coupled Hirota equations [24]. Moreover, the RH method has
been employed to perform asymptotic analysis for some inte-
grable equations, including the generalized derivative NLS [25],
coupled NLS equation [26], the focusing NLS equation [27], and
SO on.

With the rapid development of machine learning methods,
deep learning has become a powerful tool for solving PDE. Re-
cently, a new neural network (NN), named physics-informed neu-
ral networks (PINN), was recently proposed, which can be used
to accomplish the high-dimensional network tasks with fewer
data sets [28]. Besides, it is verified that PINN is very effective
for solving and inverting equations controlled by mathematical
physical systems. Later on, PINN method was used to gener-
ate data-driven solutions and reveal the dynamic behavior of
nonlinear PDE with physical constraints, which has attracted ex-
tensive attention and become a hot research topic. Very recently,
in terms of PINN method, Chen group constructed data-driven
soliton solution, high-order breather wave, rogue wave, rogue
periodic wave for several types of nonlinear evolution equations
including KdV equation, KN equation, Chen-Lee-Liu equation,
etc. [29-31]. Particularly, based on conserved quantities, a two-
stage PINN method was used to derive some data-driven localized
wave solutions [32]. Besides, other scholars have also come up
with some important results on data-driven solutions for the NLS
equation and coupled NLS equation [33-36]. Thus it is natural to
consider how to apply the PINN in the nonlocal integrable system.
In this paper, we devote to construct a new PINN for solving the
nonlocal integrable system via adding the nonlocal term into the
NN, and the data-driven solution will be simulated through using
the new PINN.

The parity-time (P7) symmetry, first proposed in quantum
mechanics by Bender and his coworkers, plays an important role
in characterizing the wave propagation for the NLS equation in
mechanical systems, optical fibers and magnetism [37-39]. Up
to now, the research of P7 system has made great progress in
both theory and application [40-42]. For instance, Ablowitz and
Musslimani first introduced the 27 symmetry to the well-known
AKNS system by raising a nonlocal (also named reverse-space)
NLS equation [43]

U (X, t) — ity (X, t) £ 2iQ (X, t)u(x,t) =0,
Qx,t)=u tHu* (—x,t),

which includes the P7 symmetric potential Q(x,t) and satis-
fies the P7 symmetry restriction Q(x,t) = Q*(—x,t). The %
represents complex conjugate, and Q(x, t) denotes electric field
envelope and complex refractive index distribution of beam.
Since then, Fokas extended the nonlocal NLS equation to a higher
dimensional form [44]. Moreover, other nonlocal integrable equa-
tions were also investigated, such as nonlocal Davey-Stewartson
equations, nonlocal modified KdV equation, nonlocal sine-Gordon
equation, nonlocal derivative NLS equation, etc. [45-51]. It is
worth mentioning that several nonlocal integrable equations with
NZBCs have been researched through developing the IST [52-55].
After that, soliton solutions and high-order pole solutions for both
focusing and defocusing nonlocal mKdV equations with NZBCs at
infinity have been presented by a systematical inverse scattering
transform [56,57].
Recently, starting with

iqr + x [qXX - 2q2r] + i [qx — 6qrqx] = 0,

e — K [rxx — 2qr2] + lﬂ [rxxx - qurx] = Ov

an integrable nonlocal (also named reverse-space-time) Hirota
equation

(1.1)

(1.2)

G + 8 [qw — 267G (=X, —1)] + B [Guoe — 699*(—X, —1)qx] = O,
(1.3)
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was reduced in Ref. [58] for r = q*(—x, —t), « = i5. Of which
8,8 € R are arbitrary parameters. Eq. (1.3) changes into the
reverse-space-time nonlocal complex mKdV equation at the case
of § = 0, B = 1. Besides, for the 7 symmetric case g*(—x, —t) =
q(x, t), Eq. (1.3) becomes the usual Hirota equation. The explicit
multi-soliton solutions were generated for Eq. (1.3) by employing
Hirota's direct method as well as Darboux-Crum transforma-
tions [58]. In what follows, we would like to write out its Lax
pair firstly based on the early results [58], given by

—iA q(x, t)
q*(—x, —t) ix ) ’

o ( Ax,t)  B(x,t) )
C(x,t) —A(x,t)
A = 8qq*(—x, —t) + 2827 + B [q*(—x, —t)qx — qq;(—x, —t)
—4i)> — 2irqq*(—x, —t)],
B = —8qy + 2i82q + B [24°q"(—x, —t) — G + 2i0qy + 427q] .
C = 8q¥(—x, —t) + 2i8Aq*(—x, —t)

+8 [29q*(—x, —t)* — @ (—x, —t) — 2irg;(—x, —t)
+40°q" (—x, —t)] .

W, = U, UE(

¥, = VW,

(1.4)

To the best of our knowledge, although some people have
studied the nonlocal Hirota equation with ZBCs [59-61], the stud-
ies of the nonlocal Hirota equation (1.3) with NZBCs have been
rarely reported via using RH method, because the RH method
with NZBCs is more complicated than one with ZBCs. In what
follows, we would systematically consider the matrix RH problem
for the nonlocal Hirota equation (1.3) with following NZBCs at
infinity

lim qx, £) = q.e®%", (1.5)
Xx—to00
where |g+|] = qo > 0, and q, = q_ are constant. Differ-

ent from previous work about the usual Hirota equation, the
nonlocal Hirota equation involves different symmetry reductions
and disparate discrete spectra distribution. Especially, for the
case of double poles, symmetry could be more complicated. It
is worth mentioning that the asymptotic state of one-double
poles solution is also given out as t — oc. Furthermore, we
also find that PINN deep learning for solving nonlocal integrable
equation has not been researched so far. Therefore, in this paper,
we also commit to propose a scheme to solve integrable nonlocal
equation in terms of PINN method. As an example, we choose
the integrable nonzero nonlocal Hirota equation to highlight the
ability of our strategy to handle the integrable nonlocal equa-
tion, and successfully predict the data-driven soliton solution of
the nonzero nonlocal Hirota equation. On the other hand, we
also discuss the data-driven parameter discovery for the nonzero
nonlocal Hirota equation.

The outline of this paper is organized as follows: In Sec-
tion 2, we carry out the spectral analysis for nonlocal Hirota
equation under NZBCs, and derive the corresponding Lax pair,
Jost solutions, scattering matrix and their symmetry reductions.
In Sections 3 and 4, through analyzing the inverse scattering
problem for nonlocal Hirota equation under NZBCs, we establish
the RH problem for the nonlocal Hirota equation under NZBCs
and obtain the explicit N-simple poles solution and N-double
poles solution for the reflectionless coefficients under NZBCs. In
Section 5, the data-driven soliton solutions and data-driven pa-
rameter discovery for the nonlocal Hirota equation are researched
via PINN method. Finally, some summaries are given in the last
section.
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2. Spectral analysis for nonlocal hirota equation under NZBCs
2.1. Lax pair and jost solutions

In order to facilitate the later calculation, we deal with Lax pair
(1.4) with the boundary condition (1.5) at the beginning. Let us
make an appropriate transformation

q— qe¥%, o Ny, (2.1)

where o3 is one of the following Pauli matrices
0 1 0 —i 1 0
1 0) 270i o) 2T \o 1)
(2.2)

Then, the nonlocal Hirota equation (1.3) changes into

G + 8 [Gu — 26°q" (=%, —t) + 245q] + B [qux — 649" (—x, —t)q:] = O,

(2.3)
with following boundary
llm q(x7 t) = q:ts (2'4)
x—+00
which admits the Lax pair
—iA X, t
v, =UY, U= q(. ) )
q*(—x, —t) ix
A(x, t) — 8q? B(x, t
g—vy, v=|A®D7  BxD . (25)
C(x, t) —A(x, t) + 8q;

As x — +00, the Lax pair (2.5) under the boundary (2.4) becomes

Yy = Ur¥ = (—iro3 + Qr)¥,

2.6
W = VoW = 281 + B(40% + 2q5)| UL W, (26)
where
0 g
Q. = ( L= ) . 2.7)
g O
The system (2.6) can be solved by
Ya(d)e xtros -y £ 4q,
WE G A) =1 T4 (x+ (2080 + B(42 +2¢2)) £) Us(),
A = (o,
(2.8)
where
o R
T\ ) (2.9)
Mk

O(x, t, k) = k[x + (2i81 + B(42% +2q3)) t], K> = 2% —gp.

