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a b s t r a c t

A series of new soliton solutions is presented for the inhomogeneous variable coefficient
Hirota equation by using the Riemann–Hilbert method and transformation relationship.
Firstly, through a standard dressing procedure, the N-soliton matrix associated with
the simple zeros in the Riemann–Hilbert problem for the Hirota equation is con-
structed. Then the N-soliton matrix of the inhomogeneous variable coefficient Hirota
equation can be obtained by a special relationship transformation from the N-soliton
matrix of the Hirota equation. Next, using the generalized Darboux transformation, the
high-order soliton solutions corresponding to the elementary high-order zeros in the
Riemann–Hilbert problem for the Hirota equation can be derived. Similarly, employing
the relationship transformation mentioned above can lead to the high-order soliton
solutions of the inhomogeneous variable coefficient Hirota equation. In addition, the
collision dynamics of Hirota and inhomogeneous variable coefficient Hirota equations
are analyzed; the asymptotic behaviors for multi-solitons and long-term asymptotic
estimates for the high-order one-soliton of the Hirota equation are concretely calculated.
Most notably, by analyzing the dynamics of the multi-solitons and high-order solitons
of the inhomogeneous variable coefficient Hirota equation, we discover numerous new
waveforms such as heart-shaped periodic wave solutions, O-shaped periodic wave
solutions etc. that have never been reported before, which are crucial in theory and
practice.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

As we all know, the nonlinear Schrödinger (NLS) equation describes a plane self-focusing and one-dimensional self-
odulation of waves in nonlinear dispersive media, which has various applications in a wide range of physical systems
uch as water waves [1,2], nonlinear optics [3,4], solid-state physics and plasma physics [5]. However, several phenomena
bserved in the experiment cannot be justified by the NLS equation. As the light pulse becomes shorter, they require more
nergy to become solitons [6,7]. In this case, some additional effects have become significant. Considering higher-order
ispersion and cubic nonlinear time-delay correction, a modified NLS equation

iuZ + α(uTT + 2|u|2u) + iβ(uTTT + 6|u|2uT ) = 0, (1)
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namely Hirota equation, can be used to describe the propagation of subpicosecond or femtosecond optical pulses in optical
fibers. In this equation, T is the propagation variable and Z is the retarded time variable in a moving frame while u is
he envelope of the wave field. The two terms in (1) with a real coefficient β represent the third-order dispersion uTTT
nd a time-delay correction to the cubic term |u|2uT , respectively. Due to a fine balance between its linear dispersive and
onlinear collapsing terms, some exact solitons solutions of Hirota equation have been obtained by many authors [8–17].
hen α = 1, β = 0, Eq. (1) reduces to the NLS equation. In another case of α = 0, β = 1, the Hirota equation reduces to

modified Korteweg–de Vries equation.
Note that these investigations of optical solitons or solitary waves have been focused mainly on homogeneous fibers.

However, for the long-distance communication and manufacturing problems in the realistic fiber transmission lines, the
inhomogeneous variable coefficient Hirota (IVC-Hirota) equation [18]

iqz + α1(z)qtt −
1
3δ

iα1(z)qttt + δα4(z)q|q|2 − iα4(z)|q|2qt − iα6(z)q = 0, (2)

as investigated. Here

α6(z) =
α1,zα4 − α1α4,z

2α1α4
,

δ is a real number, α1(z) and α4(z) are dispersion and nonlinear effects respectively. Dispersion broadens the waveform
and nonlinear effects narrow it. Under certain conditions, the two effects reach a balance and maintain waveform stability.
We should point out that Eq. (2) is an integrable equation. Study of Eq. (2) is of great interest due to its wide range of
applications [19–25]. Its use is not only restricted to optical pulse propagation in inhomogeneous fiber media, but also to
the core of dispersion-managed solitons and combined managed solitons. As far as we can see, there are few studies on
higher-order solitons of IVC-Hirota equation.

In this paper, an IVC-Hirota equation used in optics is studied by the Riemann–Hilbert (RH) method and relationship
transformation. There is a relationship transformation, which maps IVC-Hirota to the Hirota equation. Thanks to the
transformation, one can obtain many solutions of the IVC-Hirota equation from the known solutions of the Hirota
equation. Specifically, as for the Hirota equation, through a standard dressing procedure, we can find the soliton matrix for
the nonregular RH problem with simple zeros. Then combined with generalized Darboux transformation (gDT), soliton
matrix for elementary high-order zeros in the RH problem are constructed. RH problem provides a feasible and strict
method for studying the long-term asymptotic behavior of integrable equations [26–28]. Furthermore, the influence of
free parameter (α, β) in soliton solutions of general Hirota equation on soliton propagation, collision dynamics along
with the asymptotic behavior for the two solitons and longtime asymptotic estimations for the high-order one soliton are
concretely analyzed. The propagation direction, velocity, width and other physical quantities of solitons can be modulated
by adjusting the free parameters of the general Hirota equation. In addition, using a special transformation, we can obtain
explicit expressions of multi-solitons and high-order soliton for the IVC-Hirota equation by the solutions of the Hirota
equation. We design abundant new types of multi-solitons and high-order solitons of the IVC-Hirota equation through
analysis of the explicit expression of solutions. Such as: heart-shaped periodic wave solutions and O-shaped periodic wave
solutions. The dynamics analysis of these solutions are useful in observing and design of fiber optic in femtosecond fiber
laser systems or in optical communication links with distributed dispersion and nonlinearity management.

This paper is organized as follows. In Section 2, the matrix RH problem is formulated. In Section 3, the N-soliton
formulas for the Hirota and IVC-Hirota equation are derived by considering the simple zeros in the RH problem and some
exact solutions are constructed. In Section 4, we first give the high order N-soliton formula for the Hirota equation, which
corresponds to the elementary zeros in the RH problem. Then the high order N-soliton formula for IVC-Hirota is also
constructed. In Section 5, the dynamics of high-order solitons are given in the IVC-Hirota equation. The last section is a
short conclusion and discussion.

2. Inverse scattering theory for the Hirota equation

In this section, we study the scattering and inverse scattering problem for the Hirota Eq. (1). The Hirota equation can
be constructed by the compatibility condition of the following spectral problem [29]:

YT = UY ,
YZ = VY ,

(3)

where

U = −iζΛ+ Q , V = (−4iβζ 3 − 2iαζ 2)Λ+ V1, Q =

(
0 u

−u∗ 0

)
, Λ =

(
1 0
0 −1

)
,

V1 = ζ 2
(

0 4βu
−4βu∗ 0

)
+ ζ

(
2iβ|u|2 2iβuT + 2αu

2iβu∗

T − 2αu∗
−2iβ|u|2

)
+

(
iα|u|2 + β(uu∗

T − uTu∗) iαuT − β(2|u|2u + uTT )
∗ 2 ∗ ∗ 2 ∗ ∗

)
,

iαuT + β(2|u| u + uTT ) −iα|u| − β(uuT − uTu )
2
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u = u(T , Z) is a potential function, ζ is a spectral parameter, Y (T , Z, ζ ) is a vector function, and the superscript ∗

epresents complex conjugation. Supposing u(T ) = u(T , 0) decays to zero sufficiently fast as T → ±∞. For a prescribed
nitial condition u(T , 0), we seek the solution u(T , Z) at any later time Z . That is, we solve an initial value problem for the
irota equation.
Denote

E1 = e−iζΛT−(4iβζ3+2iαζ2)ΛZ ,

J = YE−1
1 , (4)

o that the new matrix function J is (T , Z)-independent at infinity. Inserting (4) into (3), the Lax pair (3) becomes

JT = −iζ [Λ, J] + QJ,

JZ = −(4iβζ 3 + 2iαζ 2)[Λ, J] + V1J,
(5)

where [Λ, J] = ΛJ − JΛ is the commutator. Notice that both matrices Q and V1 are anti-Hermitian, i.e.,

Q †
= −Q , V †

1 = −V1, (6)

where the superscript † represents the Hermitian of a matrix. In addition, their traces are both equal to zero, i.e., trQ =

trV1 = 0.
Now the time Z in the above notations to be considered as dummy variable. For the scattering problem, introduce

matrix Jost solutions J±(T , ζ ) of (5) with the following asymptotic at large distances:

J±(T , ζ ) → I, T → ±∞, (7)

where I is a 2 × 2 unit matrix. J±(T , ζ ) is the asymptotic solution of Eq. (3) as T approaches positive and negative infinity,
respectively. We called this asymptotic solution the Jost solution. Next, the analytical properties of Jost solutions J±(T , ζ )
will be delineated. Firstly, the notation E(T , ζ ) = e−iζΛT , Φ ≡ J−E and Ψ ≡ J+E are introduced. Notice that Y±(T , ζ )
satisfies the scattering Eq. (3), i.e.,

YT + iζΛY = QY . (8)

Treating the QY term in the above equation as an inhomogeneous term and noticing the solution to the homogeneous
equation on its left side is E, then Eq. (8) can be turned into Volterra integral equations by using the method of variation
of parameters as well as the boundary conditions (7). These equations can be cast in terms of J± as

J−(T , ζ ) = I +

∫ T

−∞

e−iζΛ(T−y)Q (y)J−(y, ζ )e−iζΛ(y−T )dy, (9)

J+(T , ζ ) = I −

∫
∞

T
eiζΛ(y−T )Q (y)J+(y, ζ )eiζΛ(T−y)dy. (10)

Thus, as long as the integrals on the right sides of the above Volterra equations converge, J±(T , ζ ) allow analytical
continuations off the real axis ζ ∈ R. The following proposition can easily be derived through the structure of the potential
Q .

