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Abstract A novel (2+1)-dimensional system of the
Sawada-Kotera type is considered. The existence of
three-soliton and four-soliton solutionswithwavenum-
ber constraints is confirmed. Other interesting solu-
tions, such as the long-range interaction between a
line soliton and a y-periodic soliton, are also presented
based on the Hirota formalism. By extending the mul-
tilinear variable separation approach to the fifth-order
nonlinear evolution equation, various localized excita-
tions are introduced, including solitoff, dromion, and an
instanton excited by three resonant dromions. In addi-
tion to these localized excitations, the general fusion or
fission type N -solitarywave solution is obtained, theY -
shaped resonant soliton and the T -type resonant soliton
interaction in shallow water are graphically explored.
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1 Introduction

The following fifth-order Korteweg-de Vries like equa-
tion

wt+wxxxxx+15wxwxx+15wwxxx+45w2wx = 0,

(1)

also known as the Sawada-Kotera (SK) equation, is a
system of crucial importance in soliton theory [1,2]. As
a member of the Liouville field hierarchy [3], the SK
equationhas played an important role in conformalfield
theory, quantum gravity and shallow water flows [4]. It
has been widely and profoundly studied. For instance,
Satsuma and Kaup derived its Bäcklund transforma-
tion and conservation quantities [5], while Oevel estab-
lished the bi-Hamiltonian structure and recursion for-
mula [6]. A supersymmetric SK equation has been pro-
posed in [7], demonstrating remarkable integrability
through the existence of a Lax representation. Recently,
some special traveling wave structures, including few-
cycle-pulse solitons and soliton molecules, have been
constructed by a new traveling wave method related to
the bilinear transformation [8,9].

Konopelcheno andDubrovsky introduced the (2+1)-
dimensional generalization of the SK system in the
form of [10]

wt + (wxxxx + 15wwxx + 15w3 + 5wxy

+15w
∫

wydx)x − 5
∫

wyydx = 0. (2)

If w is independent of y, then Eq. (2) straightfor-
wardly reduces to the SK equation (1). Many studies
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have shown that the (2+1)-dimensional SK system (2)
has significant integrable properties from various per-
spectives. Geng [11] provided a rigorous investigation,
deriving both Darboux and Bäcklund transformations.
Additionally, the explorationof the connectionbetween
the singularity manifold equation and corresponding
pseudopotential equations was undertaken in [12]. Lou
[13] introduced a novel Bäcklund transformation and a
related quintic linear equation, resulting in the discov-
ery of a new hierarchy of multiple soliton solutions.
Li [14] studied the collisions among lump waves, line
waves, and breather waves based on the N -soliton solu-
tions. In particular, it is confirmed that the interaction
between a line wave and a breather wave will generate
two breathers under certain conditions. Furthermore,
the analysis of the transitions and mechanisms of non-
linear waves governed by Eq. (2) was conducted using
characteristic line and phase shift analysis by Tian [15].

In this paper, we start with the conjecture that the
nonlinear version of the following bilinear equation
can be solved by the multilinear variable separation
approach [16–22]

Dy(D
5
x + Dt ) f · f = 0, (3)

where f is an analytic function of (x, y, t) and the
Hirota bilinear derivative operator is defined by [23,24]

Dl
x D

m
y D

n
t a · b = (∂x − ∂x ′)l(∂y − ∂y′)m(∂t − ∂t ′)

n

a(x, y, t)b(x ′, y′, t ′)
∣∣
x=x ′,y=y′,t=t ′ .

A comparison with the bilinear form of the SK sys-
tem (1)

Dx (D
5
x + Dt ) f · f = 0, w = 2(ln f )xx ,

it is obvious that we extend the bilinear SK system to
its (2+1)-dimensional counterpart (3) only by changing
one of the Hirota operators Dx → Dy . However, this
seemingly simple extension is worth further consider-
ation, since the Hirota bilinear method is powerful and
effective not only for finding soliton solutions, but also
for finding new systems with multisoliton solutions or
infinitely many generalized symmetries in the classical
[25,26] and supersymmetric [27,28] contexts.

The nonlinear version of (3) corresponds to a differ-
ent (2+1)-dimensional Sawada-Kotera (2DSK) system

ut + uxxxxx + 5(uvxx + 2uxxv + 3uv2)x = 0,

ux − vy = 0. (4)

Obviously, setting u = v = w(x, y, t) and rescaling
y → x degenerates the 2DSK system (4) into the SK

equation (1). As a natural (2+1)-dimensional extension
of the SK equation, the 2DSK system serves as a model
for an incompressible fluid, where u and v denote the
components of the dimensionless velocity. Addition-
ally, it may find applications in conformal field theory,
quantum gravity, and acoustics [29,51].

