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A series of new soliton solutions is presented for the inhomogeneous variable coefficient
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Firstly, through a standard dressing procedure, the N-soliton matrix associated with
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structed. Then the N-soliton matrix of the inhomogeneous variable coefficient Hirota
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equation can be obtained by a special relationship transformation from the N-soliton
matrix of the Hirota equation. Next, using the generalized Darboux transformation, the
high-order soliton solutions corresponding to the elementary high-order zeros in the
Riemann-Hilbert problem for the Hirota equation can be derived. Similarly, employing
the relationship transformation mentioned above can lead to the high-order soliton
solutions of the inhomogeneous variable coefficient Hirota equation. In addition, the

collision dynamics of Hirota and inhomogeneous variable coefficient Hirota equations
are analyzed; the asymptotic behaviors for multi-solitons and long-term asymptotic
estimates for the high-order one-soliton of the Hirota equation are concretely calculated.
Most notably, by analyzing the dynamics of the multi-solitons and high-order solitons
of the inhomogeneous variable coefficient Hirota equation, we discover numerous new
waveforms such as heart-shaped periodic wave solutions, O-shaped periodic wave
solutions etc. that have never been reported before, which are crucial in theory and
practice.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

As we all know, the nonlinear Schrodinger (NLS) equation describes a plane self-focusing and one-dimensional self-
modulation of waves in nonlinear dispersive media, which has various applications in a wide range of physical systems
such as water waves [1,2], nonlinear optics [3,4], solid-state physics and plasma physics [5]. However, several phenomena
observed in the experiment cannot be justified by the NLS equation. As the light pulse becomes shorter, they require more
energy to become solitons [6,7]. In this case, some additional effects have become significant. Considering higher-order
dispersion and cubic nonlinear time-delay correction, a modified NLS equation

ittz + o(urr + 2u*u) + if(urrr + 6|uf*ur) = 0, (1
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namely Hirota equation, can be used to describe the propagation of subpicosecond or femtosecond optical pulses in optical
fibers. In this equation, T is the propagation variable and Z is the retarded time variable in a moving frame while u is
the envelope of the wave field. The two terms in (1) with a real coefficient 8 represent the third-order dispersion ur
and a time-delay correction to the cubic term |u|?ur, respectively. Due to a fine balance between its linear dispersive and
nonlinear collapsing terms, some exact solitons solutions of Hirota equation have been obtained by many authors [8-17].
When o = 1, 8 =0, Eq. (1) reduces to the NLS equation. In another case of « = 0, 8 = 1, the Hirota equation reduces to
modified Korteweg-de Vries equation.

Note that these investigations of optical solitons or solitary waves have been focused mainly on homogeneous fibers.
However, for the long-distance communication and manufacturing problems in the realistic fiber transmission lines, the
inhomogeneous variable coefficient Hirota (IVC-Hirota) equation [18]

. 1. . .
iq; + on(2)ue — gion(2)e + Saa(z)qlql* — icea(z)|ql?ge — itg(2)g = O, (2)

was investigated. Here

Q1,704 — 01047

ag(z) = ———
20[10!4

8 is a real number, o1(z) and wy(z) are dispersion and nonlinear effects respectively. Dispersion broadens the waveform
and nonlinear effects narrow it. Under certain conditions, the two effects reach a balance and maintain waveform stability.
We should point out that Eq. (2) is an integrable equation. Study of Eq. (2) is of great interest due to its wide range of
applications [19-25]. Its use is not only restricted to optical pulse propagation in inhomogeneous fiber media, but also to
the core of dispersion-managed solitons and combined managed solitons. As far as we can see, there are few studies on
higher-order solitons of IVC-Hirota equation.

In this paper, an IVC-Hirota equation used in optics is studied by the Riemann-Hilbert (RH) method and relationship
transformation. There is a relationship transformation, which maps IVC-Hirota to the Hirota equation. Thanks to the
transformation, one can obtain many solutions of the IVC-Hirota equation from the known solutions of the Hirota
equation. Specifically, as for the Hirota equation, through a standard dressing procedure, we can find the soliton matrix for
the nonregular RH problem with simple zeros. Then combined with generalized Darboux transformation (gDT), soliton
matrix for elementary high-order zeros in the RH problem are constructed. RH problem provides a feasible and strict
method for studying the long-term asymptotic behavior of integrable equations [26-28]. Furthermore, the influence of
free parameter (o, 8) in soliton solutions of general Hirota equation on soliton propagation, collision dynamics along
with the asymptotic behavior for the two solitons and longtime asymptotic estimations for the high-order one soliton are
concretely analyzed. The propagation direction, velocity, width and other physical quantities of solitons can be modulated
by adjusting the free parameters of the general Hirota equation. In addition, using a special transformation, we can obtain
explicit expressions of multi-solitons and high-order soliton for the IVC-Hirota equation by the solutions of the Hirota
equation. We design abundant new types of multi-solitons and high-order solitons of the IVC-Hirota equation through
analysis of the explicit expression of solutions. Such as: heart-shaped periodic wave solutions and O-shaped periodic wave
solutions. The dynamics analysis of these solutions are useful in observing and design of fiber optic in femtosecond fiber
laser systems or in optical communication links with distributed dispersion and nonlinearity management.

This paper is organized as follows. In Section 2, the matrix RH problem is formulated. In Section 3, the N-soliton
formulas for the Hirota and IVC-Hirota equation are derived by considering the simple zeros in the RH problem and some
exact solutions are constructed. In Section 4, we first give the high order N-soliton formula for the Hirota equation, which
corresponds to the elementary zeros in the RH problem. Then the high order N-soliton formula for IVC-Hirota is also
constructed. In Section 5, the dynamics of high-order solitons are given in the IVC-Hirota equation. The last section is a
short conclusion and discussion.

2. Inverse scattering theory for the Hirota equation

In this section, we study the scattering and inverse scattering problem for the Hirota Eq. (1). The Hirota equation can
be constructed by the compatibility condition of the following spectral problem [29]:

—— (3)
Y, = VY,
where
U=—itA+Q, V=(-4i¢>=2iat>)A+V:, Q= (i 3) A= (fl) —01> ’
_ 2 0 4pu 2pul*  2ipur + 2au
Vi=¢ (—4ﬁu* 0 +¢ Ziﬂu; — 2ou* —21',3|u|2

ialul® + Bluut — uru*)  ieur — B(2Jul*u + urr)
iout + BRIulPu* +uy)  —iaful* — Bluup —uru*) )’
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u = u(T,Z) is a potential function, ¢ is a spectral parameter, Y(T, Z, ¢) is a vector function, and the superscript *
represents complex conjugation. Supposing u(T) = u(T, 0) decays to zero sufficiently fast as T — zoc. For a prescribed
initial condition u(T, 0), we seek the solution u(T, Z) at any later time Z. That is, we solve an initial value problem for the
Hirota equation.