In order to analyze the scattering problem on a standard z-
plane instead of the two-sheeted Riemann surface, we introduce
a uniformization variable z = k + A, given by
1 q? 1 q?
k=-(z—-2), r==(z+2).
2( z ) 2( z )

Setting D, D_ and X on z-plane as D. = {z € C|Imz = 0},

X =R, the Jost solutions ¥ (x, t, z) are defined by

(2.10)

Wy (x, t,z) = Yyie 000203 4 o(1), as x — 4oo.

(2.11)

ze X,
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Using the variable transformation

i0(x,t,z)o3
9

nx(x, t,2) = ¥a(x, t, z)e (2.12)

we get the modified Jost solutions u.(x, t,z) — Yi(z) as x —
+o00, which satisfy the following Volterra integral equations

nx(x, t,z)

| e L Yee NS [YEAUL (Y, Opa (v, L 2)] dy, Z # £40,

B { Yo+ 1 U+ & — U] AULY, Duely, t,2)dy, z = *£qo,
(2.13)

where AUy = U — U,.

Proposition 2.1. Assume q—q. € L'(R*), then p+(x, t, z) defined
in Eq. (2.12) uniquely solve the Volterra integral Eq. (2.13) in Xy =
2\ {*£qo}, and pui(x, t, z) yield:

o u_1(x, t,z)and puyo(x, t, z) is analytical in D and continuous
in D+ U X,

e wiq(x, t,z)and p_o(x, t, z) is analytical in D_ and continuous
inD_U o,

o ur(x,t,z) > 1lasz— oo,

o ui(x, t,z) > —§0'3Qi asz — 0,
2
edetus(x, t,z)=detYo =y =1— &}

22 x,teR, ze€X,.

Since the Jost solutions ¥..(x, t, z) are the simultaneous solu-
tions of Lax pair (2.5), we can establish the linear relation by a
scattering matrix S(z) = (s;j(z))2x2, given by

v, (x,t,z) =W¥_(x,t,2)S(z), ze€ Xp. (2.14)

We can write the scattering coefficients into the form of Wron-
skians determinant

S‘]‘](Z) — Wr(lI/+,1a w—,z), 512(2) — Wr(lp+,27 '1/—,2),
y(2) y(z)

() = Dt B g gy I Bea) g g5
y(2) y(z)

Proposition 2.2. Suppose ¢ — q+ € L'(R*), then the scattering
matrix S(z) has the following characteristics:

e detS(z) =1 for z € Xy,

e Sy,(z) is analytical in D, and continuous in D U X,

e s11(z) is analytical in D_ and continuous in D_ U Xy,

o S(x,t,z) > lasz — oo,

e S(x,t,z) >ITasz— 0.

2.2. Symmetry reductions

In this subsection, according to the reduction conditions of
the Lax pair on the complex z-plane, the symmetries of the Jost
solutions ¥ (x, t, z) and scattering matrix S(z) are studied for the
nonlocal Hirota equation with NZBCs. The details are as follows:

Proposition 2.3. The X(x,t,z) and T(x, t, z) in the Lax pair (2.5)
meet the following reduction conditions on z-plane:
o The first symmetry reduction

Ux, t,z) = —ooU(—x, —t, =Z")" 02,

2.16
V(x, t,z) = —0V(—x, —t, —z*)*0>. ( )
e The second symmetry reduction
@ %
Uk t2)=UKt2),  Vix62) =Vt 2). (2.17)

Proposition 2.4. The Jost solutions W¥(x, t, z) and scattering matrix
S(z) possess the following reduction conditions on z-plane:
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2 2
_ % 9
2% 2z

Fig. 1. Distribution of the discrete spectrum and jumping curves for the RH
problem on complex z-plane, Region D, = {z € C|Imz > 0} (gray region), region
D_ = {z € C|Imz < 0} (white region).

e The first symmetry reduction

S(Z) = 0'25*(—2*)710'2.
(2.18)

Ui(x, t,2) = ouWg(—x, —t, —2%) 0y,

e The second symmetry reduction

i 2 2
Walx,t,2) = —Waln e, qz—(’)agQi, S(z) = Q:]U35(%)U3Q+-

(2.19)

2.3. Discrete spectrum with simple poles

In this subsection, assuming that s,;(z) has N simple zeros
z, (n = 1,2,...,N) in Dy N {z € C: Rez > 0}, then we have
s22(z0) = 0 and s),(zp) # 0 in the situations of zy being the
simple zero of s3;(z). In terms of the symmetries of the scattering
matrix, the corresponding discrete spectrum is summarized into
(see Fig. 1)

2 2N
% 49

T:{zna _2:5_5__* )

Zn Zn ) n=1

n

(2.20)

where z, satisfies that |z,| = qo.

Considering s,2(zg) = 0 (zo € T N D), it is not hard to find
that W_q(x, t, zo) and ¥ ,(x, t, zo) are linearly dependent. Homo-
plastically, ¥,1(x, t, zg) and W_,(x, t, zo) are linearly dependent
because of s11(zg) = 0 (zo € Y N D_). Then, one has

Wio(x, t, 20) = blzo]W_1(x, t, 29),
Yiax, t,20) = blzo]W_2(x, t, 20),

20 €Y ND,,

2o €T ND_, (2.21)
where b[zp] is a undetermined parameter. Therefore, we arrive at

oo(x, t;z
Res [M} = A[Zo]lll_l(x, t; Zo), 2y € TN D+,

=z | 52(2)

woq(x, t;z
Res | Y 6:2) =Alzol¥_o(x, t;20), 20€ T ND_, (2.22)
=2 s11(2)
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where

blzp]
Do)’ 20 € T NDy,

blzp]
T’ Zo e T ND_.