Proposition 1. The first column of J− and the second column of J+ can be analytically continued to ζ ∈ C+, while the second
column of J− and the first column of J+ can be analytically continued to C−. Here C stands for complex plane, C+ denotes the
upper half plane of complex plane C and C− denotes the lower half plane of complex plane C.

Proof. The integral Eq. (9) for the first column of J−, say
(
ϕ1
ϕ2

)
, is

ϕ1 = 1 +

∫ T

−∞

u(y)ϕ2(y, ζ )dy, (11)

ϕ2 = −

∫ T

−∞

u∗(y)ϕ1(y, ζ )e2iζ (T−y)dy. (12)

When ζ ∈ C+, since e2iζ (T−y) in (12) is bounded, and u(T ) decays to zero sufficiently fast at large distances, both integrals

in the above two equations converge. Thus the Jost solution
(
ϕ1
ϕ2

)
can be analytically extended to C+. The analytic

properties of the other Jost solutions J+ can be obtained similarly. □

From Abel’s identity, we find that |J(T , ζ )| is a constant for all T . Then using the boundary conditions (7), we see that
|J±(T , ζ )| = 1, (13)

3
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for all (T , ζ ). Since Φ(T , ζ ) and Ψ (T , ζ ) are both solutions of the linear Eq. (3), they are linearly related by a scattering
matrix S(ζ ):

Φ(T , ζ ) = Ψ (T , ζ )S(ζ ), ζ ∈ R. (14)

.e.,

J− = J+ESE−1, ζ ∈ R, (15)

ere R is the set of real numbers.
Because the potential u(T , Z) can be reconstructed by using the scattering matrix S(ζ ), so the analytical properties of

(ζ ) need to be delineated first. If (Φ,Ψ ) are expressed as a collection of columns

Φ = (φ1, φ2), Ψ = (ψ1, ψ2),

rom Proposition 1 and Φ ≡ J−E and Ψ ≡ J+E, we have

Φ = (φ+

1 , φ
−

2 ), Ψ = (ψ−

1 , ψ
+

2 ),

Φ−1
=

(
φ̂1

−

φ̂2
+

)
, Ψ −1

=

(
ψ̂1

+

ψ̂2
−

)
,

where the superscripts ± indicate the half plane of analyticity for the underlying quantities. Since

S = Ψ −1Φ =

(
ψ̂1

+

ψ̂2
−

)
(φ+

1 , φ
−

2 ),

S−1
= Φ−1Ψ =

(
φ̂1

−

ψ̂2
+

)
(ψ−

1 , ψ
+

2 ),

t is easy to see that scattering matrices S and S−1 have the following analyticity structures:

S =

(
s+11, s12
s21, s−22

)
, S−1

=

(
ŝ−11, ŝ12
ŝ21, ŝ+22

)
.

Where s+11 means element s11 is analyticity on the upper half plane ζ ∈ C+ and s−22 means element s22 is analyticity on
the lower half plane C−. The elements s12 and s21 these without superscripts indicate that such elements do not allow
analytical extensions to C± in general. From S is a 2 × 2 matrix with unit determinant, we have

ŝ11 = s22, ŝ22 = s11, ŝ12 = −s12, ŝ21 = −s21.

Therefore, the analytic properties of S−1 are apparent from the analytic properties of S.
In order to construct the RH problem, we define the Jost solutions

P+
= (φ1, ψ2)eiζΛT

= J−H1 + J+H2 (16)

are analytic in ζ ∈ C+, and the Jost solutions

(ψ1, φ2)eiζΛT
= J+H1 + J−H2 (17)

are analytic in ζ ∈ C−, here H1 ≡ diag(1, 0) and H2 ≡ diag(0, 1). In addition, from the Volterra integral Eqs. (9)–(10), we
see that the large ζ asymptotics of these analytical functions are

P+(x, ζ ) → I, ζ ∈ C+ → ∞, (18)

(ψ1, φ2)eiζΛT
→ I, ζ ∈ C− → ∞. (19)

To obtain the analytic counterpart of P+ in C−, we consider the adjoint scattering equation of (5):

KT = −iζ [Λ, K ] − KQ . (20)

Indeed, by utilizing the relation

0 = (JJ−1)T = JT J−1
+ J(J−1)T , (21)

as well as the scattering Eq. (5), we have

J−1
= −iζ [Λ, J−1

] − J−1Q , (22)
T

4
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thus J−1(T , ζ ) satisfies the adjoint Eq. (20). If we express Φ−1 and Ψ −1 as a collection of rows

Φ−1
=

(
φ̂1

φ̂2

)
, Ψ −1

=

(
ψ̂1

ψ̂2

)
. (23)

Similarly, we can show that the adjoint Jost solutions

P−
= e−iζΛx

(
φ̂1

ψ̂2

)
= H1J−1

−
+ H2J−1

+
(24)

are analytic in ζ ∈ C−. In addition,

P−(T , ζ ) → I, ζ ∈ C− → ∞. (25)

The anti-Hermitian property (6) of the potential matrix Q gives rise to involution properties in the scattering matrix
s well as in the Jost solutions. Indeed, by taking the Hermitian of the scattering Eq. (5) and utilizing the anti-Hermitian
roperty of the potential matrix Q †

= −Q , we get

J†T = −iζ ∗
[∧, J†] − J†Q .

Thus J†±(T , ζ ∗) satisfy the adjoint scattering Eq. (20). However, J−1
± (T , ζ ) satisfies this adjoint equation as well. Conse-

quently, J†±(T , ζ ∗) and J−1
± (T , ζ ) must be linearly dependent on each other. Recalling the boundary conditions (7) of Jost

solutionsJ±, we further see that J†±(T , ζ ∗) and J−1
± (T , ζ ) have the same boundary conditions at T → ±∞, and hence they

must be the same solutions of the adjoint Eq. (20), i.e. J†±(ζ ∗) = J−1
± (ζ ). From this involution property as well as the

definitions (16) and (24) for P±, we see that the analytic solutions P± satisfy the involution property as well:

(P+)†(ζ ∗) = P−(ζ ). (26)

In addition, in view of the scattering relation (15) between J+ and J−, we see that S also satisfies the involution property:

S†(ζ ∗) = S−1(ζ ). (27)

2.1. Matrix Riemann–Hilbert problem

On the real line, using (15), (16) and (24), we can easily get

P−(T , ζ )P+(T , ζ ) = G(T , ζ ), ζ ∈ R, (28)

here

G = E(H1 + H2S)(H1 + S−1H2)E−1
= E

(
1 ŝ12
s21 1

)
E−1.

Eq. (28) forms a matrix RH problem. The normalization condition for this RH problem can be obtained from (18) and (25)
as

P±(T , ζ ) → I, ζ ∈ ∞, (29)

hich is the canonical normalization condition. If this RH problem can be solved from the given scattering data (s21, ŝ12),
then the potential Q can be reconstructed from the asymptotic expansion of its solution at large ζ . Indeed, recall that P+

and P− are solutions of the scattering problem (5) and its adjoint problem (20), respectively.
Recalling the definitions (16) and (24) of P± as well as the scattering relation (15), we have that

|P+
| = ŝ22 = s11, |P−

| = s22 = ŝ11. (30)

The RH problem (28) is called regular when |P±
| ̸= 0. Firstly, the solution of the regular RH problem is considered. Namely,

s22 = s11 = s22 = ŝ11 ̸= 0 in their respective planes of analyticity. Under the canonical normalization condition (29), the
solution to this regular RH problem is unique [30]. This unique solution to the regular matrix RH problem (28) defies
explicit expressions. Its formal solution, however, can be given in terms of a Fredholm integral equation.