Denote

E = e—igAT—(4i,3;3+2ia;2)Az

J=YE ", (4)
so that the new matrix function J is (T, Z)-independent at infinity. Inserting (4) into (3), the Lax pair (3) becomes
Jr=—-ig[A ]I+,
Jz = —(4iBE° + 2iag A J1 + Vo],
where [A, J] = A] —J A is the commutator. Notice that both matrices Q and V; are anti-Hermitian, i.e.,
Q' =-Q, V{=-v, (6)

where the superscript 1 represents the Hermitian of a matrix. In addition, their traces are both equal to zero, i.e., trQ =
ITV] =0.

Now the time Z in the above notations to be considered as dummy variable. For the scattering problem, introduce
matrix Jost solutions J.(T, ¢) of (5) with the following asymptotic at large distances:

(5)

Je(T,¢)—>1, T — *oo, (7)

where I is a 2 x 2 unit matrix. Jo.(T, ¢) is the asymptotic solution of Eq. (3) as T approaches positive and negative infinity,
respectively. We called this asymptotic solution the Jost solution. Next, the analytical properties of Jost solutions J.(T, ¢)
will be delineated. Firstly, the notation E(T,¢) = e %47, & = J_E and ¥ = J,E are introduced. Notice that Y.(T, ¢)
satisfies the scattering Eq. (3), i.e.,

Yr 4 it AY = QY. (8)

Treating the QY term in the above equation as an inhomogeneous term and noticing the solution to the homogeneous
equation on its left side is E, then Eq. (8) can be turned into Volterra integral equations by using the method of variation
of parameters as well as the boundary conditions (7). These equations can be cast in terms of J1 as

T

ST =1+ f e ATy (y, £ )b ATy, )

LT g =1 — / A DO, (3, 1) ATy, (10)
T

Thus, as long as the integrals on the right sides of the above Volterra equations converge, J.(T, ¢) allow analytical
continuations off the real axis ¢ € R. The following proposition can easily be derived through the structure of the potential

Q.
Proposition 1. The first column of J_ and the second column of ] can be analytically continued to ¢ € C, while the second

column of J_ and the first column of ] can be analytically continued to C_. Here C stands for complex plane, C,. denotes the
upper half plane of complex plane C and C_ denotes the lower half plane of complex plane C.

Proof. The integral Eq. (9) for the first column of J_, say ( @ ) is

@2
;
pr1=1 +/ u(y)ea(y, ¢)dy, (11)
T
@ =— f w*W)e1(y, ¢)e*TVdy. (12)

When ¢ € C,, since e in (12) is bounded, and u(T) decays to zero sufficiently fast at large distances, both integrals

in the above two equations converge. Thus the Jost solution zl can be analytically extended to C,. The analytic
2

properties of the other Jost solutions J, can be obtained similarly. O

From Abel’s identity, we find that |J(T, ¢)| is a constant for all T. Then using the boundary conditions (7), we see that
V(T ) =1, (13)
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for all (T, ¢). Since &(T, ¢) and ¥(T, ¢) are both solutions of the linear Eq. (3), they are linearly related by a scattering
matrix S(¢):

o(T,g)=w(T,¢)S(5), ¢ eR. (14)

J_ =J.ESE7!, ¢ eR, (15)

here R is the set of real numbers.
Because the potential u(T, Z) can be reconstructed by using the scattering matrix S(¢), so the analytical properties of
S(¢) need to be delineated first. If (&, ¥) are expressed as a collection of columns

D =(¢17¢2)7 ‘1’2(1”1, WZ)»

from Proposition 1 and @ =J_F and ¥ = J, E, we have

D=, 07) W= V)

o' = "51; , vl = wlj ,
@2 2

where the superscripts & indicate the half plane of analyticity for the underlying quantities. Since
+

S=vlp = 1/21 (67, ¢;),
(w ) e

2
Sl ly = (3&) (Y ¥,

it is easy to see that scattering matrices S and S~! have the following analyticity structures:

+ Al A
_ [ S11:512 1 (S11 512
S = — N S = A At .

$21, 522 521»522

Where sTl means element s; is analyticity on the upper half plane ¢ € C, and s;, means element s, is analyticity on
the lower half plane C_. The elements s;; and s,; these without superscripts indicate that such elements do not allow
analytical extensions to C.. in general. From S is a 2 x 2 matrix with unit determinant, we have

S11 = S22, S22 = S11, S12 = —S12, S21 = —S21.

Therefore, the analytic properties of S~! are apparent from the analytic properties of S.
In order to construct the RH problem, we define the Jost solutions

P* = (¢1. ¥2)e“ " = J_H1 + ]+ Ha (16)
are analytic in ¢ € C,, and the Jost solutions
(Y1, ¢2)e T = JLH +J_H, (17)

are analytic in ¢ € C_, here H,; = diag(1, 0) and H, = diag(0, 1). In addition, from the Volterra integral Egs. (9)-(10), we
see that the large ¢ asymptotics of these analytical functions are

Pt(x,¢) =1, ¢eCy— oo, (18)

(Y1, )T -1, ¢ eC_ — oo. (19)

To obtain the analytic counterpart of P™ in C_, we consider the adjoint scattering equation of (5):

Kr = —i¢[A, K] — KQ. (20)
Indeed, by utilizing the relation

0=W r=J " +JU ", (21)
as well as the scattering Eq. (5), we have

Jit=-ilagT1-7'e, (22)
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thus J~Y(T, ¢) satisfies the adjoint Eq. (20). If we express @' and ¥ ! as a collection of rows

o= <¢1> gl = ("“) (23)
b2 15}

Similarly, we can show that the adjoint Jost solutions
p- — eicax <¢il> = Hy =" + HyJ;! (24)
[
are analytic in ¢ € C_. In addition,

P(T,¢)—>1, ¢eC. — oo (25)

The anti-Hermitian property (6) of the potential matrix Q gives rise to involution properties in the scattering matrix
as well as in the Jost solutions. Indeed, by taking the Hermitian of the scattering Eq. (5) and utilizing the anti-Hermitian
property of the potential matrix Qf = —Q, we get

)i = —ic*a g -t

Thus ]l(T, ¢*) satisfy the adjoint scattering Eq. (20). However, ];l(T, ) satisfies this adjoint equation as well. Conse-
quently, ]l(T, ¢*) and JT (T, ¢) must be linearly dependent on each other. Recalling the boundary conditions (7) of Jost
solutions/., we further see that jl(T, ¢*)and ];1(T, ¢) have the same boundary conditions at T — Fo00, and hence they
must be the same solutions of the adjoint Eq. (20), i.e. ]l({*) = Jz!(¢). From this involution property as well as the
definitions (16) and (24) for P*, we see that the analytic solutions P* satisfy the involution property as well:

(P (&*) =P (¢). (26)

In addition, in view of the scattering relation (15) between J, and J_, we see that S also satisfies the involution property:

S'(¢*) =S71(¢). (27)
2.1. Matrix Riemann-Hilbert problem

On the real line, using (15), (16) and (24), we can easily get
P=(T,{)PH(T,{)=G(T,¢), ¢ €R, (28)

where

G=E(Hy 4+ HS)(Hy + S 'H)E~! = E <1215112> E~L.

