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We study the Bogoliubov collective excitations of harmonically trapped superfluid Fermi gases in the
crossover from Bardeen-Cooper-Schrieffer �BCS� superfluid to Bose-Einstein condensate �BEC� beyond
Thomas-Fermi �TF� limit. Starting from a generalized Gross-Pitaevskii equation and an equation of state valid
for the whole crossover, we derive Bogoliubov–de Gennes �BdG� equations for low-lying collective modes at
zero temperature. We use a Fetter-like variational ground state wave function to remove the noncontinuity of
slope at the boundary of condensate, which appears in the TF limit. We solve the BdG equations analytically
and obtain explicit expressions for all eigenvalues and eigenfunctions, valid for various crossover regimes and
for traps with spherical and axial symmetries. We discuss the feature of these collective excitations in the
BCS-BEC crossover and show that the theoretical result obtained agrees with available experimental data near
and beyond the TF limit.
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I. INTRODUCTION

The crossover from Bardeen-Cooper-Schrieffer �BCS� su-
perfluid to Bose-Einstein condensation �BEC�, a topic not
only of fundamental interest in condensed matter theory but
also closely related to the understanding of physical mecha-
nism for high-Tc superconductivity, has received much atten-
tion in recent years �1,2�. Ultracold quantum degenerate
gases of fermionic atoms �such as 6Li and 40K� with tunable
interaction �3� offer an excellent opportunity for deep explo-
ration on the property of BCS-BEC crossover in a control-
lable way. Experimentally, condensed fermionic atomic pairs
in the regimes of BEC �4�, BCS �5�, and their crossover �6�
have been observed successfully and their various superfluid
properties have been investigated in detail recently by using
a magnetic-field-induced Feshbach resonance technique �7�.

At low temperature, collective excitations are most impor-
tant quasiparticles in a superfluid system and they can be
used to characterize dominant physical property of system.
Since the experimental realization of the BCS-BEC cross-
over, considerable interest has focused on the study of col-
lective excitations in harmonically trapped superfluid Fermi
gases. By means of the Feshbach resonance, the atom-atom
interaction for dilute gases, characterized by s-wave scatter-
ing length, can be tuned from large positive to large negative
values, providing a possibility to investigate and manipulate
the nature of collective excitations in various superfluid re-
gimes. A large body of experimental works on the collective
excitations in superfluid Fermi gases in the BCS-BEC cross-
over have been done �8–11� and a very recent precision mea-
surement on the frequency of radial compression modes
shows that the beyond-mean-field effect is crucial in strongly

interacting, optically trapped Fermi gas of 6Li atoms �12�.
Up to now there exist two theoretical treatments on the

collective excitations in superfluid Fermi gases in the BCS-
BEC crossover �13–25�. One of them is microscopic theory,
in which single-channel �Fermi-only� or two-channel �Fermi-
Boson� model Hamiltonians with Fermi or Fermi-Boson de-
grees of freedom are used. Because in the experiments of
superfluid Fermi gases �3–7� particles are trapped in an ex-
ternal potential, the inhomogeneous feature of system makes
the microscopic approach not easy to handle. However, no-
tice the fact that at very low temperature the condensed fer-
mionic atom pairs do not decay into single atoms due to the
existence of energy gap in their excitation spectrum, and
hence no single fermionic atoms appear by the breaking of
condensed atom pairs. The dynamics of such perfect super-
fluid can be well described phenomenologically by an order-
parameter equation, called the generalized Gross-Pitaevskii
�GGP� equation �18,19,22–25�. Different superfluid regimes
can be characterized by an equation of state, which can be
obtained by a quantum Monte Carlo simulation �26,27� or
BCS energy-gap equations �16,17�. The GGP equation cap-
tures dominant feature that the superfluid exhibits macro-
scopically, though its mathematical framework is simple.
Thus, it is reasonable to expect that the GGP theory is a
useful theoretical tool for studying macroscopically the dy-
namics of superfluid Fermi gases in the BCS-BEC crossover.

