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Abstract
We investigate the fluctuations of the condensate in the ideal and weakly
interacting Bose gases confined in a box of volume V within a canonical
ensemble. A canonical ensemble is developed to describe the behaviour of the
fluctuations when different methods of approximation to the weakly interacting
Bose gases are used. Research shows that the fluctuations of the condensate
exhibit anomalous behaviour for the interacting Bose gas confined in a box.

1. Introduction

The experimental achievement of Bose–Einstein condensation (BEC) in dilute alkali atoms [1],
spin-polarized hydrogen [2] and recently in metastable helium [3] has enormously stimulated
theoretical research [4] into ultracold bosons. In particular, fluctuations

〈
δ2N0

〉
of the mean

ground state occupation number N0 have been recently thoroughly investigated in a series of
papers. Apart from the intrinsic theoretical interest, it is foreseeable that such fluctuations will
become experimentally testable in the near future [5].

It is well known that within the grand canonical ensemble the fluctuations of the
condensate are given by

〈
δ2N0

〉 = N0 (N0 + 1) ∼ V 2, implying that δN0 becomes of
order N when the temperature approaches zero. To avoid these sorts of unphysically large
condensate fluctuations, a canonical (or microcanonical) ensemble has to be used to investigate
the fluctuations of the condensate. Within microcanonical and canonical ensembles, the
fluctuations of the condensate have been studied in a systematic way in the case of the
ideal Bose gas [6–13]. Recently, the question of how interatomic interactions affect the
fluctuations of the condensate has been the object of several theoretical investigations [14–19].
Giorgini et al [14] found the anomalous behaviour of the fluctuations in a weakly interacting
Bose gas confined in a box within the traditional particle-number-non-conserving Bogoliubov
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approach. In [14] the fluctuation of the condensate follow the law
〈
δ2N0

〉 ∼ V 4/3. However,
Idziaszek et al [15] considered that the fluctuations are proportional to the volume. Recently,
Kocharovsky et al [18] supported and extended the results of the work of Giorgini et al [14]
using the particle-number-conserving operator formalism.

Although the correction to the ground state occupation number due to interatomic
interaction has been clearly discussed within a grand canonical ensemble [20] and a canonical
ensemble [21], the role of the interaction on the condensate fluctuations of the weakly
interacting Bose gas is still an open and unsolved problem. Different from the ground state
occupation number, different models of describing the weakly interacting Bose gas will lead
to vastly different predictions concerning the fluctuations of the condensate.

The purpose of this paper is to present a unified method of calculating the fluctuations
of the condensate when different methods of approximation to the weakly interacting Bose
gases are used. Within the canonical ensemble we give the distribution function of the ground
state occupation number for the ideal and interacting boson system in a box. We obtain the
fluctuations of the condensate from the distribution function. In particular, we found that the
distribution function is not a Gaussian function in the case of an interacting boson system in
a box. The paper is organized as follows. Section 2 is devoted to outlining the canonical
ensemble, which is developed to discuss the fluctuations of the condensate for the ideal Bose
gas in a box. In section 3 we investigate the fluctuations of the interacting Bose gas based on
the lowest-order perturbation theory. In section 4 the fluctuations are calculated based on the
Bogoliubov theory. Finally, we give a discussion and summary of the results in section 5.

2. Mean ground state occupation number and fluctuations in the ideal Bose gases

Let us start our investigation on the fluctuations of the ideal Bose gases within the framework
of a canonical ensemble. According to the canonical ensemble the partition function of the N
non-interacting bosons in a box is given by

Zideal[N ] =
∑

∑
Nn=N

exp
[
−β

{∑
Nnεn

}]
(1)

where Nn and εn are the occupation numbers and energy level of the state n = {nx, ny, nz},
respectively. β = 1/kBT . In (1) the energy level of the system takes the form

εn = π2h̄2
(
n2
x + n2

y + n2
z

)
2mL2

. (2)

