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Three-Wave Resonant Interaction in Optical Fibres on a Continuous-Wave
Background �
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1Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094
2Department of Physics, East China Normal University, Shanghai 200062

(Received 16 June 2004)

We predict that a three-wave resonant interaction (TWRI) for the excitations created from a continuous-wave
background is possible in nonlinear optical �bres with a centro-symmetry. We show that in normal dispersion
regime and near the zero-dispersion point of a single-mode optical �bre, the phase-matching condition for the
TWRI can be satis�ed by suitably choosing the wavevectors and frequencies of the exciting waves. The nonlinear
envelope equations for the TWRI are derived by using a method of multiple-scales, and their explicit solutions
for sum- and di�erence-frequency mixing are provided and discussed.

PACS: 42. 65.Ky, 42. 65. Tg, 42. 81. Dp

Wave resonant interaction is a classical chapter in
nonlinear optics.[1] For a passive optical medium there
exists a common belief that a three-wave resonant in-
teraction (TWRI) is not possible theoretically in op-
tical �bre because the second-order susceptibility �(2)

vanishes for centro-symmetric materials such as silica.
Since second-harmonic generation (SHG) as a special
case of TWRI was �rst observed in optical �bres,[2]

parametric resonances have attracted much attention
in recent years (see Ref. [3] and references therein).
Experimentally an SHG in a Ge-doped silica optical
�bre with the conversion eÆciency up to 10% after
irradiation by a laser beam during several hours has
been realized.[4] There are numerous works devoted to
the experimental and theoretical study which mostly
focused on the breaking of a centro-symmetry of the
system.[5;6]

Recently we proposed a new mechanism for realiz-
ing an SHG in optical �bres with a centro-symmetry
based on the resonant interaction of two exciting
waves from a cw background.[7] In this work we gener-
alize the idea in Ref. [7] to consider a resonance among
three waves, i.e. a TWRI of exciting waves on a cw
background without needing any breaking of centro-
symmetry. The idea is as follows. If we consider a
nonlinear optical �bre (�(2) = 0) working in normal
dispersion regime, a plane wave (i.e. the cw back-
ground) is modulationally stable. The excited waves
considered here are generated from a cw background
and the interaction between them has a character of
a quadratic nonlinearity. Assuming that the system
works near at zero-dispersion (ZD) point, the third-
order dispersion of the �bre must be taken into ac-
count. Because of the third-order dispersion the lin-
ear dispersion relation of the excitation displays two
branches, which provides a possibility for ful�lling the
phase-matching condition of the a TWRI by suitably
choosing the wavevectors and frequencies of the excit-
ing waves. We derive a set of TWRI equations by us-
ing a method of multiple-scales and provide some ex-

plicit solutions for both the quasi-stationary and non-
stationary cases. We note that although the nonlinear
dynamics of dark solitons generated from a cw back-
ground in optical �bres near the ZD point has been
investigated intensively,[8;9] a possible TWRI between
these excitations is overlooked. In this Letter, we show
that the three-wave soliton in the TWRI process is an-
other example of soliton propagation in optical �bres.

Using the slowly varying envelope and parax-
ial approximations, the dimensionless envelope am-
plitude u(z; t) of the electric �eld in optical �bre
satis�es the modi�ed (2+1)-dimensional Nonlinear
Schr�odinger equation[8]

iuz �
1

2
�utt + juj2u = i�uttt; (1)

where the subscripts z and t represent partial deriva-
tives. Time t in the reference frame moving with the
group velocity is measured in units of the pulse dura-
tion T , the longitudinal z and transverse x coordinate
are normalized to T=k(1) and [T=(k(1)k(2))]1=2. The
parameters � = k(2)=(Tk(1)) and � = k(3)=(6Tk(1))
denote the dimensionless second-order dispersion and
third-order dispersion, respectively. Here k is the
propagation constant and k(j) = @jk=@!j (j = 1; 2; 3).
Equation (1) has a cw solution u = u0 exp(iju0j

2z),
with u0 an arbitrary constant. Assuming that u =
u0[1 + a(z; t)] exp[iu20z+ i�(z; t)], Eq. (1) becomes the
following system of equations:

��z + 2u20a�
�

2
att + ��ttt � a�z +

�

2
�2t + 3u20a

2

+ 3�att�t + 3�at�tt + �a�ttt

+
�

2
a�2t + u20a

3 � ��3t � �a�3t = 0; (2)

az �
�

2
�tt � �attt � �at�t �

�

2
a�tt

+ 3��t�tt + 3�at�
2
t + 3�a�t�tt = 0: (3)

It is obvious that the set of nonlinear coupled equa-
tions are of quadratic nonlinearity. Based on Eqs. (2)
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and (3), an analysis of the linear stability of the cw so-
lution against a small perturbation shows that the cw
solution is modulational stable if the �bre is working
in normal dispersion regime (i.e. � > 0). Assuming a
and � varying with the form � exp(i!t� ikz), we can
obtain the linear dispersion relation

k = k�(!) = �!3 � !

r
�
�
u20 +

�

4
!2
�
; (4)

which is shown in Fig. 1. We see that both k+(!) and
k�(!) are acoustic, i.e. k�(0) = 0.

Fig. 1. The linear dispersion relation and phase matching
of a TWRI for the excitations on the cw background. The
phase-matching condition can be satis�ed if (!1; k1) and
(!2; k2) are chosen from one dispersion branch k+(!) and
(!3; k3) from k�(!). The parameters used in the �gure
are � = 1:854� 10�6, � = 5:0612� 10�10, and u0 = 1:25.

We are interested in a possible TWRI for the ex-
citations created on the cw background. The fre-
quencies of the three interaction waves are labelled by
!1; !2 and !3, where !1 � !2 < !3 and !3 = !1+!2.
A necessary condition for the TWRI is to ful�l the
phase-matching condition k3 = k2 + k1. Considering
Eq. (4) we �nd that this is indeed possible if the sys-
tem parameters �; � and cw amplitude u0 are chosen
properly, with the points (!1; k1) and (!3; k3) taking
from the curve k�(!) and the point (!2; k2) from the
curve k+(!) to satisfy

k�(!3) = k�(!1) + k+(!2): (5)

Figure 1 shows the linear dispersion relation of the
system and the phase-matching condition (5) for
the TWRI. The parameters are provided from stan-
dard single-mode optical �bres, i.e. �ZD (the ZD
point wavelength) = 1:27 (�m). Near �ZD, k

(1) =
5 � 10�9 (sm�1), k(2) = 9 � [(1:27 � �0(�m)] �

10�26 (s2m�1), k(3) = 2:3 �
p
�0(�m)[�0(�m) �

1] � 10�40 (s3m�1), and n2 (Kerr coeÆcient)= 1:2 �
10�22(m/V)2. The wavelength of the carrier-wave
and the pulse duration of the electric �eld are cho-
sen to be �0 = 1:064 (�m) and T = 10�12 (s), re-
spectively. Thus we obtain � = 1:8 � 10�6 and � =
5:06�10�10. In the �gure the dimensionless amplitude
of the electric-�eld background is taken as u0 = 1:25,
which corresponds to the dimensional electric �eld
E0 = (2jk(1)jcAe�=T!0n2)

1=2u0 = 1:2 � 104V/m,
when taking the e�ective cross area Ae� of the �bre
as 20�m2, where !0 = 2�c=�0, and c is the speed of

light in vacuum. Three interacting waves are taken
as (!1; k1) = (1:80 � 103 s�1, 7.24m�1), (!2; k2) =
(2:62�103 s�1, 16.93m�1), (!3; k3) = (4:42�103 s�1,
24.17m�1), respectively.

We now derive the nonlinear envelope equations for
the TWRI using a method of multiple-scales. Intro-
ducing the following asymptotic expansion a = "a(1)+
"2a(2)+"3a(3)+� � �, and � = "�(1)+"2�(2)+"3�(3)+� � �,
where " is a small ordering parameter, a and � are the
functions of the fast variables z and t as well as the
slow variables "z and "t. From Eqs. (2) and (3) we
obtain

a(i)z � �a
(i)
ttt �

�

2
�
(i)
tt = m(i); (6)

2u20a
(i) �

�

2
a
(i)
tt � �(i)z + ��

(i)
ttt = n(i): (7)

The explicit expressions of m(i) and n(i) (i = 1; 2 � � �)
are omitted here.