Alzo] = (2.23)

Proposition 2.5. Two relations for b[zo], s5,(z0) and s',(zo) are got
below:
o The first relation

blzo] = _—b[—Z*]* s 5/11(20) = _3/11(_23)*, (2.24)
3 .
$(20) = =Sy (=25)"
e The second relation
2 2 2
q+ QO / qO / qO
blzo]l = ——b[2], s (20) = — 25, (22), 2z €Dy,
[ 0] q’i [ZO] 22( 0) 23 11 ZO) 0 +
T, q; 9%, 9
blzo] = —q—+b[z—0], sh1(20) = —Z—gs’zz Z—O), zoeD_. (225)
— 0 0 0

3. Inverse scattering problem for nonlocal hirota equation
under NZBCs: simple poles

3.1. The Riemann-Hilbert problem under NZBCs

In terms of the analyticity of Jost solutions w(x, t, z) in Propo-
sition 2.1, the following sectionally meromorphic matrices can be
defined

M1

M2
M_(x,t,2) = (—, u_a), -
S11

M+(X9 t, Z) = (/J/—ls 5)5 (31)

where =+ represent analyticity in D, and D_, respectively. Subse-
quently, a matrix RH problem is constructed:
Riemann-Hilbert Problem M(x, t, z) solves the following RHP:

M(x, t, z) is analytic in C \ X,
M_(x,t,z) = My(x, t,z)I — G(x, t, z)), ze X,

M(x, t,z) — 1, Z — 00, (32)
M(x, t,z) —> —ZiogQ,, z—0,
of which the jump matrix G(x, t, z) is
p(2)p(z) e 202 p(z)
G= _ 2i0(xt,2) g (33)
e p(z) 0
_ sa@) ~ _ S12(2)
where p(z) = %, o(z) = % Let
1 1
Mx, t,z) =1+ zM“)(x, t;z)+ O(z—z), Z — 00, (3.4)

then the potential q(x, t) of the nonlocal Hirota equation (2.3)
with NZBCs is given by

qx, t) = iMD(x, t,2) = i lim zMya(x, t, 2). (3.5)
Z—> 00
n 2

As a matter of convenience, we take ¢, = g—;’ and define

Zn, n=1,2,...,N, (36)
b = -z' ., n=N+1,N+2,...,2N. ’
Then the residue of M(x, t, z) is
ResM.; = (0, Algale "™ _s(x, t, &) ,
z=(n
ResM. = (AlGa ™60 5(x, ¢, £,),0) (37)

z=(n
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Through subtracting out the residue and the asymptotic values
as z — 00,z — 0 from the original non-regular RHP, the
following regular RHP can be obtained

i ov [ ResM,  ResM_T]
z={n z={n
M_+-03Q- —1— + — | =
4 ; i Z—1¢yn zZ—20 i
i ov [ ResM,  ResM_T]
z={n z={n
M, + L0350 —1— = | -M (38
4 ; i Z—"{n zZ—20, i

which can be solved by the Plemelj’s formulae, given by

i 1 M t; ¢)G(x, t;
M. t:2) = [ — S50 + —— +(x, t5 $)G(x, ’{)dg
z 27l J5 -z
2v | ResM; REZSNL
z={n Z={n
+ — |- (3.9)
Z z— Cn zZ—1=0
where
ResM+ REASM,
z={n z={n 2 2
— = (GlamaEn). G@ua).  (310)
Z—"{n zZ—2=0
and
A —2i0(¢n) A 2i(&n)
Gi(z) = L, Co(z) = L (3.11)
Z—"{n z— ;n
Furthermore, according to (3.4), one has
1
MD(x, t,z) = ——./ M (x, t; £)G(x, t; £)d — io3Q-
27mi b
2N R
+ 3 (MG o (Go), Altale W (6)) (3.12)
n=1

Therefore, the potential g(x, t) with simple poles for the nonlocal
Hirota equation with NZBCs is given by

2N

qx. 0) = iM3) = q_ +i)  Alzale 2" _11(gy)
=1 (3.13)

1
o / (Ma(x, £ )G, £ £)ads.
T Js

3.2, Trace formulae and theta condition

The scattering cogfficients $22(z) and sq1(z) respectively have
simple zeros ¢, and ¢, thus we can take

2N 2 2N

p@ =[] = @)= o[ 6w

that means 8% (z) is analytic and has no zeros in D, and 8~ (z) is
analytic and has no zeros in D_. Also, *(z) — o(1) as z — 0.
According to the Plemelj’s formulae, 8% (z) can be written as

1 log(1 — pp
log B¥(z) = F— / Mds, z € D%, (3.15)
2mi s—z
Using Eq. (3.14), we derive the following trace formulae
1 [ log(1—pp) —¢
= —— ds
s2(2) exp[ 2711'L s—z 1_[ ;n
1 [ log(1-pp) {3 Z—Zn
= ——————ds —_— 3.16
s11(z) = exp[zﬂl/ p— l_[z—;“n (3.16)
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Let z — O in the first formula of Eq. (3.16), one has

. ~ N
i log(1— pp) |z |*
o [ | P T 2

n=1 o

(3.17)

In addition, taking the derivative of Eq. (3.16) with respect to z,
we obtain s),(¢;) and s7,(¢;), given by

L/ log(1 —pf))ds] [T (G — Sm)
2 s—¢ [T (G — &m)
1 / log(1 — p,b)ds:| ]_[m#(fj — &m)
I 2N It :
2mi S — é-j l_[m 1(;] gm)

3.3. The simple poles soliton solution of nonlocal hirota equation
under NZBCs

5, () = exp [—

s“(;‘,) = exp |: (3.18)

In the case of no reflection, i.e. p(z) = p(z) = 0, we can get
the soliton solution. We first take the second column of Eq. (3.9)

~al2) = ( ) Zc Dp-1(Z). (3.19)
In terms of the symmetric relatlon, we easily get
; 2
1q— q
Ha(z) = =—p-a(2). (3:20)
z z
Substituting Eq. (3.20) into Eq. (3.19), and setting z = Aj,j =
1,2,..., 2N, we generate a 2N linear system:
2N iq — iy
Yo G+ =in Juae+ | 9 ) =o. (321)
n=1 é‘J 1

Theorem 3.1. The precise formulae of N-simple poles solutions for
the nonlocal Hirota equation (2.3) with NZBCs (2.4) is expressed as

H
det< T ¢ )
) x 0

qx,t)=q_ —1i det(70) (3.22)

Proof. From Eq. (3.21), it is not hard to derive a 2N linear system
with respect to p_11(&n)

2N .
A iq_ iq_
> (cn(cj) + As,',n> ponlt)=—, j=1,2,...,2N.
n=1 J J
(3.23)
The linear system can be rewritten into a matrix form:
Ha = ¢, (3.24)
where H = (Bjn)anxan, @ = (an)anx1, @ = (@j)anx1 With
« zq, iq—
= Cn((j) —0jn, Qp= m-11(&n), Q= —- (3.25)
i §
In the case of reflectionless potential, Eq. (3.13) is rewritten as
q=q-+ix'a, (3.26)
where x = (xn)anxi With x, = A[g,]e %?¢), Combining

Eq. (3.24), the expression of the soliton solution is presented
finally. O

As an example, through choosing some appropriate parame-
ters, we discuss the dynamical behaviors for simple poles solution
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(c) The peak of wave along the line t = —0.25x (blue).

in the case of N = 1 and N = 2, respectively. It is worth men-
tioning that the discrete spectrum cannot to be pure imaginary
number, which is verified from Proposition 2.5.

