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We propose a setup to generate giant Kerr nonlinearity and polaritonic solitons via matter-wave superradiant
scattering. The system we consider is a long cigar-shaped Bose-Einstein condensate (BEC), pumped by a
red-detuned laser field with a space-dependent intensity distribution in transverse directions. The pump and
the scattered fields propagate along the longitudinal direction. We show that by means of the atom-photon and
atom-atom interactions in the system it is possible to produce a giant nonlinear optical effect. We further show
that a backward scattering of the laser field from the BEC is favorable for the formation and stable propagation of
polaritonic solitons, which are collective nonlinear excitations of the BEC coupled with the scattered laser field.
In the case of backward Stokes (anti-Stokes) scattering the system may support robust bright (dark) polaritonic
solitons propagating with superluminal (subluminal) velocity.
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I. INTRODUCTION

Collective atomic recoil motion involving an internally
generated electromagnetic field, known as matter-wave super-
radiance, is an intriguing process in which a group of atoms in
the same electronic state recoils coherently under the excitation
of a single pump laser field. Matter-wave superradiance can
be regarded as an analog of Dicke’s optical superradiance
[1]. In addition to its fundamental role for atom optics and
related research fields, the study of matter-wave superradiance
also represents a promising avenue for practical applications,
such as the matter-wave amplification and the fabrication of
matter-wave interferometers.

In pioneering experiments on matter-wave superradiance
[2–4], an elongated Bose-Einstein condensate (BEC) was used,
and a continuous pump laser field was chosen to intersect
along the short transverse direction of the BEC. In this setup
the scattered laser field is dominated by the axial or endfire
modes, while the recoiled atoms from the BEC exhibit a
distinctive and highly regular pattern (side-mode distribution)
due to momentum conservation. The underlying physics of this
intriguing phenomenon was first explained by the scattering
of pump photons off a spontaneously generated matter-wave
grating that grows due to positive feedback in the presence of
the pump laser [5].

Subsequently, comprehensive studies of the initial experi-
mental observations were performed in a number of works,
providing further insights into the features of the atomic
momentum distribution [6–13] and the coupled dynamics of
optical and matter-wave fields [14,15]. More recent theoretical
works further revealed that matter-wave superradiance can be
regarded as a multi-matter-optical wave-mixing process, and
the propagation effect of the scattered electromagnetic waves
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traveling along an elongated BEC was investigated in detail
[16–18].

However, up to now the majority of investigations on the
propagation dynamics of matter-wave superradiance in BECs
were focused on the linear regime. In this regime, polaritons
are formed by a simple coupling between recoiled atoms
and scattered photons; these may suffer serious spreading
and attenuation during their propagation due to the existence
of dispersion and nonlinearity inherent to the system. For
practical applications, it is desirable to have polaritons that are
robust and could propagate long distances. Thus it becomes
vital to develop an approach that could take into account the
dispersion and nonlinearity, and to find a setup that would yield
a robust propagation of the polaritons.

In this paper, we propose a setup to create a giant Kerr
nonlinearity and polaritonic solitons via matter-wave superra-
diant scattering in a weak recoil energy regime. The system we
suggest is a long cigar-shaped BEC, pumped by a red-detuned
laser field with a space-dependent intensity distribution in
transverse directions. The pump and the scattered fields
propagate along the longitudinal direction. We show that, due
to the atom-photon and atom-atom interactions in the system,
it is possible to obtain a giant nonlinear optical effect with the
Kerr coefficient of the order of 10−5 m2 V−2; this value is at
least two orders of magnitude larger than that obtained in the
BEC through the mechanism of electromagnetically induced
transparency (EIT) [19]. Furthermore, we show that a back-
ward scattering of the laser field from the BEC is favorable for
the formation and stable propagation of polaritonic solitons,
which are collective nonlinear excitations of the BEC coupled
with the scattered laser field. In addition, we demonstrate that
in the case of backward Stokes (anti-Stokes) scattering the
system can support robust bright (dark) polaritonic solitons
propagating with superluminal (subluminal) velocity [20].

Before proceeding, we note that superluminal and sub-
luminal optical solitons were investigated, respectively, in
multilevel atomic media via EIT [21,22], and gain-assisted
Raman systems [23,24]. Also, stationary polaritonic solitons
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can be found in a BEC trapped in a soft optical lattice [25].
In addition, the creation of matter-wave vortices generated by
using a Laguerre-Gaussian light beam was demonstrated to be
possible [26], and a significant optical self-focusing effect in a
BEC via superradiant scattering was also predicted recently
[27]. Nevertheless, our work differs from Refs. [21–27],
where no matter-wave superradiant scattering was considered
[21–24], or no superluminal and subluminal polaritonic soli-
tons in BECs were explored [25–27]. We expect that the giant
Kerr nonlinearity and the polaritonic solitons in the BEC-based
medium predicted in this work may have potential applications
in nonlinear atom optics and related fields. The theoretical
approach presented here can also be applied to other nonlinear
dynamical problems related to matter-wave superradiance.

The remainder of the paper is organized as follows.
Section II describes the theoretical model. Section III gives
a linear dispersion relation, and derives the nonlinear envelope
equation for polaritons in the weak recoil energy regime.
Section IV studies the giant Kerr nonlinearity of the system,
discusses superluminal and subluminal polaritonic solitons,
and checks their stability. The last section contains the
summary of the main results of the present work.