Separating out the ground state n = 0 from the state n �= 0, we have

Zideal[N ] =
N∑

N0=0

{exp [−βN0ε0]Z0 (N −N0)} (3)

whereZ0 (N −N0)denotes the partition function of a fictitious system comprisingN−N0 non-
interacting bosons. Assuming A0 (N −N0) denotes the free energy of the fictitious system,

A0 (N −N0) = −kBT lnZ0 (N −N0). (4)

From (3) and (4) the partition function Zideal[N ] becomes

Zideal[N ] =
N∑

N0=0

exp [q (N,N0)] (5)
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where q (N,N0) = −βN0ε0 − βA0 (N −N0). Obviously exp [q (N,N0)] /Zideal[N ]
represents the probability of findingN0 atoms in the condensate. We will give the distribution
function of the ground state occupation number in the following.

Let us first investigate the largest term in the sum of the partition function Zideal[N ].
Assume the number of condensed atoms is Np0 in the largest term of the partition
function Zideal[N ]. The largest term Z0

(
N −Np0

)
is determined by the requirement that

∂
∂N0
q (N,N0) |N0=Np0 = 0, i.e.

−βε0 − β ∂

∂N
p

0

A0
(
N −Np0

) = 0. (6)

The calculation of the free energy A0
(
N −Np0

)
is non-trivial because there is a

requirement that the number of particles should be N −Np0 in the summation of the partition
function Z0

(
N −Np0

)
. Using the saddle-point method developed by Darwin and Fowler [22]

it is straightforward to obtain the free energy A0
(
N −Np0

)
of the fictitious system.

A0
(
N −Np0

) = (
N −Np0

)
kBT ln zp0 − V kBT

λ3
g5/2

(
z
p

0

)
(7)

where λ =
√

2πβh̄2/m is the thermal wavelength. zp0 is the fugacity of the N − Np0 non-
interacting bosons and is determined by the equation

N −Np0 =
∑
n�=0

1

exp [εn/kBT ]
(
z
p

0

)−1 − 1
= V

λ3
g3/2

(
z
p

0

)
. (8)

From (7) and (8) one finds

−β ∂

∂N
p

0

A0
(
N −Np0

) = ln zp0 . (9)

Combining (6) and (9) one obtains ln zp0 = βε0. Therefore, the most probable value Np0 is
determined by

N
p

0 = N −
∑
n�=0

1

exp [(εn − ε0) /kBT ] − 1
. (10)

N
p

0 is exactly the mean occupation number of the condensate atoms in the frame of the grand
canonical ensemble. For sufficiently large N , the sum

∑N
N0=0 in (3) may be replaced by the

largest term, for the error in doing so will be statistically negligible. In this case, (10) shows
the equivalence between the canonical ensemble and grand canonical ensemble for large N .
From (10), below the critical temperature, Np0 is determined by

N
p

0 = N − V

λ3
ζ
(

3
2

) = N
(

1 −
(
T

T 0
c

)3/2
)

(11)

where

T 0
c = 2π[

ζ
(

3
2

)]2/3

h̄2

mkB

(
N

V

)2/3

is the transition temperature of the ideal Bose gas.
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Other terms in (5) will contribute to the fluctuations of the condensate, and lead to the
deviation of the mean occupation number 〈N0〉 from the most probable value Np0 . When
N0 �= Np0 , ∂

∂N0
q (N,N0) �= 0. Assuming

∂

∂N0
q (N,N0) = α (N,N0) (12)

and repeating the saddle-point method, one obtains

N0 = N −
∑
n�=0

1

exp [(εn − ε0) /kBT ] exp [−α (N,N0)] − 1
. (13)