The GGP equation can be converted into a hydrodynamic
form. In a recent work �24�, we have solved relevant hydro-
dynamic equations by neglecting the quantum pressure term.
Thus all solutions obtained in that work are valid only for the
Thomas-Fermi limit, i.e., N0, the particle number in conden-
sate, is infinite. It is necessary to extend the work in Ref. �24�
beyond the TF limit due to the following reasons. �i� In re-
alistic experiments �3–11�, N0 is finite �typically with order
of 105 to 106�. �ii� At the boundary of condensate the Bogo-
liubov amplitudes obtained in the TF limit vary quickly and
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hence the kinetic energy of both the condensate and excita-
tions contributed by the boundary cannot be neglected. �iii�
At the boundary of the condensate singular points appear in
the solution of the Bogoliubov amplitudes which makes the
theory uncontrollable. �iv� The existence of the singular
points results also in a divergence for coupling matrix ele-
ments describing three-mode resonant interaction, which
plays dominant role for the damping and frequency shift of
collective modes in superfluid Fermi gases �28�.

It the present work, we shall solve the GGP equation be-
yond the TF limit by extending our previous work, which is
for the special case of BEC limit �29,30�. We shall give a
consistent, divergence-free theoretical description for Bogo-
liubov excitations at zero temperature for harmonically
trapped superfluid Fermi gases in the BCS-BEC crossover.
The paper is arranged as follows. In Sec. II, we give a simple
introduction on the time-dependent GGP equation valid for a
fermionic condensate. The equation of state in various super-
fluid regimes is also described. In addition, the time-
independent GGP equation for ground state and
Bogoliubov–de Gennes �BdG� equations for collective exci-
tations are derived by using a method of multiple scales. In
Sec. III, we provide the explicit solutions of ground state
wave function and eigenspectra and eigenfunctions of collec-
tive excitations for the traps of both spherical and spheroidal
symmetries, which are valid for the whole BCS-BEC cross-
over. The result for the excitation spectrum obtained is com-
pared with the available experimental and numerical data.
Finally, the last section �Sec. IV� contains a discussion and
summary of our main results.

II. ORDER PARAMETER EQUATION AND BDG
FORMALISM FOR BOGOLIUBOV EXCITATIONS

A. Order parameter equation for the BCS-BEC crossover

The ground state of a superfluid fermionic atom gas of
density � contains paired atoms with � /2 as pair density
�1,2�. These condensed fermionic atom pairs are originated
from fermionic atoms �i.e., 6Li or 40K in the present experi-
ments �3–7�� with two different internal states. By means of
Feshbach resonance the transition from BCS to BEC regimes
can be easily realized through tuning an applied magnetic
field, and hence changing the s-wave scattering length asc.
When asc�0 �asc�0�, the system is in a BCS �BEC� regime.
By defining a dimensionless interaction parameter �
�1/ �kFasc�, where kF= �3�2��1/3 is the Fermi wave number,
one can distinguish several different superfluidity regimes
�19,24�, i.e., BCS regime ���−1�, BEC regime ���1�, and
BEC-BCS crossover regime �−1���1�. �=−� ��= +�� is
called BCS �BEC� limit and �=0 is called unitarity limit.
Both theoretical and experimental studies show that the tran-
sition from BCS regime to BEC regime is smooth �2�, which
hints that one can study the physical property of system in
various superfluid regimes in a unified way.

As pointed out in the last section, at very low temperature
�around 10−7 to 10−8 K� low-frequency collective modes
cannot decay by formation of single fermionic excitations
because of the gap in their energy spectrum. Thus thermal

excitations play no significant role and the system can be
taken as a perfect superfluid �31�. To describe the dynamics
of such zero-temperature superfluid in the trapping potential
Vext�r�, one can use a time-dependent density-functional
theory �18,19,24�. The action functional L��� of the theory is