Case 1: N =1
Let z; = qoe"1, ¥y € (0, ). Then, from (3.6), we have ¢; =
Qe & = —qoe ", & = qoe 1,8 = —qoe’t. Let g =

qoe,0_ € {0, }, b[¢1] = by, where by is arbitrary parameter.
From Proposition 2.5, we have b[,] = — . From Eq. (3.18), one
1

has
s (é‘ ) _ &1 — & _ COS(?}])
2 (&1 — &) — &) 2qoielt sin(d)’
/ H—& cos(¥1)
= = ~— = —— , 3.27
) i) Zaaie " sin(y) 5:27)
then we have
Aley] = {3[{1] _ 2qobyie™ Sin(ﬁl),
$5,(¢1) cos(t)
i (3.28)
Aly] = b[¢;] _ _Zque 1sin(%4)
SylE2) b} cos(D1)

Thus the one-simple pole solution of the nonlocal Hirota equa-
tion (2.3) is deduced as

24
X0 =do 329
q(x, t) = qo 2 (3.29)
27 =(2sin(®;) + ie”1) cos($1)O; — (2 sin(P;) — ie~?1)
x byb% cos(91)O; + bt cos(9,)* e~
+ 2ib; sin(9;)@3(e" M1+~ — gl Hi0-)
+ (3b; cos( ) — 4b;1)@5e"-,
2, =icos(1)01€”1 7% + ibyb} cos(t)@,e 17~
— cos(%1)2b1 @3 + b} cos( )2e*-,
© =eHosin(@1)(- Lx—Bqdt-+isqg cos(1)t—2Bq3 cos(91)2t)—iv1 +2i0_
6, =e0sin(1)X Lx+Badi-+isqy cos(v1)t+2B43 cos( 2 t)+iv1+2i0—
O —e4osin(¥ )(x+2Bq3t-+4Bq3 cos(vy )Zt). (3.30)

In order to discuss the regularity of the above solution, we need
to examine whether the denominator of Eq. (3.29) is zero under
certain conditions. Without loss of generality, let g = 1,6_ =
0, by = byy + ibqz, we have

12,1* =2 cos(1)* (((—b3; — b3,) cos(8 sin(1%,)8 cos(¥1)t)
2 2 2 bélll 2 1.2 béll2 1 —~2
+(by; — b3y) cos(P)” — - - biib3, — 5 - 5).:,

+((b12(b7; + b3, + 1) cos(4 sin(i#1)8 cos()t)
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(c)

0. =0,8= 1%0, B = 1. (a) Three dimensional plot; (b) The density plot;

(b)

Fig. 2. One-simple pole solution for Eq. (2.3) with the parameters: by =1,qo =1, % = Z,

4

+ sin(4 sin(91)8 cos(d )t )by (b2, + b2, — 1))&
+(b12(b%, 4 b2, + 1) cos(4 sin(1)8 cos(91)t)
— sin(4 sin(1%,)8 cos()t)by1 (b3, + b3, — 1))&3

2 2 (A4
_c05(171)(b11 ';bu)(A + 1))COS(191)> .

(3.31)

where 5 = e4snPGx+pr+26c001%0 \When |©2,]2 = 0, the
solutions (3.29) have the singularity. For example, When b; = 1,
Eq. (3.31) become

82,1 = cos(91)* ((—2 cos(#1)* + 2 cos(8 sin(1)8 cos(91)t) + 2)
x e sin(P1)(x+2pt+4p cos(v Yt)

+ COS('I?] )2(68 sin(¥1 )(x+2Bt+4p cos(P4 )21‘) + 1)) . (332)

When —2 cos(191)? 42 cos(8 sin(1#)8 cos(# )t)+2 > 0, the soliton
solution (3.29) can be regular, which means that the solution is
nonsingular at the region of m(—% +2nmr) <t <

m(% + 2nm), and n is integer. Obviously, when § —
0,9 — 0 or 7, the regular region will be whole plane.

Through choosing different parameters, the different dynamic
behaviors are presented in Figs. 2-5. Of which, Fig. 2(a) (b) display
a dark soliton, Fig. 2(c) describes the peak of wave along the line
t + 0.25x = 0 which is the center trajectory. In Fig. 2(c), we find
the crest is less than 1(the height of background wave) within a
certain region, and beyond the region, the crest is greater than
1. As we can see from Fig. 3, as |t| increases, the dark soliton
turns into the anti-dark soliton, this fact can also be verified
in Fig. 2(c). This phenomenon is quite interesting and original
for the nonlocal Hirota equation (2.3). Fig. 4 shows a dark-anti-
dark pair solution, and Fig. 5 exhibits a breather wave, which
is singular at points {x = —% — &, t = T + 5}, and n is
integer. Meanwhile, comparing Fig. 2 and Fig. 4, we find that as
the parameter b; increases, the dark soliton turns into the dark-
anti-dark pair solution. On the other hand, from Figs. 2 and 5, we
find that as parameter § increases and parameter 8 decreases, the
dark soliton changes into the breather wave.

Case 2: N =2

Let z; = qoe”1,z, = qoe”2, 01,0, € (0,%). Let q_ =
qoe’,0_ € {0,m}, b[c1] = by, b[g] = by, where by, by are
all arbitrary parameters. We obtain the two-simple pole solution,
which displays the interaction of two dark-anti-dark pair solu-
tions(see Fig. 6). As shown in Fig. 6, when t = —5 (before the
interaction), the wave profile consists of two dark-anti-dark pair
solutions, when t = O (they have the strong interaction), the
wave profile creates two spikes. When t = 5 (after the inter-
action), the wave profile restores the original shape. Moreover, in



W.-Q. Peng and Y. Chen

0.54
o
-210 -200 -190 -180 -170 160 -150
x
——— t=50 Plot t=45 Plot t=40 Plot
2
1.5
=
0.5 V
0
30 40 50 60 70 80 90
x
——— t=-10 Plot t=-15 Plot t=-20 Plot

(d)

2
1.5
’ v \/ \[
0.5
o
-150 140 -130 120 -110 100 -90
x
——— t=35 Plot =30 Plot =25 Plot
2
1.5
° \{ \/ \Y
0.5
o-
90 100 110 120 130 140 130
x
——— t=-25 Plot t=-30 Plot t=-35 Plot

(e)

Physica D 435 (2022) 133274

2
15
=
0.54 V V’
o
-90 -80 70 -60 -50 -40 -30
x
t=20 Plot t=15 Plot t=10 Plot

(c)

0.5
o-
150 160 170 180 190 200 210
x
——— t=-40 Plot t=-45 Plot t=-50 Plot

(f)

Fig. 3. The wave propagation of one-simple pole solution along the x-axis at different time. The parameters are by = 1,q0 = 1,9 = %,6- =0,8 = L g=1.

15

1
=

0.5
0
-15] 1o 5 0 H 10 15
x
—— t=-1Plot =0 Plot t=1 Plot

(c)

Fig. 4. One-simple pole solution for Eq. (2.3) with the parameters: by = 10,qp = 1,9 = %, - =0,86 = T:ov B = 1. (a) Three dimensional plot; (b) The density
plot; (c) The wave propagation along the x-axis at t = —1 (red), t = 0 (blue), t = 1 (black).

Fig. 5. One-simple pole solution for Eq. (2.3) with the parameters: by =1,q0 = 1,91 = %, 6_.=0,8=
(c) The wave propagation along the x-axis at t = —4 (red), t = 0 (blue), t = 4 (black).

o 2 ) 2z a
x

—— =4 Plot

t=0 Plot

(c)

t=4 Plot

= %. (a) Three dimensional plot; (b) The density plot;
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t=-5 Plot (;l; Plot t=5 Plot
(c)
Fig. 6. The two-simple pole solution for Eq. (2.3) with the parameters: by = —1,b, = -1,qo =1, = §, 0, = 5,0_ =0, = ﬁ, B = %. (a) Three dimensional
plot; (b) The density plot; (c) The wave propagation along the x-axis at t = —5 (red), t = 0 (blue), t = 5 (black).
31 3 31

t=70 Plot

t=65 Plot

=55 Plot

t=50 Plot

(a)

(b)

lal
lal

t=-40 Plot

t=-45 Plot

t=-55 Plot
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(d)

Fig. 7. The wave propagation of two-simple pole solution along the x-axis at different time. The parameters are by = —1,b, = —1,qy = 1, %

=1 g1
0.8 = 15: 8 = 15-

Fig. 7, when |t| increases, the dark-anti-dark pair soliton degrades
into the two anti-dark soliton.