To use the Plemelj–Sokhotski formula [30] on the regular RH problem (28), we first rewrite the (28) as(
P+
)−1 (ζ ) − P−(ζ ) = Ĝ(ζ )

(
P+
)−1 (ζ ), ζ ∈ R

where

Ĝ = I − G = −E
(

0 ŝ12
)
E−1,
s21 0

5
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(
P+
)−1 (ζ ) is analytic in C+, and P−(ζ ) is analytic in C−. Applying the Plemelj–Sokhotski formula and utilizing the

canonical boundary conditions (29), the solution to the regular RH problem (28) is provided by the following integral
equation:

(
P+
)−1 (ζ ) = I +

1
2π i

∫
∞

−∞

Ĝ(ξ )
(
P+
)−1 (ξ )

ξ − ζ
dξ, ζ ∈ C+.

In the more general case, the RH problem (28) is not regular: i.e., |P+(ζ )| and |P−(ζ )| can be zero at certain discrete
ocations ζk ∈ C+ and ζ̄k ∈ C−, 1 ≤ k ≤ N , where N is the number of these zeros. In view of (30), we see that

(
ζk, ζ̄k

)
are

zeros of the scattering coefficients ŝ22(ζ ) and s22(ζ ). Due to the involution property (27), we have the involution relation

ζ̄k = ζ ∗

k . (31)

For simplicity, we assume that all zeros
{(
ζk, ζ̄k

)
, k = 1, . . . ,N

}
are simple zeros of

(
ŝ22, s22

)
. In this case, the kernels of

P+ (ζk) and P−
(
ζ̄k
)
contain only a single column vector |vk⟩ and row vector ⟨vk|, respectively. I.e.,

P+ (ζk) |vk⟩ = 0, ⟨vk| P−
(
ζ̄k
)

= 0, 1 ≤ k ≤ N. (32)

aking the Hermitian of the first equation in (32) and utilizing the involution properties (26) and (31),

|vk⟩
† P−

(
ζ̄k
)

= 0 (33)

an be got. Then comparing Eq. (33) with the second equation in (32), we know that eigenvectors (|vk⟩ , ⟨vk|) satisfy the
involution property ⟨vk| = |vk⟩

†. Vectors |vk⟩ and ⟨vk| are T dependent, taking the T derivative to the Eq. (32) and recalling
that P+ satisfies the scattering Eq. (5), we have

P+ (ζk; T )
(
d |vk⟩

dT
+ iζkΛ |vk⟩

)
= 0.

ue to our assumption, the only vector in the kernel of P+ (ζk; T ) is |vk⟩. Thus

d |vk⟩

dT
+ iζkΛ |vk⟩ = αk(x) |vk⟩ ,

where αk(T ) is a scalar function. The solution of the above equation is

|vk(T )⟩ = e−iζkΛT
|vk0⟩ e

∫ T
T0
αk(y)dy,

where |vk0⟩ = |vk(T )⟩ |T=0. Without loss of generality, we take αk = 0 and write the solution |vk(T )⟩ as

|vk(T )⟩ = e−iζkΛT
|vk0⟩ . (34)

ollowing similar calculations for v̄k, we readily get

⟨vk(T )| = ⟨v̄k0| eiζkΛT .

hese two equations give the simple T dependence of vectors |vk(T )⟩ and ⟨v̄k(T )|. The zeros
{(
ζk, ζ̄k

)}
of |P±(ζ )| as well

s vectors |vk⟩ , ⟨vk| in the kernels of P+ (ζk) and P−
(
ζ̄k
)
constitute the discrete scattering data which is also needed to

olve the general RH problem (28).
Now a matrix function that could remove all the zeros of this RH problem is introduced. For this purpose, a rational

atrix function is first introduced:

Γj(ζ ) = I +
ζ̄j − kj
ζ − ζ̄j

⏐⏐vj⟩ ⟨vj⏐⏐⟨
vj|vj

⟩ ,
and the inverse matrix of Γj(ζ ) is

Γj(ζ )−1
= I +

ζj − ζ̄j

ζ − ζj

⏐⏐vj⟩ ⟨vj⏐⏐⟨
vj|vj

⟩ ,
where

⏐⏐vj⟩ ∈ Ker
(
P+Γ

−1
1 · · ·Γ −1

j−1

(
ζj
))
,
⟨
vj| = |vj

⟩†
. Now, introducing the matrix function:

Γ (ζ ) = ΓN (ζ )ΓN−1(ζ ) · · ·Γ1(ζ ),

calculation gives

Γ (ζ ) = I +

N∑ ⏐⏐vj⟩ (M−1
)
jk ⟨vk|

ζ − ζ̄k
,

j,k=1

6
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Γ −1(ζ ) = I −

N∑
j,k=1

⏐⏐vj⟩ (M−1
)
jk ⟨vk|

ζ − ζj
,

here M is a N × N matrix with its (j, k)th element given by

Mjk =
⟨vj|vk⟩

ζ̄j−ζk
, 1 ≤ j, k ≤ N. (35)

ased on the above argument, we are confident that Γ (T , ζ ) cancels all the zeros of P±, and the analytic solutions can be
epresented as

P+(ζ ) = P̂+(ζ )Γ (ζ ),
P−(ζ ) = Γ −1(ζ )̂P−(ζ ).

ere, P̂±(ζ ) are meromorphic 2 × 2 matrix functions in C+ and C−, respectively, with finite number of poles and specified
esidues. Therefore, all zeros of the RH problem have been eliminated, and a regular RH problem

P̂−(ζ )̂P+(ζ ) = Γ (ζ )G(ζ )Γ −1(ζ ), ζ ∈ R,

ith boundary condition: P̂±(ζ ) = P±(ζ )Γ −1
→ I as ζ → ∞ can be formulated. Then P+(ζ ) = Γ when ζ → ∞.

2.2. Solution of the Riemann–Hilbert problem

In this subsection, how to solve the matrix RH problem (28) in the complex ζ plane is discussed. In most of these
discussions, T is a dummy variable, hence will be suppressed in our notations. Thus, if we expand P at large ζ as

P(T , ζ ) = I + ζ−1P±

1 (T ) + O(ζ−2), ζ → ∞, (36)

and insert (36) into (5) and (20), then by comparing terms of the same power in ζ−1, we find at O(1) that

Q = i[∧, P+

1 ] = −i[∧, P−

1 ]. (37)

Hence the solution u can be reconstructed by

u = 2i(P+

1 )12 = −2i(P−

1 )12. (38)

This completes the inverse scattering process. Continuing the above calculations, at O(ζ−1) in (5), we get

diag(P+

1 )T = diag(QP+

1 ). (39)

2.3. Time evolution of scattering data

In this subsection, we determine the time evolution of the scattering data. Firstly, the time evolution of the scattering
matrices S and S−1 is analyzed. The definition (15) for the scattering matrix can be rewritten as

J−E = J+ES, ζ ∈ R.

Since J± satisfies the temporal Eq. (5) of the Lax pair, then multiply (5) by the time-independent diagonal matrix
E = e−iζΛT . Due to J−E, i.e., J+ES, satisfies the same temporal Eq. (5) as well. Thus,

SZ = −(4iβζ 3 + 2iαζ 2)[Λ, S].

can be obtained by inserting J+ES into (5), taking the limit T → +∞, and recalling the boundary condition (7) for J+ as
well as the fact that V → 0 as T → ±∞.

Similarly,(
S−1)

Z = −2iζ 2
[
Λ, S−1] , (40)

can be derived by inserting J−ES−1 into (5), taking the limit T → −∞, and recalling the asymptotics (7) for J−,
From these two equations,

∂ ŝ22
∂Z

=
∂s22
∂Z

= 0, (41)

nd
∂ ŝ12

= −(4iβζ 3 + 2iαζ 2)ŝ12,
∂s21

= (4iβζ 3 + 2iαζ 2)s21 (42)

∂Z ∂Z

7
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can be derived. The Eq. (41) shows that ŝ22 and s22 are time independent. Recall that ζk and ζ̄k are zeros of |P±(ζ )|, i.e., they
are zeros of ŝ22(ζ ) and s22(ζ ) in view of (30). Thus ζk and ζ̄k are also time independent. The two equations in (42) give
the time evolution for the scattering data ŝ12 and s21, which is

ŝ12(Z; ζ ) = ŝ12(0; ζ )e−(4iβζ3+2iαζ2)Z , s21(Z; ζ ) = s21(0; ζ )e(4iβζ
3
+2iαζ2)Z .