L��� =� dtdrL�r,�,��/�t,��� , �1�

where � is superfluid order parameter, L= �i� /2�����* /�t
−�*�� /�t�+ ��2 /2M�����2+Vext�r��+�	��� is the Lagrang-
ian density. Here Vext�r� is trapping potential and 	��� repre-
sents the bulk energy per particle of the system, which is
expressed as a function of the number density �= ���2 and has
the relation 	���= 3

5	Ff���, where 	F=�2kF
2 / �2M� is the

Fermi energy and M is the mass of atoms. Some asymptotic
expressions of f��� have been obtained by fitting calculating
data �26�. Interpolating these asymptotic expressions for
small and large ��� one can obtain the general formula f���
=
1−
2 arctan�
3���1+ ���� / ��2+ �����. The fitting param-
eters 
 j �j=1,2 ,3� and �l �l=1,2� for 6Li have been given in
Ref. �19�.

The Euler-Lagrangian equation for � is obtained by mini-
mizing the action functional �1�, which leads to a GGP equa-
tion �18,19,24�

i�
�

�t
� = �−

�2

2m
�2 + Vext�r� + U���	� , �2�

where U��� is the equation of state �also called the bulk
chemical potential� of the system �18,19�. Different super-
fluid regimes can be characterized by different U��� in cor-
responding regimes. According to Gibbs-Duhem relation one
can obtain the formula �19� U���=���	���� /��.

Because the expression of the equation of state U��� is
very complicated, it is hard to obtain analytical results of the
GGP equation. A simple approach is to take a polytropic
approximation, i.e., one assumes �16,18,19,22,24� 	���=c��,
where c is a constant �whose value depends on the values of
� and � given Eq. �18� below�. It is easy to show that the
effective polytropic index takes the form ����=� 2

3 f���
− 2

5�f����+ 1
15�

2f����� /� f���− 1
5�f����� �19�. In a recent

work, based a simple mean-field model Chin presented a
simple analytical form for the effective polytropic index �32�

���� =
2 + 2�2/ + �/�2
3/2�

3�1 + �����2/�2 , �3�

where ���� is the Heaviside step function and ��m /2	F is
a solution of the equation Ai��−
� /Ai�−
�=−

�, here
�m is the chemical potential of a homogeneous dimer system
�i.e., in the BEC side�, Ai�−� is the Airy function and 

�2.338 is the first zero point of the Ai function. The expres-
sion �3� is more convenient than that presented in Ref. �19�
and we shall use it in the following calculation. In the BCS
limit we have �=2/3 �corresponding to �=−�� and in the
BEC limit we have �=1 �corresponding to �= +��. The
minimum ���0.6� is at ��−0.55 and the maximum ��
�1.0� is at �= +�. Mathematically, the polytropic approxi-
mation is a little rough but it has the advantage of allowing
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one to get an analytical expressions for the eigenfunctions
and eigenfrequencies of collective modes for various super-
fluid regimes in a unified way. In fact, it is quite accurate
because � is a slowly varying function of � �16–19,22–25�.

B. BdG formalism for collective excitations

We now begin to study the linear excitations of the super-
fluid gas in the BCS-BEC crossover. We assume that in the
ground state of the system the superfluid wave function takes
the form �G�r , t�=�G�r�exp�−i�Gt /��, where �G�r� is a sta-
tionary function satisfying the time-independent GGP equa-
tion

�Ĥ0 − �G + U��G���G = 0, �4�

with Ĥ0=−�2�2 / �2M�+Vext�r�. To find an excitation we take
the Bogoliubov decomposition

��r,t� = ��G�r� + ���r,t��exp�− i�Gt/�� , �5�

where ��r , t� is the component describing the excitation gen-
erated from the condensate, and � is a small parameter char-
acterizing the relative amplitude of the excitation. Then, ex-
act to first order of �, Eq. �2� takes the form

i�
��

�t
= L̂� + U���G��G

2�* + �U���G��2�G���2 + �G
*�2�

+
1

2
U���G��G��G

*� + �G�
*�2� + O��2� , �6�

where U����=�U��� /�� and the operator L̂ is defined by L̂
=−�2�2 / �2M�+Vext�r�−�G+U��G�+U���G��G. To solve
Eq. �6� we apply a method of multiple scales �33�. Letting
�=��1�+	��2�+¯ with ��j�=��j��r , t ,�� and �=�t, Eq. �6�
becomes

