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Three-Wave Resonant Interaction in Optical Fibres on a Continuous-Wave
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CUI Wei-Na (8 4E#)**, HUANG Guo-Xiang(# [ )2

! Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094
2Department of Physics, East China Normal University, Shanghai 200062
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We predict that a three-wave resonant interaction (TWRI) for the excitations created from a continuous-wave
background is possible in nonlinear optical fibres with a centro-symmetry. We show that in normal dispersion
regime and near the zero-dispersion point of a single-mode optical fibre, the phase-matching condition for the
TWRI can be satisfied by suitably choosing the wavevectors and frequencies of the exciting waves. The nonlinear
envelope equations for the TWRI are derived by using a method of multiple-scales, and their explicit solutions
for sum- and difference-frequency mixing are provided and discussed.

PACS: 42.65. Ky, 42.65. Tg, 42.81. Dp

Wave resonant interaction is a classical chapter in
nonlinear optics.[! For a passive optical medium there
exists a common belief that a three-wave resonant in-
teraction (TWRI) is not possible theoretically in op-
tical fibre because the second-order susceptibility y(2?)
vanishes for centro-symmetric materials such as silica.
Since second-harmonic generation (SHG) as a special
case of TWRI was first observed in optical fibres,
parametric resonances have attracted much attention
in recent years (see Ref.[3] and references therein).
Experimentally an SHG in a Ge-doped silica optical
fibre with the conversion efficiency up to 10% after
irradiation by a laser beam during several hours has
been realized.[* There are numerous works devoted to
the experimental and theoretical study which mostly
focused on the breaking of a centro-symmetry of the
system.[5’6]

Recently we proposed a new mechanism for realiz-
ing an SHG in optical fibres with a centro-symmetry
based on the resonant interaction of two exciting
waves from a cw background.[”! In this work we gener-
alize the idea in Ref. [7] to consider a resonance among
three waves, i.e. a TWRI of exciting waves on a cw
background without needing any breaking of centro-
symmetry. The idea is as follows. If we consider a
nonlinear optical fibre (x(?) = 0) working in normal
dispersion regime, a plane wave (i.e. the cw back-
ground) is modulationally stable. The excited waves
considered here are generated from a cw background
and the interaction between them has a character of
a quadratic nonlinearity. Assuming that the system
works near at zero-dispersion (ZD) point, the third-
order dispersion of the fibre must be taken into ac-
count. Because of the third-order dispersion the lin-
ear dispersion relation of the excitation displays two
branches, which provides a possibility for fulfilling the
phase-matching condition of the a TWRI by suitably
choosing the wavevectors and frequencies of the excit-
ing waves. We derive a set of TWRI equations by us-
ing a method of multiple-scales and provide some ex-

plicit solutions for both the quasi-stationary and non-
stationary cases. We note that although the nonlinear
dynamics of dark solitons generated from a cw back-
ground in optical fibres near the ZD point has been
investigated intensively,[®% a possible TWRI between
these excitations is overlooked. In this Letter, we show
that the three-wave soliton in the TWRI process is an-
other example of soliton propagation in optical fibres.

Using the slowly varying envelope and parax-
ial approximations, the dimensionless envelope am-
plitude u(z,t) of the electric field in optical fibre
satisfies the modified (2+1)-dimensional Nonlinear
Schrédinger equation(®!

. 1 ;
T @

where the subscripts z and t represent partial deriva-
tives. Time t in the reference frame moving with the
group velocity is measured in units of the pulse dura-
tion T', the longitudinal z and transverse x coordinate
are normalized to T/k(") and [T/(kKMWk®)]'/2. The
parameters o = k) /(TkM) and g = k®) /(6TkM)
denote the dimensionless second-order dispersion and
third-order dispersion, respectively. Here k is the
propagation constant and k) = 87k /8w’ (j = 1,2,3).
Equation (1) has a cw solution u = ug exp(i|ug|?2),
with ug an arbitrary constant. Assuming that u =
uo[l + a(z,t)] expliudz +i¢(z,t)], Eq. (1) becomes the
following system of equations:

6.+ 2ufa — Tau + Bous — ad. + 37 + Suja’
+ 3Badr + 3Bardi + Padiu
+ 506} +uda® — BY} — Pag} =0, (2)
az — %¢tt — Bagr — aardy — %aﬂstt

+ 3B¢i Pt + 3Bard? + 3Pagidi = 0. (3)