Next we determine the time dependence of the scattering data vk and
⟨
vj
⏐⏐. This determination is similar to that for the

-dependence of vk and
⟨
vj
⏐⏐ at the end of the previous subsection. We also start with (32) for |vk⟩ and

⟨
vj
⏐⏐. Taking the

time derivative to the |vk⟩ equation and recalling that P+ satisfies the temporal Eq. (32), then

P+ (ζk; T , Z)
(
∂ |vk⟩

∂Z
+ (4iβζ 3 + 2iαζ 2)Λ |vk⟩

)
= 0,

i.e,
∂ |vk⟩

∂Z
+ (4iβζ 3 + 2iαζ 2) |vk⟩ = 0.

Combining it with the spatial dependence (34), we get the temporal and spatial dependence for the vector |vk⟩ as

|vk⟩ (T , Z) = e−iζΛT−(4iβζ3+2iαζ2)ΛZ
|vk0⟩ , (43)

here |vk0⟩ is a constant. Similar calculations for ⟨vk| give

⟨vk| (T , Z) = ⟨vk0| eiζ̄kT+(4iβζ3+2iαζ2)Z .

The scattering data needed to solve this non-regular RH problem is{
s21(ξ ), ŝ12(ξ ), ξ ∈ R; ζk, ζ̄k,

⏐⏐vj⟩ , ⟨vk| , 1 ≤ k ≤ N
}

(44)

hich is called the minimal scattering data. Here, vectors |vk⟩ and ⟨vk| are T dependent, while the others are not. From
his scattering data at any later time, we can solve the non-regular RH problem (28) with zeros (32), and thus reconstruct
he solution u(T , Z) at any later time from the formula (38). This completes the inverse scattering transform process for
olving the Hirota Eq. (1).

. N-soliton solutions for the Hirota and IVC-Hirota equation

In this section, the N-soliton formula for the Hirota equation is derived by considering the simple zeros in the RH
roblem. Then the N-soliton formula for the IVC-Hirota equation can be constructed by a special transformation. We also
ive the dynamic analysis for some interesting exact solutions of the Hirota and IVC-Hirota equations.

.1. N-soliton matrix for the Hirota and IVC-Hirota equation

It is well known that when scattering data ŝ12 = s21 = 0, the soliton solutions correspond to the reflectionless potential.
hen jump matrix G = I , Ĝ = 0. Due to P+(ζ ) = Γ , ζ → ∞. Recall to (38), we can get

u(T , Z) = 2i(
N∑

j,k=1

⏐⏐vj⟩ (M−1)jk ⟨vk|)12. (45)

ere vectors vj are given by (43), ⟨vk| = |vk⟩
†, and matrix M is given by (35). Without loss of generality, taking

|vk0⟩ = (ck, 1)T in the following discussion. In addition, introduce the notation

θk = −iζkT − (4iβζ 3k + 2iαζ 2k )Z . (46)

Then the above solution u can be written out explicitly as

u(T , Z) = 2i
N∑

j,k=1

cjeθj−θ
∗
k (M−1)jk, (47)

where the elements of the N × N matrix M are given by

Mjk =
e−(θk+θ∗

j ) + c∗

j cke
θk+θ

∗
j

ζ ∗

j − ζk
. (48)

otice that M−1 can be expressed as the transpose of M ′s cofactor matrix divided by |M|. In addition, remember that
the determinant of a matrix can be expressed as the sum of its elements along a row or column multiplying their
corresponding cofactor. Therefore, the solution of the general Hirota equation can be rewritten as

u(T , Z) = −2i
|F |
, (49)
|M|

8
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where F is the following (N + 1) × (N + 1) matrix⎛⎜⎜⎜⎜⎜⎝
0 e−θ∗

1 ... e−θ∗
N

c1eθ1 M11 ... MN1
. . . .

. . . .

. . . .

cNeθN M1N ... MNN

⎞⎟⎟⎟⎟⎟⎠ . (50)

There is a relationship transformation [31]

q = f (z)u(T , Z)eig(t,z), (51)

which can map IVC-Hirota Eq. (2) to the Hirota Eq. (1). Where,

f (z) =

√
α1

α4
, Z = −

√
2δ

12β

∫
α1dz, T =

√
2δ
2

(t − (
α2

36β2 − δ)
∫
α1dz),

and g(t, z) = −
6βδ + α

√
2δ

6β
t −

216δ2β3
+ 54αβ2δ

√
2δ − α3

√
2δ

324β3

∫
α1dz.

elationship transformation (51) reveals the integrability of IVC-Hirota equation.
Using this relationship transformation, the n-soliton matrix solution of IVC-Hirota equation can be constructed as

ollows

q = −2i
|F |

|M|
f (z)eig(t,z). (52)

.2. Exact solutions for the Hirota and IVC-Hirota equation

When N = 1, c1 = 1 and ζ1 = ξ + iη, then the exact one-soliton solution of Hirota equation can be derived from (49).
he explicit expression for the one-soliton solution u1 is as follows

u1 = 2ηe(−8iβξ3−4iαξ2+24iβη2ξ+4iη2)Z+(1−2iξ )T sech(2η(−4βη2 + 12βξ 2 + 4αξ )Z + 2ηT ). (53)

he dynamic analysis of u1 shows that this is a classical bell-shaped soliton solution.
Using the relationship transformation (51), the one-soliton solution of IVC-Hirota equation is shown as

q1 = 2

√
α1(z)
α4(z)

ηe
A

324β3 sech(B), (54)

A = (ξ β +
α

6
)(216 i

√
2δ(ξ 2β2

− 3 η2β2
+
α β ξ

3
+
α2

36
) − 324 i

√
2β2δ

3
2 − 216 iβ3δ2)

∫
α1(z) dz

− 324 iβ2(
√
2δ(ξ β +

α

6
) + β δ)t,

B = η
√
2δ((

2
3
η2 − 2 ξ 2 + δ −

2αξ
3β

−
α2

18β2 )
∫
α1(z) dz + t).

The introduction of the integral term enriches the dynamic behavior of the solution of the variable coefficient equation.
It can be seen from the expression that α1(z) affects the trajectory of the solution q1, and

α1(z)
α4(z)

affects the amplitude. The
central trajectory equation of solution q1 is

t = (2 ξ 2 −
2
3
η2 − δ +

2αξ
3β

+
α2

18β2 )
∫
α1(z) dz.

hen 2 ξ 2 −
2
3 η

2
− δ+

2αξ
3β +

α2

18β2
= 0, the dynamic image q1 shows the shape of a common bell soliton which is similar

to the soliton solution of constant coefficient equation.
To simplify the expression of the solution q1, taking α = 0 and ξ = η = 1, then

|q1|2 = 4
⏐⏐⏐⏐α1(z)
α4(z)

⏐⏐⏐⏐ sech2(
√
2δ((δ −

4
3
)
∫
α1(z)dz + t)). (55)

t is needed to note that when α = 0, the value of β has no effect on the solution q1. The central trajectory equation of
olution q1 is t = ( 43 − δ)

∫
α1(z) dz. The dynamic image of solution q1 shows the shape of a bell soliton when δ =

4
3 . In

ther words, due to the integral term, the form of the solution becomes more abundant. The dynamic evolution diagram
f |q1|2 is symmetric about z axis (i.e. |q1|2 is an even function about z) when α1 and α4 are odd numbers. Moreover,
he amplitude of the solution q is constant 2 with α = ±α . α (z) and α (z) are dispersion and nonlinear effects,
1 1 4 1 4

9
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Fig. 1. The evolution plot of 1-soliton solutions in the IVC-Hirota equation: (a) α1(z) = α4(z) = z and δ = 8; (b) α1(z) = z, α4(z) = z2 + 1 and
δ = 1; (c) α1(z) = z + 1, α4(z) = 1 + z and δ = 5; (d) α1(z) = z2 , α4(z) = z2 and δ = 8; (e) α1(z) = z2 , α4(z) = z2 + 1 and δ = 8; (f) α1(z) = z2 + 1,
α4(z) = 10z2 + 1 and δ = 1.

respectively. Dispersion broadens the waveform and nonlinear effects narrow it. Under certain conditions, the two effects
reach a balance and maintain waveform stability. Next, we study the specific effects of different nonlinear terms and
dispersion terms on the dynamic behavior of the solutions. In order to further study the effect of the dispersion and
nonlinear term on the dynamics of the solution, we give the different excitation states of α1 and α4.