From (11) and (13) one obtains

α (N,N0) = − λ
6

V 2

(
N0 −Np0

)2

4π
θ
(
N0 −Np0

)
(14)

where θ
(
N0 −Np0

)
is a Sign function. θ

(
N0 −Np0

) = 1 whenN0 > N
p

0 , and θ
(
N0 −Np0

) =
−1 whenN0 < N

p

0 . To obtain (14) we have used the expansions g3/2 (1 − δ) ≈ ζ ( 3
2

)−2
√
πδ

[23] and the approximation exp [−α (N,N0)] ≈ 1−α (N,N0). From (12) and (14) one easily
obtains the following result for q (N,N0):

q (N,N0) =
∫ N0

N
p

0

α (N,N0) dN0 + q
(
N,N

p

0

) = − λ6

12πV 2

∣∣N0 −Np0
∣∣3 + q

(
N,N

p

0

)
. (15)

The partition function Zideal[N ] is thus

Zideal[N ] =
N∑

N0=0

{
exp

[
q
(
N,N

p

0

)]
Gideal (N,N0)

}
(16)

where we have introduced a distribution function Gideal (N,N0),

Gideal (N,N0) = exp

[
− λ6

12πV 2

∣∣N0 −Np0
∣∣3]. (17)

Assuming P (N0|N) is the probability of finding N0 atoms in the condensate, the
distribution function Gideal (N,N0) represents the ratio P (N0|N)/P

(
N
p

0 |N), i.e. the relative
probability of finding N0 atoms in the condensate. From (16) and (17) one obtains the mean
occupation number 〈N0〉 and fluctuations

〈
δ2N0

〉
within the canonical ensemble,

〈N0〉 =
∑N
N0=0N0Gideal (N,N0)∑N
N0=0Gideal (N,N0)

(18)

〈
δ2N0

〉 = 〈
N2

0

〉− 〈N0〉2 =
∑N
N0=0N

2
0Gideal (N,N0)∑N

N0=0Gideal (N,N0)
−
(∑N

N0=0N0Gideal (N,N0)∑N
N0=0Gideal (N,N0)

)2

. (19)

From (11) and (17)–(19) it is easy to obtain 〈N0〉 and
〈
δ2N0

〉
of the non-interacting Bose gases

in a box. At the critical temperature T 0
c , Np0 = 0. Thus

Gideal
(
T = T 0

c

) = exp

[
− λ6

0

12πV 2
N3

0

]
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Figure 1. Temperature dependence of the mean ground state occupation number for an ideal Bose
gas confined in a box within the canonical ensemble. The full curve shows 〈N0〉 /N within the grand
canonical ensemble (or Np0 /N in the canonical ensemble). When N → ∞, the mean ground state
occupation number of the canonical ensemble coincides with that of the grand canonical ensemble.

where λ0 is the thermal wavelength at T 0
c . From (18) and (19) one obtains the analytical result

for the condensate fluctuations at T 0
c :

〈
δN2

0

〉
T=T 0

c
=

 1

3#
(

4
3

) −
(
#
(

5
3

)
2#

(
4
3

)
)2

(12π

λ6
0

)2/3

V 4/3 (20)

where #(n) = ∫∞
0 e−t tn−1 dt is the Gamma function. #

(
4
3

) = 0.893 and #
(

5
3

) = 0.903.
Equation (20) clearly shows that there is anomalous behaviour for the fluctuations of the
condensate. When T → 0, from (17) one findsGideal (N,N0)→ 0 whenN0 �= N . Therefore,
when T → 0 one obtains 〈N0〉 → N and 〈δ2N0〉 → 0.

In figure 1 we plot 〈N0〉 /N as a function of temperature for the ideal Bose gases in a box.
The full curve displays the mean ground state occupation number within the grand canonical
ensemble (orNp0 ). WhenN > 104, the mean ground state occupation number of the canonical
ensemble agrees well with that of the grand canonical ensemble. Obviously, in the case of
N → ∞, the mean ground state occupation number of the canonical ensemble coincides with
that of the grand canonical ensemble.

