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Abstract. We show that using a water channel as a wave guide the second harmonic generation (SHG)
of capillary-gravity waves is possible. We also provide the appropriate parameter and
geometry values and cascading process permitting the simultaneous solitonic behavior of
both the fundamental and second harmonic waves (simultons or quadratic solitons). 2001
Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

nonlinear hydrodynamic waves / second harmonic resonance / quadratic solitons /
simultons

Sur la génération d’harmoniques d’ordre deux et des simultons ou
solitons quadratiques

Résumé. Nous montrons sous quelles conditions la génération d’harmoniques d’ordre deux (SHG)
est possible dans un canal d’eau pris comme guide des ondes capillaro-gravitationnelles.
Nous montrons aussi comment un choix adéquat des valeurs des paramétres et de la géo-
metrie du canal permet l’apparition simultanée, comme des solitons, du mode fondamental
et du second harmonique d’où l’appelation solitons quadratiques ou simultons. 2001
Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

ondes non linéaires / résonance de second harmonique / solitons quadratiques /
simultons

1. Introduction

Second harmonic generation (SHG), a degenerate case of three-wave resonance, wave modulation
instabilities, solitary waves or hydraulic jumps and eventually solitons in the surface of a water channel are
fascinating phenomena [1]. SHG in a water layer with surface tension was first investigated by Simmons
[2], McGoldrick [3,4] and Nayfeh [5]. McGoldrick [4] pointed out that in Wilton’s theory of ripples [6] the
appearance of singularities in the Stokes expansion for large-amplitude capillary-gravity waves corresponds
to a SHG and some higher-order resonances.

In existing SHG theory of liquid layers of finite depth, dispersion has not been considered and hence
the corresponding coupled amplitude equations obtained for the envelopes of fundamental and second
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harmonic waves only include first-order time- and space derivatives. Such approach is only valid for fairly
long wavetrains, thus precluding a cascading process between two wave modes. Here we show that a
new type of nonlinear surface wave excitations, i.e., simultaneous solitary waves (quadratic solitons or
simultons), may result, when the dispersion of the system plays a significant role, in a SHG process.
Simultons occur through cascading when two simultaneously soliton-like wave components interact
with themselves through repeated three-wave interaction processes; e.g., the fundamental wave is first
upconverted to the second harmonic wave and then downconverted.

SHG and simultons have also been studied in nonlinear optical media [7–10]. In the original SHG theory
in optical media possessing, e.g., quadratic nonlinearity, neither dispersion nor diffraction were considered
in deriving coupled amplitude equations for fundamental and second harmonic waves and hence theory
was only valid for long pulses or wide beams with no cascading process being possible between two
wave modes. Consideration of dispersion and diffraction has permitted the study of the cascading process
leading to simultons [7–10]. Stationary self supported two-component localized beams (spatial simultons)
and propagating self-supported two-component localized pulses (temporal simultons) have been observed
[9,10].

Clearly, these phenomena, and hence simultons, are expected to appear in other realms of science and
engineering when wave guides are endowed with dispersion, diffraction, eventually dissipation and indeed,
appropriate nonlinearity.

2. Basic equations and phase-matching conditions for SHG and the onset of hydrodynamic
simultons

We consider the irrotational motion of an incompressible inviscid liquid of densityρ in a gravitational
field. The fluid at rest fills a horizontal rectangular channel to the depthd with −d < z < 0, wherez is the
vertical coordinate,b is the width along the transverse coordinatey, and of infinite extent along the other
transverse coordinate,x. The surface of the liquid is open to ambient air, deformable and with nonvanishing
surface tension,α. Air is considered hydrodynamically passive, as its (dynamic) shear viscosity is two
orders of magnitude below, say, that of water. The velocity potentialφ of the fluid satisfies the Laplace
equation:

∇2φ= 0 for − d < z < ζ(x, y, t) (1)

with the boundary conditionsφy = 0 on two sidesy = 0, b andφz = 0 on the bottom of the channelz =−d.
The boundary conditions on the free surface,z = ζ(x, y, t), are:

ζt + φxζx + φyζy = φz (2)

φt + gζ +
1

2
(∇φ)2 = σ

ζxx(1 + ζ2
y ) + ζyy(1 + ζ2

x)− 2ζxζyζxy

(1 + ζ2
x + ζ2

y)3/2
(3)

with σ = α/ρ.
Then for capillary-gravity waves the linear dispersion relation isω2 = k(g + σk2) tanh(kd), wherek

andω are the wavenumber and frequency, respectively.k2 = k2
x + k2

y , wherekx is an arbitrary real number
andky = nπ/b, n is an integer, henceω = ω(kx, ky) = ω(kx, n). Consequently, there is multiplicity of
dispersion branches denoted by the indexn. For thenth branch there exists a lower cutoff frequency
ωnc = ω(0, n). Nonpropagating solitary waves and hydraulic jumps related to the (0, 1)-mode (i.e.,kx = 0
andn= 1) have been discovered in the wave guide which is the water channel [11,12].