It is obvious that the set of nonlinear coupled equa-
tions are of quadratic nonlinearity. Based on Egs. (2)
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and (3), an analysis of the linear stability of the cw so-
lution against a small perturbation shows that the cw
solution is modulational stable if the fibre is working
in normal dispersion regime (i.e. a > 0). Assuming a
and ¢ varying with the form ~ exp(iwt —ikz), we can
obtain the linear dispersion relation

k:ki(w):ﬂwgiwwla(ug—i—%uﬁ), (4)

which is shown in Fig. 1. We see that both &k (w) and
k_(w) are acoustic, i.e. k+(0) =0.
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Fig. 1. The linear dispersion relation and phase matching
of a TWRI for the excitations on the cw background. The
phase-matching condition can be satisfied if (w1, k1) and
(w2, k2) are chosen from one dispersion branch k4 (w) and
(ws, k3) from k_(w). The parameters used in the figure
are a = 1.854 x 1076, 8 = 5.0612 x 10~1°, and up = 1.25.

We are interested in a possible TWRI for the ex-
citations created on the cw background. The fre-
quencies of the three interaction waves are labelled by
w1, ws and ws, where wy < wy < wy and w3 = w1 + ws.
A necessary condition for the TWRI is to fulfil the
phase-matching condition k3 = ks + ky. Considering
Eq. (4) we find that this is indeed possible if the sys-
tem parameters «, 8 and cw amplitude ug are chosen
properly, with the points (wy, k1) and (ws, k3) taking
from the curve k_(w) and the point (wa, k2) from the
curve ky (w) to satisfy

ho(wa) = ko (wn) + by (w2). (5)

Figure 1 shows the linear dispersion relation of the
system and the phase-matching condition (5) for
the TWRI. The parameters are provided from stan-
dard single-mode optical fibres, i.e. Azp (the ZD
point wavelength) = 1.27 (um). Near \zp, k(1) =
5x 1072 (sm™1), k) = 9 x [(1.27 — Ao(um)] x
10726 (s2m~ 1), kG = 2.3 x /Ao(um)[No(pum) —
1] x 107%° (s m™1), and ny (Kerr coefficient)= 1.2 x
10722(m/V)2. The wavelength of the carrier-wave
and the pulse duration of the electric field are cho-
sen to be \g = 1.064 (pum) and T = 107'? (s), re-
spectively. Thus we obtain a = 1.8 x 1076 and g =
5.06x 10719, In the figure the dimensionless amplitude
of the electric-field background is taken as ug = 1.25,
which corresponds to the dimensional electric field
Ey = (2/kW|cAcg/Twon) ?up = 1.2 x 10*V/m,
when taking the effective cross area A.g of the fibre
as 20 um?, where wy = 2mc/Ng, and c is the speed of

light in vacuum. Three interacting waves are taken
as (wi, k1) = (1.80 x 10357, 7.24m™ 1), (wo,ky) =
(2.62x 103571, 16.93m™"), (w3, k3) = (4.42 x 103571,
24.17m™1!), respectively.

We now derive the nonlinear envelope equations for
the TWRI using a method of multiple-scales. Intro-
ducing the following asymptotic expansion a = ea'®) +
20 e3¢ 4. .,and ¢ = 5¢(1)+52¢(2)+53¢(3)+
where ¢ is a small ordering parameter, a and ¢ are the
functions of the fast variables z and t as well as the
slow variables ez and et. From Egs.(2) and (3) we
obtain

S0k =m, (©)
o} O+ 6¢ttt =nl (7)

al) — Bayy) -
2uga(l) — Eatt

The explicit expressions of m() and n(® (i =1,2---)
are omitted here.

In the leading order (¢ = 1), Egs.(6) and (7)
are linear equations which admit the solution ¢() =
$1jexp(ib;) + c.c., aV) = ayjexp(ib;) + c.c. with
0; = wit—kjx, a1 = ib; = —i(aw;)/(k;j—Bw?). In the
case of TWRI we take the leading solution as a super-
position of three components: ¢(1) = ¢y, exp(if;) +
¢12 exp(i62) + ¢13 exp(if3) +c.c., aV = aqq exp(i01) +
a1z exp(i6s2) 4 a13 exp(ifs3) + c.c., where c.c. represents
the corresponding complex conjugation. The frequen-
cies and wavevectors of the three interaction waves
(k1,w1), (k2,wa), (ks,ws) are selected according to
the phase-matching condition (5) (see Fig.1). The
envelopes a1; = ib;j¢1; with b; = —aw;/(k; — ﬁw?)
(j = 1,2,3) are the functions of the slow variables £z
and et.