In figure 2 we plot numerical result of δN0 =
√〈
δ2N0

〉
(thick full curve) for the ideal Bose

gas with N = 1000 atoms confined in a three-dimensional box. The broken line shows the
result of [14], where the fluctuations are given by

〈
δ2N0

〉 = 2A

(
mkBT

h̄2

)2

V 4/3. (21)

The coefficient in (21) is A = 2/π4 × %n�=01/n4 = 0.105. The broken line is larger
than our result because of the approximation in [14]. In [14]

〈
δ2N0

〉 = ∑
n�=0 f

2
n , where
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Figure 2. Temperature dependence of δN0 for the ideal Bose gas confined in a box. The thick
full curve displays the numerical result of (19), while the thin full line shows the analytical result
(22) for δN0 below Tm (The arrow marks Tm which corresponds to the maximum condensate
fluctuations.) The broken line is obtained from (21) which comes from [14]. The dotted curve
displays the numerical result of Wilkens and Weiss [9].

fn = (exp (εn/kBT )− 1)−1. For the convenience of calculations, fn is approximated as
εn/kBT for low-energy atoms. However, this approximation is also used for the atoms whose
energy level is larger than kBT . Obviously, this approximation will lead to the fluctuations
becoming larger. On the other hand, equation (21) holds in the canonical ensemble except
near and above Tc, while our analysis also holds for the temperature near T 0

c . In figure 2 the
dotted curve shows the numerical result of Wilkens et al [9].

In figure 2 the arrow marks the temperature Tm which corresponds to the maximum
fluctuations

〈
δ2N0

〉
max. Below the temperature Tm, from (19), one obtains the analytical result

for the fluctuations of the condensate.〈
δ2N0

〉 = A(mkBT

h̄2

)2

V 4/3. (22)

It is interested to find that the coefficient differs by a factor two, compared with (21). The thin
full line shows (22) in figure 2.

We should note that our results are reliable, although the disputable saddle-point method
is used to investigate the fluctuations of the condensate. It is well known that the applicability
of the saddle-point approximation for the condensed Bose gases has been the subject of a long
debate [7, 24]. Recently, the analysis in [12] showed that the fluctuations are overestimated,
and do not appear to vanish properly with temperature using the usual saddle-point method.
Our discussions for fluctuations are reasonable for two reasons.

(a) As proved in [13], the free energy (7) of the non-interacting Bose gases is still correct,
even when dealing carefully with the failure of the standard saddle-point method below
the critical temperature.

(b) In the usual statistical method 〈N0〉 and
〈
δ2N0

〉
are obtained through the first and second

partial derivatives of the partition function, respectively.
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When the saddle-point approximation is used to calculate the partition function of the
system, the error will be overestimated in the second partial derivative of the partition function
so that we cannot obtain correct fluctuations of the condensate with the usual method. However,
in this paper we have used the reliable result (7). The distribution function of the ground
state occupation number is obtained directly from (7), without resorting to the second partial
derivative of the partition function. 〈N0〉 and

〈
δ2N0

〉
are obtained from the distribution function

in this paper.

3. Fluctuations of the condensate based on the lowest-order perturbation theory

In the case of interacting Bose gases, the role of interactions on the fluctuations of the
condensate is still an open and unsolved problem. Giorgini et al [14] predicted the anomalous
behaviour of the fluctuations in a weakly interacting Bose gas confined in a box, while
Idziaszek et al [15] considered that the fluctuations are normal. Research has shown that
different approximation models for the interacting Bose gases will lead to different predictions
concerning the fluctuations of the condensate. The method developed to obtain the fluctuations
of the ideal Bose gas in this paper can be used straightforwardly to discuss the fluctuations of
the interacting Bose gases when different models of approximation are adopted.