Ô��j� � i�
���j�

�t
− L̂��j� − U���G��G

2��j�* = Q�j�, �7�

with Q�1�=0 and Q�2�=−i����1� /��+U���G���2�G���1��2

+�G
*��1�2��+ 1

2U���G��G��G
*��1�+�G�

�1�*�2. The expressions
of higher-order Q�j� �j=3,4 , . . . � are omitted here.

At the leading order �j=1� one has Ô��1�=0. To solve this
equation we make the Bogoliubov transformation

��1��r,t� = �
n=0

�

�un�r�bn���exp�− i�nt� + vn
*�r�bn

*���exp�i�nt��

�8�
with the amplitudes �un ,vn� being the wave functions in the
real space and bn��� depending on the slowly varying time �.
Then the problem is converted to solve the BdG eigenvalue
problem

L̂un�r� + U���G���G�2vn�r� = + Enun�r� , �9�

L̂vn�r� + U���G���G
* �2un�r� = − Envn�r� , �10�

where En=��n is the eigenenergy of the excitation and
�un ,vn� is the eigenfunction, also called Bogoliubov ampli-
tude. To obtain a complete set of eigenfunctions one must

solve the equation for the zero-energy �E0=0� mode �u0 ,v0�
�34,35�:

L̂u0�r� + U���G���G�2v0�r� =

0

2
�u0�r� − v0�r�� , �11�

L̂v0�r� + U���G���G
* �2u0�r� =


0

2
�u0�r� − v0�r�� , �12�

where the parameter 
0 has to be determined so that the
eigenfunctions �un ,vn� �n=0,1 ,2 , . . . � constitute an orthogo-
nal and complete set. From the BdG equations �9� and �10� it
is easy to show that the eigenfunctions �un ,vn� satisfy the
following orthogonality relations:

� d3r�un
*�r�un��r� − vn

*�r�vn��r�� = �nn�, �13�

� d3r�un�r�vn��r� − un��r�vn�r�� = 0. �14�

III. ANALYTICAL SOLUTIONS OF BDG EQUATIONS
BEYOND TF LIMIT

We consider a trapping potential of an axial symmetry
with the form Vext�r�=M��

2 r2 /2, with r2=s2+�2z2. Here s2

=x2+y2, �=�z /��, �� ��z� is the trapping frequency in
radial �axial� direction. For the convenience of the following
calculation we convert the time-independent GGP equation
�4� and the BdG equations �9� and �10� into dimensionless
forms by rescaling the variable r /R�= r̄, and hence one has

�̄=R��, here R��aho

2�G /M�� is the characteristic ra-

dius of the condensate and aho�
� /M�� is the harmonic
oscillator length in the radial direction. We called the case of
large but finite N0 as TF regime and the case of N0→� as TF
limit. In order to get the solution beyond the TF limit, it is
convenient to introduce an important parameter �
���� /2�G. Note that ���aho/R��2 for N0�1 �see the next
subsection�. Thus the TF limit corresponds to �=0 �i.e., N0
=�� and the TF regime corresponds to a small but nonzero �.
With these notations the GGP Eq. �4� is transformed into the
dimensionless form

�̄G
� �r� = 1 − r̄2 − �2��r� , �15�

where �̄G�r����G�r� /�G�0��2 is the dimensionless particle-
number density in the ground state and ��r�
�−��̄2�G�r�� /�G�r� is a quantity proportional to quantum
pressure.