In the order (i = 2), we can obtain the closed
equations governing the envelopes ¢;. Then by tak-

ing €¢1; = ¢; and returning to the original variables
we obtain
a . * —1 z
% = —id\Bigs exp ARz, (8)
8 - * —1 z
% = —idypt ps expTARZ, (9)
9 . 3 z
% = —idgdh1 p exp’, (10)

where Ak = ki 4+ ko — k3 is a possible phase mis-
match. The explicit expressions of the coefficients
A1, A2, and A3 are omitted here. Envelope equations
(8)—(10) can be solved exactly.] By writing ¢y, #2,
and ¢3 as ¢ = fexp(—ipy), ¢p2 = gexp(—ip,), and
¢3 = hexp(—ipp), where f, g, h, ¢f, ¢4, and @y

are the real functions, Egs. (8)—(10) become 5, =
2

0] oh

—A1ghsinf, 99 _ — = MA3ghsiné,

5 0z 9 0z 5

o5 = A1ghcosf, g— = A1 fhcosf, and p o
0z 0z 0z
Asfgcosf, with the relative phase angle 8 = ¢ —
@5 — ¢g + Akz. There are three conservative quan-
tities for these equations: f2/A\; + h%/A3 = my,
g%/Xa + h?/X3 = my and f2/\; — g*/Ao = m3, where

—Xofhsin@,
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my, mo and mg are the integration constants. Here
A1, A2 and A3 are the coupling coefficients which car-
ries the sign of wave energy. With these relations we
obtain

[a=] /H’:jj 482 [N, g (i — ’;_j)

. 2 »
. (m2 . i—3)h2 - (Fh - %Akhz)z} 1(121)

[Ja=i [ bt %)
(s )= (- j0) ]

(12)

with H(z) = h%(2), G(2) = ¢*(2), I', = \3fghcos +
1 1

EAkhz, and Iy = Aafghcosf — gAkgz. The inte-
gral equations (11) and (12) give the general solution
H(z2) and G(zg) at the distance 2z for arbitrary in-
puts power F(z1)(F(z) = f2(2)),G(z1) and H(z) at
distance z;.

0 0.1 0.2 0.3
z

Fig. 2. Energy conversion for the sum-frequency mixing
with the initial boundary condition F(0) = 10, G(0) = 8,
and H(0) = 0. The system parameters are chosen to be
a=1.854%x10"%, 3 =5.061x10"1° wy = 1.25 and phase

mismatch Ak = 1.0 (solid curve). The dotted curves show
the effect of increasing phase mismatch Ak = 3.0.

As is known, a TWRI can be classified according
to the initial or boundary conditions. If the two input
waves are at the two lower frequencies wy and ws, it is
sum-frequency mixing. We first consider this case by
assuming H(z1) = 0. Then we have my = F(z1)/A1,
my = G(z1)/A2, ms = F(z1)/M\ — G(21)/A2, and
I', = 0. The general expression for the magnitude of
the generated wave h can be obtained by integrating
Eq. (11),

H =V )\3m1AiI_sn2[()\1)\2)\3m1A%{+z2)1/2,'yH],
(13)
where vyg is the modulus of the elliptic function
sn, given by vy = A%{_/A%H_ with A%H_,A%{_ =

1
5[(1 + 0+ € + /(1+0+¢€?2—40|, where ¢ =

1 2
(EAk> /(m1A1A2)\s) is responsible for the properties
of the fibre and o = mgy/my. The results for the energy

conversion of sum-frequency mixing have been plotted
in Fig. 2, from which we can see that there is a peri-
odic energy conversion among three waves. The bold
curves show the generation of H with phase mismatch
Ak = 1 from initial values of F' = 10. The dashed
curves show the effect of the increment of Ak = 2. It
is clear that the energy conversion efficiency decreases
with increasing phase mismatch Ak.

Another case is difference-frequency mixing, in
which wy (or wsy) is generated from ws (or wy) and
higher frequency ws. Then initially one has G(z1) =0
and in this case we have m; = F/A; + H/\3, mgy =
H/\3, mg = F/\1, and I'y = 0. From the integra-
tion equation (12) about generated wave g we obtain
the general result in the case of difference-frequency
mixing

H = \ Agml A2G—

vasn?[(M A2 Asmi AL 22)'? [va, 6]
1- 'Yé‘an[()‘1>‘2)‘3m1A2G+22)1/2/7Ga va]’
(14)

1
A2 AL = i[i(fl + o0 — € +

V(=1+0—€)?+40], and vy = AL /A%, . Figure
3 shows the energy conversion for difference-frequency
mixing.

where

0 0.2 0.4 0.6 0.8 1.0 1.2
z

Fig. 3. Energy conversion for difference-frequency mixing
with the initial boundary conditions F(0) = 1, H(0) = 9,
G(0) = 0. The system parameters are chosen to be
a = 1.854 x 1076, B8 = 5.061 x 1071°, wg = 1.25 and
phase mismatch Ak = 1.0 (solid curve). The dotted curves
shows the effect of increasing phase mismatch Ak = 3.0.