The paper is structured as follows. Section2 con-
jectures the existence of an N -soliton solution, based
on the confirmation that at least a four-soliton solution
exists with wave number constraints. The periodic soli-
ton solution and the interaction between a line soliton
and a y-periodic soliton are considered in Sect. 3. In
Sect. 4, the multilinear variable separation approach
is applied to construct localized excitations such as
solitoffs, dromions, and dromion-like instantons. Fur-
thermore, the general fusion or fission type N solitary
wave solutions and solitary waves on a moving cnoidal
wave background are obtained. Section 5 is devoted to
summary and discussion.

2 Multi-soliton solution

Through the following dependent variable transforma-
tions

u = 2(ln f )xy, v = 2(ln f )xx , (5)

the 2DSK system (4) can be written in the bilinear
form (3). According to the Hirota’s bilinear method,
one can construct multi-soliton solutions by applying
the perturbation procedure. To this end, we expand f
into power series of a small parameter ε as

f = 1 + ε f1 + ε2 f2 + ε3 f3 + · · · , (6)

where fi are the analytic functions to be determined.
Substituting (6) into (3) and comparing the coefficients
of the same powers of ε yields the recursion relations
for fi . Up to the order ε4, we have

f1yt + f1xxxxxy = 0, (7)

f2yt + f2xxxxxy = −1

2
Dy(D

5
x + Dt ) f1 · f1, (8)

f3yt + f3xxxxxy = −Dy(D
5
x + Dt ) f1 · f2, (9)

f4yt + f4xxxxxy = −1

2
Dy(D

5
x + Dt ) f2 ·

f2 − Dy(D
5
x + Dt ) f1 · f3. (10)

If we choose the solution to the linear differential
equation (7) to be eξ1 and take f2 = f3 = · · · = 0, we
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obtain a single line soliton of the 2DSK system with
ε = 1

u = k1l1
2

sech2
(

ξ1

2

)
, v = k21

2
sech2

(
ξ1

2

)
,

ξ1 = k1x + l1y + ω1t + ξ10, ω1 = −k51 . (11)

It is evident that the u component vanishes as l1 → 0,
indicating that the u field is driven by a ghost soliton
and thus suggesting the existence of dromion structures
[25].

Similarly, a two-soliton solution of the 2DSKsystem
(4) can be derived by taking

f = 1 + eξ1 + eξ2 + a12e
ξ1+ξ2 , (12)

with

ξ j = k j x + l j y + ω j t + ξ j0, ω j = −k5j ( j = 1, 2),

a12 = (k1 − k2)(l1 − l2)(k21 − k1k2 + k22)

(k1 + k2)(l1 + l2)(k21 + k1k2 + k22)
.

(13)

Subsequently, a three-soliton solution for the 2DSK
system (4) can be obtained as

f = 1 + eξ1 + eξ2 + eξ3 + a12e
ξ1+ξ2 + a13e

ξ1+ξ3

+a23e
ξ2+ξ3 + a12a13a23e

ξ1+ξ2+ξ3 , (14)

with

ξ j=k j x+l j y+ω j t+ξ j0, ω j= − k5j ( j = 1, 2, 3),

ai j=
(ki−k j )(li−l j )(k2i −ki k j + k2j )

(ki + k j )(li + l j )(k2i + ki k j + k2j )
, (i < j).

(15)

Additionally, wave numbers need to satisfy the follow-
ing algebraic equation

l2l3(l
2
2−l23)k

3
1−1l3(l

2
1−l23)k

3
2+l1l2(l

2
1−l22)k

3
3=0.

(16)

The plots for the one-soliton, two-soliton, and three-
soliton scenarios are shown in Fig. 1. Proceeding fur-
ther, one can verify that the 2DSK system (4) possesses
a four-soliton solution by taking

f = 1 + eξ1 + eξ2 + eξ3 + eξ4 + a12e
ξ1+ξ2 + a13e

ξ1+ξ3

+a14e
ξ1+ξ4 + a23e

ξ2+ξ3 + a24e
ξ2+ξ4

+a34e
ξ3+ξ4 + a12a13a23e

ξ1+ξ2+ξ3

+a12a14a24e
ξ1+ξ2+ξ4+a13a14a34e

ξ1+ξ3+ξ4

+a23a24a34e
ξ2+ξ3+ξ4

+a12a13a14a23a24a34e
ξ1+ξ2+ξ3+ξ4 , (17)

with

ξ j = k j x + l j y + ω j t + ξ j0,

ω j = −k5j ( j = 1, 2, 3, 4),

ai j = (ki − k j )(li − l j )(k2i − ki k j + k2j )

(ki + k j )(li + l j )(k2i + ki k j + k2j )
(i < j).