Eq. (28) forms a matrix RH problem. The normalization condition for this RH problem can be obtained from (18) and (25)
as

PHT,t) =1, ¢ € oo, (29)

which is the canonical normalization condition. If this RH problem can be solved from the given scattering data (s»1,512),
then the potential Q can be reconstructed from the asymptotic expansion of its solution at large ¢. Indeed, recall that P™
and P~ are solutions of the scattering problem (5) and its adjoint problem (20), respectively.

Recalling the definitions (16) and (24) of P* as well as the scattering relation (15), we have that

IP*| =53 =s11, |P7| =52 =7511. (30)

The RH problem (28) is called regular when [P*| 3 0. Firstly, the solution of the regular RH problem is considered. Namely,
S22 = S11 = Sy = S11 # 0 in their respective planes of analyticity. Under the canonical normalization condition (29), the
solution to this regular RH problem is unique [30]. This unique solution to the regular matrix RH problem (28) defies
explicit expressions. Its formal solution, however, can be given in terms of a Fredholm integral equation.

To use the Plemelj-Sokhotski formula [30] on the regular RH problem (28), we first rewrite the (28) as

(P @) =P () =G)(PY) (), ¢eR

where

6:1—6:—5( 0 si )E‘l,
S$21 0
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(P*)f1 (¢) is analytic in C4, and P~(¢) is analytic in C_. Applying the Plemelj-Sokhotski formula and utilizing the

canonical boundary conditions (29), the solution to the regular RH problem (28) is provided by the following integral
equation:

-~ -1

_ 1 [*GE)(PY) (&)

R oSl NG

2mi —0o0 S —¢

In the more general case, the RH problem (28) is not regular: i.e., |[P*(¢)| and [P~(¢)| can be zero at certain discrete

locations ¢, € C4 and ¢ € C_, 1 < k < N, where N is the number of these zeros. In view of (30), we see that (;k, gk) are

zeros of the scattering coefficients $,(¢) and s»,(¢ ). Due to the involution property (27), we have the involution relation

Ek :§Ij~ (31)

For simplicity, we assume that all zeros {(¢. &) . k=1,...,N} are simple zeros of (322, s32). In this case, the kernels of
P* (&) and P~ ({k) contain only a single column vector |v;) and row vector (vi|, respectively. lLe.,

d&, ¢ eC,.

P* (@0 lv) =0, (@lP™ (&) =0, 1<k<N. (32)
Taking the Hermitian of the first equation in (32) and utilizing the involution properties (26) and (31),
lv)' P~ (2) =0 (33)

can be got. Then comparing Eq. (33) with the second equation in (32), we know that eigenvectors (|vy), (vk|) satisfy the
involution property (v = |vg)'. Vectors |vg) and (v;| are T dependent, taking the T derivative to the Eq. (32) and recalling
that P* satisfies the scattering Eq. (5), we have

dlve) | .
P* (5i; T) ( i + ik A lv) | = 0.
T
Due to our assumption, the only vector in the kernel of P™ (&; T) is |vi). Thus
d |vg)

dT + i A lvk) = a(x) |ve)

where o (T) is a scalar function. The solution of the above equation is

[U(T)) = €754 fuyq) effo XM,
where |vg) = |vk(T)) |T=0. Without loss of generality, we take o, = 0 and write the solution |v(T)) as

[ue(T)) = e 4T Juyo) . (34)
Following similar calculations for vy, we readily get

(UK(T)] = (Dhol €4

These two equations give the simple T dependence of vectors |vi(T)) and (vi(T)|. The zeros {(g“k, Zk)} of |P%(¢)| as well
as vectors |v) , (Uk| in the kernels of PT () and P~ (Zk) constitute the discrete scattering data which is also needed to
solve the general RH problem (28).

Now a matrix function that could remove all the zeros of this RH problem is introduced. For this purpose, a rational
matrix function is first introduced:

& — ki [u) (|

¢ =g (vjly)

and the inverse matrix of I(¢) is

G — & |v) (vl

¢ =4 (vjly)

where |v) € Ker (P, " -+ 171 (47)) . (5] = [vj)' . Now, introducing the matrix function:
I¢) = Ing)n-1(¢)--- (),

a calculation gives

) =1+

)

L)y '=1+

o) (M), (0l
k=1 { - ;k
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N |UJ> (M_l)jk (V]

r@gy=1-y_

k=1 ¢4
where M is a N x N matrix with its (j, k)th element given by
(i-\v ) .
My =25, 1<jk=<N. (35)

Based on the above argument, we are confident that I'(T, ¢) cancels all the zeros of P., and the analytic solutions can be
represented as

PH(£) =PHE)T (),
P=(£) =T '(Z)P(2).

Here, ﬁi(g) are meromorphic 2 x 2 matrix functions in C,; and C_, respectively, with finite number of poles and specified
residues. Therefore, all zeros of the RH problem have been eliminated, and a regular RH problem

P(LPH(¢) = F()GEI™(¢), ¢ eR,

with boundary condition: ﬁi(g“) = P*(¢)'~! — I as ¢ — oo can be formulated. Then P*(¢) = I" when ¢ — oo.
2.2. Solution of the Riemann-Hilbert problem

In this subsection, how to solve the matrix RH problem (28) in the complex ¢ plane is discussed. In most of these
discussions, T is a dummy variable, hence will be suppressed in our notations. Thus, if we expand P at large ¢ as

P(T.¢) =1+ ¢ 'PE(T)+0(67%). ¢ — oo, (36)
and insert (36) into (5) and (20), then by comparing terms of the same power in ¢!, we find at O(1) that

Q =i[A, P ] = —i[A, P{]. (37)
Hence the solution u can be reconstructed by

u = 2i(P )12 = —2i(P} )a. (38)
This completes the inverse scattering process. Continuing the above calculations, at 0(¢~!) in (5), we get

diag(P;")r = diag(QP;"). (39)

2.3. Time evolution of scattering data
In this subsection, we determine the time evolution of the scattering data. Firstly, the time evolution of the scattering
matrices S and S~! is analyzed. The definition (15) for the scattering matrix can be rewritten as
J_.E=J.ES, ¢ €R.