II. THE MODEL

We consider a cigar-shaped BEC coupled with a
continuous-wave pump laser field EP with the center
wave number kP and center angular frequency ωP . Due
to the interaction between the pump laser field and
the atoms in the BEC, a weak pulsed scattered field
ES with the center wave number kS and center angu-
lar frequency ωS appears. The total electric-field vector
in the system is E = EP + ES = ePEP (x,y)ei(kP ·r−ωP t) +
eSES(x,y,z,t)ei(kS ·r−ωSt) + c.c., where eP and EP (eS and ES)
are, respectively, the polarization unit vector and amplitude
of the pump (scattered) field, and c.c. denotes a complex
conjugate. We assume both the pump and the scattered fields
have the same polarization direction, i.e., eP = eS = ex , and
propagate along the long axis (i.e., z) direction of the BEC,
i.e., kP · r = kP z and kS · r = kSz. Then the electric field can
be written as E = E(+) + E(−), with E(−) = (E(+))∗ and

E(+) = ex[EP (x,y)ei(kP z−ωP t) + ES(x,y,z,t)ei(kSz−ωSt)]. (1)

The wave-vector relation and excitation scheme are shown
in Fig. 1(a) [Fig. 1(b)]. The figure also depicts the wave-
vector relation for the forward scattering (the backward
scattering), where the scattering field propagates colinearly
(anticolinearly) with the pump field. Here EP and kP shown
by the red arrows (ES and kS shown by the blue arrows) are the
pump field and its wave vector (the scattered field and its wave
vector), respectively. The wave vector of the recoiled atoms
(shown by the yellow arrow) is �k = kP − kS for the forward
scattering, or �k = kP + kS for the backward scattering.

Figure 1(c) [Fig. 1(d)] shows the energy-level diagram for
the Stokes scattering (anti-Stokes scattering), where both EP

and ES are coupled to atomic internal states (energy levels)
|1〉 and |2〉. The one-photon and two-photon detunings for the
Stokes (anti-Stokes) scattering are, respectively, defined by
�1 = ω2 − ω1 − ωP and �2 = ωP − ωS (�1 = ω2 − ω1 −
ωS and �2 = ωS − ωP ), where �ω1 and �ω2 are, respectively,

the eigenenergies of the atomic internal states |1〉 and |2〉.
From this figure, we see that the light scattering process can
be discussed in four different regimes, i.e., the forward Stokes
scattering, the backward Stokes scattering, the forward anti-
Stokes scattering, and the backward anti-Stokes scattering.

The Hamiltonian of the system is given by

H =
2∑

α=1

�ωα

∫
dr�̂†

α(r,t)�̂α(r,t) + ε0

2

∫
drE(r,t)2

+
2∑

α=1

∫
dr�̂†

α(r,t)
[
− �

2

2M
∇2 + V (r)

]
�̂α(r,t)

−
2∑

α,β=1

∫
dr�̂†

α(r,t)[pαβ · E(r,t)]�̂β(r,t)

+ 1

2

2∑
α,β=1

∫
dr

∫
dr′�̂†

α(r,t)�̂†
β(r′,t)Uαβ(r − r′)

× �̂β(r′,t)�̂α(r,t), (2)

where �̂α is the atomic field operator related to the state
|α〉 obeying the commutation relations [�̂α(r,t),�̂β(r′,t)] =
[�̂†

α(r,t),�̂†
β(r′,t)] = 0 and [�̂α(r,t),�̂†

β(r′,t)] = δαβδ(r −
r′), M is the atomic mass, V (r) is the trapping potential
which is assumed to be the same for the two internal states,
pαβ is the electric dipole matrix element for the transition
between the states |α〉 and |β〉, p11 = p22 = 0, and p12 = p∗

21.
The atom-atom interaction is described by the two-body
contact potential Uαβ(r − r′) = Ūαβδ(r − r′), with Ūαβ being
constants.

We assume that the one-photon detuning �1 is much
larger than the half Rabi frequency of the pump field 	P

[defined below Eq. (7)]. Thus, most of the atoms in the BEC
populate the state |1〉. From the Hamiltonian (2) we can get
the Heisenberg equations of motion for �̂1 and �̂2. We use
rotating-wave and adiabatic approximations to eliminate �̂2,
and obtain a closed equation for �̂1. Then, by employing
mean-field approximation, �̂1 → 〈�̂1〉 ≡ �, one gets the
modified Gross-Pitaevskii equation [12–16]:

i�
∂

∂t
� = − �

2

2M
∇2� + V (r)� + U0|�|2�

− |p12 · E(+)(r,t)|2
��1

� − i��(r,t)�, (3)

where U0 = Ū11 = 4π�
2as/M (as is s-wave scattering length)

and �(r,t) = |p12 · E(+)(r,t)|2�12/(�2�2
1), with �12 being the

decay rate from |2〉 to |1〉.
Note that our approach is built upon a semiclassical

description, which is valid when the numbers of scattered
photons and recoiled atoms induced by the pump field are
large enough. It is this macroscopic regime of superradiance
that we are focusing on throughout our work. A fully quantized
theory, on the other hand, allows us to investigate the initial
stage of the superradiant process, but is not easily extended to
the study of longtime propagation of the linear and nonlinear
collective excitations [14–17].
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FIG. 1. (Color online) (a) [(b)] Wave-vector relation of the forward (backward) scattering from a long cigar-shaped BEC. EP and kP shown
by red arrows (ES and kS shown by blue arrows) are, respectively, the pump laser field and its wave vector (scattering field and its wave
vector). The wave vector of the recoiled atoms (shown by the yellow arrow) is �k = kP − kS for the forward scattering or �k = kP + kS for
the backward scattering. (c) [(d)] Energy-level diagram for the Stokes scattering (anti-Stokes scattering). Both EP and ES are coupled to the
atomic levels |1〉 and |2〉, with �1 and �2 one- and two-photon detunings, respectively. �1 = ω2 − ω1 − ωP and �2 = ωP − ωS for the Stokes
scattering, or �1 = ω2 − ω1 − ωS and �2 = ωS − ωP for the anti-Stokes scattering.