4. The nonlocal hirota equation with NZBCs: double poles
4.1. Direct scattering problem

In this part, we suppose that the N discrete spectral points
are double zeros of the scattering coefficients s11(z) and s;,(z),

that is, we have s;;(z9) = s5,(z0) = 0 and s,(z9) # 0 for
zo € Dy N{z € C: Rez > 0}.
Defining
Voox, t,z
blze] = 2 0)7
lpfl(x9 t, ZO)
' (x, t; z0) — b[zo]W' (%, t; Z
dize] = 1l 0) — blzo]¥” {( o)’ % eTND,.
Y_q(x, t; 20)
Yia(x, t, 20)
blzg] = ————

V_s(x, t,20)

(e)

t=40 Plot

t=35 Plot

(c)

lal

.

30
x

35 40

t=-70 Plot

t=-75 Plot

(f)

WL (X, t520) — blzo]W/,(x, t; 20)

dlzo] = ’
[20] W_y(x, t; 29)
we have
2”blzol , ZpeTNDy,
A _ $55(20)
[20] = 2blzg]
= , ZoeYND_,
s11(20)
dizg] _ Sp(20)
o bl ~ 3z)’ Zo € T NDy,
ol — I
dizg] _ S11(%0)
blol ~ 3o),(z0)" 20T ND_,
and
[ Wia(x, t;2)]
Lo, | 2220 = Alzo W (x, t; 20),
=70 | $22(2)
(WX, t52)]
L, | 2220 = Alzel¥_a(x, t: 20),
=z L s1(2)
[ Woa(x, t;2)]
Res M
z=z0 | S$p(2)

=19, =26 =
Zo€e Y ND_, (4.1)
(4.2)
20 € T ND4,
2o €T ND_,

= Alzo] [ (%, t; 20) + Blzo]¥_1(x, t; 20)] ,
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Z0 € T N Dy,
Voa(x, t; 2)

|: s11(2)

Zoe T ND_. (4.3)

Res

zZ=2y

] = Alzo] [/ ,(x, t; 20) + Blzo]W_s(x, t; 20)] ,

Proposition 4.1. Two relations for b[zo], d[zo], s(z';)(zo) and 5(1”11)(20)
are derived below:

e The first relation

1 di—z1"
blzgl = —————, d[zo] = —
[Z0] Bz T [20] Pzl
SM(z0) = (1)U (—z5), s(z0) = (—1)"sy2(—z5)*, m € N.
(4.4)
e The second relation
a3 _ . a
blzo] = — L[ 21 dizo] = =g !
q: 3
2 2
(m) o ym (m), 90
522 (ZO) ( %)msn (ZO )a 2y € D+s
T q; qat g
blzo] = ——=b[ 2], dlz] = + d[ 0]
q- 2o 0
a3 qa;
1) = (~3)"S(D). 20 €D (4.5)
0

S
22 20

4.2. Inverse problem with NZBCs and double poles

By subtracting out the asymptotic values as z — 00,z — 0,
the residue, and the coefficient L_; from the original non-regular
RHP, one can obtain the following regular RHP

i
M_ 4+ -03Q_- —I—
z

o [ LMy ResM L—?M— ResM_ i

z=ln z={n Z={n z={n
n=1 (Z_;-n) Z_é-n (Z_é-n) Z_;n

L ; .

M+ + 20—3Q_ —I—
o [ LaMy  Resm, L2M- Resm_ ]

z={n z={n z={n z={n

+ + T | - MLG. (46)

; =GP zZ-=t (z2—0)P z-1in "

Via the Plemelj’s formulae, the above RHP can be solved as

M(xtz)_l——ogQ +—/M+Xt§ Xt;od;

2mi
LMy Resm, L-2M-  ResM_
z=ln z={n z=0n z={n
+ + — + — |- (4.7)
Z (z = tn)? Z—é’n (z—n)? zZ—1¢&y

The residue and the coefficient L_, of M(x, t; z) in Eq. (4.7) can

be written as

LoM, = (0, A[gnle 2P®5M (x5 20))

z={n
L,ZM, = (A[fn]ezm(x’t:;”)ﬂfz(& tv 211)7 O) ’
z= Z'n
ResM.. = (0. Algale "5 [l (x. £ 6a)

+ [Bl&a] = 20/ (x, t; &)] moa(x, €5 20)])
ResM_ = (ALGle™ 560 [ ! yx, £ &)

z={n
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+ [ Blénl + 2i0/(x, 5 &) | sl 65 60)] . 0)) (48)
Then, one has

LoM;  ResM, L-2M-  ResM_

z=(n 7={n z=(n 7= _

C-olf Tt a-ap  i-&

( |:u, 2({,, (Dn + 7] ) M- 2({n)j| )
z—= (n

1
Cul2) [uu(;n) + (Dn t i ) u_1<;n>D , (49)

and
—2i0(¢n)
Cn(z) = Mv D, = B[{n] - 21'9/((,1),
Z— Cn
. A[E, ]2 R R
Cul2) = % B = BIf] + 2i6/(2,). (4.10)
Z—2<Cn
Moreover, according to (3.4), we obtain
MY(x, t;2) = —if M (x, t; £)G(x, t; £ )d¢ — io3Q_
2ni Jy
2N . R
+ Z (A[Cn]eme({") (Mlz(fn) + DnN—Z(Cn)) s
n=1
AlZale 0 (14 4(2n) 4 Dat-1(2n))) - (4.11)

The potential q(x, t) with double poles for the nonlocal Hirota
equation with NZBCs is given by

1
a0 =My =g / (Mo (x, 65 )G, £ £))iad
T Jy
2N )
+H Y ALGle ™ (141 (8n) + Dapt—ni(&n)) - (4.12)
n=1

4.3, Trace formula and theta condition

The scattering cogfﬁcients $22(z) and sq1(z) respectively have
simple zeros ¢, and &, thus we can take

. 2N Z—fnz B 2N Z—to,
B (2)2522(2)1_[(:) . B (Z)=511(Z)H(Z PREC)
n=1 n n=1 %" 51

that means 8%(z) is analytic and has no zeros in D, and 8~ (z) is
analytic and has no zeros in D_. Also, *(z) — o(1) as z — oo.
According to the Plemelj’s formulae, 8*(z) can be written as

1 log(1 — pp
log B*(2) = T—— / log1 = pP) s, e p*, (4.14)
2mi s—z
Using Eq. (4.13), we derive the following trace formulae
1 log(1 pp)
522(2) = exp [ P / H( 2
1 log(1 — pp —
s11(z) = exp [ / Mds} l_[(z & Y. (4.15)
2mi s—z w1 2 6n
Let z — 0 in the first formula of Eq. (4.15), one has
i log(1 - pp) ,0,0 | Zn |8
= 4,16
exp [271 I 1"[ (4.16)

In addition, taking the derlvatlye of Eq. (4.15) twice with respect
to z, we obtain s),(&;) and s7;(¢;), given by

1 / log(1 — pb)ds] l_[m;&j 2(g — {m)?
2ri s—¢ [T (5 — &m)?

s52(¢) = exp [
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1 1— 00 | | .2 2- — 2 2
og( pp) S m#j ( J m) ( 1 )

"oy 1
s/ (L) =exp| — = : '
1(4) p|:2mA S— ”;N:l@f_;’")z

Notice. that the general expressions of the s7,(¢;), 5/1”1(.4:1) are very
complicated, and we omit them here. However, with the aid
of computer softwares such as Maple and Matlab, one can eas-
ily get the corresponding exact expressions by taking the third

derivative of the Eq. (4.15) with respect to z.