Since J1 satisfies the temporal Eq. (5) of the Lax pair, then multiply (5) by the time-independent diagonal matrix
E = e AT Due to J_E, i.e., J.ES, satisfies the same temporal Eq. (5) as well. Thus,

S; = —(4iBe3 + 2w ) A, S].

can be obtained by inserting J, ES into (5), taking the limit T — +o0, and recalling the boundary condition (7) for J, as
well as the fact that V — 0 as T — =oo.
Similarly,

(s7h), = —2ic*[A,571], (40)

can be derived by inserting J_ES~! into (5), taking the limit T — —o0o, and recalling the asymptotics (7) for J_,
From these two equations,

as as
D _ T2 _ (41)
9z 0Z
and
8§12 . 3 PRI RN 852] cn o3 2
27 = —(4iBg” + 2iag*)s12, 27 = (4iB¢° + 2iag " )sn (42)

7
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can be derived. The Eq. (41) shows that 5,5 and s;, are time independent. Recall that ¢ and Zx are zeros of [PE(Z)], i.e., they
are zeros of 53;(¢) and sy,(¢) in view of (30). Thus ¢, and ¢ are also time independent. The two equations in (42) give
the time evolution for the scattering data $;, and s,;, which is

R R aigr3aoi 2 PO S
$12(Z; ¢) = 812(0; ¢ )e WASTHHALNZ 1) (75 ) = 59(0; ¢ )l HPEHTE,

Next we determine the time dependence of the scattering data v, and (@!. This determination is similar to that for the
T-dependence of v, and <HJ‘ at the end of the previous subsection. We also start with (32) for |vx) and <§,| Taking the
time derivative to the |v,) equation and recalling that P* satisfies the temporal Eq. (32), then

PG T.2) (3 4 @i + 2iag?) |vk>> —o,
ie,
a;;,g + (4iB73 + 2iac?) v = 0.
Combining it with the spatial dependence (34), we get the temporal and spatial dependence for the vector |vy) as

T S
vg) (T, Z) = e AT WREH2EAZ [y, ) (43)
where |vyo) is a constant. Similar calculations for (vy| give
(Bl (T, 2) = (Dyo| AT HAPT 127
The scattering data needed to solve this non-regular RH problem is

{s21(8). 512(6). § € Ry &, & |vy), (Wil , 1 <k <N} (44)

which is called the minimal scattering data. Here, vectors |vx) and (vi| are T dependent, while the others are not. From
this scattering data at any later time, we can solve the non-regular RH problem (28) with zeros (32), and thus reconstruct
the solution u(T, Z) at any later time from the formula (38). This completes the inverse scattering transform process for
solving the Hirota Eq. (1).

3. N-soliton solutions for the Hirota and IVC-Hirota equation

In this section, the N-soliton formula for the Hirota equation is derived by considering the simple zeros in the RH
problem. Then the N-soliton formula for the IVC-Hirota equation can be constructed by a special transformation. We also
give the dynamic analysis for some interesting exact solutions of the Hirota and IVC-Hirota equations.

3.1. N-soliton matrix for the Hirota and IVC-Hirota equation

It is well known that when scattering data S, = s,; = 0, the soliton solutions correspond to the reflectionless potential.
Then jump matrix G =1, G = 0. Due to P*(¢) = I', { — oo. Recall to (38), we can get

N
u(T,Z) =200 |u) (M~ (VDo (45)
k=1
Here vectors v; are given by (43), (vk| = lue)t, and matrix M is given by (35). Without loss of generality, taking
lvko) = (ck, 1)T in the following discussion. In addition, introduce the notation
O = —ia T — (4B} + 2iag})z. (46)
Then the above solution u can be written out explicitly as
N
u(T,Z)=2i Y el (M "y, (47)
k=1

where the elements of the N x N matrix M are given by

_ * *
(€k+9j ) 9k+9j

e + cj* cre

& — Gk

Notice that M~! can be expressed as the transpose of M’s cofactor matrix divided by |M|. In addition, remember that
the determinant of a matrix can be expressed as the sum of its elements along a row or column multiplying their
corresponding cofactor. Therefore, the solution of the general Hirota equation can be rewritten as

|F|

T,Z)=—2i—-, 49
T, Z) LM (49)

Mje =

(48)
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where F is the following (N + 1) x (N + 1) matrix

0 e .. e

C]Ee1 M]] MNl
' (50)

CNeGN MlN MNN

There is a relationship transformation [31]
q=f(2)u(T, 2)e®"?, (51)
which can map IVC-Hirota Eq. (2) to the Hirota Eq. (1). Where,

V28 V28 2
fo= [ 2= =32 [tz 1= 20 o0 o) [,
oy 128 2 368
688 +a~28  21682B8> + 54aB28+/28 — 03/26
and g(t,z) = — t— aqdz.
68 32483

relationship transformation (51) reveals the integrability of IVC-Hirota equation.
Using this relationship transformation, the n-soliton matrix solution of IVC-Hirota equation can be constructed as
follows
|F|

q= —ZiMf(z)eig("z). (52)

3.2. Exact solutions for the Hirota and IVC-Hirota equation

When N = 1, ¢c; = 1 and ¢; = & + in, then the exact one-soliton solution of Hirota equation can be derived from (49).
The explicit expression for the one-soliton solution u; is as follows
Uy = 2nel ~BIFE> 4ot 4 24ipn” e +4in 2+ (=20 o0 2 — 4B + 122 + dat)Z + 21T). (53)

The dynamic analysis of u; shows that this is a classical bell-shaped soliton solution.
Using the relationship transformation (51), the one-soliton solution of IVC-Hirota equation is shown as

g =2 m—(z)neﬁsechw), (54)
a4(z)
2
A=(£B+ %)(2161’@(52,32 —3%B% + % + ;‘—6) —324i/28%57 — 216iﬂ382)fa1(z)dz
— 324iBXV23(5 B + %) T B,
2 2a& o?
B= n\/ﬁ((gnz —28% 45— 35 1852)/oz1(z)dz+t).

The introduction of the integral term enriches the dynamic behavior of the solution of the variable coefficient equation.
It can be seen from the expression that «a1(z) affects the trajectory of the solution q;, and zlg affects the amplitude. The
central trajectory equation of solution q; is

2 2 2
t:(252—§n2—8+3i;+%’32)/(x1(2)dz.

When 2 £2 — % -8+ % + % = 0, the dynamic image q; shows the shape of a common bell soliton which is similar
to the soliton solution of constant coefficient equation.