The equation of motion for the electric field can be ob-
tained from the Maxwell equation ∂2E(+)/∂t2 = c2�2E(+) −
(1/ε0)∂2P(+)/∂t2, where P(+) = p12(p21 · E(+))|�|2/(��1) is
the electric polarization vector related to E(+). When obtaining
the expression for P(+) we have employed the adiabatic approx-
imation to eliminate �̂2, and used the relation 〈�̂†

1�̂1〉 = |�|2.
Under a slowly varying envelope approximation the Maxwell
equation is reduced to

i

(
∂

∂z
+ 1

c

∂

∂t

)
ES + c

2ωS

∇2
⊥E (+)

= − ωS

2ε0c

|p12 · ex |2
��1

E (+)|�|2, (4)

where ∇⊥ = ∂2/∂x2 + ∂2/∂y2, E (+) = EP ei[(kP −kS )z−�2t] +
ES for the forward Stokes scattering, E (+) =
EP ei[(kP +kS )z−�2t] + ES for the backward Stokes scattering,
E (+) = EP ei[(kP −kS )z+�2t] + ES for the forward anti-Stokes
scattering, and E (+) = EP ei[(kP +kS )z+�2t] + ES for the
backward anti-Stokes scattering.

We consider a cigar-shaped BEC trapped in the highly
anisotropic potential of the form V (r) = M

2 [ω2
⊥(x2 + y2) +

ω2
zz

2], with ωz 
 ω⊥. Thus, the BEC is elongated along the
z axis, but is symmetric in the x and y directions. Introducing
the scaling transformations (x ′,y ′,z′) = a−1

⊥ (x,y,z), t ′ = ω⊥t ,
� = √

n0ψ , and g = ES/EP , with a⊥ = [�/(Mω⊥)]1/2 be-
ing the harmonic oscillator length in the transverse (x,y)

directions, and n0 = N/a3
⊥ being the atomic density, we can

rewrite Eq. (3) (by dropping the primes) into the form

i
∂ψ

∂t
= −1

2
∇2ψ +

[
1

2
(x2 + y2) + 1

2

(
ω2

z

ω2
⊥

)
z2

]
ψ

+ 4πNas

a⊥
|ψ |2ψ − |p12 · ex |2

�2

|EP |2
ω⊥�1

× (1 + ge−i� + g∗ei� + |g|2)ψ − i
�

ω⊥
ψ. (5)

Here � = �kz − �ωt , with �k = (kP − kS)a⊥ and �ω =
�2/ω⊥ for the forward Stokes scattering, �k = (kP + kS)a⊥
and �ω = �2/ω⊥ for the backward Stokes scattering, �k =
(kP − kS)a⊥ and �ω = −�2/ω⊥ for the forward anti-Stokes
scattering, and �k = (kP + kS)a⊥ and �ω = −�2/ω⊥ for the
backward anti-Stokes scattering. Since ω2

z/ω
2
⊥ 
 1, the term

1
2 (ω2

z/ω
2
⊥)z2ψ on the right-hand side of Eq. (5) is a small

quantity for a finite condensate length, and it will be neglected
in our analytical calculation below.

We assume that the BEC interacting with the pump laser
field considered here can be described by a single wave
function. This assumption is valid in the long-wavelength
approximation for the BEC excitations, if the recoil en-
ergy of the atoms in the BEC is much smaller than the
atom-field interaction energy and the atom-atom interaction
energy per atom [i.e., (�k)2 
 |p12 · ex |2|EP |2/(�2ω⊥�1),
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(�k)2 
 Nas/a⊥ ]. In this small recoil energy regime of
the superradiance, particle excitations are highly suppressed
and the recoiled atoms remain in the same internal state and
in the condensate. For relatively large recoil energy, however,
the atoms can scatter and group into many independent side
modes, and then the condensate must be described in terms of
a collection of relevant side modes, while the description by a
single wave function would not viable [26].

Due to the strong transverse confinement provided by the
trapping potential, the condensate wave function ψ in the x and
y directions behaves as a standing wave. Thus, the low-energy
excitations of the BEC propagate only in the z direction. With
this in mind, one can assume that ψ = G(x,y)F (z,t)e−iμt

with μ being the chemical potential and G(x,y) satisfying the
equation [28]

−1

2

(
∂2

∂x2
+ ∂2

∂y2

)
G + 1

2
(x2 + y2)G = νG. (6)

This is the eigenvalue equation for a two-dimensional
harmonic oscillator in quantum mechanics. The ground-
state solution of Eq. (6) is G0(x,y) = e−(x2+y2)/2, with the
eigenvalue ν = 1. In addition, if the transverse distribution
of the applied pump field has the Gaussian form EP =
E0e

−(x2+y2)/(2ρ2
P ), due to the strong confinement in the x

and y directions provided by the trapping potential one can
assume the scattered field is also of the Gaussian form, i.e.,
ES = E0g(z,t)e−(x2+y2)/(2ρ2

S ). Here ρP and ρS are, respectively,
the dimensionless beam radii of the pump and scattered fields
(in units a⊥), and g(z,t) is a dimensionless function to be
determined.