(18)

Similar to the case of the three-soliton solution,we have
the following wave number constraints

k1 = l1
l23 − l24

[
l21 − l24

l3
k33 − l21 − l23

l4
k34

] 1
3

,

k2 = l2
l23 − l24

[
l22 − l24

l3
k33 − l22 − l23

l4
k34

] 1
3

. (19)

On the basis of these results, we can conjecture that
the 2DSK system (4) may have an N -soliton solution
by assuming that

f =
∑

μ=0,1

exp

[∑N

j=1
μ jξ j +

∑N

1� j<l
μ jμla jl

]
,

(20)

with

ξ j = k j x + l j y + ω j t + ξ j0, ω j = −k5j ,

ai j = (ki − k j )(li − l j )(k2i − ki k j + k2j )

(ki + k j )(li + l j )(k2i + ki k j + k2j )
, (i < j),

(21)

where μ = (μ1, μ2, · · · , μN ), μ = 0, 1 means that
each μi takes 0 or 1. For N ≥ 3, the wave numbers
need to satisfy

k j = l j
l2N−1 − l2N

[
l2j − l2N
lN−1

k3N−1 − l2j − l2N−1

lN
k3N

] 1
3

,

j = 1, 2, · · · , N − 2. (22)

3 Interaction between a line soliton and a
y-periodic soliton

In this subsection, an interaction solution between a
line soliton and a y-periodic soliton is investigated.
This scenario has been demonstrated in the asymmet-
ric Nizhnik-Novikov-Veselov (ANNV) equation [30].
Although the multi-soliton solution introduced in the
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Fig. 1 Plots of soliton solutions of the u field. a One-soliton
solution with k1 = 0.5, l1 = 0.25 and x10 = 0; b Two-soliton
solution with k1 = 0.5, k2 = 0.2, l1 = 0.3, l2 = 0.25 and

x10 = x20 = 0; cThree-soliton solutionwith k2 = 1.2, k3 = 0.9,
l1 = 0.9, l2 = 0.3, l3 = 0.12, x10 = −x20 = 3, x30 = 0, and k1
is determined by equation (16)

previous section is derived for real-valuedwave param-
eters, it remains applicable evenwhen some of them are
complex numbers [31–33].

For the two-soliton solution (12)–(13), if we take a
special case

k1 = k∗
2 = α1 + iα2, l1 = l∗2 = β1 + iβ2,

ω1 = ω∗
2 = Ω1 + iΩ2,

ξ10 = ξ∗
20 = − ln(K/2) + θ1 + iθ2, (23)

then f can be simplified as

f = √
K cosh(η1) + cos(η2),

η j = α j x + β j y + Ω j t + θ j , ( j = 1, 2). (24)

Substituting (24) into Eq. (3) gives

Ω1 = −α1(α
4
1 − 10α2

1α
2
2 + 5α4

2),

Ω2 = −α2(α
4
2 − 10α2

1α
2
2 + 5α4

1),

K = α2β2(3α2
2 − α2

1)

α1β1(3α2
1 − α2

2)
. (25)

As a consequence, a periodic soliton solution for the v

field is obtained as

v = 2(Kα2
1 − α2

2) + 2
√
K [(α2

1 − α2
2) cosh(η1) cos(η2) + 2α1α2 sinh(η1) sin(η2)]

[√K cosh(η1) + cos(η2)]2
. (26)

Obviously, the existence condition for a non-singular
solution (26) is K > 1. A typical spatial structure
of the solution (26) is shown in Fig. 2a. As can be
observed, the periodic solution represents a soliton-like
wave structure constructed by an inclined sequence of
algebraic solitons. In a special case of α2 = β1 = 0,
the solution (26) degenerates to

v = 2Kyα
2
1 [cosh(α1x + Ω1t + θ1) cos(β2y + θ2) + Ky]

[Ky cosh(α1x + Ω1t + θ1) + cos(β2y + θ2)]2 ,

(27)

with the non-singular condition |Ky | > 1. As shown in
Fig. 2b, the solution (27) represents a wave stationary
and periodic in the y direction, while decaying expo-
nentially along the propagation direction.