To simplify the expression of the solution q;, taking « = 0 and £ = = 1, then

ai(z)
04(2)

It is needed to note that when o = 0, the value of 8 has no effect on the solution q;. The central trajectory equation of
solution g is t = (% - S)fozl(z)dz. The dynamic image of solution q; shows the shape of a bell soliton when § = %. In
other words, due to the integral term, the form of the solution becomes more abundant. The dynamic evolution diagram
of |q1|? is symmetric about z axis (i.e. |q1|% is an even function about z) when «; and «4 are odd numbers. Moreover,

the amplitude of the solution q; is constant 2 with @7 = Zdoay4. a1(z) and ay(z) are dispersion and nonlinear effects,

|CI1|2=4

sech?(v/28((8 — g)/m(z)dz +1)). (55)

9
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Fig. 1. The evolution plot of 1-soliton solutions in the IVC-Hirota equation: (a) a1(z) = a4(z) = z and 8 = 8; (b) a1(z) = z, a4(z) = z> + 1 and
S§=1;(c)a1(z)=z+1, a4(z) =1+z and 8 = 5; (d) a1(z) = 2%, as(z) =2z%> and § = 8; (e) a1(z) = 2%, au(z) =2>+ 1 and § = 8; (f) a1(z) = 2> + 1,
a4(z)=10z2+1and § = 1.

respectively. Dispersion broadens the waveform and nonlinear effects narrow it. Under certain conditions, the two effects
reach a balance and maintain waveform stability. Next, we study the specific effects of different nonlinear terms and
dispersion terms on the dynamic behavior of the solutions. In order to further study the effect of the dispersion and
nonlinear term on the dynamics of the solution, we give the different excitation states of «; and «4.

Firstly, we let the dispersion term be in the simplest polynomial form. For example, fixed the coefficient a(z) =
z", then the center trajectory equation is t = #(% — 8)2"*1. It can also be seen that the value of § has a great
influence on the propagation path of the solution. In particular, when § = %, the dynamic behavior of the solution
of the variable coefficient equation is similar to that of the constant coefficient equation. When n = 1, we can get
11> = 4 ‘ ;—4‘ sech?(v/28((8 —3)32%+1)) and its center trajectory equation is t = {22 In order to construct the meaningful
solutions which are non-singularity and convergent, we can take a4 = z, then the amplitude of q; is 2. The dynamic
behavior of the one-soliton solution in this case takes on the form of a parabola symmetric on the z axis, which can be
seen in Fig. 1(a). We also can take au(z) = z% + 1, at this case, the amplitude of the solution increases on the interval
z belongs to (—oo, —1), (0, 1), and decreases on the interval z belongs to (—1, 0), (1, +00), with the minimum value 0
at z = 0 and the maximum value /2 at z = %1, which can be seen in Fig. 1(b). When the dispersion term «4(z) takes
the form of other polynomials, such as z 4+ 1, we can see the dynamic evolution diagram in Fig. 1(c) which is similar to
«1(z) = z except axis of symmetry. When n = 2, then the center trajectory equation is t = %(% —8)z3. Taking ay(z) = z2,
the dynamic evolution diagram is plotted in Fig. 1(d). Taking oy = z? + 1, the dynamic evolution diagram of the solution
is presented in Fig. 1(e). Let o1(z) = 1+ z% and a4 = 1 + 10z2, we can obtain a solution with the amplitude maximizes
at the origin and decreases as z goes to infinity, which can be seen in Fig. 1(f).

Second, we can obtain |q|* = 4 ’% ‘ sechz(\/ﬁ(%(g — 8)cos(kz) + t)) when considering periodic functions «4(z) =
sin(kz) as excitation function. Now the center trajectory of the solution g, is a cosine wave, where k determines the period
and § has a big effect on the shape of the trajectory. The dynamic evolution diagram of different parameters is plotted in
Fig. 2.

Besides, fixed the coefficient a1(z) = tanh(z), then we can get |q;]* = 4 m';—’i(z) sechz(glnlcosh(Z)l —+/2t). Fig. 3 shows
the dynamic evolution process of the nonlinear term a4 and § with different values.

When N = 2, then the two-soliton solution u,(T, Z) of Hirota equation is expressed as follows:

hl e—@1+@4 + hz e@3—6~)2 _ h3 e(~91+@4 + h4 e@3+(~92

d, e—©1—62 d, e—©1+62 d- e@1162 d, e@3—64 d= e@1—62 de e~ 93164 ’
1 2 3 4 5 6
10

(56)
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Fig. 2. The evolution plot of 1-soliton solutions in the IVC-Hirota equation: (a) a1(z) = a4(z) = sin(z) and § = 1; (b) a1(z) = a4(z) = sin(5z) and
8§ = 6; a1(z) = sin(z) and a4(z) = tan(z): ((c) § = 1; (d) 8 = 4;) a1(z) = sin(2z) and a4(z) = tan(z): ((e) § =1; (f) § = 3.)

(@) © ®

Fig. 3. The evolution plot of 1-soliton solutions in the IVC-Hirota equation: (a) a4(z) = tanh(z) and § = 1; (b) a4(z) = tanh(z) and § = 3; (c)
a4(z) = sinh(z) and 8 = 1; (d) a4(z) = sinh(z) and § = 3; (e) a4(z) =2z +1and § = 1; (f) as(z) =2z> + 1 and § = 3.

11
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where
61 =01+ 67,
O, =6, + 65,
O3 =6, — 67,
O4 =6, — 65,

di = (& — 5062 — &),

dy = &P = )& — &),

ds = 6:%1(8; = &6 — &),

dy = c167(¢7 — §1)(&2 — &7,

ds = |c1*(&5 = (T = &),

de = cyca(gy — 02)(61 — &7

hy = = (&2 = &&= GN& — ),

hy =1 (61 = &7)(& — ¢ )& — &),

hs = —cle1 (& — &)(& — &)& — Q)

ha = 16 (81 — L) & — 406 — &)
We analyze the asymptotic states of the solution (56) as Z — 400 and («, 8) is non-negative. Without loss of generality,
let ¢ = & + ing and |&1| > |&|, this means that at Z = —oo, soliton-1 is on the right side of soliton-2 and moves

slower. Note also that , > 0 and 7, > 74, since ¢ € C.. In the moving frame with velocity 4ﬂn% - 12/3512 — 4y,
Re (01) = n(T — 4;317%2 + 12,3;:122 + 4a&1Z) = 0(1). It is a consequence of

Re (62) = no(T — (403 — 12BE7 — 4a&1)Z) + 4na( B3 — n3) + alé, — &1) + 3B(EF — ED)Z

that
2i (¢ — 1) G z
i(e% — , Z— —o0,
§1 & e_(91+gr)+|fl_|zeg‘+6f
Uy (T, Z) — (57)
+ 91—61‘<
2i (¢r — ¢ —, Z — 400,
({] {‘l) 97(91+91)+|C1+|2961+61
+00, Z — —00,
where ¢; = % cof = % and uy(T,Z) — Comparing this expression with (56), we

—00, Z — +00.
see that this asymptotic solution is a single-soliton solution with peak amplitude 27, and velocity 4ﬂn% - 12,8512 —4aé;.
Thus, this soliton does not change its shape and velocity after collision. Its phase has shifted and the phase difference for
u, at its limits is arg (u, (Z ~ —o0)) — arg (uy (Z ~ +00)). It is apparent from the above analysis that the values of («, 8)
influence the velocity, phase of the soliton.