In the leading order (i = 1), Eqs. (6) and (7)
are linear equations which admit the solution �(1) =
�1j exp(i�j) + c.c., a(1) = a1j exp(i�j) + c.c: with
�j = !jt�kjx; a1j = ibj = �i(�!j)=(kj��!

3
j ). In the

case of TWRI we take the leading solution as a super-
position of three components: �(1) = �11 exp(i�1) +
�12 exp(i�2)+�13 exp(i�3)+c.c., a(1) = a11 exp(i�1)+
a12 exp(i�2)+a13 exp(i�3)+c.c., where c.c. represents
the corresponding complex conjugation. The frequen-
cies and wavevectors of the three interaction waves
(k1; !1), (k2; !2) , (k3; !3) are selected according to
the phase-matching condition (5) (see Fig. 1). The
envelopes a1j = ibj�1j with bj = ��!j=(kj � �!3

j )
(j = 1; 2; 3) are the functions of the slow variables "z
and "t.

In the order (i = 2), we can obtain the closed
equations governing the envelopes �1j . Then by tak-
ing "�1j = �j and returning to the original variables
we obtain

@�1
@z

= �i�1�
�

2�3 exp
�i�kz; (8)

@�2
@z

= �i�2�
�

1�3 exp
�i�kz; (9)

@�3
@z

= �i�3�1�2 exp
i�kz; (10)

where �k = k1 + k2 � k3 is a possible phase mis-
match. The explicit expressions of the coeÆcients
�1; �2, and �3 are omitted here. Envelope equations
(8){(10) can be solved exactly.[1] By writing �1; �2,
and �3 as �1 = f exp(�i'f ), �2 = g exp(�i'g), and
�3 = h exp(�i'h), where f , g, h, 'f , 'g, and 'h

are the real functions, Eqs. (8){(10) become
@f

@z
=

��1gh sin �,
@g

@z
= ��2fh sin �,

@h

@z
= �3gh sin �,

f
@'f

@z
= �1gh cos �, g

@'g

@z
= �1fh cos �, and h

@'h

@z
=

�3fg cos �, with the relative phase angle � = 'h �
'f � 'g + �kz. There are three conservative quan-
tities for these equations: f2=�1 + h2=�3 = m1,
g2=�2 + h2=�3 = m2 and f2=�1 � g2=�2 = m3, where
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m1;m2 and m3 are the integration constants. Here
�1, �2 and �3 are the coupling coeÆcients which car-
ries the sign of wave energy. With these relations we
obtainZ z2

z1

dz =
1

2

Z H(z2)

H(z1)

dh2
h
�23�1�2

�
m1 �

h2

�3

�

�
�
m2 �

h2

�3

�
h2 �

�
�h �

1

2
�kh2

�2i�1=2
(11)Z z2

z1

dz =
1

2

Z G(z2)

G(z1)

dg2
h
�22�1�3

�
m2 �

g2

�2

�

�
�
m3 +

g2

�2

�
g2 �

�
�g �

1

2
�kg2

�2i�1=2
(12)

with H(z) � h2(z), G(z) � g2(z), �h = �3fgh cos � +
1

2
�kh2, and �g = �2fgh cos � �

1

2
�kg2. The inte-

gral equations (11) and (12) give the general solution
H(z2) and G(z2) at the distance z2 for arbitrary in-
puts power F (z1)(F (z) = f2(z)); G(z1) and H(z1) at
distance z1.

Fig. 2. Energy conversion for the sum-frequency mixing
with the initial boundary condition F (0) = 10, G(0) = 8,
and H(0) = 0. The system parameters are chosen to be
� = 1:854�10�6, � = 5:061�10�10, u0 = 1:25 and phase
mismatch �k = 1:0 (solid curve). The dotted curves show
the e�ect of increasing phase mismatch �k = 3:0.