Firstly, we let the dispersion term be in the simplest polynomial form. For example, fixed the coefficient α1(z) =

zn, then the center trajectory equation is t =
1

n+1 (
4
3 − δ)zn+1. It can also be seen that the value of δ has a great

influence on the propagation path of the solution. In particular, when δ =
4
3 , the dynamic behavior of the solution

of the variable coefficient equation is similar to that of the constant coefficient equation. When n = 1, we can get
|q1|2 = 4

⏐⏐⏐ z
α4

⏐⏐⏐ sech2(
√
2δ((δ− 4

3 )
1
2 z

2
+t)) and its center trajectory equation is t =

1
6 z

2. In order to construct the meaningful
solutions which are non-singularity and convergent, we can take α4 = z, then the amplitude of q1 is 2. The dynamic
ehavior of the one-soliton solution in this case takes on the form of a parabola symmetric on the z axis, which can be
een in Fig. 1(a). We also can take α4(z) = z2 + 1, at this case, the amplitude of the solution increases on the interval
belongs to (−∞,−1), (0, 1), and decreases on the interval z belongs to (−1, 0), (1,+∞), with the minimum value 0

at z = 0 and the maximum value
√
2 at z = ±1, which can be seen in Fig. 1(b). When the dispersion term α1(z) takes

he form of other polynomials, such as z + 1, we can see the dynamic evolution diagram in Fig. 1(c) which is similar to
1(z) = z except axis of symmetry. When n = 2, then the center trajectory equation is t =

1
3 (

4
3 − δ)z3. Taking α4(z) = z2,

the dynamic evolution diagram is plotted in Fig. 1(d). Taking α4 = z2 + 1, the dynamic evolution diagram of the solution
is presented in Fig. 1(e). Let α1(z) = 1 + z2 and α4 = 1 + 10z2, we can obtain a solution with the amplitude maximizes
at the origin and decreases as z goes to infinity, which can be seen in Fig. 1(f).

Second, we can obtain |q1|2 = 4
⏐⏐⏐ sin(kz)α4(z)

⏐⏐⏐ sech2(
√
2δ( 1k (

4
3 − δ)cos(kz) + t)) when considering periodic functions α1(z) =

in(kz) as excitation function. Now the center trajectory of the solution q1 is a cosine wave, where k determines the period
nd δ has a big effect on the shape of the trajectory. The dynamic evolution diagram of different parameters is plotted in
ig. 2.
Besides, fixed the coefficient α1(z) = tanh(z), then we can get |q1|2 = 4

⏐⏐⏐ tanh(z)α4

⏐⏐⏐ sech2(
√
2
3 ln|cosh(z)|−

√
2t). Fig. 3 shows

the dynamic evolution process of the nonlinear term α4 and δ with different values.
When N = 2, then the two-soliton solution u2(T , Z) of Hirota equation is expressed as follows:

h1 e−Θ1+Θ4 + h2 eΘ3−Θ2 − h3 eΘ1+Θ4 + h4 eΘ3+Θ2

, (56)

d1 e−Θ1−Θ2 + d2 e−Θ1+Θ2 + d3 eΘ1+Θ2 + d4 eΘ3−Θ4 + d5 eΘ1−Θ2 + d6 e−Θ3+Θ4

10
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α

Fig. 2. The evolution plot of 1-soliton solutions in the IVC-Hirota equation: (a) α1(z) = α4(z) = sin(z) and δ = 1; (b) α1(z) = α4(z) = sin(5z) and
δ = 6; α1(z) = sin(z) and α4(z) = tan(z): ((c) δ = 1; (d) δ = 4;) α1(z) = sin(2z) and α4(z) = tan(z): ((e) δ = 1; (f) δ = 3.)

Fig. 3. The evolution plot of 1-soliton solutions in the IVC-Hirota equation: (a) α4(z) = tanh(z) and δ = 1; (b) α4(z) = tanh(z) and δ = 3; (c)
4(z) = sinh(z) and δ = 1; (d) α4(z) = sinh(z) and δ = 3; (e) α4(z) = z2 + 1 and δ = 1; (f) α4(z) = z2 + 1 and δ = 3.
11
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s

where

Θ1 = θ1 + θ∗

1 ,

Θ2 = θ2 + θ∗

2 ,

Θ3 = θ1 − θ∗

1 ,

Θ4 = θ2 − θ∗

2 ,

d1 = (ζ ∗

1 − ζ ∗

2 )(ζ2 − ζ1),

d2 = |c2|2(ζ ∗

1 − ζ2)(ζ ∗

2 − ζ1),

d3 = |c12c22|(ζ ∗

2 − ζ ∗

1 )(ζ1 − ζ2),

d4 = c1c2∗(ζ ∗

1 − ζ1)(ζ2 − ζ2
∗),

d5 = |c1|2(ζ ∗

2 − ζ1)(ζ ∗

1 − ζ2),

d6 = c∗

1 c2(ζ
∗

2 − ζ2)(ζ1 − ζ ∗

1 ),

h1 = −c2 (ζ2 − ζ ∗

1 )(ζ
∗

2 − ζ ∗

1 )(ζ
∗

2 − ζ2),

h2 = c1 (ζ1 − ζ ∗

1 )(ζ
∗

2 − ζ ∗

1 )(ζ
∗

2 − ζ1),

h3 = −c2|c1|2(ζ ∗

2 − ζ2)(ζ1 − ζ2)(ζ ∗

2 − ζ1),

h4 = c1 |c2|2(ζ1 − ζ2)(ζ2 − ζ ∗

1 )(ζ1 − ζ ∗

1 ).

We analyze the asymptotic states of the solution (56) as Z → ±∞ and (α, β) is non-negative. Without loss of generality,
let ζk = ξk + iηk and |ξ1| > |ξ2|, this means that at Z = −∞, soliton-1 is on the right side of soliton-2 and moves
slower. Note also that ηk > 0 and η2 > η1, since ζk ∈ C+. In the moving frame with velocity 4βη21 − 12βξ 21 − 4αξ1,
Re (θ1) = η1(T − 4βη21Z + 12βξ 21 Z + 4αξ1Z) = O(1). It is a consequence of

Re (θ2) = η2(T − (4βη21 − 12βξ 21 − 4αξ1)Z) + 4η2(β(η21 − η22) + α(ξ2 − ξ1) + 3β(ξ 22 − ξ 21 ))Z

that

u2(T , Z) →

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
2i
(
ζ ∗

1 − ζ1
) c−1 eθ1−θ∗1

e−(θ1+θ∗1 )+
⏐⏐⏐c−1 ⏐⏐⏐2eθ1+θ∗1

, Z → −∞,

2i
(
ζ ∗

1 − ζ1
) c+1 eθ1−θ∗1

e−(θ1+θ∗1 )+
⏐⏐⏐c+1 ⏐⏐⏐2eθ1+θ∗1

, Z → +∞,

(57)

where c−

1 =
c1(ζ1−ζ2)

(ζ1−ζ∗
2 )

, c+

1 =
c1(ζ1−ζ∗

2 )
(ζ1−ζ2)

and u2(T , Z) →

⎧⎨⎩
+∞, Z → −∞,

−∞, Z → +∞.

Comparing this expression with (56), we

see that this asymptotic solution is a single-soliton solution with peak amplitude 2η1 and velocity 4βη21 − 12βξ 21 − 4αξ1.
Thus, this soliton does not change its shape and velocity after collision. Its phase has shifted and the phase difference for
u2 at its limits is arg (u2 (Z ∼ −∞))− arg (u2 (Z ∼ +∞)). It is apparent from the above analysis that the values of (α, β)
influence the velocity, phase of the soliton.

Letting ζ1 = 0.1 + 0.7i and ζ2 = −0.1 + 0.4i, (α, β) is set as (0, 1), (1, 1) and (1, 0) respectively, their corresponding
dynamic evolution diagrams of u2 can be drawn in Figs. 4(a)–4(c). In particular, when α = 0 and 4βη21 − 12βξ 21 =

4βη22 − 12βξ 22 , resonance solitons can be obtained. Taking ζ1 = 1 +
√
3i and ζ2 = 2 + 2

√
3i, the resonance solitons

olution is shown in Fig. 4(d).
12
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Fig. 4. The evolution plot of 2-soliton solutions in the Hirota equation: ζ1 = 0.1+ 0.7i and ζ2 = −0.1+ 0.4i: ((a) α = 0 and β = 1; (b) α = 1 and
= 1; (c) α = 1 and β = 0.) (d) ζ1 = 1 +

√
3i, ζ2 = 2 + 2

√
3i, α = 0 and β = 1.