With the above analysis, Eq. (5) can be simplified into the
following form:

i
∂F

∂t
+ 1

2

∂2F

∂z2
+ (μ − 1)F − c1|F |2F

+ c2(1 + ge−i� + g∗ei� + |g|2)F + iγ F = 0, (7)

with c1 = 2πNas/a⊥, c2 = |	P |2ρ2/[(ω⊥�1)(1 + ρ2)], and
γ = �/ω⊥. Here we have defined the half Rabi frequency
of the pump field 	P = (p12 · ex)E0/� and assumed that
ρP = ρS ≡ ρ [29]. Note that for obtaining Eq. (7) we
have used Eq. (6) with G(x,y) = G0(x,y) and multiplied
Eq. (5) by G∗

0(x,y) and then integrated it once with respect
to x and y.

Equation (4) can also be converted into the dimensionless
form

i

(
∂

∂z
+ 1

v

∂

∂t

)
g − d1(ei� + g) + d2(ei� + g)|F |2 = 0, (8)

with v = c/(a⊥ω⊥), d1 = c/(2ωSa⊥ρ2), and d2 = NωS |p12 ·
ex |2/[(2ε0c�a2

⊥�1)(1 + ρ2)]. For obtaining the above equa-
tion, we have multiplied Eq. (4) by e−(x2+y2)/(2ρ2) and then
integrated it once with respect to x and y. Note that Eqs. (7)
and (8) are quasi-one-dimensional and hence convenient for a
detailed theoretical analysis.

The model described above can be realized by a practical
physical system consisting of a condensed 87Rb atomic gas

with the atomic internal states assigned as |1〉 = |52S1/2〉 and
|2〉 = |52P1/2〉. The other system parameters are given as as =
94.8a0, |p12| = 2.54 × 10−27 C cm, �12/(2π ) = 5.7 MHz,
and n0 (atomic density)= 4.0 × 1019 m−3. We further fix
ω⊥/(2π ) = 100 Hz, resulting in a⊥ ≈ 1.1 μm, and ωz/(2π ) =
0.1 Hz. All calculations given below will be based on these
parameters.

III. ASYMPTOTIC EXPANSION AND NONLINEAR
ENVELOPE EQUATIONS

Now we turn to solve Eqs. (7) and (8). To understand the
properties of excitation of the system, one should first know
its ground state (i.e., the homogeneous stationary background
of the condensate along the z direction). The latter can be
obtained from Eqs. (7) and (8) by neglecting the derivative
terms and setting f = f0, g = 0; this yields

(μ − 1)f0 − c1f
3
0 + c2f0 = 0, (9a)

−d1 + d2f
2
0 = 0. (9b)

Note that we have also set γ = 0 for the ground state since it is
a small quantity and plays no significant role in the stationary
background of the BEC (nonzero γ will be considered
in the higher-order dynamics). From Eqs. (9a) and (9b),
one obtains the solution f0 = √

(μ − 1 + c2)/c1 = √
d1/d2,

which leads to the chemical potential μ = 1 − c2 + c1d1/d2.
The length of the BEC, denoted by L, can be determined
by the normalization condition

∫ L

0 dzf 2
0 = 1 (derived from∫

dr|�|2 = N ), resulting in L = d2/d1.
Equation (9b) requires f 2

0 = d1/d2, which leads to the
following conclusions.

(i) Since d1 is positive, d2 should also be positive, which
means that �1 > 0. Thus the stationary background of the
BEC can exist only when the pump field is red-detuned. This
conclusion agrees with the experimental result reported in
Ref. [11], where a blue-detuned pump laser was used and
an efficient suppression of matter-wave superradiance was
observed.

(ii) If the pump field is homogeneous in the transverse
directions, i.e., ρ → +∞ (d1 → 0), the second equation will
reduce to d2f

2
0 = 0, i.e., f0 = 0; in this case all atoms would

be recoiled into the states of external motion and no stationary
background of the condensate would exist. Thus the transverse
spatial distribution of the pump field [i.e., EP = EP (x,y)] is
necessary for the existence of the stationary background of the
BEC, which guarantees the viability of the assumption of the
weak recoil regime mentioned above.

We use the standard perturbation theory [30] to study the
linear and nonlinear excitations of the BEC and the scattered
field in the system. To this end, we perform the asymptotic ex-
pansions, F = f0 + ∑∞

n=1 εnf (n) and g = ∑∞
n=1 εng(n), with

ε being a small parameter, proportional to the typical amplitude
of the scattered field. All quantities on the right-hand side of
the expansions are assumed to be functions of the multiscale
variables tj = εj t (j = 0,1,2) and zj = εj z (j = 0,1). In
addition, γ is assumed to be of the order of ε. Then,
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Eqs. (7) and (8) become

i

(
∂

∂t0
+ γ

)
f (j ) + 1

2

∂2f (j )

∂z2
0

− c1f
2
0 (f (j ) + f (j )∗)

+ c2f0(g(j )e−iφ + g(j ) ∗eiφ) = M (j ), (10a)

i

(
∂

∂z0
+ 1

v

∂

∂t0

)
g(j ) + d2e

iφf0(f (j ) + f (j )∗) = N (j ) (10b)

(j = 1,2,3, . . .) with φ = �kz0 − �ωt0. The explicit expres-
sions for M (j ) and N (j ) (j = 1, 2, 3) are given in the Appendix.