Letting {; = 0.1+ 0.7i and ¢, = —0.1 4+ 0.44, («, B) is set as (0, 1), (1, 1) and (1, 0) respectively, their corresponding
dynamic evolution diagrams of u, can be drawn in Figs. 4(a)-4(c). In particular, when ¢« = 0 and 4/37]% - 125512 =
4ﬂ71§ — 12;3‘;‘22, resonance solitons can be obtained. Taking £; = 1 + +/3i and & = 2 + 2+/3i, the resonance solitons
solution is shown in Fig. 4(d).

12
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Fig. 4. The evolution plot of 2-soliton solutions in the Hirota equation: ¢; = 0.1+ 0.7i and {, = —0.14+0.4i: (@)« =0and B =1; (b) « =1 and
B=1()a=1and B=0.)(d) &1 =1++3i, 5 =2+2/3i, e =0and g =1.

A simpler exact expression of the 2-soliton solution for the IVC-Hirota equation can be acquired by taking @ = 0,
c1=¢c =38 =1,¢ =iand ¢ = 2i. Using relationship transformation (51), the expression q,(t, z) is shown as follows:

(64(3#31)”) _ 26%(3r77f) _ 26%(&4) n e@(wfﬂsr))

q2(t, z) = Any :
1603V _ o—1233 _ gp2f203t-13N) _ go®2(+30) _ o632 +0)

(58)

where f = foq(z)dz and A; = 12,/ Zl—g;e_%i(zf””. From expression (58), we can clearly find that the value of 8 has no
effect on the solution g, when o = 0. Except for the case where both spectral parameters are purely imaginary, let us
consider the more general case when ¢; = 1+ i, {&; = 2 + 2i in the following.

Similar to the case of the one-soliton solution g, the dynamic evolution diagram of g, is symmetric about z axis when
a1 and a4 are odd numbers. It can also be seen that the value of § has a great influence on the propagation path of the
solution. Using the relationship 2 £2 — % n?—8+ % + % = 0, we can find that the dynamic behavior of the soliton-1
of the solution g, is similar to the corresponding soliton-1 solution of constant coefficient equation when § = %, For the
soliton-2, the dynamic behavior will be similar to the solution of constant coefficient equation when § = ?

The 2-soliton solution is a constant amplitude solution when we take «{(z) = a4(z) = z, and the amplitude of Soliton-
1 equal to 2 and the amplitude of Soliton-2 equal to 4 in the 2-soliton. At the intersection of solitons-1 and solitons-2,
the amplitude is superimposed linear. The value of § will affect the velocity and direction of the 2-soliton solution. For
soliton-1 in the 2-soliton, when § < %, the soliton-1 evolves in the region of t > 0; when § = %, the shape of soliton-1
is similar to the bell shape soliton and propagates along t = 0; otherwise, the soliton-1 evolves in the region t < 0. For
soliton-2 in the 2-soliton, when § < ? the soliton-2 evolves in the region t > 0; when § = ]—36 soliton-2 propagates
along t = O; or else, the soliton-2 evolves in the region t < 0. Figs. 5(a)-5(e) illustrate the dynamic behavior of the
2-solitons solution when § taking the value of 1, %, 2, ? and 6 respectively. When «4(z) = z, as(z) = z? + 1, the 3-D
plots for the 2-soliton solutions are shown in Figs. 5(f)-5(j). As can be seen in Figs. 5(k)-5(0), a strong interaction occurs
when the soliton collides when taking o1 = a4 = z? in solution g,. At the intersection of two 1-soliton solutions, a linear

4 16
superposition of amplitudes appears. The 2-soliton solutions with § = 3 and § = 3 are similar to the 2-soliton solutions

of constant coefficients equation.

Taking «1(z) = sin(kz) as excitation function, the parameter values of k and § have great influence on the shape of the
soliton solutions. The dynamic evolution diagram of different parameters can be seen in Fig. 6.

We let «q(z) = tanh(z), Fig. 7 shows the dynamic evolution process of the nonlinear term «4 and § with different
values.

4. Soliton matrices for high-order zeros

We now turn to the high-order zeros in the RH problem of the Hirota equation. For simply, we let functions P*(¢)
and P~(¢) from the above RH problem have only one n-order zero, i.e. PH) = (£ — &)"e(2), IP~(2)] = (¢ — 21)"9(2),
where ¢(¢1) # 0 and ¢(£1) # 0.

With the help of the idea proposed in [32], we can consider the elementary zero case under the assumption that the
geometric multiplicity of k; and £; has the same number. Hence, we need to construct the dressing matrix I"(¢) with

13
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Fig. 5. The evolution plot of 2-soliton solutions in the IVC-Hirota equation: «1(z) = a4(z) = z: ((a) 8 = 1; (b) § = %; ()6 =2;(d)s = ?; (e)
s=6)a@)=zand au(z) =22+ 1: (N =1, (g s=5 (M s=2 D)=L, ()s=6)ar=as =2 (K S=1, (1) = %; (m) 6 =2; (n)

§=1:(0)5=6)

3

determinant is £=42 For example, we first consider the elementary zeros with geometric multiplicity 1. In this case, I"

— n

. . 1 . .
is constituted o% n elementary dressing factors, i.e.: I' = xnxn_1 ... X1, Where

xi(€) =1+ SE0P, Py = T o) € Ker(Pyxg - ¢ Z3(¢0)) -
In addition, if we let P+(¢) = PH()x; '(¢) and P=(2) = x1(£)P~(¢), then it is proved that matrices P*(¢) and P=(¢)
are still holomorphic in the respective half plans of C. Moreover, ¢; and ¢; are still a pair of zeros of |13+(;°)| and |13‘(§)|,
respectively. Thus, I"(¢)~! cancels all the high-order zeros for |P*(¢)|. Moreover, it is necessary to reformulate the dressing
factor into summation of fractions, then we derive the soliton matrix 7"(¢) and its inverse for a pair of an elementary
high-order zero. The results can be formulated in the following lemma.

Lemma 1. Consider a pair of elementary high-order zeros of order n : {¢1} in C, and {51} in C_. Then the corresponding
soliton matrix and its inverse can be cast in the following form:

{qnl
=) =I14+Up1),...,|pa) D) : ,
(@ (59)
(p1l
rE)=1+dga,....1aHodE) | + |,
(Dnl

14
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4.
g»
(d)é=1;()é= %; (f) 8 =2.) (g) @1 = aq =ssin(5z) and § = 1; ay(z) = tan(z) and § = 1: ((h) a1(z) = sin(z); (i) «1(z) = sin(2z).)