As is known, a TWRI can be classi�ed according
to the initial or boundary conditions. If the two input
waves are at the two lower frequencies !1 and !2, it is
sum-frequency mixing. We �rst consider this case by
assuming H(z1) = 0. Then we have m1 = F (z1)=�1,
m2 = G(z1)=�2, m3 = F (z1)=�1 � G(z1)=�2, and
�h = 0. The general expression for the magnitude of
the generated wave h can be obtained by integrating
Eq. (11),

H =
p
�3m1A

2
H�sn

2[(�1�2�3m1A
2
H+z

2)1=2; H ];
(13)

where H is the modulus of the elliptic function
sn, given by H = A2

H�
=A2

H+ with A2
H+; A

2
H�

=
1

2
[(1 + � + �) �

p
(1 + � + �)2 � 4�], where � =�1

2
�k

�2
=(m1�1�2�3) is responsible for the properties

of the �bre and � = m2=m1. The results for the energy

conversion of sum-frequency mixing have been plotted
in Fig. 2, from which we can see that there is a peri-
odic energy conversion among three waves. The bold
curves show the generation of H with phase mismatch
�k = 1 from initial values of F = 10. The dashed
curves show the e�ect of the increment of �k = 2. It
is clear that the energy conversion eÆciency decreases
with increasing phase mismatch �k.

Another case is di�erence-frequency mixing, in
which !1 (or !2) is generated from !2 (or !1) and
higher frequency !3. Then initially one has G(z1) = 0
and in this case we have m1 = F=�1 + H=�3, m2 =
H=�3, m3 = F=�1, and �g = 0. From the integra-
tion equation (12) about generated wave g we obtain
the general result in the case of di�erence-frequency
mixing

H =
p
�2m1 A

2
G�

�
2Gsn

2[(�1�2�3m1A
2
G+z

2)1=2=G; G]

1� 2Gsn
2[(�1�2�3m1A2

G+z
2)1=2=G; G]

;

(14)

where A2
G+; A

2
G� =

1

2
[�(�1 + � � �) +p

(�1 + � � �)2 + 4�], and H = A2
G�=A

2
G+. Figure

3 shows the energy conversion for di�erence-frequency
mixing.

Fig. 3. Energy conversion for di�erence-frequency mixing
with the initial boundary conditions F (0) = 1, H(0) = 9,
G(0) = 0. The system parameters are chosen to be
� = 1:854 � 10�6, � = 5:061 � 10�10, u0 = 1:25 and
phase mismatch �k = 1:0 (solid curve). The dotted curves
shows the e�ect of increasing phase mismatch �k = 3:0.

Note that the quasi-stationary approximation used
in deriving Eqs. (8){(10) is valid only for in�nitely
large plane wave excitations. For the excitations of a
narrower width, the propagation of the excitations will
be of a non-stationary character. The energy conver-
sion for the TWRI by ultrashort pulses can be greatly
reduced by walk-o�. Using a similar approach as the
same as that for deriving Eqs. (8){(10) but now as-
suming that the envelopes depends also on the slowly
varying time variable "t, we can obtain

@�1
@z

+
1

v1

@�1
@t

= �i�1�3�
�

1 exp(i�kx); (15)

@�2
@z

+
1

v2

@�2
@t

= �i�2�3�
�

2 exp(i�kx); (16)
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@�3
@z

+
1

v3

@�3
@t

= �i�3�1�2 exp(�i�kx);
(17)

where vj = d!j=dkj (j = 1; 2; 3) are the group veloci-
ties of jth waves, and �j (j = 1; 2; 3) are the same as
those in Eqs. (8){(10). The above equations are com-
pletely integrable and can be solved by the inverse
scattering transform.[12] Under the phase-matching
condition �k = 0 one type of three-wave soliton solu-
tion reads as

�1 =
� �21�31
v2v3�2�3

�1=2 4�1
D

[exp[�i('1 � 2�1z1)]]

� [exp(�2�2z2)�
�2 � �1
��2 � �1

exp(2�2z2)];
(18)

�2 =
� �21�23
v1v3�1�3

�1=2 4�2
D

[exp[�i('2 � 2�2z2)]]

� [exp(2�1z1)�
��2 � ��1
��2 � �1

exp(�2�1z1)];
(19)