Following the standard approach [31,32] for seeking the
collective Bogoliubov excitation (i.e., density fluctuation) in
the BEC, and for the scattered light field induced by the pump
field, we assume f (j ) = f

(j )
+ eiϕ + f

(j )∗
− e−iϕ with ϕ = qz0 −

ωqt0. Here q and ωq are, respectively, the dimensionless atomic
recoil momentum and the corresponding atomic recoil energy
induced by the light scattering process. Then, Eqs. (10) turn
into the following equations for f

(j )
+ , f

(j )
− , and g(j ):

i

(
∂

∂t0
+ q

∂

∂z0
+ γ

)
f

(j )
+ +

(
ωq − q2

2
− c1f

2
0

)
f

(j )
+

+ 1

2

∂2f
(j )
+

∂z2
0

− c1f
2
0 f

(j )
− + c2f0g

(j ) ∗eiξ = M (j )e−iϕ,

(11a)

i

(
∂

∂t0
− q

∂

∂z0
+ γ

)
f

(j )
− +

(
ωq + q2

2
+ c1f

2
0

)
f

(j )
−

− 1

2

∂2f
(j )
−

∂z2
0

+ c1f
2
0 f

(j )
+ − c2f0g

(j ) ∗eiξ = −M (j ) ∗e−iϕ,

(11b)

i

(
∂

∂z0
+ 1

v

∂

∂t0

)
g(j ) + d2f0(f (j ) ∗

+ + f
(j ) ∗
− )eiξ = N (j ),

(11c)

with ξ = φ − ϕ = (�k − q)z0 − (�ω − ωq)t0. Obviously,
phase matching is achieved if ξ ≈ 0, or

q = �k, ωq = �ω. (12)

That is to say, the Bogoliubov excitation of the BEC provides
the phase ϕ = qz0 − ωqt0 that may compensate the phase
mismatch between the laser field and the atomic transition.
Recalling that �k = (kP ∓ kS)a⊥ (“+” for the backward scat-
tering; “−” for the forward scattering) and �ω = ±�2/ω⊥
(“+” for the Stokes scattering; “−” for the anti-Stokes
scattering), we expect various efficient light scatterings can
occur in the system under the phase-matching condition (12).

Equations (11) can be solved order by order in a systematic
way. In the first-order (j = 1) approximation, by assuming that
the solution of Eqs. (11) (f (1)

+ , f
(1)
− , and g(1)∗) is proportional

to ei(kz0−ωt0), we obtain

(ω + ωq + iγ )2 − (k + q)2

×
[

(k + q)2

4
+ c1f

2
0 + c2d2f

2
0

k − ω/v

]
= 0. (13)
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FIG. 2. (Color online) (a) BEC structure factor S(q) as a function
of q. The red (blue) solid circle corresponds to the forward (backward)
scattering at (q,S(q)) ≈ (0,0) [(q,S(q)) ≈ (17,0.99)]. (b) Re(k)
(black solid line) and Im(k) (red dashed line) as functions of ω for
the backward Stokes scattering (q ≈ 17, ωq ≈ ωB ). (c) Re(k) (black
solid line) and Im(k) (red dashed line) as functions of ω for the
backward anti-Stokes scattering (q ≈ 17, ωq ≈ −ωB ).

Since k can be treated as a small deviation from q (≈�k), we
can use the approximation k + q ≈ q. As a result, we get from
Eq. (13)

k(ω) = ω

v
+ c2d2f

2
0 S(q)

(
1

ω + ωq + iγ − ωB

− 1

ω + ωq + iγ + ωB

)
, (14)

where S(q) = q2/(2ωB) is the BEC structure factor, and
ωB = q

√
q2/4+c1f

2
0 is the angular frequency of the Bogoliubov

excitation in the BEC. Equation (14) gives the linear dispersion
relation for a polariton, a quasiparticle that is a superposition
of the scattered light and matter wave of the system.

From the expression (14), we see that the BEC structure
factor S(q) significantly affects the dispersive property of
the system. Specifically, the system is weakly (strongly)
dispersive when S(q) is small (large). On the other hand,
S(q) ≈ q/(2

√
c1f0) when q2/4 
 c1f

2
0 , and S(q) ≈ 1 when

q2/4 � c1f
2
0 . Consequently, if the scattering field propagates

colinearly with the pump field (forward scattering), one has
q ≈ �k ≈ (kP − kS)a⊥, resulting in a small S(q), and hence
the system is weakly dispersive. However, if the scattering field
propagates anticolinearly with the pumping field (backward
scattering), one has q ≈ �k ≈ (kP + kS)a⊥, resulting in the
large S(q) and strongly dispersive system.

In Fig. 2(a) we show S(q) as a function of q. To be
specific, we take N = 500, �1 = 1.0 GHz, 	P = 1.0 MHz,
ρ = 1.0, and ω = 0. With these parameters, we have μ ≈
0.87, f0 ≈ 0.32, γ ≈ 0.06, and L ≈ 10. It is clear that S(q)
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increases rapidly as long as q is small (q � 5), and saturates
by approaching 1.0 when q becomes large (q � 10). For
the forward scattering q ≈ 0 (the red solid circle) one has
S(q) ≈ 0, and for the backward scattering q ≈ 17 (the blue
solid circle) one has S(q) ≈ 0.99.

Note that there are two terms in parentheses in the linear
dispersion relation (14), which correspond, respectively, to
the Stokes and anti-Stokes scattering; the two terms have
very different contributions to the nonlinear evolution of the
polariton in the system, hence in what follows we discuss them
separately.