To search for an interacting solution between a line
soliton and a y-periodic soliton, let us assume that

f = 1 + P1e
2ζ1 + eζ2

+2(eζ1 + P3e
ζ1+ζ2) cos(η) + Pe2ζ1+ζ2 ,

ζ j = k j x + ω j t + ζ j0 ( j = 1, 2), η = σ y. (28)

The substitution of (28) into Eq. (3) leads to

ω1 = −k51,

ω2 = −5k2(k
4
1 + 2k31k2 + 2k21k

2
2 + k1k

3
2 + k42)

−10k1k22(2k
2
1 + k22)

P3 − 1
,

P = P1P
2
3 . (29)

Below is an asymptotic analysis for a better inter-
pretation of the interaction behavior between these two
waves. Without loss of generality, we assume k1 > 0,
k2 > 0 and ω2/k2 > ω1/k1. When t → ±∞, in the
frame comoving with the line soliton as the exponent
ζ2 is finite, we find
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Fig. 2 a Plot of the
periodic soliton solution
(26) with α1 = −1,
α2 = 1.8, β1 = 3, β2 = 0.2,
θ1 = θ2 = 0; b The
y-periodic soliton solution
(27) with parameters
α1 = 0.2, β2 = 1.5,
Ky = 1.1, θ1 = θ2 = 0

vl− = v
∣∣
ζ2=c,t→−∞ = k22

2
sech2

[
ζ2

2
+ ln(|P3|)

]
,

vl+ = v
∣∣
ζ2=c,t→+∞ = k22

2
sech2

(
ζ2

2

)
, (30)

while in the frame comovingwith the y-periodic soliton
as the exponent ζ1 is finite, we obtain

vp− = v
∣∣
ζ1=c,t→−∞ = 4k21e

ζ1 [cos(η) + 2P1eζ1 + P1e2ζ1 cos(η)]
(1 + 2eζ1 cos(η) + P1e2ζ1)2

,

vp+ = v
∣∣
ζ1=c,t→+∞ = 4k21P3e

ζ1 [cos(η) + 2P1P3eζ1 + P1P2
3 e

2ζ1 cos(η)]
(1 + 2P3eζ1 cos(η) + P1P2

3 e
2ζ1)2

= vp−
[
ζ1 + ln(|P3|), η + arccos

(
P3

|P3|
)]

. (31)

Eqs. (30)–(31) demonstrate that the phase difference
between these waves depends on the coefficient P3. In
detail, the phase shifts of the line soliton and the y-
periodic soliton in the x direction are determined by the
magnitude of ln |P3|, and the phase shift of the latter
in the transverse direction is determined by the sign of
P3.

Interestingly, with the parameters k1 = 0.3, k2 =
0.6, σ = 0.8, P1 = 1.6, ζ10 = ζ20 = 0, we find
that the y-periodic soliton behaves like a periodic soli-
ton as |P3| → 0, and their interaction undergoes a
remarkable long-range repulsive effect. As shown in
Fig. 3, the line soliton and the the y-periodic soliton
both go to the right, and the line soliton travels faster.
When the line soliton catches up with the periodic soli-
ton, the line soliton swallows it, forming bumps on
the peak. As a result, the hump of the periodic soliton
decreases, while the trough increases and then trans-
forms into the line soliton. During the interaction pro-
cess, the twowaves keep a distance from each other and
seem to exchange energy andmomentum throughwave
tails in the propagating direction. Comparing Fig. 3b,
e, the y-periodic soliton seems to move backwards due

to the phase shift. The comparison between Fig. 3a, f
shows that the y-periodic soliton experiences a remark-
able phase shift in the transverse direction for a neg-
ative P3. On the other hand, the short-range interac-
tion between a line soliton and a y-periodic soliton is
shown in Fig. 4, where the phase shift in the y direction
is invisible.

4 Variable separation solution

To employ themultilinear variable separation approach
[16–22], we utilize the followingBäcklund transforma-
tions:

u = 2(ln f )xy + u0, v = 2(ln f )xx + v0, (32)

where u0 and v0 are arbitrary seed solutions to the
2DSK system. Substituting the Bäcklund transforma-
tion (32) with the specific seed solution {u0 = 0, v0 =
v0(x, t)} into (4), and subsequently integrating with
respect to x , we obtain the following bilinear equation

[DyD
5
x + 10v0DyD

3
x + 5(v0xx + 3v20)DyDx

+DyDt + C(y, t)] f · f = 0. (33)

To separate the independent variables x and y, it is
natural to explore a particular solution in the following
form:

f = a0 + a1 p + a2q + a3 pq. (34)