Let us first discuss the fluctuations of the condensate in the case of the lowest-order
perturbation theory, which is also discussed in [15]. In terms of the lowest-order perturbation
theory, the partition function of the system within the canonical ensemble is given by

Zint[N ] =
∑

∑
Nn=N

exp
[
−β

(∑
Nnεn + Eint

)]
(23)

where the interaction energy of the system takes the form [25, 26]

Eint = 4πah̄2

mV

(
N2 − 1

2N
2
0

)
. (24)

In (24) a is the scattering length. Separating out the ground state n = 0 from the state n �= 0,
one obtains the following form for the partition function:

Zint[N ] =
N∑

N0=0

{exp [−βN0ε0 − βEint]Z0 (N −N0)} (25)

whereZ0 (N −N0) denotes the partition function of a fictitiousN−N0 non-interacting bosons.
Using the free energy A0 (N −N0) of the fictitious system, the partition function is thus

Zint[N ] =
N∑

N0=0

exp [q (N,N0)] (26)

where q (N,N0) takes the form

q (N,N0) = −βN0ε0 − βEint − βA0 (N −N0). (27)

Analogously to the case of ideal Bose gases, let us first investigate the largest term in the
sum of Zint[N ]. The largest term is determined by the requirement

∂

∂N0
q (N,N0) |N0=Np0 = 0.



4210 H Xiong et al

Therefore, one obtains the most probable value Np0 of the interacting bosons.

N
p

0 = N −
∑
n�=0

1

exp [βεn]
(
z
p

0

)−1 − 1
(28)

where zp0 is determined by

ln zp0 = βε0 + β
∂

∂N
p

0

Eint = βε0 − 2aλ2N
p

0

V
. (29)

From (28) and (29) one obtains

N
p

0 � N − V

λ3

[
ζ
(

3
2

)− 2
√
π

(
2aλ2N

p

0

V

)1/2
]
. (30)

Other terms in (26) will contribute to the fluctuations of the system. Assuming
∂
∂N0
q (N,N0) = α (N,N0), one obtains the result for N0

N0 = N −
∑
n�=0

1

exp [βεn] (z0)
−1 − 1

(31)

where z0 is determined by

ln z0 = βε0 − 2aλ2N0

V
+ α (N,N0). (32)

From (28), (29) and (31), (32) it is straightforward to obtain the distribution function
Gint (N,N0) of the interacting Bose gases.

Gint (N,N0) = Gideal (N,N0) Rint (N,N0) (33)

whereGideal (N,N0) is the distribution function (17) of the ideal Bose gases, whileRint (N,N0)

takes the form

Rint (N,N0) = R1 (N,N0) R2 (N,N0) R3 (N,N0). (34)

In (34),

R1 (N,N0) = exp

[
−
(
ζ
(

3
2

))3/2

√
2π

(
a

λ0

N
p

0

N

)1/2 (
N0 −Np0

)2

Nt2
θ
(
N0 −Np0

)]
(35)

R2 (N,N0) = exp

[
ζ
(

3
2

)
a

λ0

N2
0 − (

N
p

0

)2

Nt

]
(36)

R3 (N,N0) = exp

[
−
∣∣∣∣∣2ζ

(
3
2

)
a

λ0

N
p

0

(
N0 −Np0

)
Nt

∣∣∣∣∣
]
. (37)

We should note thatGint (N,N0) is not a Gaussian distribution function because of the non-
Gaussian factors R1 (N,N0) and R2 (N,N0), while Idziaszek et al [15] utilized the Gaussian
distribution as an assumption to investigate the fluctuations of the interacting system. In
Rint (N,N0), R1 (N,N0) comprises the factor (a/λ0)

1/2 and represents the leading correction
to the distribution function due to interatomic interaction, whileR2 (N,N0) andR3 (N,N0) are
high-order corrections to the distribution function. We should note that the leading contribution
R1 (N,N0) is not a Gaussian function.
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Figure 3. Temperature dependence of δN0 for interacting Bose gases based on the lowest-order
perturbation theory. The thick full curve displays the numerical result for the ideal Bose gas. We
give the numerical result for the repulsive interactions with a/λ0 = 1 × 10−3, 2 × 10−3, 5 × 10−3,
1 × 10−2. The crossover from interacting to non-interacting Bose gases is clearly demonstrated.
The thin full line is obtained from (8) in [14].