4.4. Double poles soliton solutions of nonlocal hirota equation under
NZBCs

In this subsection, for the case of double poles with reflec-
tionless potential, we first need to evaluate u’ (&), u—1(¢a),
W _o(&n), w—2(¢n). When p(z) = p(z) = 0, the second column of
Eq. (4.7) meets

_ig 2N 1

n_o(z) = ( Z]q >+ch(z) [ML]({n)"‘ (Dn+ Py )Nf—l(fn)] s
n=1 n
(4.18)
i 2N

, . 24— _ Ca(2) , 2
/\L,z(z)— ( 0 ) ;Z—fn |:Vv71(§n)+ <Dn+z_€n)/~’«—1(§n)i| .
(4.19)

We take the first-order derivative about z in formula (3.20), given
by

; 2 i?q. 2
() + B (B,
z z z z
Substituting Eqgs. (3.20) and (4.20) into Egs. (4.18) and (4.19), and
lettingz = ¢j,j = 1,2, ..., 2N, we obtain the following 4N linear
system

wo,(z) = (4.20)

2N ~ R 1 iq_
Z {Cn({j)ﬂ/_1({n) + |:Cn(§1) (Dn + = > + lqu,n:| Ml({n)}
n—1 & —&n g
=< 5 ) (4.21)
—1
2N ~ )
Ca(g _ ,
Z <A({]) + lq?g (Sj,n) m_1(&n)
n=1 G —¢n {j

N 9(23)
;j - g-n

2 iq—
(Dn + = ) + A*ZSj,n m-1(&n)
cj - gn ;1

Theorem 4.1. The general formula of the double poles solution for
the nonlocal Hirota (2.3) with NZBCs (2.4) is expressed as

g ¥
‘det< o 0 )

qlx,t) =q- —1i det(0)

")

(4.22)

(4.23)

Proof. According to Egs. (4.21) and (4.22), we easily obtain a 4N
linear system with respect to pt_11(Zn), 1'_11(¢n)

2N . R 1 ia_

Z {Cn(gj),u/n({n) + |:Cn(§j) <Dn + = + isj,n M—ll({n)

n=1 Cj —n {j

=2 (4.24)
&

10
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2N p iq?

Cn . — /
Z (A(CJ) n lqijg 5]271) m_11(&n)
= \e-a g

Ca(Z; 2 iq_ iq_
+| = () Dy + = + %Sj,n m-11(¢n) p = 1?2 ,
5—t b-a) & 3

the above linear system can be denoted in the matrix form:

(4.25)

gn=1y, (4.26)
where

Y ] iq_ iq_ iq_
1/f:< ), w():(fyfwu,f),

y® G & 1Y}

iq_ iq_ iq_
w(z) = (Ai, TRyt Ai)Ta

&G T

77(1) ) T
n= ( ey > W = (e (@), pen(&), - pen(Gan))

77(2) = (;,LL“(C]), MLH(Q)’ R /’L/—ll(CZN))T’

g(ll) g(12)
G= ( o e ) (4.27)
with gim = (gj(:lm)> (i,m = 1, 2) given by
2N x2N
~ 1 iq— A
g = (&) [ Do + = +—8in. G = Gal),
G — &n g
Ca(g 2 iq_
;51) — An(iéj) Dy + = + %Sj,n:
& — n G-t) &
Gu(g) | igaq-
Jgf” = 57 93 Sj.n- (4.28)
G-t &

At the case of reflectionless potential, Eq. (4.12) can be defined as

q=q-+io'n, (4.29)

where

-~

oo Algon e 20y

oV = (A[¢11e 270D, Algyle 272D, .. Al Te 2Dy )T
(4.30)

™

(a)wmzmeWWMMKMW
w

From Eqgs. (4.26), we get the expression of the double poles soliton
solution. O

For example, we have the one-double poles soliton solution of
the nonlocal Hirota equation with NZBCs when N = 1. Let z; =
qoe”1, 91 € (0, Z). Then, from (3.6), we have ¢; = qoe1, ¢

—qoe 1,8 = qoe 1,5 = —qoe1. Let q_ = qoel?-,0_ €

{0, 7}, b[¢1] = by,d[¢1] = dq, where by, d; are all arbitrary

parameters. From Proposition 4.1, we have b[{;] = —bi*, ds;] =
1

—(Z—;)*. From Eq. (4.17), one has
1

s5,(&1) = 2(¢1 — &) _ (cos(91))?
2T =8 — &) 2qoie” sin(91)P
_ 2 2
() = —— L) (costt) (431)

(€2 — 626 — £2)? 2(doie 71 sin(D:))2”
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Fig. 8. The one-double poles solution for Eq. (2.3) with the parameters: by = 1,dy =1,q0 =1, =
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t=5 Plot

t=0 Plot

(c)

B = 1. (a) Three dimensional plot; (b) The

=5 Plot

1
6-=0,6= .

bl

density plot; (c) The wave propagation along the x-axis at t = —5 (black), t = 0 (blue), t =5 (red).

and through Maple computation, we get

1 (21) = 12051 — )68 — &2 — (61 + &)6 + &18)
2 (&1 =8P — &) ’

" 12(¢2 — §1)(26182 — &2 — (&1 + £)61 + £182)

SHh(62) = 2 :
(&2 — 8P — &)

then using Eq. (4.2), we can derive the A[{1], A[Z2], B[¢1], B[&2].

Thus the one-double poles solution of the nonlocal Hirota equa-

tion (2.3) is deduced as

(4.32)

9(1111) g(n) g(12 glu) 51)
gélll) g(n) g(12 sz 51)
det g(lzll) g(zn g(zz g122) 52)
(1) (1) (22) (22) )
921 9 9 92 2
NI O L L N
qx,t)=q-—1 , (4
(11) (11) (12) (12)
91 912 911 917
(11) (11) (12) (12)
det 9n %) 99 9y
(21) (21) (22) (22)
911 912 911 915
(21) (21) (22) (22)
9n 9 9 9y
where
R 1 iq_
g_;r}]):Cn(gj) Dn+ ~ + = 8]71, 12)—C(§)
g'j — 6n Cj
Galg; 2 ) o
;31) _ An(fj) D, + = q ajn’
G—%&n §G—&n {1
@2) _ Cn(écj) iqg2q_
in T % + 3%
G —&n g
Al ]3*219 n) .
(g']) = 4-7’ Dy = B[gn] — 2i0'(¢n),
Jj — Sn
&) _A[C_]efzio(;j)D_ w(Z) =A[§j]efzi9(;j)’
1//_(1) iq— ¢(2 iq—
! 4 &2’
o) — (& — a3) [Bt(ag + 43¢ + &) + idgit(ah + ¢) + x¢?]
] 2§j3 ’
ihn=1,2,
0'g) 3pt(ag + ap¢f + apgt + &) + 28t (g + &) + 7 x(qg + &)
] 2§j4 .
(4.34)

11

As a matter of convenience. we take by = 1,d; = 1,qo
1,0 = ” ,0_=0,6 = 100, B = 1 as an example to illustrate the
correlatlve dynamic behavior for the one-double poles solution
for nonlocal Hirota equation with NZBCs via image simulation. As
displayed in Fig. 8, before the interaction t = —5, the wave profile
contains two dark solitons, then they happen the strong collision
at t = 0. After that, the wave profile becomes a two dark soliton
again. Moreover, in Fig. 9, when |t| increases, the two dark soliton
degrades into the two anti-dark soliton.