Fig. 6. The evolution plot of 2-soliton solutions in the IVC-Hirota equation: o = g = sin(z): ((a) 8 = 1; (b) § = 3; (¢) § = 2.) a1 = ag = 1+5in(z):
1

where D(¢) and D(¢) are n x n block matrices,

- C-e)? ¢ —&)™
0 ° T .
D(§) = ,
=) G-&)?
0 0 (SN
(¢ —=&)"! 0 0
_ _ -2 _ -1 :
: 0
¢ —=¢)™" C—-a)? C—a)!
This lemma can be proved by induction as in [32]. Besides, we notice that in the expressions for I"~!(¢) and I'(¢),
only half of the vector parameters, i.e.: |p1),..., |pn) and {p1|, ..., (pn| are independent. In fact, the rest of the vector

15
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Fig. 7. The evolution plot of 2-soliton solutions in the IVC-Hirota equation: «1(z) = a4(z) = tanh(z): ((a) § = 1; (b) § = %; (c) 8 = 2.) 1(z) = tanh(z)
and ay(z) =22+ 1: (d) s =1; (e) 6 = ‘3—‘; ) =2)

parameters in (59) can be derived by calculating the poles of each order in the identity I'(¢)I'"1(¢) =1 at ¢ =&

Ip1)
I (&) =0,
|Dn)
where
re) 0 0
&) re)
rEe)= “©
. . . 0
n—1
(nfln!ddgnqr(;) %F(C) r)

Hence, in terms of the independent vector parameters, results (59) can be formulated in a more compact form as in [32]
and here we just avoid these overlapped parts. In the following, we derive this compact formula via the method of
generalized Darboux transformation (gDT) [33]. We intend to investigate the relation between dressing matrices and DT
for Hirota equation in the high-order zero case. The essence of the DT is a gauge transformation. Following the scheme
proposed in [34], we can construct the gDT for Hirota equation as well.

Based on the form of elementary DT [35], we can notice I ({1 + €) |v1 (¢1 + €)) = 0. Furthermore, consider a limitation
as follows:

n@+ol@+e) g

" @)  lim - = & [n© )]

t=t1

where ‘X{m (;1)> = |vy (£1)). Then ‘XEU> can be used to construct the next step DT, i.e.:

i m\ [,
F1[]](§) — (1 4 ?__;plﬂl) , P][ﬂ — W

16
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The result can be obtained as follows by continuing the above process:

' n® Gt ]x{m @ +e)

NI\ _ i
‘X1 >_11m m .

e—0 €
The N-times generalized Darboux matrix can be represented as:
- 0
Tve) =" ),

where

il [il

, S r , ‘X] ><X1 ‘
F][l]({) — <I + Gi gl PP) i P{l] — TR

! <X1 |X1 >

In addition, the transformation between different potential matrices is:

N-1
QM =Q+i|os Y (& —§1)le

J

Il
<]

In this expression, le is rank-one matrices, so F]m({) can be also decomposed into the summation of simple fraction,
that means the multiple product form of Ty can be directly simplified by the conclusion of Lemma 1. In other words, the
above generalized Darboux matrix for Hirota equation can be given in the following theorem:

Theorem 1. In the case of one pair of elementary high-order zero, the generalized Darboux matrix for Hirota equation can be
represented as [35]:

v =1 — YM'D(¢)YT,
where D(¢) is N x N block Toeplitz matrix which has been given before, Y is a 2 x N matrix:

)1y (N=1)
Y=(|v1>,...,‘“> )

> (N=T)
)9 =lime_o & [v1 (21 +€))
and M is N x N matrix:
M = ( mmn )
7k NxN
with

M = fim ! ot VI
J: ce—0(m—1)(n—1)dem13(e) 1| gj— ¢ +e—¢

Theorem 1 can be proved via directly calculation as in [34]. Therefore, if @Vl = Ty®, then ®N! indeed solves spectral
problem (3). Substituting Ty into the above relation and letting spectral ¢ go to infinity, we have the relation:

{v1l
log) N1

QM =q i 03,(|U1),--~,>M_1
(N=1)! (v N1

N—T)!

Moreover, the transformations between potential functions are:

N _ 0], o;lAill Mmooyt )
i =Q +2z—|M| » A= [ YIjl 0 ,1<j,1<2.

Here the subscript ;; denotes the jth row and Ith column element of matrix A, and Y[I] represents the jth row of matrix
Y.
5. High-order soliton solution for the Hirota and IVC-equation

Firstly, choice a single pair of purely imaginary eigenvalues, ¢; = in; € iR, and ¢; = ii; € iR_, where 7; > 0 and
- . . . . . i T
71 = —n1 < 0 to get a brevity second-order fundamental soliton expression. In this case, taking vio(€) = [1, e"’m*{’“f]

= = AT -

and vqo(€) = [1, e'elo‘ellf] , Where 049, 011, 019, 011 are real constants. Substituting these expressions into high-order
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(®)

Fig. 8. The evolution plot of the second-order soliton solutions in the Hirota equation: (a) o =0and B =1; (b)a =1and B =1; (c) o =1 and

B =1

soliton formula 1 with N = 2, Q][OZ] = 0, then the analytic expression for the second-order soliton solution ut?/(T, Z) is
obtained as follows.

tl1e2ﬁ1T+(4iaﬁf—8ﬁﬁ§)z+ieio + tlzezmT+(4ian%—8ﬂn§)2—i9m

4cosh®((m — 7)T +4B(7; — n3)Z + 2ia(n? — m*)Z — $(610 + 610)) + F(T, z)

2(n1 — ) (60)
ti = (1 — m)(—24n2 BZ + 8in1aZ + 2T + i6y1)
tiz = (m — 1 (—2471 BZ + 8inaZ + 2T — i611)
F(T,Z) = —(t11 + 2)(t12 + 2).

The second-order soliton solution u[Z](T,_ Z) combines exponential functions with algebraic polynomials, contains six
real parameters: 71, 11, 610, 610, 611, and 641. The center trajectory X, and X_ for this solution can be approximatively
described by the following two curves:

-2,
-2

’

- - 1
Ty (= 0T + 4B = nZ + SInlF| =0,

- _ 1
T (= )T +4B(i — nZ — SInlF| = 0.