From the distribution functionGint (N,N0) the mean occupation number and fluctuations
of the condensate are determined by

〈N0〉 =
∑N
N0=0N0Gint (N,N0)∑N
N0=0Gint (N,N0)

(38)

〈
δ2N0

〉 =
∑N
N0=0N

2
0Gint (N,N0)∑N

N0=0Gint (N,N0)
−
(∑N

N0=0N0Gint (N,N0)∑N
N0=0Gint (N,N0)

)2

. (39)

From (30), (33) and (38), (39) we can obtain the fluctuations of the interacting boson gases.
In figure 3 we give the numerical result for the repulsive interactions with a/λ0 = 1 × 10−3,
2 × 10−3, 5 × 10−3, 1 × 10−2. The crossover from interacting to ideal Bose gases (thick full
curve) is clearly demonstrated in figure 3, while in [14] the fluctuations (thin full line) of the
interacting Bose gases are irrelevant to the scattering length. When a → 0 it is easy to recover
the fluctuations of the ideal Bose gases. According to (39) the leading contributions to the
fluctuations are anomalous, i.e. proportional toN4/3, while there are also normal contributions
proportional toN due to interatomic interaction. This conclusion contradicts that of [15] which
predicts normal behaviour, where the lowest-order perturbation theory is also used to discuss
the fluctuations of the condensate.

4. Fluctuations of the condensate based on Bogoliubov theory

Let us investigate the fluctuations of the condensate within the framework of the Bogoliubov
theory of a uniform weakly interacting Bose gas confined in a box. According to Bogoliubov
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theory [27, 28], the total number of particles out of the condensate is given by

NT =
∑
n�=0

Nn =
∑
n�=0

(
u2

n + v2
n

)
fn (40)

where

u2
n + v2

n =
((
εB

n

)2
+ g2n2

0

)1/2

2εB
n

(41)

unvn = −gn0

2εB
n

(42)

and fn is the number of quasi-particles present in the system at thermal equilibrium

fn = 1

exp
[
εB

n/kBT
]− 1

. (43)

In addition, the energy of the quasi-particles entering (41) and (42) is given by the well known
Bogoliubov spectrum

εB
n = (

(εn + gn0)
2 − g2n2

0

)1/2
(44)

where g = 4πh̄2a/m is the coupling constant, and n0 = N0/V is the condensate density. At

low |n| =
√
n2
x + n2

y + n2
z , one obtains u2

n � v2
n ∝ 1/ |n| and fn ∝ 1/ |n|. This results in

1/ |n|2 divergence in (43) at low |n|. Although this sort of divergence will not lead to a large
contribution to the number of low-energy quasi-particles, it gives the leading contribution to
the fluctuations of the condensate, as pointed out in [14]. We will investigate the fluctuations
due to low-energy quasi-particles in the following.

In (40)Nn can be regarded as the effective occupation number of the thermal atoms, while

NB
n = Nn

u2
n + v2

n

= fn (45)

is the occupation number of the quasi-particles. From the form of fn, we can construct the
partition function of the quasi-particles in the frame of the canonical ensemble

ZB =
∑
{n}

exp

[
−β

∑
n

NB
n ε

B
n

]
. (46)

From (45) ZB becomes

ZB =
∑

{∑Nn=N}
exp

[
−β

∑
n

Nnε
eff
n

]
(47)

where εeff
n = εB

n/
(
u2

n + v2
n

)
can be regarded as the effective energy level of the thermal

atoms. In this case ZB is the partition function of a fictitious boson system comprising N
non-interacting bosons whose energy level is determined by εeff

n . From (47) the most probable
value Np0 is given by

N
p

0 = N −
∑
n�=0

1

exp
[(
εeff

n − εeff
0

)
/kBT

]− 1
. (48)
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Obviously the occupation number of low |n| in (48) coincides with that of (40). Analogously,
the other N0 is thus

N0 = N −
∑
n�=0

1

exp
[(
εeff

n − εeff
0

)
/kBT

]
exp [−α (N,N0)] − 1

. (49)

From (48) and (49) one obtains

α (N,N0) ≈ − N0 −Np0∑
n�=0

(
u2

n + v2
n

)2
f 2

n

(50)

where we have used the approximation fn ≈ kBT/ε
B
n for low-energy quasi-particles.