A simpler exact expression of the 2-soliton solution for the IVC-Hirota equation can be acquired by taking α = 0,
c1 = c2 = δ = 1, ζ1 = i and ζ2 = 2i. Using relationship transformation (51), the expression q2(t, z) is shown as follows:

q2(t, z) = A11
(e

√
2
3 (3t−31f )

− 2e
2
√
2

3 (3t−7f )
− 2e

4
√
2

3 (3t−f )
+ e

√
2
3 (13f+15t))

16e3
√
2(t−f ) − e−12

√
2f − 9e

2
√
2

3 (3t−13f )
− 9e

4
√
2

3 (2f+3t)
− e6

√
2(f+t)

, (58)

here f =
∫
α1(z)dz and A11 = 12

√
α1(z)
α4(z)

e−
1
3 i(2f+3t). From expression (58), we can clearly find that the value of β has no

ffect on the solution q2 when α = 0. Except for the case where both spectral parameters are purely imaginary, let us
onsider the more general case when ζ1 = 1 + i, ζ2 = 2 + 2i in the following.
Similar to the case of the one-soliton solution q1, the dynamic evolution diagram of q2 is symmetric about z axis when

1 and α4 are odd numbers. It can also be seen that the value of δ has a great influence on the propagation path of the
olution. Using the relationship 2 ξ 2 −

2
3 η

2
− δ+

2αξ
3β +

α2

18β2
= 0, we can find that the dynamic behavior of the soliton-1

of the solution q2 is similar to the corresponding soliton-1 solution of constant coefficient equation when δ =
4
3 . For the

oliton-2, the dynamic behavior will be similar to the solution of constant coefficient equation when δ =
16
3 .

The 2-soliton solution is a constant amplitude solution when we take α1(z) = α4(z) = z, and the amplitude of Soliton-
1 equal to 2 and the amplitude of Soliton-2 equal to 4 in the 2-soliton. At the intersection of solitons-1 and solitons-2,
the amplitude is superimposed linear. The value of δ will affect the velocity and direction of the 2-soliton solution. For
soliton-1 in the 2-soliton, when δ < 4

3 , the soliton-1 evolves in the region of t ≥ 0; when δ =
4
3 , the shape of soliton-1

s similar to the bell shape soliton and propagates along t = 0; otherwise, the soliton-1 evolves in the region t ≤ 0. For
soliton-2 in the 2-soliton, when δ < 16

3 , the soliton-2 evolves in the region t ≥ 0; when δ =
16
3 , soliton-2 propagates

along t = 0; or else, the soliton-2 evolves in the region t ≤ 0. Figs. 5(a)–5(e) illustrate the dynamic behavior of the
2-solitons solution when δ taking the value of 1, 4

3 , 2,
16
3 and 6 respectively. When α1(z) = z, α4(z) = z2 + 1, the 3-D

plots for the 2-soliton solutions are shown in Figs. 5(f)–5(j). As can be seen in Figs. 5(k)–5(o), a strong interaction occurs
when the soliton collides when taking α1 = α4 = z2 in solution q2. At the intersection of two 1-soliton solutions, a linear

superposition of amplitudes appears. The 2-soliton solutions with δ =
4
3
and δ =

16
3

are similar to the 2-soliton solutions
of constant coefficients equation.

Taking α1(z) = sin(kz) as excitation function, the parameter values of k and δ have great influence on the shape of the
soliton solutions. The dynamic evolution diagram of different parameters can be seen in Fig. 6.

We let α1(z) = tanh(z), Fig. 7 shows the dynamic evolution process of the nonlinear term α4 and δ with different
values.

4. Soliton matrices for high-order zeros

We now turn to the high-order zeros in the RH problem of the Hirota equation. For simply, we let functions P+(ζ )
and P−(ζ ) from the above RH problem have only one n-order zero, i.e. |P+(ζ )| = (ζ − ζ1)nϕ(ζ ), |P−(ζ )| = (ζ − ζ̄1)nϕ̄(ζ ),
here ϕ(ζ1) ̸= 0 and ϕ̄(ζ̄1) ̸= 0.
With the help of the idea proposed in [32], we can consider the elementary zero case under the assumption that the

eometric multiplicity of k and ζ̄ has the same number. Hence, we need to construct the dressing matrix Γ (ζ ) with
1 1

13
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Fig. 5. The evolution plot of 2-soliton solutions in the IVC-Hirota equation: α1(z) = α4(z) = z: ((a) δ = 1; (b) δ =
4
3 ; (c) δ = 2; (d) δ =

16
3 ; (e)

δ = 6.) α1(z) = z and α4(z) = z2 + 1: ((f) δ = 1; (g) δ =
4
3 ; (h) δ = 2; (i) δ =

16
3 ; (j) δ = 6.) α1 = α4 = z2: ((k) δ = 1; (l) δ =

4
3 ; (m) δ = 2; (n)

δ =
16
3 ; (o) δ = 6.)

determinant is (ζ−ζ1)n

(ζ−ζ̄1)n
. For example, we first consider the elementary zeros with geometric multiplicity 1. In this case, Γ

s constituted of n elementary dressing factors, i.e.: Γ = χnχn−1 . . . χ1, where

χi(ζ ) = I +
ζ̄1−ζ1
ζ−ζ̄1

Pi, Pi =
|vi⟩⟨v̄i|
⟨v̄i|vi⟩

, |vi⟩ ∈ Ker(P+χ
−1
1 · · ·χ−1

i−1(ζ1)) .

n addition, if we let P̂+(ζ ) = P+(ζ )χ−1
1 (ζ ) and P̂−(ζ ) = χ1(ζ )P−(ζ ), then it is proved that matrices P̂+(ζ ) and P̂−(ζ )

re still holomorphic in the respective half plans of C. Moreover, ζ1 and ζ̄1 are still a pair of zeros of |P̂+(ζ )| and |P̂−(ζ )|,
espectively. Thus, Γ (ζ )−1 cancels all the high-order zeros for |P+(ζ )|. Moreover, it is necessary to reformulate the dressing
actor into summation of fractions, then we derive the soliton matrix Γ (ζ ) and its inverse for a pair of an elementary
igh-order zero. The results can be formulated in the following lemma.

emma 1. Consider a pair of elementary high-order zeros of order n : {ζ1} in C+ and
{
ζ̄1
}
in C−. Then the corresponding

oliton matrix and its inverse can be cast in the following form:

Γ −1(ζ ) = I + (|p1⟩ , . . . , |pn⟩)D(ζ )

⎛⎜⎝ ⟨qn|
...

⟨q1|

⎞⎟⎠ ,
Γ (ζ ) = I + (|q̄n⟩ , . . . , |q̄1⟩) D̄(ζ )

⎛⎜⎝ ⟨p̄1|
...

⎞⎟⎠ ,
(59)
⟨p̄n|

14
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(

w

o

Fig. 6. The evolution plot of 2-soliton solutions in the IVC-Hirota equation: α1 = α4 = sin(z): ((a) δ = 1; (b) δ =
4
3 ; (c) δ = 2.) α1 = α4 = 1+ sin(z):

(d) δ = 1; (e) δ =
4
3 ; (f) δ = 2.) (g) α1 = α4 = sin(5z) and δ = 1; α4(z) = tan(z) and δ = 1: ((h) α1(z) = sin(z); (i) α1(z) = sin(2z).)

here D(ζ ) and D̄(ζ ) are n × n block matrices,

D(ζ ) =

⎛⎜⎜⎜⎜⎝
(ζ − ζ1)−1 (ζ − ζ1)−2

· · · (ζ − ζ1)−n

0
. . .

. . .
...

...
. . . (ζ − ζ1)−1 (ζ − ζ1)−2

0 · · · 0 (ζ − ζ1)−1

⎞⎟⎟⎟⎟⎠ ,

D̄(ζ ) =

⎛⎜⎜⎜⎜⎝
(ζ − ζ1)−1 0 · · · 0

(ζ − ζ1)−2 (ζ − ζ1)−1 . . .
...

...
. . .