By defining �n
±�r��un±vn the BdG Eqs. �9� and �10� be-

come

− �̄2�1 − r̄2��n
+ − �1 − r̄2���n

+ +
�2

2�
��̄4 + �2� + 1��̄2� + ��̄2

+ �2� + 1��2��n
+ =

2

�
�̄n

2�n
+, �16�
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− �1 − r̄2��̄2�n
− − �1 − r̄2���n

− +
�2

2�
��̄4 + �̄2� + �2� + 1���̄2

+ �2� + 1��2��n
− =

2

�
�̄n

2�n
−, �17�

where �̄n�En / �����. We are interested in low-lying excita-
tions in the condensate and hence ����En��G. It is obvi-
ous that the terms proportional to �2 in the dimensionless
BdG Eqs. �16� and �17� can be taken as perturbation for

low-lying excitations as long as ��2�̄2� ��1.

A. Variational solution for ground state

In order to eliminate the divergence in the solution under
the TF limit, we follow the line of Fetter �36� by considering
a trial variational ground-state wave function, i.e., the solu-
tion of the dimensionless GGP equation �15� takes the form

�G = CG

��1 − r̄2��q+1�/2���1 − r̄� , �18�

with q being taken as variational parameter. The square of
normalization coefficient CG

2 �N0 / �2�R�
3 B�3/2 ,1+��� is

obtained by the condition N0=�d3r��G�r��2, here ���q
+1� /� and B��1 ,�2� is beta function with arguments �1 and
�2. In the TF limit the chemical potential in the ground state
has the simple form �G� 1

2 M��
2 R�

2 �U��G�0��. In the TF
regime, the repulsive interaction between condensed pairs
makes the condensate expands from the size aho to R�. The
expansion ratio is given by R� /aho��−1/2, where �
=D1D2

2/�3�+2� with D1= �1.695 �� � �2�3�−2�/�3�+2���N0�−1/3 and
D2=5�2�B�3/2 ,�+1��� / �3�3�2�2/3��+1������. Here we
have used c= �35/3�4/3�2 /10M�asc

3�−2���� and changed the
theoretical � in the homogeneous system into the experimen-
tal � in the trapping potential with ��−��=1, ��0�= f�0�, and
����= �9��−1/3 /2. The ground-state energy as a function of q
reads

EG�q� =
1

2
���� 3

2� + 5
+

B�3/2,�� + � + 1�
�� + 1�B�3/2,� + 1�	1

�

+ �1 +
1

2
�2	�� + 3/2

� − 1
�� . �19�

In the ground state E�q� should be minimum, which de-
termines q as a function of �, �, �, and N0. In the TF regime
one has q�N0

−3/10 and R� /aho�N0
1/6. In Fig. 1�a� �Fig. 1�b��

we have shown the result for the variational parameter q �the
dimensionless condensate radius R� /aho� as the function of
N0 for fixed �=0.2 with different interaction parameter �=
−0.5, 0, and 1.0. We see that q decreases and R� /aho in-
creases as N0 increases. Note that to make the variational
approximation be valid the value of q should not be too
large.

B. Solutions of BdG equations in spherically symmetric
trapping potential „�=1…

Similar to the procedure described in Refs. �29,30� for the
BEC limit, explicit analytic solutions of the BdG Eqs. �16�

and �17� in the BCS-BEC crossover beyond the TF limit can
be obtained in the following three steps.

The first step is to set the small parameter �2 to
zero but substitute the expression of � for �=1,
i.e., �=��3− ��+1�r̄2� / �1− r̄2�2, into Eqs. �16� and �17�.
One obtains eigenfunctions of the form �n

±�r�=Cn
±�1

− r̄2���−1�/2�1/2r̄lP�r̄2�Ylm�� ,��, where Ylm is the spherical
harmonic function and the radial function P�x� with x= r̄2

satisfies the hypergeometric differential equation

2x�1 − x�P��x� + �2l + 3 − �2l + 3 + 2��x�P��x�

+ ��−1��̄nrl
�0��2 − �l�P�x� = 0. �20�

Solutions of Eq. �20� are classical nrth-order Jacobi polyno-
mials Pnr

�l+1/2,q��1−2x�, which form an orthonormal function
set on the interval 0�x�1. The radial normalization inte-
gral with weight xl+1/2�1−x��−1 is given by Inrl

���
��0

1dxxl+1/2�1−x��−1Pnrl
2 �x�=nr! 