A. Stokes scattering

In this case, ωP > ωS . One has ωq ≈ �ω = �2/ω⊥ > 0
and hence ωq − ωB 
 ωq + ωB . Thus the second term in
parentheses in Eq. (14) is much smaller than the first term
and can be neglected. As a result, we get

k(ω) ≈ ω

v
+ c2d2f

2
0 S(q)

1

ω + ωq + iγ − ωB

. (15)

From this result it is easy to show that the imaginary part of k,
denoted by Im(k), is negative around ω = 0; this means that
the scattering field has a gain. The solution in this order is
given by f

(1)
+ = Aei(kz0−ωt0), f

(1)
− = aAei(kz0−ωt0), and g(1)∗ =

bAei(kz0−ωt0)e−iξ , with

a = X

c1f
2
0 + c2d2f

2
0 /(k − ω/v)

, b = −d2f0(1 + a)

k − ω/v
,

where X = ω + ωq + iγ − q2/2 − c1f
2
0 − c2d2f

2
0 /(k −

ω/v), and A is a yet to be determined envelope function.
Shown in Fig. 2(b) are Re(k) (black solid line) and Im(k)

(red dashed line) as functions of ω for the backward Stokes
scattering (q ≈ 17, ωq ≈ ωB), which describe the dispersion
[Re(k)] and gain [in the region for Im(k) < 0] or loss [in
the region for Im(k) > 0], respectively. We see that a steep
dispersion with positive slope and a maximum gain can be
observed near ω = 0.

At the next order (j = 2), the solvability condition of
Eq. (11) requires

i

(
∂A

∂z1
+ 1

Vg

∂A

∂t1

)
= 0, (16)

where Vg is the group velocity of the envelope A, given by

V −1
g = ∂k(ω)

∂ω
= 1

v
− c2d2f

2
0 S(q)

(δ − iγ )2

(δ2 + γ 2)2

×
[

1 − 2(δ − iγ )

(δ2 + γ 2)
ω

]
, (17)

with δ = ωq − ωB . Since 1/v is very small [v = c/(a⊥ω⊥) ≈
4.4 × 1011 for the adopted values of the parameters], Re(Vg)
is negative around ω = 0, corresponding to a superluminal
propagation of the polariton.

The evolution of the envelope function A in the nonlinear
regime can be obtained by the solvability condition in the
third-order approximation (j = 3) of Eq. (11), with the result

given by

i
∂A

∂z2
+ D

2

∂2A

∂t2
1

+ W |A|2Ae−2α̃z2 = 0, (18)

with

D = ∂2k(ω)

∂ω2
= 2c2d2f

2
0 S(q)

(δ − iγ )3

(δ2 + γ 2)3
, (19a)

W = − 1

Z

{
Y [c1(1 + 2a2) − c2b

2]

−
(

c1f
2
0 + c2d2f

2
0

k − ω/v

)
[c1(2 + a2) − c2b

2]a

+
(

ω + ωq + iγ + q2

2

)
c2d2f0

k − ω/v
(1 + a2)b

}
, (19b)

where Y=ω+ωq +iγ +q2/2+c1f
2
0 +c2d2f

2
0 /(k − ω/v),

Z= (ω+ωq +iγ + q2/2)[q + c2f0b/(k − ω/v)] + q[c1f
2
0 +

c2d2f
2
0 /(k − ω/v)](1 − a), and α̃ = ε−2α = ε−2Im(k). The

real parts of the coefficients D and W [i.e., Re(D) and
Re(W )] characterize the group-velocity dispersion and Kerr
nonlinearity of the system, respectively.

B. Anti-Stokes scattering

In this case, ωP < ωS . One has ωq ≈ �ω = −�2/ω⊥ < 0
and hence ωq + ωB 
 ωq − ωB . Thus the first term in the
parentheses of Eq. (14) is much smaller than the second one
and can be neglected. As a result, Eq. (14) reduces to

k(ω) ≈ ω

v
− c2d2f

2
0 S(q)

1

ω + ωq + iγ + ωB

. (20)

It is straightforward to show that the imaginary part, Im(k), is
positive around ω = 0; therefore, the scattering field is being
attenuated during its propagation. Figure 2(c) shows Re(k)
(black solid line) and Im(k) (red dashed line) as functions of ω

for the backward anti-Stokes scattering (q ≈ 17, ωq ≈ −ωB),
describing the dispersion [Re(k)] and gain [in the region for
Im(k) < 0] or loss [in the region for Im(k) > 0], respectively.

In the second-order approximation (j = 2), the solvability
condition of Eq. (11) results in Eq. (16) again, but now the
group velocity is given by

V −1
g = 1

v
+ c2d2f

2
0 S(q)

(δ − iγ )2

(δ2 + γ 2)2

[
1 − 2(δ − iγ )

(δ2 + γ 2)
ω

]
.

(21)

In contrast with the Stokes scattering, Re(Vg) for the anti-
Stokes scattering is positive around ω = 0, which means that
the polariton in this case has a subluminal propagation velocity.

In the third-order approximation (j = 3), one can also
derive the evolution equation for the envelope function A

from Eq. (11), which has the same form as Eq. (18) but the
coefficient of the group-velocity dispersion is replaced by

D = −2c2d2f
2
0 S(q)

(δ − iγ )3

(δ2 + γ 2)3
. (22)

The latter has a different sign as compared to the case of the
Stokes scattering.
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IV. GIANT KERR NONLINEARITY
AND POLARITONIC SOLITONS

The possibility to observe nonlinear optical effects is one of
the most fascinating aspects of ultracold quantum gases. Since
the BEC in our setup is illuminated by a laser, the nonlinear
optical properties are affected not only by the atom-atom
interaction but also by the atom-photon coupling. Thus, one
might expect to produce an enhanced nonlinear optical effect
in the present system, that is not available in conventional
quantum gases.