Here a0, a1, a2 and a3 are arbitrary constants, p =
p(x, t) and q = q(y, t) are functions of the indicated
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Fig. 3 Contourplot of the long-range interaction between a line soliton and a y-periodic soliton with P3 = −0.01. a t = −1500; b
t = −500; c t = −270; d t = −90; e t = 300; and f t = 1200

Fig. 4 Space-time evolution of the interaction between a line soliton and a y-periodic soliton with parameters k1 = 0.35, k3 = 0.6,
σ = 0.8, P1 = 1.6, P3 = 2. a t = −10, b t = 0, and c t = 10

variables. A direct substitution of (34) into (33) gives

(a0a3 − a1a2)[pt + pxxxxx + 10v0 pxxx

+15v20 px + 5pxv0xx ]
−(a2 + a3 p)

2qt

+q−1
y

[
(a2 + a3 p)(a0 + a1 p + a2q + a3 pq)qyt

+1

2
C(y, t)(a0 + a1 p + a2q + a3 pq)2

]
= 0.

(35)

By imposing the constraint

C(y, t) = −2(a23c1 − a2a3c2 + a22c3)qy, (36)

Eq. (35) can be separated into the following two equa-
tions:

pt = −pxxxxx − 5pxv0xx − 10v0 pxxx

−15v20 px + A0(c2 p
2 + c1 p + c0), (37)

qt = c0(a1 + a3q)2 − c1(a1 + a3q)(a0 + a2q)

+c2(a0 + a2q)2, (38)

where A0 = a0a3 −a1a2 and ci = ci (t) for i = 0, 1, 2
are arbitrary functions of t introduced by the variable
separation process. The separated equations (37)–(38)
are not completely independent. Instead, they are con-
nected by separation functions ci . The first-order non-
linear equation (38) is known as the Riccati equation,
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and its solution is given by [17]

q = A1

A3 + F(y)
+ A2, (39)

where Ai = Ai (t), i = 1, 2, 3 and F = F(y) are con-
sidered as arbitrary functions of the indicated variables
while c0, c1, and c2 are related to A1, A2 and A3 by

c0 = a22 A2t

A2
0

−a2(a0+a2A2)A1t

A2
0A1

− (a0+a2A2)
2A3t

A2
0A1

,

(40)

c1 = 2a2a3A2t

A2
0

− (a0a3+a1a2+2a2a3A2)A1t

A2
0A1

−2(a0+a2A2)(a1+a3A2)A3t

A2
0A1

, (41)

c2 = a23 A2t

A2
0

−a3(a1+a3A2)A1t

A2
0A1

− (a1+a3A2)
2A3t

A2
0A1

.

(42)

To conclude,we have the following theoremon solu-
tions to the 2DSK system (4).

Theorem 1 If {p, q} is a solution of the separated Eqs.
(37) and (38), then {u, v} given by

u = 2A0 pxqy
(a0 + a1 p + a2q + a3 pq)2

, (43)

v = − 2(a1 + a2q)2 p2x
(a0 + a1 p + a2q + a3 pq)2

+ 2(a1 + a2q)pxx
a0 + a1 p + a2q + a3 pq

+ v0. (44)

presents a class of exact solutions to the 2DSK system
(4).

So far, we have shown that the 2DSK system is solv-
able in the sense of the multilinear variable separation
approach. As expected, the physical field u is exactly
expressed by the universal formula applicable to all
multilinear variable separable systems. To construct
localized excitations of the u field, which is of partic-
ular interest, one can take the function p as arbitrary,
and Eq. (37) can be satisfied in principle thanks to the
arbitrary seed solution v0. As an alternative, we would
like to present here the explicit solutions for both the u
and the v fields in some special but important cases.

4.1 Fusion or fission type N -solitary wave solution

Assuming that ci and v0 statisfy

c0 = 1

A0

T2t
T1

, c1 = − 1

A0

T1t
T1

, c2 = v0 = 0,

T1 = T1(t), T2 = T2(t). (45)

Under these conditions, the solution to the separated
equations (37)–(38) can be directly obtained as

p = 1

T1

N∑
i

(eζi + T2), q = −a0T1 − a1(Y − T2)

a2T1 − a3(Y − T2)
,

Y = Y (y), ζi = ki x − k5i t + xi0. (46)

Substituting (46) into (43)–(44), the t-dependent func-
tions {T1, T2} are omitted and the solutions can be
rewritten in a more concise manner

u = − 2Yy
∑N

i ki eζi

(Y + ∑N
i eζi )2

,

v = 2Y
∑N

i k2i e
ζi + 2

∑N
1≤i< j (ki − k j )2eζi+ζ j

(Y + ∑N
i eζi )2

. (47)

Obviously, by choosing the appropriate arbitrary
function Y , different types of solitary wave structures
can be generated. For example, the one-soliton solu-
tion (11) can be reconstructed by setting N = 1 and
Y = e−l1y . Similarly, ifwe set N = 1 andY = 1+e−ly ,
the solution (47) will degenerate to

u = 2k1leξ1

(1 + ely + eξ1)2
,

v = 2k21e
ξ1(1 + ely)

(1 + ely + eξ1)2
, ξ1 = k1x + ly − k51 t + x10.