Therefore, the Gaussian distribution function of the system is given by

GB (N,N0) = exp

[
−

(
N0 −Np0

)2

2
∑

n�=0

(
u2

n + v2
n

)2
f 2

n

]
≈ exp

[
−
(
ζ
(

3
2

))4/3 (
N0 −Np0

)2

(2π)2 AN4/3t2

]
. (51)

Obviously the mean occupation number 〈N0〉 and fluctuations
〈
δ2N0

〉
are given by

〈N0〉 =
∑N
N0=0N0GB (N,N0)∑N
N0=0GB (N,N0)

(52)

〈
δ2N0

〉 =
∑N
N0=0N

2
0GB (N,N0)∑N

N0=0GB (N,N0)
−
(∑N

N0=0N0GB (N,N0)∑N
N0=0GB (N,N0)

)2

. (53)

From (51)–(53) one obtains the fluctuations of the condensate based on Bogoliubov
theory. At the critical temperature, GB (T = Tc) = exp

[−N2
0 /θ

]
, where θ =

Figure 4. Temperature dependence of δN0 for interacting Bose gases based on Bogoliubov theory.
The full curve is obtained from the numerical result of (53), while the broken line displays (8)
in [14].
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2
∑

n�=0

(
u2

n + v2
n

)2
f 2

n = (2π)2 AN4/3/
(
ζ
(

3
2

))4/3
. In this case, we obtain the analytical

result of the condensate fluctuations,

〈
δ2N0

〉
T=Tc

=
(

1

2
− 1

π

)
θ =

(
1

2
− 1

π

)
(2π)2 A(
ζ
(

3
2

))4/3N
4/3. (54)

Equation (54) clearly shows that the anomalous behaviour of the condensate fluctuations
originates from the low-energy quasi-particles, which gives the anomalous factorN4/3 through
θ .

In figure 4 the full curve displays our results based on the Bogoliubov theory, while the
broken line shows the result of [14].

5. Discussion and conclusion

In this paper we investigate the fluctuations of the condensate in a weakly interacting Bose
gas confined in a box. A canonical ensemble is developed to calculate the fluctuations of the
condensate when different models of interacting Bose gases are used. We found that both
the lowest-order perturbation theory and Bogoliubov theory give anomalous behaviour of the
fluctuations for the interacting Bose gases confined in a box.

Different from the usual method, the distribution function P (N0|N) /P
(
N
p

0 |N) (i.e.
the ratio of the probability between N0 and the most probable value Np0 ) of the ground state
occupation number is obtained directly to calculate the fluctuations of the condensate. In some
senses, we give a simple method to recover the applicability of the saddle-point approximation
to discuss the condensate fluctuations, through the avoidance of the second derivative in the
usual method.

For the present experiments of BEC, the harmonically trapped atoms are in a situation
of almost complete isolation from the outer environment surrounding the trap, therefore a
canonical (or microcanonical) ensemble should be used to calculate the fluctuations of the
condensate. On the other hand, one obtains a more accurate mean ground state occupation
number within the canonical ensemble, compared with the grand canonical ensemble. This
paper may serve as another method to investigate the thermodynamic properties of the
harmonically trapped interacting Bose gases such as the critical temperature, condensate
fraction and fluctuations of the condensate.

The remaining challenge is to extend the idea of this paper to the case of a microcanonical
ensemble where the energy of the system is also invariant. In addition, the role of interactions
on the fluctuations of the condensate is expected to be much more dramatic in the case of
attractive forces. We will investigate these problems in a subsequent work.
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