Moreover, regardless of the effect brought by the logarithmic part when Z — 400, two solitons separately move along
each curve in a nearly same velocity, which is approximate to

V = —4B(ri +mis + 17)-
Due to 17 — 7j; > 0, with simple calculation, it is found that |u®!(T, Z)| possesses the following asymptotic estimation:
[u?(T,2)] — 0, |T| - +cc. (61)

However, with the development of time, a simple asymptotic analysis with estimation on the leading-order terms shows
that: when soliton (60) is moving on X, or X_, its amplitudes |u'?/(T, Z)| can approximately vary as

2y iy e 14T Z ~ 400
e4ia(n§—;;%)z—i<arg[f(r,zn+2kn)+i(em+§m)H‘ ’ s
(T, Z)| ~ (62)
2|y —ipgle=Cr+A1)T 7 ~ —00
‘E—4ia(n%—ﬁ% )zfi(arglf(r.zmzkn)4(910+§m)H' ) )
where k e Z. ‘ _ B
Letting n; = % nm = —% and 619 = 619 = 017 = 617 = 0, the value of («, 8) will change the velocity, direction and

shape of the soliton figure. We can divide the analysis into three cases as shown in Figs. 8(a)-8(c): the first case is that
o = 0 and B = 1; the second case is @ = 1 and B = 1; the third case is « = 0 and 8 = 1. Graphically, the soliton
evolution of the Hirota equation is more similar to that of the KdV equation. That is, the value of higher term coefficient
B plays a decisive role in dynamic analysis.
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Fig. 9. The evolution plot of the second-order soliton solutions in the IVC-Hirota equation: oq(z) = w4(z) = z: (@) 8 = 1; (b) § = %.)
a1z) =as(z) = 1+2: ()8 =1, (d) 8 = 3)n(z) =zand ag(z) =22+ 1: ((€) 6 = 1; () 6 = 3.) eu(2) = ulz) = 2% ((g) 8 = 1; (h)

§=3)on(z)=2" and ay(z) =1+ 2% () 6=1; () § = 3.)

Using the explicit transformation (51), we can obtain abundance of high-order soliton solutions ¢N'(T, Z) of the IVC-
Hirota equation from the known solutions u™(T, Z) of the Hirota equation. Now taking N = 2, QllozJ =019 =010 =011 =
611 =0,8 = 1+4+iand & = 1 — i, without loss of generality, we present below the dynamic evolution analysis of the
second-order soliton solution of the variable coefficient equation when o = 0. When «1(z) = a4(z) = z, the solitons
are symmetric about the line z = 0 and have only one crest. Comparing with Fig. 9(a), we can find that the dynamics
of solution ¢? in Fig. 9(b) is different that the symmetric is moved to z = —1 and the peaks change from one to two
when a1(z) = a4(z) = 1+ z. When «1(z) = z and a4(z) = z2 + 1, the maximum amplitude of the second-order soliton
solution appears at the position of interaction of soliton, and the dynamic behavior of the other positions is similar to
that of the corresponding 1-soliton solution. Similarly, we also consider the cases of a1(z) = a4(z) = z? and o4(z) = z2,
a4(z) = 1+ z2. The detailed dynamic behavior of the solution can be observed in Fig. 9.

According to Eq. (54), the central trajectory equation of soliton propagation can be seen as t = (2£% — %nz -5+

% + 1‘;‘;2 ) fa1(z)dz and Zlg; can regulate the amplitude of the solution. When 2% — 2% — 8 + % + 1‘;‘;2 = 0, the
integral term in the solution of the variable coefficient equation disappears, and we can only get soliton solutions like
some classical constant coefficient equations, while when 2 £2 — % n”? -8+ % + 1322 # 0, the integral term will have
a huge impact on the soliton propagation form. In this case, we can adjust parameter according to the influence of each
on the soliton trajectory and amplitude to obtain various new soliton solutions of different forms. For example, when we
take trigonometric functions as the excitations function, we can obtain very rich non-singular convergent second-order
solutions which are shown in Fig. 10 by adjusting the parameters. For example, when «1(z) = a4(z) = 10sin(z), we can
construct heart-shaped periodic waves when § = 1 and § = 2 (see Figs. 10(d) and 10(f)). For § = %, an O-shaped periodic
wave is plotted in Fig. 10(e). When «1(z) = a4(z) = sin(5z) or a1(z) = a4(z) = sin(3z), we can see the dynamic behaviors
in Figs. 10(m) and 10(o) which are similar to the breather solution, there are a peak and two troughs in each periodic.

In the last, taking «(z) = tanh(z), in order to get meaningful nonsingular convergent solutions we can let a4(z) =
tanh(z) or a4(z) = z? + 1, Fig. 11 shows the dynamic evolution process of the second-order soliton solution with different
values of the parameter 4.

6. Conclusion and discussion

In summary, many new soliton solutions for the IVC-Hirota equation are implemented by using the RH method and
a special relationship transformation. Firstly, the soliton matrices are constructed by studying the corresponding RH
problem. By regularizing the RH problem with simple zeros, we get the general N-soliton formula for the Hirota equation.
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) ® (m) ) (O]

Fig. 10. The evolution plot of the second-order soliton solutions in the IVC-Hirota equation: «q(z) = a4(z) = sin(z): ((a) § = 1; (b) § = g; ()
§ = 2.) a1(z) = ay(z) = 10sin(z): (d) § = 1; (e) § = %‘: (f) 6 = 2.) a1(z) = a4(z) = 1 +sin(z): ((g) 6 = 1; (h) § = %; (i) § = 2.) a1(z) = sin(z)
and ay4(z) = tan(z): () § = 1; (k) § = ‘3—‘; 1) § = 2.) (m) a1(z) = ay(z) = sin(5z) and § = 1; (n) a1(z) = sin(2z), ay(z) = tan(z) and § = 1; (0)
a1(z) = ay4(z) = sin(3z) and § = 1.

In addition, the high-order soliton matrices are also obtained by considering the multiple zeros of the RH problem.
Then the N-soliton matrix and high-order soliton matrices of the IVC-Hirota equation are presented from the correspond
soliton matrix of generalized Hirota equation by a special relationship transformation. We find when second-order term
coefficient « is equal to 0 in the relationship transformation, third-order term coefficient 8 disappear from the solution of
the IVC-Hirota equation. Namely, the high-order term coefficient 8 has no influence on the solution of IVC-Hirota equation
which is obtained by the special relationship transformation of « = 0.

The 2-soliton collision dynamics, the asymptotic behavior of the 2-soliton and the long time asymptotic estimates
for the high-order soliton solution of Hirota equation are detailed in this paper. For the Hirota equation, compared with
the second-order coefficient «, the value of the higher-order coefficient 8 plays a more important role in the dynamic
behavior of the solution. In addition, a detailed dynamic analysis is given for the N-soliton solution and the high-order
soliton solution of the IVC-Hirota equation. Most notably, by analyzing the dynamics of the N-solitons and high-order
solitons of the IVC-Hirota equation, we have found many new waveforms that have never been reported before, which are
very important in theory and practice. For example, when both nonlinear effect and dispersion effect are taken as periodic
functions, interesting new waves such as heart-shaped periodic wave and O-shaped periodic wave can be constructed by
adjusting the parameters.

Following the work in this paper, we plan to use numerical methods in future work to simulate high-order soliton
solutions of integrable equations with non-zero boundaries.
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G (e) ®
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Fig. 11. The evolution plot of the second-order soliton solutions in the IVC-Hirota equation: «1(z) = a4(z) = tanh(z): ((@) § = 1; (b) § =
8 =2.) a1(z) = tanh(z) and as(z) = 2>+ 1: (d) §=1; (e) 6 = %; () § = 2)
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