(48)

Here, the u component illustrates a solitary solitoff
structure [34], as depicted in Fig. 5a, while the v com-
ponent represents a V -shaped soliton, as shown in
Fig. 5b. Additionally, Fig. 5c, d exhibit the periodic
soliton structure of the u field and the corresponding
spaced-curved line soliton of the v field with N = 1

and Y = e−y+ 5
2 cos(y).

By taking Y = L + e−ly , one obtain the general
fusion or fission type N -solitary wave solution [35–
37]

u = 2l
∑N

i ki eξi

(1 + Lely + ∑N
i eξi )2

,

v = 2(1 + Lely)
∑N

i k2i e
ξi + 2

∑N
1≤i< j (ki − k j )2eξi+ξ j

(1 + Lely + ∑N
i eξi )2

,

ξi = ki x + ly − k5i t + xi0. (49)

Fission or fusion phenomena can be observed in both
the u and v fields for N � 2. Figure6 depicts the
fission phenomenon in the v field with parameters:
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Fig. 5 Plots illustrating localized excitations with different choices of Y . a Single solitoff structure; b The corresponding V -shaped
soliton; c Periodic soliton structure; d Space-curved line soliton

Fig. 6 Contourplot of the fission phenomenon in a Y -shaped soliton. a t = 0; b t = 3; c t = 6

Fig. 7 Plots of the u component for N = 3 with parameters are k1 = 1, k2 = 0.5, k3 = 0.25, l = 0.8, x10 = 185, x20 = x30 = 0 and
L = 0.02. a t = 180; b t = 200; c t = 220

N = 3, k1 = 1.2, k2 = 0.6, k3 = 0.3, l = −0.5,
and x10 = x20 = x30 = L = 0. Initially, only
one Y -shaped soliton can be observed in Fig. 6a at
time t = 0. As time evolves, the line solitary wave
propagating along the x direction splits into two line
waves, as shown in Fig. 6b. Finally, two Y -shaped soli-

tons may be observed in Fig. 6c. The opposite process,
the fusion phenomenon, can be generated by setting
k1 = −1.2, k2 = −0.6, k3 = −0.3 with other param-
eters unchanged.

For L > 0, the resonant behavior of multisolitoff
can be observed. At time t = 180, only one solitoff
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Fig. 8 The corresponding v field. a t = 150; b t = 175; c t = 200; d t = 220

Fig. 9 Contourplots of the space-time evolution of a resonant two-soliton solution for the v field with parameters (k1, k2, k3, k4, l) =
(1,−1, 0.5,−0.5, 0.8) and xi0 = 0 for i = 1, 2, 3, 4. a t = −12; b t = 0; c t = 12

structure, with the end appearing to flatten slightly, is
visible in Fig. 7a. As time progresses, a second solitoff,
followed by a third, emerges sequentially from the end
of the first, as depicted in Fig. 7b, c. This interesting
phenomenon can be further elucidated by examining
the corresponding v field in Fig. 8.

By setting N = 4, k1 = −k2, k3 = −k4, and
Y = cosh(ly) in Eq. (47), we derive the resonant
two-soliton interaction solution, as illustrated in Fig. 9.
The interaction pattern exhibits reflection symmetry
(x, y, t) → (−x,−y,−t) and is commonly referred
to as a T -type interaction in shallow water [38,39].

4.2 Dromion structures and instanton-like excitations

To construct the dromion structure that is exponentially
localized in all directions in the x–y plane for the u
component, we assume

Y = a0 + a2eη

a1 + a3eη
, η = ly. (50)

Substitution ofY into (47), the expression of u becomes

u = 2A0leη
∑N

i ki eζi

[a0 + a2eη + (a1 + a3eη)
∑N

i eζi ]2 ,

ζi = ki x − k5i t + xi0, η = ly. (51)
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A single dromion solution can be immediately obtained
by taking N = 1

u = 2A0k1leζ1+η

(a0 + a1eζ1 + a2eη + a3eζ1+η)2
. (52)