Furthermore, we analyze the asymptotic states of the one-
double poles solution as t — oo under by = 1,d; = 1,q9 =
1, % %,6', 0,8 = 0,8 1. Through analyzing the
expression of the solution, we know the two characteristic curves
are x = —4t + g log(t) and x = —4t — ? log(t), respectively.
Using maple symbol calculations, we can derive the long-time
asymptotic state of the one-double poles solution as moving
along these two characteristic curves, given by

(128 — e2V2x+ar— 2 log(1)) Y2

| q(x, t) P~
(128 + e2V2x 4= 052 | 51222 +41— 42 loglt)

(128 — o 2v20ctar+ 2 log(t D)2
, ast — oo.
(128 + e—zﬁ(x+4t+410g(r)))z 1 5122V 2x+4t+ 32 log(e)
(4.35)

From the above expression, it is not hard to see that the one-
double poles solution reduces into the two dark one-soliton so-
lution as t — oo, and when t — o0, the position shift of two
dark one-soliton solution is ~/2 log(t), which depends on t. We
also select three different time t 20,t = 40,t = 60 to
verify the above asymptotic expressions by numerical plotting in
Fig. 10. Numerical results show that the exact solution and the
asymptotic solution are almost identical.

5. The data-driven soliton solutions for the nonlocal hirota
equation via PINN algorithm

In this section, the PINN algorithm is used to learn the soliton
solutions for the nonlocal Hirota equation (2.3) with Dirichlet
boundary conditions, given by

A + 8 [ — 262" (=X, —t) + 2q34]

+8 [qxe — 609 (—x, —t)qx] = 0,

X € [x0,x1], t€[to, 1], q(x, to) = qo(x),

q(xo0, t) = quy(t), q(x1,t) = qus(t),

where xp, X; denote the corresponding boundaries of x, to, t; are
initial and final times of t. The qo(x) defines the initial condition.

(5.1)
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We would apply PINN scheme to investigate the data-driven
soliton solutions of Eq. (5.1) with § = 0.01, 8 = 1. The soliton
solutions include the dark soliton solution and dark-anti-dark
pair solution. These solutions have be derived in Section 3, and
their corresponding dynamic behavior also have been discussed
above. As presented in (3.29), the precise form of these solutions
can be written as follows:

Using the same parameters as Fig. 2, the exact dark soliton
solution admits

—2x/§i€ﬁ<4t+x) sin(%) _ 62«5(4t+x) +1

- 24/2ieV2(4t+x) cos( &) — e2V204t+0) 4 1

q(x, t) (5.2)

Using the same parameters as Fig. 4, the exact dark-anti-dark
pair solution admits

ﬁe4ﬁt+ﬁx—% _ 100ﬁe4ﬁ‘+ﬁ"+§% — 10e2V24r+0) 4 10

4 1004/2ie?V2HV2H 5 10e2v24) 110
(5.3)

q(x, t) =

ﬁie4«/§t+«/§x—%

12

5.1. The PINN algorithm

In this subsection, we commit to introduce the PINN algo-
rithm [28] for the data-driven solutions in detail. The main idea
of the PINN algorithm is to use a deep NN to find the solutions of
Eq. (5.1). Let q(x, t) = u(x, t) +iv(x, t), ¢*(—x, —t) = u(—x, —t) —
iv(—x, —t) being its real and imaginary parts, respectively, and
then substituting them into Eq. (5.1), we have

Ut + Bl + St — 6B[u(—x, —t) + vo(—x, —t)]uy
—28u%u(—x, —t)

—6B8[uv(—x, —t) — vu(—x, —t)Jvy + 28[1 — 2vv(—x, —t)]u
+28v%u(—x, —t) =0,

Vr + BUp + vk + 68[uv(—x,
—28v2v(—x, —t)

—68[uu(—x, —t) + vu(—x, —t)]vy

+268[1 — 2uu(—x, —t)]v + 28u?v(—x, —t) = 0.

—t) — vu(—x, —t)]uy

(5.4)



W.-Q. Peng and Y. Chen

Deep Neural Networks {W,b}

\a

c—(0) (o

ees O

vee O

Physica D 435 (2022) 133274

Nonlocal Hirota Equation

5“\
a‘f > f;,’f
0, / [
7 —
Optimization
LOSS {(W,b}

Fig. 11. The PINN scheme solving the nonlocal Hirota equation, &t = u(—x, —t), v = v(—x, —t).

Then the physics-informed NNs f,(x, t), f,(x, t) can be defined as

Ju =g + Bl + Sy, —
—28u%u(—x, —t)
—68[uv(—x, —t) — vu(—x, —t)]vy + 28[1 — 2vv(—x, —t)]u
+28v2u(—x, —t),

fo = ve + Boxxe + Sv + 6B[uv(—x, —t) — vu(—x, —t)Jux
—28v2u(—x, —t)

—68[uu(—x, —t) + vv(—x, —t)]vy + 28[1 — 2uu(—x, —t)Jv
+26u%v(—x, —t),

6B[uu(—x, —t) + vv(=x, —t)]ux

(5.5)

of which u(x, t; w, b), v(x, t; w, b) represent the output of the
neural network, which is an approximation of the solution q(x, t).
Applying automatic differentiation mechanism in u(x, t; w, b),
v(x, t; w, b), the residual PINN f,(x, t), f,(x, t) are given [62]. Then,
the multi-hidden-layer deep NN is used to train the network
parameters w, b. To obtain the optimum training results, we
construct the following Loss functions which can be minimized
via using L-BFGS optimization method [63]

Lossg = Lossy + Loss, + Lossy, + Lossy, (5.6)
with
Lossy = Z x t’ —uip,
Loss, = g LS 1 X th) — o[,
(5.7)
Losss, = W Z,Zl fulxf, ff) ,
1M I 1y2
LOSSfU = Ny L=t |f1)(xf! tf)| s

where {x., t;, ui}:i"l and {x;, t, vi},.N:"l denote the sampling initial

.. . i I Nf
and boundary value training data, respectively. {xf, tf},=1 denote
the sampling collocation points for f, and f,. On the one hand, the
loss function (5.6) makes the learning solution approximate the
exact one, on the other hand, it makes the hidden i, ¥ satisfy the
target nonlinear partial differential Eq. (5.1). To understand PINN
algorithm more intuitively, the flow chart of PINN algorithm for
nonlocal Hirota equation is shown in Fig. 11, in which NN and
physical information part can be seen. The aim is to optimize the
loss function using the NN part as well as the physics information
part.

To obtain the data-driven soliton solution for the nonlocal Hi-
rota equation (5.1), we choose the PINN which contains 9-hidden-
layer NN with each layer having 40 neurons. Their activation
functions both are the hyperbolic tangent (tanh). The all codes
are written by Python 3.7 and run on Tensorflow 1.15, and the

13

corresponding hardware is a HP Laptop 14s-dr2xxx with 2.40 GHz
4-core 11th Gen Intel Core i5-1135G7 and 16 GB memory.