Note that the quasi-stationary approximation used
in deriving Egs. (8)—(10) is valid only for infinitely
large plane wave excitations. For the excitations of a
narrower width, the propagation of the excitations will
be of a non-stationary character. The energy conver-
sion for the TWRI by ultrashort pulses can be greatly
reduced by walk-off. Using a similar approach as the
same as that for deriving Egs. (8)—(10) but now as-
suming that the envelopes depends also on the slowly
varying time variable ¢t, we can obtain

Oy 1041 . # .
5. + T —iA1¢39] exp(iAkz), (15)
062 106

5, E 5t —iAod305 exp(iAkz), (16)
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96
0z

10
1005 _ —iA3¢12 exp(—iAkz),
V3 ot (17)
where v; = dw;/dk; (j =1,2,3) are the group veloci-
ties of jth waves, and A; (j = 1,2, 3) are the same as
those in Egs. (8)—(10). The above equations are com-
pletely integrable and can be solved by the inverse
scattering transform.['? Under the phase-matching
condition Ak = 0 one type of three-wave soliton solu-
tion reads as
B21P31 )1/2 4m .
= (221 ) T —expl—i(ypr — 2
0= (o) pleeliler —262)]
G- G
X [exp(—2m222) — 23 exp(2n222)],
G—G

(18)

by = (M)l/z@[exp[—i(wz — 28229)]]

’1}11)3A1)\3 D
G -G

X [exp(2my21) — 22— exp(—2m1 21)],
¢ —C

(19)
16m1 72821

D(& — &1)(Ba3Ps31)'/?

-expli(p1 + w2 — 26121 — 28a22)],

1/2

65 = (v

A1 201V
(20)
with
D = exp[2(z1m + zam2)] + exp[2(z1m — z27m2)]
2 — (1 ‘2
¢ — G
+ exp[—2(z1m1 + 22m2)],

_|_

exp[2(—z1m1 + z27m2)]

(21)
where z; = z — v1t — 219, 220 = z — vat — 299, (1 =
2(&1+im )/ Baz, G2 = 2(§a+im2)/B31, Bij = vi—wvi(v1 >
vz > ) (5 =1,2,3). &1,82,M1,M2; 210, 220, P1, and
are constants.

We can easily obtain the asymptotic form of the
solution. The initial shapes of the fundamental waves
before the interaction starts are

1/2
o1 = 2m (%) sech(2n; 21) exp(ip1), (22)
1/2
by = 21 <M> sech(2m222) exp(ips), ¢3 =0.
’1}11}3A1)\3 (23)

After collision, the asymptotic profiles ¢1, @2, 3 be-
come

1/2
¢1 =2m (%) sech(20121 — z10 — 0)
-exp(ip; +9), (24)
P2 = 2772(%)1/2%&(202@ —z10+9)

exp(i(p2 - 5/)> ¢3 = 07 (25)

where ¢ and 4§’ are defined by ({1 — $2)/(¢F — &) =
e %%, We find that the soliton solutions describe

two initially separated fundamental waves preserving
their shape on nonlinear interaction with each other
and exactly preserving the same shape after separa-
tion is regained. In the colliding region, a new soliton
¢3 is produced as seen in Fig. 4.

_57=5

Fig. 4. Three-wave soliton interaction in optical fibres.
The parameters are chosen to be £ =1, {2 = 1, 91 = 0.5,
n2 = 0.2, zZ10 = 1, zZ20 = 3, @Y1 = 17 and Y2 = 1.

In summary, we have proposed a new mechanism
of the TWRI of the excitations on a cw background
in nonlinear optical fibres without any breaking of a
centro-symmetry. We have shown that in the nor-
mal dispersion regime and near the ZD point of a
centro-symmetric single-mode optical fibre, the phase-
matching condition of a TWRI can be fulfilled by a
suitable selection of the wavevectors and frequencies
of three exciting waves. We have also derived the non-
linearly coupled envelope equations for the TWRI by
using a method of multiple-scales, and their explicit
solutions are provided and discussed.
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