Obviously, the single dromion solution (52)will degen-
erate to a straight line soliton when a1 = a2 = 0 or
a0 = a3 = 0, andmay degenerate to a solitoff structure
with one of {a0, a1, a2, a3} equal to zero. To character-
ize the dromion structure, one can define its maximum
amplitude andmass [40]. Letting the partial derivatives
ux and uy be zero, we find that the tip of the dromion
is at the critical point where

eζ1 = a0 + a2β

a1 + a3β
, eη = β, β =

√
a0a1
a2a3

, (53)

which result in the maximum amplitude

umax = k1l

2A0
(
√
a0a3 − √

a1a2)
2. (54)

Fig. 10 exhibits the single dromion structure and the
corresponding v field with parameters a0 = a3 = 9,
a1 = a2 = k1 = 1, l = 2, and x10 = 0. From Eq. (54),
umax is calculated to be 0.8, which is consistent with
the figure.

Taking N = 2, the solution for the u field becomes

u = 2A0leη(k1eζ1 + k2eζ2)

[a0 + a2eη + (a1 + a3eη)(eζ1 + eζ2)]2 . (55)

Without loss of generality, we carry out the asymptotic
analysis of the solution (55) for two different cases. The
first case is the spatio-temporal evolution of a single
resonant dromion, as shown in Fig. 11.With k1 > k2 >

0, one can determine the limiting values of u as t →
±∞
u

∣∣
ζ1=c,t→−∞ = 2A0k1leζ1+η

(a0 + a1eζ1 + a2eη + a3eζ1+η)2
,

u
∣∣
ζ1=c,t→+∞ = 0, (56)

u
∣∣
ζ2=c,t→−∞ = 0, u

∣∣
ζ2=c,t→+∞

= 2A0k2leζ2+η

(a0 + a1eζ2 + a2eη + a3eζ2+η)2
. (57)

It can be interpreted from Eqs. (56)–(57) that the solu-
tion depicts a single dromion structure moving with
velocity k41 when t 	 0, and characterizes a dromion
moving with smaller velocity k42 when t 
 0.

The second case is the annihilation process of two
dromions, as shown in Fig. 12. For k1 > 0 > k2 and
k1 < |k2|, the limits of u at t → ±∞ can be given by

u
∣∣
ζ1=c,t→−∞ = 2A0k1leζ1+η

(a0 + a1eζ1 + a2eη + a3eζ1+η)2
,

u
∣∣
ζ1=c,t→+∞ = 0, (58)

u
∣∣
ζ2=c,t→−∞ = 2A0k2leζ2+η

(a0 + a1eζ2 + a2eη + a3eζ2+η)2
,

u
∣∣
ζ2=c,t→+∞ = 0. (59)

Take k1 > 0 > k2, and k1 > |k2|, the opposite process
can be observed, namely an up-dromion and a down-
dromion are generated on the plane.

For N = 3, an interesting instanton-like excitation
can be observed when k1 > |k2| > k3 > 0, and k2 < 0.
Such a process can be readily identified by applying the
asymptotic analysis

u
∣∣
ζ1=c,t→±∞ = 0, u

∣∣
ζ2=c,t→±∞ = 0,

u
∣∣
ζ3=c,t→±∞ = 0. (60)

A schematic diagram of the instanton evolution is
shown in Fig. 13a, c for several time intervals. We can
see that the instanton initially increases with t , peak-
ing at t = 0, and then decays rapidly as t continues to
increase.The amplitudeof the instantondecays tremen-
dously to 10−8 at time t = 7.

4.3 Solitary wave solutions on cnoidal wave
background

Recently, some important new results have been obtai-
ned in the study of localized excitations on a peri-
odic wave background. In particular, the single soli-
ton standing on the elliptic function background is
constructed by the localization of nonlocal symme-
try method [41], the consistent Tanh expansion method
[42], or the consistent Riccati expansion method [43].
In addition, the rogue waves on the elliptic function
background are obtained by combining the Darboux
transformation with the nonlinearization of the Lax
pair [44–46]. Using the multilinear variable separation
approach, it is also possible, under certain conditions, to
construct a solitary wave standing on a moving cnoidal
wave background.