5.2. The data-driven dark soliton solution
First, we take [xo,x;] = [—3,3] and [, t;] = [-3,3] in

Eq. (5.1) as the boundary conditions, and select the following
initial condition arising from the dark soliton solution (5.2)

qo(x) = q(x, —3), (5.8)
and the Dirichlet boundary conditions for Eq. (5.1)
qw(t) =q(=3,t), qu(t) =q(3,t), t €[-3,3]. (5.9)

In terms of MATLAB software, the traditional finite difference
method can be used to capture the original training data by
dispersing Eq. (5.2) with dividing spatial region [—3, 3] into 1500
points and time region [—3, 3] into 1000 points. The original
training data contains the initial boundary data and the inner
points. Here, we choose N; = 1500 as the random sample points
from initial boundary data and Ny = 30000 as random colloca-
tion points from the inner points based on the Latin hypercube
sampling (LHS) method [64]. Processing these obtained training
data in the PINN scheme, the data-driven dark soliton solution
q(x,t) can be eventually learned, which has a 2.695814e—04
L,-norm error compared with the exact one. The total learning
process executes 927 times and takes about 1262.4172 s. The
corresponding dynamic behaviors are displayed in the following
Figs. 12 and 13.

In Fig. 12, the wave propagation pattern along the x-axis and
the density plots for the data-driven dark soliton solution are
shown respectively. From Fig. 12, it is easy to find that the error
range is about —0.001 to 0.001 between the learned dynamics
and error dynamics. This fact can verify that the simulation is
pretty good. Fig. 13 is the three-dimensional plot and loss curve
figure of data-driven dark soliton solution.

5.3. The data-driven dark-anti-dark pair solution

For data-driven periodic wave solution, we let [xg, X1]
[=5,5] and [to, t1] [-5,5] in Eq. (5.1) as the boundary
conditions, and select the following initial condition arising from
the dark-anti-dark pair solution(5.3)

qo(x) = q(x, —5), (5.10)
and the Dirichlet boundary conditions
q(t) = q(=5,t), qu(t) = q(5,t), t € [-5,5]. (5.11)

Carrying out the same process as Section 4.2, the data-driven
dark-anti-dark pair solution is generated successfully. The results
of the experiment show that the LL,-norm error between learning
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Fig. 12. The data-driven dark soliton solution q(x, t) for nonlocal Hirota equation (5.1): The exact, learned and error dynamics density plots, and the sectional
drawings which contain the learned and explicit dark soliton solution q(x, t) at the five distinct times t = —2,t = —0.25,t = 0,t = 0.25,t = 2.

(a)

Fig. 13. The data-driven dark soliton solution q(x, t) for nonlocal Hirota equation (5.1): (a) The three-dimensional plot; (b) The loss curve figure.

solution g(x, t) and exact one is 8.243617e—04, and the whole
learning process iterates 1807 times with costing 2737.0690 s.
The main dynamic behaviors for the data-driven dark-anti-dark
pair solution are plotted in Figs. 14 and 15. From these plots, we
also find the learning effect is pretty good with a very small error
and a rapidly decaying Loss curve.

5.4. The PINN algorithm for the data-driven parameter discovery

In this section, we put our attention to the problem of data-
driven discovery of nonlocal Hirota equation (5.1) by using PINN
algorithm. Our goal is to identify the parameters §, 8 in terms
of the dark soliton solution (5.2). In the same way, the physics-
informed neural networks f,(x, t), f,(x, t) for Eq. (5.1) are given in
(5.5).

Using the Latin Hypercube Sampling, a training data set can be
generated through selecting randomly N, = 1500 as the initial
boundary data and Ny = 30000 as the collocation points with
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T
0 200

the aid of the exact soliton solution (5.2) with § = 0.01,8 = 1
and (x, t) € [—3, 3] x [—3, 3]. In terms of the obtained training
data set, using a 9-hidden-layer deep PINN with 40 neurons per
layer, the data-driven parameters §, 8 can be discovered. The cor-
responding results are summarized in Table 1. We observe that
the PINN is able to correctly identify the unknown parameters
with very high accuracy when the training data was corrupted
without noise. Specifically, as we can see in Table 1, at the case
of 0.005 noise and 0.01 noise, the error of parameters § and B
is still receivable, which illustrates that the predictions remain
robust. Of course, we can also find that noise has a bad effect on
the error value of parameters.

The variation of unknown parameters and loss functions with
iteration is analyzed when different noises are used in inverse
problems. Fig. 16(a) and (b) show the changes of unknown pa-
rameters with iteration under different noises. We find that the
unknown parameters fluctuate less in the absence of noise, but
the parameters fluctuate more as the noise increases. Fig. 16(c)
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Fig. 15. The data-driven dark-anti-dark pair solution gq(x, t) for nonlocal Hirota equation (5.1): (a) The three-dimensional plot; (b) The loss curve figure.

Table 1

Data-driven parameter discovery of §, 8 in the sense of dark soliton.
Noise Parameter

8 error of & B error of

Correct parameter 0.01 0 1 0
Without noise 0.00976523 2.34770x 1072 0.9998441 1.559x 10~
With a 0.005 noise 0.01055261 5.52606x 1072 0.9998072 1.928x 1074
With a 0.01 noise 0.00934824 6.51762x1072 0.9998599 1.401x10~*

depicts the changes of loss functions for different noises as the problem at the case of simplify poles, we have given out the gen-
number of iterations increases. It indicates that the convergence eral N-soliton solutions for the nonlocal Hirota equation under
effect becomes worse and worse with the increase of noise. NZBCs. The critical technique shown in this work is to eliminate
Therefore, we can conclude that when discovering the physical the properties of singularities via subtracting the residue from
parameters of the model, the less noise the better the training the original non-regular RH problem when reflection coefficients

effect. have simplify poles. For the case of double poles, we also need
to subtract the extra coefficient L,. Additionally, the asymptotic
6. Conclusions and discussions value of jump matrix is subtracted from the original non-regular

RH problem. Then the regular RH problem can be displayed,
In this paper, we have applied the RH method to discuss the which can be solved by Plemelj formula. Finally, the N-simplify
nonlocal Hirota equation with NZBCs. Through solving the RH poles and N-double poles solutions can be derived by using the

15



W.-Q. Peng and Y. Chen

Physica D 435 (2022) 133274

i |
1072 i T e
\
|
|
|
|

Losslog)

100 600 800 1000 1200 1400 0 200 100
iterations

(a)

600

iterations

(b)

800 1000 1200 1400 0 200 400 600 800 1000 1200 1400
iterations

(c)

Fig. 16. (a, b) The variation of unknown parameters 8, 8 and (c) the variation of loss function with the different noise.

solution of RH problem to reconstruct potential function. Com-
pared with the local Hirota equation, the symmetry reductions of
Just solutions and scattering matrix are different, which results in
a disparate discrete spectra distribution. The dynamical patterns
of one-simplify pole solution with different parameters and one-
double pole solution have been discussed in detail. Especially,
some novel dynamic behaviors have been found for the nonlocal
Hirota equation and the asymptotic state of one-double poles
solution was discussed. Furthermore, we will study the long
time asymptotic behaviors for the nonlocal Hirota equation with
NZBCs via the Deift-Zhou method in another paper.

Additionally, we have also studied the data-driven soliton so-
lutions and parameters discovery for the nonlocal Hirota equation
with Dirichlet boundary conditions via the PINN method. Remark-
ably, due to the nonlocal Hirota equation has 77 symmetry term,
it is quite different with the local Hirota equation. Through adding
the nonlocal term into the NN, we can successfully handle the P7T
symmetry term and give out the data-driven soliton solutions and
the parameter prediction for the nonlocal Hirota equation. Our
results indicate that the deep learning can be applied to solve
nonlocal integrable systems.
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