. . . 0
(ζ − ζ1)−n

· · · (ζ − ζ1)−2 (ζ − ζ1)−1

⎞⎟⎟⎟⎟⎠ .
This lemma can be proved by induction as in [32]. Besides, we notice that in the expressions for Γ −1(ζ ) and Γ (ζ ),

nly half of the vector parameters, i.e.: |p ⟩ , . . . , |p ⟩ and ⟨p̄ | , . . . , ⟨p̄ | are independent. In fact, the rest of the vector
1 n 1 n

15



H.-J. Zhou and Y. Chen Communications in Nonlinear Science and Numerical Simulation 120 (2023) 107149

a

w

Fig. 7. The evolution plot of 2-soliton solutions in the IVC-Hirota equation: α1(z) = α4(z) = tanh(z): ((a) δ = 1; (b) δ =
4
3 ; (c) δ = 2.) α1(z) = tanh(z)

nd α4(z) = z2 + 1: ((d) δ = 1; (e) δ =
4
3 ; (f) δ = 2.)

parameters in (59) can be derived by calculating the poles of each order in the identity Γ (ζ )Γ −1(ζ ) = I at ζ = ζ1

Γ (ζ1)

⎛⎜⎝ |p1⟩
...

|pn⟩

⎞⎟⎠ = 0,

where

Γ (ζ ) =

⎛⎜⎜⎜⎜⎜⎝
Γ (ζ ) 0 · · · 0
d
dζ Γ (ζ ) Γ (ζ )

. . .
...

...
. . .

. . . 0
1

(n−1)!
dn−1

dζn−1Γ (ζ ) · · ·
d
dζ Γ (ζ ) Γ (ζ )

⎞⎟⎟⎟⎟⎟⎠ .
Hence, in terms of the independent vector parameters, results (59) can be formulated in a more compact form as in [32]
and here we just avoid these overlapped parts. In the following, we derive this compact formula via the method of
generalized Darboux transformation (gDT) [33]. We intend to investigate the relation between dressing matrices and DT
for Hirota equation in the high-order zero case. The essence of the DT is a gauge transformation. Following the scheme
proposed in [34], we can construct the gDT for Hirota equation as well.

Based on the form of elementary DT [35], we can notice Γ1 (ζ1 + ϵ) |v1 (ζ1 + ϵ)⟩ = 0. Furthermore, consider a limitation
as follows:

⏐⏐⏐χ |1|
1 (ζ1)

⟩
≜ lim
ϵ→0

Γ1 (ζ1 + ϵ)

⏐⏐⏐χ |0|
1 (ζ1 + ϵ)

⟩
ϵ

=
d
dζ

[
Γ1(ζ )

⏐⏐⏐χ [0]
1 (ζ )

⟩]
ζ=ζ1

,

here
⏐⏐⏐χ [0]

1 (ζ1)

⟩
= |v1 (ζ1)⟩. Then

⏐⏐⏐χ (1)
1

⟩
can be used to construct the next step DT, i.e.:

Γ
[1]
1 (ζ ) =

(
I +

ζ̄1 − ζ1

ζ − ζ̄1
P [1]
1

)
, P [1]

1 =

⏐⏐⏐χ [1]
1

⟩ ⟨
χ

[1]
1

⏐⏐⏐⟨
χ

[1]
|χ

[1]
⟩ .
1 1

16
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The result can be obtained as follows by continuing the above process:

⏐⏐⏐χ [N]

1

⟩
= lim

ϵ→0

Γ
[N−1]
1 . . .Γ

[1]
1 Γ

[0]
1 (ζ1 + ϵ)

⏐⏐⏐χ [0]
1 (ζ1 + ϵ)

⟩
ϵN

.

The N-times generalized Darboux matrix can be represented as:

TN (ζ ) = Γ
[N−1]
1 . . .Γ

[1]
1 Γ

[0]
1 (ζ ),

where

Γ
[i]
1 (ζ ) =

(
I +

ζ̄i − ζi

ζ − ζ̄i
P [i]
1

)
, P [i]

1 =

⏐⏐⏐χ [i]
1

⟩ ⟨
χ

[i]
1

⏐⏐⏐⟨
χ

[i]
1 |χ

[i]
1

⟩ .
In addition, the transformation between different potential matrices is:

Q (N)
= Q + i

⎡⎣σ3, N−1∑
j=0

(
ζ̄1 − ζ1

)
P [j]
1

⎤⎦ .
In this expression, P [i]

1 is rank-one matrices, so Γ [i]
1 (ζ ) can be also decomposed into the summation of simple fraction,

that means the multiple product form of TN can be directly simplified by the conclusion of Lemma 1. In other words, the
bove generalized Darboux matrix for Hirota equation can be given in the following theorem:

heorem 1. In the case of one pair of elementary high-order zero, the generalized Darboux matrix for Hirota equation can be
epresented as [35]:

TN = I − YM−1D̄(ζ )Y †,

here D̄(ζ ) is N × N block Toeplitz matrix which has been given before, Y is a 2 × N matrix:

Y =

(
|v1⟩ , . . . ,

|v1⟩(N−1)

(N−1)!

)
,

|v1⟩
(j)

= limϵ→0
dj

dϵj
|v1 (ζ1 + ϵ)⟩ ,

nd M is N × N matrix:

M =

(
M [m,n]

j,k

)
N×N

ith

M [m,n]
j,k = lim

ϵ,ϵ̄→0

1
(m − 1)!(n − 1)!

∂m−1

∂ϵm−1

∂n−1

∂(ϵ̄)n−1

[ ⟨
vj|vk

⟩
ζj − ζ̄k + ϵ − ϵ̄

]
.

Theorem 1 can be proved via directly calculation as in [34]. Therefore, if Φ |N|
= TNΦ , then Φ[N] indeed solves spectral

problem (3). Substituting TN into the above relation and letting spectral ζ go to infinity, we have the relation:

Q [N]
= Q − i

⎡⎢⎣σ3,(|v1⟩ , . . . ,
|v1⟩

(N−1)

(N − 1)!

)
M−1

⎛⎜⎝
⟨v1|
...

⟨v1|
(N−1)

(N−1)!

⎞⎟⎠
⎤⎥⎦ .

oreover, the transformations between potential functions are:

Q [N]

j,l = Q [0]
j,l + 2i

|Aj,l|

|M|
, Aj,l =

[
M Y [l]†
Y [j] 0

]
, 1 ≤ j, l ≤ 2.

ere the subscript j,l denotes the jth row and lth column element of matrix A, and Y [l] represents the jth row of matrix
.

. High-order soliton solution for the Hirota and IVC-equation

Firstly, choice a single pair of purely imaginary eigenvalues, ζ1 = iη1 ∈ iR+, and ζ̄1 = iη̄1 ∈ iR−, where η1 > 0 and
¯1 = −η1 < 0 to get a brevity second-order fundamental soliton expression. In this case, taking v10(ϵ) =

[
1, eiθ10−θ11ϵ

]T
nd v̄ (ϵ̄) =

[
1, eiθ̄10−θ̃11 ϵ̄

]T
, where θ , θ , θ̄ , θ̄ are real constants. Substituting these expressions into high-order
10 10 11 10 11
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Fig. 8. The evolution plot of the second-order soliton solutions in the Hirota equation: (a) α = 0 and β = 1; (b) α = 1 and β = 1; (c) α = 1 and
β = 1.

soliton formula 1 with N = 2, Q [0]
1,2 = 0, then the analytic expression for the second-order soliton solution u[2](T , Z) is

obtained as follows.

2(η̄1 − η1)
t11e2η̄1T+(4iαη̄21−8βη̄31)Z+i ¯θ10 + t12e2η1T+(4iαη21−8βη31)Z−iθ10

4 cosh2((η1 − η̄1)T + 4β(η̄31 − η31)Z + 2iα(η21 − η̄1
2)Z −

i
2 (θ10 + θ̄10)) + F (T , Z)

, (60)

t11 = (η̄1 − η1)(−24η21βZ + 8iη1αZ + 2T + iθ11) − 2,

t12 = (η1 − η̄1)(−24η̄21βZ + 8iη̄1αZ + 2T − iθ̄11) − 2,
F (T , Z) = −(t11 + 2)(t12 + 2).

he second-order soliton solution u[2](T , Z) combines exponential functions with algebraic polynomials, contains six
eal parameters: η1, η̄1, θ10, θ̄10, θ11, and θ̄11. The center trajectory Σ+ and Σ− for this solution can be approximatively
described by the following two curves:

Σ+ : (η1 − η̄1)T + 4β(η̄31 − η31)Z +
1
2
ln|F | = 0,

Σ− : (η1 − η̄1)T + 4β(η̄31 − η31)Z −
1
2
ln|F | = 0.