For not too high light intensity, the nonlinear optical effect
can be estimated by using the relation n = n0 + n2I , where n

is the total refractive index, n0 is the linear refractive index,
n2 is the Kerr coefficient, and I = |E|2/2 is the light intensity.
In the system at hand, it is straightforward to show that n2 is
determined by the relation n2 = −[c/(ωSE

2
0b

2a⊥)]W , with W

given in Eq. (19b). Figure 3(a) shows the real (black solid line)
and imaginary (red dashed line) parts of n2, i.e., Re(n2) and
Im(n2), as functions of δ for the backward scattering (q ≈ 17).
The values of the physical parameters used in this figure
are the same as those in Fig. 2 with ω = 0. One can see that
the minimal value of Re(n2) is about 1.9 × 10−8 m2 V−2 at
δ ≈ ±1.3. In Fig. 3(b) we show the same functions for the
forward scattering (q ≈ 0). The minimal value of Re(n2) is
about 1.6 × 10−5 m2 V−2 at δ = 0. Because a weak electric
field is implied by the assumed small recoil energy regime of
the superradiance, n0 is still much larger than n2I .

From the above result, one can deduce that the Kerr
coefficient n2 in the present system is at least 15 orders
of magnitude larger than that measured in usual nonlinear
optical materials, such as optical fibers [33]. It is also at
least two orders of magnitude larger than that obtained in a
BEC-based EIT system reported by Hau et al. [19], where
n2 ≈ 1.05 × 10−7 m2 V−2 was shown to be possible. The
physical reasons for the giant Kerr nonlinearity obtained here
are mainly due to the high atomic density and the strong
photon-atom and atom-atom interaction in the BEC.

Now we turn to the formation and propagation of super-
luminal and subluminal polaritonic solitons in the system. In
contrast with the forward scattering, the backward scattering
can provide a larger dispersion which is required for balancing
the Kerr nonlinearity, and hence it is more favorable for the
formation and propagation of polaritonic solitons. Combining
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FIG. 3. (Color online) Re(n2) (black solid line) and Im(n2) (red
dashed line) as functions of δ for the backward scattering (q ≈ 17)
(a) and the forward scattering (q ≈ 0) (b). In both panels, ω = 0.

Eqs. (16) and (18) we obtain

i
∂U

∂z
+ Re(D)

2

∂2U

∂τ 2
+ Re(W )|U |2U = −iαU, (23)

where U = εAe−αz and τ = t − z/Re(Vg).
Equation (23) has the form of the nonlinear Schrödinger

equation, with the term on the right-hand side describing the
effect of the gain or loss. While deriving Eq. (23) we have
assumed that the imaginary parts of Vg , D, and W , are much
smaller than their corresponding real parts, and hence they
were neglected. This assumption is justified under the condi-
tions γ 
 1 (which can be achieved by satisfying |	p|2/�2 

1) and δ � γ . In addition, due to |α| 
 1 the gain or loss term
on the right-hand side of Eq. (23) can be neglected in the first
order. Thus, one can have a stable bright soliton solution U =√

2/|Re(W )| sech[
√

2/|Re(D)| τ ]eiσz if the coefficients fulfill
the condition Re(DW ) > 0 or, alternatively, a stable dark
soliton solution U = √

2/|Re(W )| tanh[
√

2/|Re(D)| τ ]eiσz if
the coefficients satisfy Re(DW ) < 0. Here σ = 1 (σ = −1) if
Re(D) > 0 [Re(D) < 0]. Since W can be turned to be either
positive or negative by changing the values of the parameters,
the system can support bright or dark solitons.

By returning to the original (i.e., dimensional) variables,
we can write the following expression for the wave function:

� = N1/2

a
3/2
⊥

[f0 + Uei(q+k)z/a⊥−i(ωq+ω)ω⊥t

+ a∗U ∗e−i(q+k)z/a⊥+i(ωq+ω)ω⊥t ]e−iμω⊥t e−(x2+y2)/(2a2
⊥),

(24)

and the scattered field ES = exESe
ikSz−iωS t + c.c., with

ES = E0b
∗U ∗e−ikz/a⊥+iωω⊥t e−(x2+y2)/(2ρ2

Sa2
⊥). (25)

From the solution (24) we see that the matter waves (the
collective waves of recoiled atoms) consist of two parts,
the left- and right-moving parts along the z axis. For the
backward scattering, one has |a| 
 1 and |b| ∼ 1 [e.g., a ≈
(1.5 − i2.0) × 10−4 and b ≈ 3.0 − i0.1 with δ = −1.5]. Thus
almost all recoiled atoms are moving to the right due to
the presence of the pump field, while the scattered field is
propagating to the left [see Fig. 1(b)].