Under the condition c1 = c2 = 0 and c0 = Tt
a3A0

,
one can easily identify that the following selection of
p, q

p = 1

a3
(T + eζ ), q = −a1

a3
+ A0

a3(Y − a2 − T )
,

ζ = kx + ωt + x0, (61)

where Y = Y (y) and T = T (t), is a solution of Eqs.
(37)–(38) if and only if v0 satisfies the ordinary differ-
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Fig. 10 a Dromion
structure of the u field with
parameters k1 = 1, l = 2,
x10 = 0, a0 = a3 = 3, and
a1 = a2 = 1. b The
corresponding v field

Fig. 11 Space-time evolution of a resonant dromion with parameters k1 = 0.9, k2 = 0.35, l = 0.4, x10 = x20 = 0, a0 = a3 = 3 and
a1 = a2 = 1. a t = −30, b t = 0, and c t = 100

Fig. 12 Annihilation of two dromions with parameters k1 = 0.3, k2 = −1.2, l = a1 = a2 = a3 = 1, a2 = 2 and x10 = x20 = 0. a
t = −10; b t = 0; c t = 6

Fig. 13 Space-time evolution of the instanton-like excitation with parameters k1 = 2, k2 = −1.5, k3 = a1 = a2 = 1, l = 2,
a0 = a3 = 9 and x10 = x20 = x30 = 0. a t = −0.3; b t = 0; c t = 0.9

Fig. 14 Different types of solitary waves on a moving cnoidal wave background. a A straight line soliton; b A twisted line soliton
propagating along x-axis; c A V -shaped soliton
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ential equation

v0xx + 3v20 + 2k2v0 + 1

5

(ω

k
+ k4

)
= 0. (62)

To determine the solution of the prescribed Eq. (62),
we apply the Jacobi elliptic function expansion method
[47,48]. Balancing the highest nonlinearity and disper-
sive terms in the Eq. (62), we assume that its solution
has the following form

v0 = α0 + α1sn(Kx + Ωt,m)

+α2sn
2(Kx + Ωt,m). (63)

Substitution of the assumption (63) into Eq. (62) and
setting the coefficients of the different powers of the
Jacobi elliptic functions to zero, we obtain a group of
overdetermined equations. In solving these overdeter-
mined equations, if we take k, K and m as arbitrary, a
nontrivial solution of {ω, α0, α1, α2} can be determined
as

α0=1

3
(2m2K 2+2K 2−k2), α1=0, α2=−2mK 2,

ω=2

3
k5−20

3
kK 4(m4−m2+1). (64)

By combining the results with Eqs. (43)–(44), we
obtain

u = − 2kYyeζ

(Y + eζ )2
,

v = 2k2Yeζ

(Y + eζ )2
+ α0 + α1sn

2(Kx + Ωt,m). (65)

It should be pointed out that the u field has a different
dispersion relation from the solution in (47). Regard-
ing the v field, various types of solitary waves on a
cnoidal wave background can be constructed by choos-
ing the arbitrary function Y appropriately. For instance,
by setting Y = e−y , k = 1, x0 = 0, K = 0.5, and
m = 0.4, a straight-line soliton on a moving cnoidal
wave background is obtained, as shown in Fig. 14a.
Furthermore, a twisted line soliton propagating along
the x-axis can be observed in Fig. 14b by selecting
Y = (9+e2y)/(1+9e2y), k = 1, x0 = 0, K = 0.5, and
m = 0.6. Additionally, a V -shaped soliton on a cnoidal
wave background, as depicted in Fig. 14c, can be con-
structed with Y = 2/(1 + 2e−y), k = −1, x0 = 0,
K = 0.6, andm = 0.9. Under the ultra-limit condition
m = 0 and K = √

2|k|/2, the background wave in the
v field disappears and the solution (65) degenerates to
(47) with N = 1.

5 Summary and discussions

In conclusion, a new (2+1)-dimensional generaliza-
tion of the SK system is proposed. By employing the
Hirota bilinear method, the existence of three-soliton
and four-soliton solutions, with constraints on wave
numbers {ki , li }, is confirmed. Furthermore, the multi-
linear variable separation approach is extended to the
2DSK system to generate a variable separation solu-
tion. It is found that the arbitrary function q is deter-
mined by a nonlinear Riccati equation, and the physical
field u is precisely expressed by the universal formula
applicable to allmultilinear variable separable systems.
Compared to recent results [49–52], several patterns of
localized excitations are constructed for the first time
using the variable separation approach, such as the T -
type soliton interaction in shallow water, the instanton
excited by three resonant dromions, and solitary waves
on a moving cnoidal wave background.

Based on our study, we can conjecture that the non-
linear version of the following bilinear system

Dy(D
2n+1
x + Dt ) f · f = 0, (n ≥ 1)

is solvable under the multilinear variable separation
approach. It is noted that n = 1 and n = 2 correspond
to the (2 + 1)-dimensional ANNV equation [17] and
the 2DSK system, respectively.
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