�3 =
� 1

�1�2v1v2
)1=2

16�1�2�21
D(�2 � �1)(�23�31)1=2

� exp[i('1 + '2 � 2�1z1 � 2�2z2)]; (20)

with

D = exp[2(z1�1 + z2�2)] + exp[2(z1�1 � z2�2)]

+
��� �2 � �1
��2 � �1

���2 exp[2(�z1�1 + z2�2)]

+ exp[�2(z1�1 + z2�2)]; (21)

where z1 = z � v1t � z10, z2 = z � v2t � z20, �1 =
2(�1+i�1)=�23, �2 = 2(�2+i�2)=�31, �ij = vj�vi(v1 >
v3 > v2) (j = 1; 2; 3). �1; �2; �1; �2; z10; z20; '1, and '2

are constants.
We can easily obtain the asymptotic form of the

solution. The initial shapes of the fundamental waves
before the interaction starts are

�1 = 2�1

� �21�31
v2v3�2�3

�1=2
sech(2�1z1) exp(i'1); (22)

�2 = 2�2

� �21�23
v1v3�1�3

�1=2
sech(2�2z2) exp(i'2); �3 = 0:

(23)

After collision, the asymptotic pro�les �1; �2; �3 be-
come

�1 =2�1

� �21�31
v2v3�2�3

�1=2
sech(2�1z1 � z10 � Æ)

� exp(i'1 + Æ0); (24)

�2 =2�2(
�21�23

v1v3�1�3
)1=2sech(2�2z2 � z10 + Æ)

exp(i'2 � Æ0); �3 = 0; (25)

where Æ and Æ0 are de�ned by (�1 � �2)=(�
�
1 � �2) =

e�ÆeiÆ
0

. We �nd that the soliton solutions describe

two initially separated fundamental waves preserving
their shape on nonlinear interaction with each other
and exactly preserving the same shape after separa-
tion is regained. In the colliding region, a new soliton
�3 is produced as seen in Fig. 4.

Fig. 4. Three-wave soliton interaction in optical �bres.
The parameters are chosen to be �1 = 1, �2 = 1, �1 = 0:5,
�2 = 0:2, z10 = 1, z20 = 3, '1 = 1, and '2 = 1.

In summary, we have proposed a new mechanism
of the TWRI of the excitations on a cw background
in nonlinear optical �bres without any breaking of a
centro-symmetry. We have shown that in the nor-
mal dispersion regime and near the ZD point of a
centro-symmetric single-mode optical �bre, the phase-
matching condition of a TWRI can be ful�lled by a
suitable selection of the wavevectors and frequencies
of three exciting waves. We have also derived the non-
linearly coupled envelope equations for the TWRI by
using a method of multiple-scales, and their explicit
solutions are provided and discussed.

References

[1] Shen Y R 1984 The Principles of Nonlinear Optics (New
York: Wiley)

[2] Fujii Y et al 1980 Opt. Lett. 5 48
Ohmori Y and Sasaki Y 1981 Appl. Phys. Lett. 39 466

[3] Antonyuk B P et al 1998 Opt. Commun. 147 143
[4] Osterberg U and Margulis W 1986 Opt. Lett. 11 516
[5] Agrawal G P 1995 Nonlinear Fibre Optics 2nd edn (New

York: Academic)
[6] Chen W C et al 2003 Chin. Phys. Lett. 20 1286

Wen S C et al 2003 Chin. Phys. Lett. 20 852
Li S G et al 2003 Chin. Phys. Lett. 20 1300

[7] Cui W N, Huang G X and Hu B 2004 Phys. Rev. E 69 (in
press)

[8] Kivshar Y S 1991 Phys. Rev. A 43 1677 and 1991 Opt.

Lett. 16 285
KivsharY S and Luther-Davies B 1998 Phys. Rep. 298 81

[9] Huang G X and Velarde M G 1996 Phys. Rev. E 54 3048
[10] Nistazakis H E et al 2001 Phys. Rev. E 64 026604
[11] Hasgawa A and Kodama Y 1995 Solitons in Optical Com-

munications (Oxford: Clarendon) chap 16
[12] Kaup D J 1981 J. Math. Phys. 22 1176