Let us now choose a set of parameters to demonstrate that
the system we proposed indeed supports different types of
polaritonic solitons. Since we are interested in the backward
scattering (which has a stronger dispersion that favors the
formation of solitons), we fix q ≈ 17 and hence S(q) ≈ 1.
For the Stokes scattering, using the parameters given in
Fig. 2 and δ = −1.5, we obtain that k ≈ −(6.18 + i0.23) ×
10−2, vg ≈ −24.31 + i1.86, D ≈ −(5.43 + i0.62) × 10−2,
and W ≈ −1.85 − i0.17. One can see that the imaginary
parts of these quantities are indeed much smaller than their
corresponding real parts. Furthermore, Eq. (23) supports a
bright polaritonic soliton solution U ≈ 1.04 sech[6.07(t +
0.04z)]e−iz, propagating with a superluminal group velocity:

Vg ≈ −1.59 × 10−2 m s−1. (26)

For the anti-Stokes scattering, we obtain that k ≈ (6.18 +
i0.23) × 10−2, vg ≈ 24.31 − i1.86, D ≈ (5.43 + i0.62) ×
10−2, and W ≈ −1.04 + i0.28. In this case Eq. (23) supports
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FIG. 4. (Color online) (a) Bright soliton profile of the scattering field, |ES/E0|, for the backward Stokes scattering as a function of ω⊥t .
The black solid line, red dashed line, and blue dotted line are for the propagating distance z = 0, 5 a⊥, and 10 a⊥, respectively. The propagating
velocity of the soliton is negative (shown by the gray arrow), corresponding to a superluminal propagation. (b) Three-dimensional plot of the
bright soliton. (c) Dark soliton profile of the scattering field for the backward anti-Stokes scattering. The black solid line, red dashed line, and
blue dotted line are for the propagating distance z = 0, 5 a⊥, and 10 a⊥, respectively. The group velocity of the soliton is positive (shown by
the gray arrow), corresponding to a subluminal propagation. (d) Three-dimensional plot of the dark soliton.

the dark polaritonic soliton solution, U = 1.39 tanh[6.07(t −
0.04z)]e−iz, propagating with a subluminal velocity:

Vg ≈ 1.59 × 10−2 m s−1. (27)

In order to confirm the analytical results obtained above,
we have carried out numerical simulations on the propagation
of polaritonic solitons based on Eqs. (7) and (8), with the
results shown in Fig. 4. The maximum propagation distance
is z = 10a⊥ ≈ 22 μm, corresponding to the length of the
BEC. In Fig. 4(a) we show the bright soliton profile of the
scattered field, |ES/E0|, for the backward Stokes scattering
as a function of ω⊥t . The black solid line, red dashed line,
and blue dotted line are for the propagation distance z = 0,
5 a⊥, and 10 a⊥, respectively. The propagation velocity of the
soliton in the Stokes scattering is negative, indicated by the
gray arrow, which means a superluminal propagation. Shown
in Fig. 4(b) is the three-dimensional plot of the bright soliton
given in Fig. 4(a). In Fig. 4(c) we show the dark soliton
profile of the scattering field for the backward anti-Stokes
scattering, with the black solid line, red dashed line, and blue
dotted line being for z = 0, 5 a⊥, and 10 a⊥, respectively.
The group velocity of the dark soliton is positive (shown by
the gray arrow), corresponding to a subluminal propagation.
Figure 4(d) is the three-dimensional plot of the dark soliton
given in Fig. 4(c). We see that both the bright and the dark
polaritonic solitons are fairly stable during their propagation in
the BEC.

V. DISCUSSIONS AND SUMMARY

In this paper we have proposed a scheme for generating gi-
ant Kerr nonlinearity and polaritonic solitons via matter-wave

superradiant scattering. The system we suggest is a long
cigar-shaped BEC, pumped by a red-detuned laser field
with a space-dependent intensity distribution in transverse
directions. The pump and the scattered fields propagate
along the longitudinal direction. We have shown that due to
the atom-photon and atom-atom interactions in the system
it is possible to produce a giant nonlinear optical effect.
Furthermore, we have shown that a backward scattering of
the laser field from the BEC is favorable for the formation and
stable propagation of polaritonic solitons. In addition, we have
demonstrated that in the case of backward Stokes (anti-Stokes)
scattering the system can support robust bright (dark) po-
laritonic solitons propagating with superluminal (subluminal)
velocity.

We expect that the giant Kerr nonlinearity and the
polaritonic solitons in the superradiant scattering of BEC
predicted in this work may have potential applications in
nonlinear atom optics and related fields. The theoretical
approach presented here can be applied to other nonlinear
problems (e.g., four-wave mixing and generation and prop-
agation of two coupled polaritons) related to matter-wave
superradiance.
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APPENDIX: EXPRESSIONS OF M ( j ) and N ( j ) ( j = 1, 2, 3)

In the first order (j = 1), M (1) = N (1) = 0. In the second order (j = 2),

M (2) = −i
∂f (1)

∂t1
− ∂2f (1)

∂z0∂z1
+ c1f0(2|f (1)|2 + f (1) 2) − c2f0|g(1)|2 − c2f

(1)(g(1)∗ei� + g(1)e−i�), (A1)

N (2) = −i
∂g(1)

∂z1
− d2|f (1)|2ei� − d2f0(f (1)∗ + f (1))g(1). (A2)

In the third order (l = 3),

M (3) = −i
∂f (2)

∂t1
− i

∂f (1)

∂t2
− ∂2f (2)

∂z0∂z1
− 1

2

∂2f (1)

∂z2
1

− ∂2f (1)

∂z0∂z2
+ c1[2f0(f (1)f (2)∗ + f (1)f (2) + f (1)∗f (2)) + |f (1)|2f (1)]

− c2(f0g
(1)g(2)∗ + f0g

(1)∗g(2) + f (1)|g(1)|2) − c2(f (1)g(2)∗ + f (2)g(1)∗)ei� − c2(f (1)g(2) + f (2)g(1))e−i�, (A3)

N (3) = −i
∂g(2)

∂z1
− i

∂g(1)

∂z2
− d2(f (1)f (2)∗ + f (1)∗f (2))ei� − d2[f0(f (1)∗ + f (1))g(2) + f0(f (2)∗ + f (2))g(1) + |f (1)|2g(1)]. (A4)
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