2�l+3/2� �nr+�� / ��2nr+ l
+�+1/2� �nr+ l+3/2� �nr+ l+�+1/2��. Consequently, the

3 4 5 6 7
log10N0
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FIG. 1. The variational parameter q �panel �a�� and the dimen-
sionless condensate radius R� /aho �panel �b�� as a function of N0 in
the condensate for the anisotropic parameter �=0.2. The long-
dashed lines, solid lines, and short-dashed lines are the results for
the interaction parameter �=1/ �kFasc�=−0.5, 0, and 1.0,
respectively.
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normalized eigensolutions that satisfy the condition
�d3r�unrl

2 −vnrl
2 �=1 read

�n
±�r� =
 2

Inrl
���R�

3 ���̄nrl
�0��±1/2�1 − r̄2���−1�/2�1/2r̄l

!Pnrl
�r̄2�Ylm��,�� , �21�

where n= �nr , l ,m� are quantum numbers, with nr

=0,1 ,2 , . . ., l=0,1 ,2 , . . ., and m=−l , . . . , l. The eigenvalues
of the BdG equations are given by ��̄nrl

�0��2= ��̄nrl
TF�2+ �2nr

+ l�q, where ��̄nrl
TF�2=�nr�2nr+2l+1�+2nr+ l is the result

given by the TF limit. We stress that the solutions given here
are different from those obtained in Refs. �29,37–40�. Be-
cause q�0 and 0.6���1.0, we have ��1. The factor �1
− r̄2���−1�/2, which reduces to 1 in the BEC and the TF limits
�i.e., �=1 and q=0 and hence �=1�, takes a role for smooth-
ing Bogoliubov amplitudes. As a result, the divergence in the
integration of coupling matrix elements for three-mode reso-
nant interaction can be eliminated completely �28�.

The second step is to calculate the correction of the exci-
tation spectrum by using of standard perturbation theory.
Since for low-lying excitations �2 is small, we can take a
perturbation expansion for the eigenvalues and eigenfunc-
tions to solve Eqs. �16� and �17�. The solution described
above is taken as an zero-order one and the first-order cor-

rection of eigenvalue can be readily obtained. As a result the
eigenvalue including the zero-order one is given by

�̄nrl
= �̄nrl

�0� + ��̄nrl

=
�̄nrl

�0�

2Inrl
����0

1

dxxl+1/2�1 − x��−1Pnrl
2 �x�

!� 1

�
+ ��1 − x�q +

�2

�1 − x�2

! 1

�
��̄nrl

�0��2 − 2l − 3 − 2�2 − ��
x

1 − x
− 4x

Pnrl
� �x�

Pnrl
�x��� .

�22�

In the derivation of Eq. �22�, divergence terms including
those such as ���̄nrl

�0��−1 have canceled each other exactly.
The third step is to change 2Inrl

��� into �−1Inrl
���

+�Inrl
��+q� in Eq. �22�. This is because the correct spectrum

formula returns to the result in the TF limit for q=0. This
correction is caused by the polytropic index ��1. We see
that the first-order correction of the excitation spectrum is
proportional to �2�N0

−2/3.
For the modes of nr=0 and l"1, the correction term in

Eq. �22� is simplified to

��̄0l

�̄0l

= �22B�l + 3/2,����2l + 3 − �l�B�l + 3/2,� − 2� − 2�1 − ��B�l + 5/2,� − 3��
�−1B�l + 3/2,�� + �B�l + 3/2,� + q�

. �23�

It seems that it is unphysical for �=1,2 ,3 because the beta
functions appeared in the numerator of Eq. �23� are diver-
gent. However, notice that �= �1+q� /�"1, 0.6���1.0,
and the variational approximation used in the last subsection
requires q cannot be too large, we can put a constraint on q
so that 1���2 or 0�q�2�−1. In this way there are no
divergence in the expression of Eq. �23�. Using the result
given above it is easy to show that in the TF regime �i.e.,
N0�1 and q�0� and at deep BEC regime �i.e., �→1�, one
has �→1 and hence �̄0l=
l+const!�2 /q and �2 /q�N0