Now we look for possible hydrodynamic simulton excitations in the system. Accordingly, we consider
two wave modes for which a SHG can occur. A necessary kinematic condition for the SHG is the phase-
matching:

k2 = 2k1, ω(k2) = 2ω(k1) (4)

14



On second harmonic generation and the onset of simultaneous capillary-gravity solitary waves

wherek1 (k2) is the wavevector corresponding to the fundamental (second harmonic) wave. Besides (4)
there is an additional necessary condition for exciting the hydrodynamic simultons, i.e., the group-velocity
matching:

vg(k2) = vg(k1) (5)

wherevg(k) = ∂ω/∂k is the group velocity of the corresponding mode. Modes satisfying the condition
(5) are the cutoff modes of the system, i.e.,k = (0, nπ/b). These modes have in fact equal (zero) group
velocity. To meet the condition (4), we chose, for simplicity,k1 = (0, k1) andk2 = (0,2k1) with k1 = π/b.
Then (4) requires:

f(k∗1)≡ tanh2 k∗1 −
3(k∗1/k0)2

1 + (k∗1/k0)2
= 0

wherek∗1 = k1d andk0 = d(g/σ)1/2. The functionf(k∗1) has two zero points. The first one is atk∗1 = 0,
alien to the SHG. The other is at a nonvanishing value ofk∗1 and hence corresponds to the sought
SHG. The condition (4) imposes a constraint on the parameters of the system. For example for water
at room temperature we haveρwater = 1 g · cm−3 andαwater = 72.5 dyne · cm−1. Taking d = 2 cm
andg = 980 cm · s−2, we obtaink0 = 7.35. Then the dimensionless wavenumber corresponding to the
SHG is k∗1 = 5.20. Thus the realization of the SHG requires that the width parameterb (= πd/k∗1 )
equals to 1.2083 cm. Note that in the limit of an infinitely deep water layer, we have the exact solution
k1 = [g/(2σ)]1/2, henceω1 = [9g3/(8σ)]1/4, corresponding tob = (2σ/g)1/2π = 1.20843 cm. Thus if
the channel has a widthb near 1.21 cm and depthd > 2 cm, the phenomena described here should be
experimentally observable.

3. SHG dynamics using the method of multiple scales

Since we are interested in a cascading process with the excitation width smaller than that in the usual
SHG case, we scale variables and use a suitable asymptotic expansion to characterize the evolution of the
amplitudes of the fundamental and the second harmonic waves. We set:

ξ = ε1/2(x− vgt), τ = εt

φ= ε
(
φ(0) + ε1/2φ(1) + εφ(2) + · · ·

)
and ζ = ε

(
ζ(0) + ε1/2ζ(1) + εζ(2) + · · ·

)
whereε is the smallness parameter measuring the deformation of the wavy surface,vg is a velocity to be
determined in the solution of the problem,φ(j) andζ(j) (j = 0,1,2, . . .) are functions of the fast variables
x, y, z andt and the slow variablesξ andτ . Then equations (1)–(3) become:

∇2φ(j) = P (j) for − d < z < ζ (6)

with φ(j)
y = 0 at y = 0, b andφ(j)

z = 0 at z =−d, together with:

ζ
(j)
t − φ(j)

z =Q(j) (7)

φ
(j)
t + gζ(j) − σ

(
ζ(j)
xx + ζ(j)

yy

)
=R(j) (8)

at z = 0, with j = 0,1,2, . . . . The explicit expressions forP (j), Q(j) andR(j) are not needed here.
At leading order (j = 0) the solution when including only the(0,1) mode (considered the fundamental

wave) and the(0,2) mode (second harmonic wave) reads:
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φ(0) =
coshk1(z + d)

coshk1d
cosk1y

{
A1(ξ, τ) exp(−iω1t) + c.c.

}
+

coshk2(z + d)

coshk2d
cosk2y

{
A2(ξ, τ) exp(−iω2t) + c.c.

}
(9)

ζ(0) = i(k1T1/ω1) cosk1y
{
A1(ξ, τ) exp(−iω1t)− c.c.

}
+ i(k2T2/ω2) cosk2y

{
A2(ξ, τ) exp(−iω2t)− c.c.

}
(10)

with k1 = π/b, k2 = 2k1 = 2π/b, ω2
l = (g + σk2

l )klTl with Tl = tanhkld (l = 1,2). c.c. denotes the
complex conjugate term.Al (l = 1,2) are amplitude functions corresponding, respectively, to the(0,1)
and(0,2) modes yet to be determined. The condition for the SHG requiresω2 = 2ω1, which corresponds
to f(k∗1) = 0, discussed above.