Moreover, regardless of the effect brought by the logarithmic part when Z → ±∞, two solitons separately move along
ach curve in a nearly same velocity, which is approximate to

V = −4β(η21 + η1η̄1 + η21).

ue to η1 − η̄1 > 0, with simple calculation, it is found that |u[2](T , Z)| possesses the following asymptotic estimation:

|u[2](T , Z)| → 0, |T | → ±∞. (61)

owever, with the development of time, a simple asymptotic analysis with estimation on the leading-order terms shows
hat: when soliton (60) is moving on Σ+ or Σ−, its amplitudes |u[2](T , Z)| can approximately vary as

|u[2](T , Z)| ∼

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

2|η1−η̄1|e(η1+η̄1)T⏐⏐⏐⏐e4iα(η21−η̄21)Z−i(arg[F(T ,Z)]+2kπ )+i(θ10+θ̄10)+1
⏐⏐⏐⏐ , Z ∼ +∞,

2|η1−η̄1|e−(η1+η̄1)T⏐⏐⏐⏐e−4iα(η21−η̄21)Z−i(arg[F(T ,Z)]+2kπ )−i(θ10+θ̄10)+1
⏐⏐⏐⏐ , Z ∼ −∞,

(62)

here k ∈ Z.
Letting η1 =

i
2 , η̄1 = −

i
2 and θ10 = θ̄10 = θ11 = θ̄11 = 0, the value of (α, β) will change the velocity, direction and

shape of the soliton figure. We can divide the analysis into three cases as shown in Figs. 8(a)–8(c): the first case is that
α = 0 and β = 1; the second case is α = 1 and β = 1; the third case is α = 0 and β = 1. Graphically, the soliton
volution of the Hirota equation is more similar to that of the KdV equation. That is, the value of higher term coefficient
plays a decisive role in dynamic analysis.
18
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Fig. 9. The evolution plot of the second-order soliton solutions in the IVC-Hirota equation: α1(z) = α4(z) = z: ((a) δ = 1; (b) δ =
4
3 .)

1(z) = α4(z) = 1 + z: ((c) δ = 1; (d) δ =
4
3 .) α1(z) = z and α4(z) = z2 + 1: ((e) δ = 1; (f) δ =

4
3 .) α1(z) = α4(z) = z2: ((g) δ = 1; (h)

=
4
3 .) α1(z) = z2 and α4(z) = 1 + z2: ((i) δ = 1; (j) δ =

4
3 .)

Using the explicit transformation (51), we can obtain abundance of high-order soliton solutions q[N](T , Z) of the IVC-
Hirota equation from the known solutions u[N](T , Z) of the Hirota equation. Now taking N = 2, Q [0]

1,2 = θ10 = θ̄10 = θ11 =

θ̄11 = 0, ζ1 = 1 + i and ζ2 = 1 − i, without loss of generality, we present below the dynamic evolution analysis of the
second-order soliton solution of the variable coefficient equation when α = 0. When α1(z) = α4(z) = z, the solitons
re symmetric about the line z = 0 and have only one crest. Comparing with Fig. 9(a), we can find that the dynamics
f solution q2 in Fig. 9(b) is different that the symmetric is moved to z = −1 and the peaks change from one to two
hen α1(z) = α4(z) = 1 + z. When α1(z) = z and α4(z) = z2 + 1, the maximum amplitude of the second-order soliton
olution appears at the position of interaction of soliton, and the dynamic behavior of the other positions is similar to
hat of the corresponding 1-soliton solution. Similarly, we also consider the cases of α1(z) = α4(z) = z2 and α1(z) = z2,
4(z) = 1 + z2. The detailed dynamic behavior of the solution can be observed in Fig. 9.
According to Eq. (54), the central trajectory equation of soliton propagation can be seen as t = (2 ξ 2 −

2
3 η

2
− δ +

2αξ
3β +

α2

18β2
)
∫
α1(z) dz and α1(z)

α4(z)
can regulate the amplitude of the solution. When 2 ξ 2 −

2
3 η

2
− δ +

2αξ
3β +

α2

18β2
= 0, the

integral term in the solution of the variable coefficient equation disappears, and we can only get soliton solutions like
some classical constant coefficient equations, while when 2 ξ 2 −

2
3 η

2
− δ +

2αξ
3β +

α2

18β2
̸= 0, the integral term will have

a huge impact on the soliton propagation form. In this case, we can adjust parameter according to the influence of each
on the soliton trajectory and amplitude to obtain various new soliton solutions of different forms. For example, when we
take trigonometric functions as the excitations function, we can obtain very rich non-singular convergent second-order
solutions which are shown in Fig. 10 by adjusting the parameters. For example, when α1(z) = α4(z) = 10sin(z), we can
construct heart-shaped periodic waves when δ = 1 and δ = 2 (see Figs. 10(d) and 10(f)). For δ =

4
3 , an O-shaped periodic

ave is plotted in Fig. 10(e). When α1(z) = α4(z) = sin(5z) or α1(z) = α4(z) = sin(3z), we can see the dynamic behaviors
in Figs. 10(m) and 10(o) which are similar to the breather solution, there are a peak and two troughs in each periodic.

In the last, taking α1(z) = tanh(z), in order to get meaningful nonsingular convergent solutions we can let α4(z) =

tanh(z) or α4(z) = z2 +1, Fig. 11 shows the dynamic evolution process of the second-order soliton solution with different
values of the parameter δ.

6. Conclusion and discussion

In summary, many new soliton solutions for the IVC-Hirota equation are implemented by using the RH method and
a special relationship transformation. Firstly, the soliton matrices are constructed by studying the corresponding RH
problem. By regularizing the RH problem with simple zeros, we get the general N-soliton formula for the Hirota equation.
19
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Fig. 10. The evolution plot of the second-order soliton solutions in the IVC-Hirota equation: α1(z) = α4(z) = sin(z): ((a) δ = 1; (b) δ =
4
3 ; (c)

= 2.) α1(z) = α4(z) = 10sin(z): ((d) δ = 1; (e) δ =
4
3 ; (f) δ = 2.) α1(z) = α4(z) = 1 + sin(z): ((g) δ = 1; (h) δ =

4
3 ; (i) δ = 2.) α1(z) = sin(z)

and α4(z) = tan(z): ((j) δ = 1; (k) δ =
4
3 ; (l) δ = 2.) (m) α1(z) = α4(z) = sin(5z) and δ = 1; (n) α1(z) = sin(2z), α4(z) = tan(z) and δ = 1; (o)

1(z) = α4(z) = sin(3z) and δ = 1.

n addition, the high-order soliton matrices are also obtained by considering the multiple zeros of the RH problem.
hen the N-soliton matrix and high-order soliton matrices of the IVC-Hirota equation are presented from the correspond
oliton matrix of generalized Hirota equation by a special relationship transformation. We find when second-order term
oefficient α is equal to 0 in the relationship transformation, third-order term coefficient β disappear from the solution of
the IVC-Hirota equation. Namely, the high-order term coefficient β has no influence on the solution of IVC-Hirota equation
which is obtained by the special relationship transformation of α = 0.

The 2-soliton collision dynamics, the asymptotic behavior of the 2-soliton and the long time asymptotic estimates
for the high-order soliton solution of Hirota equation are detailed in this paper. For the Hirota equation, compared with
the second-order coefficient α, the value of the higher-order coefficient β plays a more important role in the dynamic
behavior of the solution. In addition, a detailed dynamic analysis is given for the N-soliton solution and the high-order
soliton solution of the IVC-Hirota equation. Most notably, by analyzing the dynamics of the N-solitons and high-order
solitons of the IVC-Hirota equation, we have found many new waveforms that have never been reported before, which are
very important in theory and practice. For example, when both nonlinear effect and dispersion effect are taken as periodic
functions, interesting new waves such as heart-shaped periodic wave and O-shaped periodic wave can be constructed by
adjusting the parameters.

Following the work in this paper, we plan to use numerical methods in future work to simulate high-order soliton
solutions of integrable equations with non-zero boundaries.
20
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δ

Fig. 11. The evolution plot of the second-order soliton solutions in the IVC-Hirota equation: α1(z) = α4(z) = tanh(z): ((a) δ = 1; (b) δ =
4
3 ; (c)

= 2.) α1(z) = tanh(z) and α4(z) = z2 + 1: ((d) δ = 1; (e) δ =
4
3 ; (f) δ = 2.)
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