At the next order (j = 1), the solvability condition demands thatvg vanishes, as the modes we have
chosen in (9) and (10) are two cutoff modes corresponding to the dispersion branchesω(kx, π/b) and
ω(kx,2π/b), respectively. At the third order(j = 2), we obtain two solvability conditions:

i

(
∂u1

∂t
+ v1

∂u1

∂x

)
+

1

2
Γ1
∂2u1

∂x2
+ i∆1u

∗
1u2 exp(iδωt) = 0 (11)

i

(
∂u2

∂t
+ v2

∂u2

∂x

)
+

1

2
Γ2
∂2u2

∂x2
− i∆2u

2
1 exp(−iδωt) = 0 (12)

when returning to original variables, where:

ul = εAl, Γl =
1

ωl

{
ω2
l

2k2
l Tl

[
Tl + kld(1− T 2

l )
]

+ σklTl

}
(l= 1,2)

∆1 =
k2

1

2

[
1− 3T1T2

2
+

2T1 + T2

2T1

]
, ∆2 =

k2
2

4

[
1− 3T 2

1

4
+
T1

T2

]
v1 andv2 are, respectively, the group velocities of the fundamental and the second harmonic waves near
kx1 = 0, n = 1 andkx2 = 0, n = 2. In deriving equations (11) and (12), a small frequency mismatch is
allowed in the SHG, i.e.,ω2 = 2ω1 + δω whereδω is a small quantity of orderε. Similar equations have
been obtained by Karamzin and Sukhorukov [13] in nonlinear optics. An important difference between
equations (11) and (12) and the amplitude equations obtained by McGoldrick [3] and Nayfeh [5] for the
usual SHG is that here we have included dispersion. Dispersion is known to drastically affect the evolution
of nonlinear water waves. In addition, our amplitude equations (11) and (12) are also valid for infinitely
deep water (i.e., ford→∞ and henceTl→ 1, l= 1,2).

Let us obtain exact solutions of the amplitude equations (11) and (12). We look forul(x, t) =
Ul(η) exp(iθl), whereη = Kx − Ωt, θl = Klx − Ωlt + φl (l = 1,2) with K2 = 2K1, Ω2 = 2Ω1 + δω,
φ2 = 2φ1 − π/2. K , Ω, K1, Ω1 andφ1 are constants yet to be determined. Then equations (11) and (12)
are transformed into:

U1ηη +α1U1U2 − β1U1 = 0 (13)

U2ηη +α2U
2
1 − β2U2 = 0 (14)

with

αl =
2∆l

ΓlK2
, βl =

ΓlK
2
l − 2(Ωl − vlKl)

ΓlK2
(l= 1,2)

K1 =
v2 − v1

Γ1 − 2Γ2
and Ω = v1K + Γ1KK1
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A coupled soliton-soliton (i.e., simultaneous solitons for two wave components) solution of equations (13)
and (14) reads:

U1 =
6s1√
α1α2

sech2η, U2 =
6

α1
sech2η (15)

with s1 =±1 and:

K2 =
2(v2 − v1)K1 + (2Γ2 −Γ1)K2

1 − δω
2(Γ2 − 2Γ1)

In this case the free surface displacement of the fluid is:

ζ(x, y, t) =− 12s1√
α1α2

k1T1

ω1
sech2(Kx−Ωt) cosk1y sin

[
K1x− (ω1 + Ω1)t+ φ1

]
+

12

α1

k2T2

ω2
sech2(Kx−Ωt) cosk2y cos

[
K2x− (ω2 + Ω2)t+ 2φ1

]
(16)

whereφ1 is a phase constant depending on the initial condition. The first and second part of the right hand
side of (16) correspond to the fundamental and second harmonic wave component respectively. We see that
each component of the excitation is a standing wave in they-direction and a bright (above level) envelope
soliton in thex-direction, and hence the solution (16) is a hydrodynamic simulton. Ifkx1 (kx2) is exactly
zero but withδω 6= 0, one hasv1 = v2 = 0. Consequently, one hasK1 =K2 = 0, K2 = δω/(4Γ1 − 2Γ2),
Ω = 0, Ω1 = −2Γ1K

2 and Ω2 = −2Γ2K
2. Then (16) represents a hydrodynamicnonpropagating

simulton, in which the oscillating frequencies of both the fundamental and second harmonic waves are
smaller than the lower cutoff frequencies of the corresponding linear modes.

Equations (13) and (14) admit also another type of simulton solution with both the fundamental and the
second harmonic waves being dark (below level) envelope solitons in thex-direction.

4. Conclusion

We have investigated the conditions for the second harmonic generation (SHG) in nonlinear surface
water waves in a long, rectangular channel filled with a liquid to finite depth and open to ambient air, hence
taking into consideration the surface tension. We have shown that with wave dispersion included and group-
velocity matching condition satisfied a new type of solitonic nonlinear capillary-gravity excitation can be
obtained through cascading between two wave-modes.

At variance with the usual solitons in deep water, for which the formation mechanism is self-trapping
of one linear plane wave [14], the mechanism studied here is a cascading effect between two wave modes.
In this process, the fundamental and the second harmonic waves interact with themselves through repeated
three-wave interactions. For example, the energy of the fundamental wave is first upconverted to the second
harmonic wave and then downconverted, resulting in a mutual self-trapping of each wave thus leading to
the appearance of two simultaneous hydrodynamic solitons and which are hence called quadratic solitons
or simultons.
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