−1/3.
This result demonstrates that the spectrum correction ob-
tained is indeed a small quantity and it can reduce to the
result in the TF limit �i.e., N0=��. Note that in the usual
TF-like approximation, turning point r̄=1 is at finite distance
for finite radius R�. While in the TF regime we focus on in
the present work, the point r̄=1 corresponds to a very large
distance for R� /aho�N0

1/6. �G vanishes smoothly for r→�,
un and vn have a divergence only below logarithms and thus
remain normalizable due to the introduction of the conver-
gent factor �1−x�q/2.

In Fig. 2 we have shown the result of a quadrupole mode
for nr=0 and l=2 as a function of the interaction parameter
�=1/ �kFasc� with N0=2!105 �long-dashed line�, N0=2

!107 �solid line�, and the TF limit N0=� �short-dashed
line�, where � as a function of � is given by Eq. �3�. From
this figure we see the following. �i� The quantum pressure
has a significant contribution to the eigenfrequency with de-
creasing N0. �ii� The eigenfrequency increases as � increases,
especially in the BEC regime. The leading-order solution of
the eigenfrequency of this mode is given by ��̄nrl

�0��2

=�nr�2nr+2l+1�+ �2nr+ l��1+q�, showing clearly the effect
beyond TF limit �i.e., nonvanishing variational parameter q�.
This result also covers the one obtained by Baranov and
Petrov �41� �also see Ref. �42�� for q=0 �the TF limit� and
�=2/3 �the BCS limit�.

C. Solutions of BdG equations in axially symmetric trapping
potential „�Å1…

We now consider the solutions beyond the TF limit for an
axially symmetric case �i.e., ��1�, which is more important
because axially symmetric traps are widely used in experi-
ments �3–11�. We solve the BdG Eqs. �16� and �17� along the
line of the last subsection by taking �2 as a small perturbation
parameter. Noting that in this case �= �1+q���2+�2��1− r̄2�
+ �1−q��s̄2+�4z̄2�� / �1− r̄2�2 and the axial component of an-
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gular momentum m is still a good quantum number,
the leading-order solution takes the form �n

±�r�=Cn
±�1

− r̄2���−1�/2�1/2s̄�m�P�z̄ , s̄�eim�, where the coupled axial and ra-
dial function P�z̄ , s̄� fulfills a two-dimensional differential
equation �29,30�

��1 − s̄2 − �2z̄2� �2

�s̄2 + �1 + 2�m��
�

s̄�s̄
+

�2

�z̄2�
− 2��s̄

�

�s̄
+ �2z̄

�

�z̄
	 + 2 1

�
��̄nznsm

�0� �2 − ��m���P�z̄, s̄� = 0.

�24�

By using the method similar to that in Refs. �24,39�, we look
for the solution of Eq. �24� with the form

Pnp

�2ns��z̄, s̄� = �
k=0

np

�
n=0

int�k/2�

bk,nz̄k−2ns̄2n, �25�

where np is a principal quantum number �29,30,39� and the
coefficient bk,n fulfills the relation

4�n + 1��n + �m� + 1�bk+2,n+1 + �k − 2n + 2��k − 2n + 1�bk+2,n

= 4�2�n + 1��n + �m� + 1�bk,n+1 −  2

�
��̄nznsm

�0� �2 − 2�m��

− 2�m�q − 4n�n + �m� + �� − �2�k − 2n��k − 2n − 1

+ 2���bk,n + �k − 2n + 2��k − 2n + 1�bk,n−1. �26�

From this equation, one can show that zero-order eigenval-
ues ��̄nznsm

�0� �2 are the solution of the standard continued frac-
tion equation

− 1 =
g0

1 +
g1

1 + ¯ ¯ ¯

�

1 + gZ−2

, �27�

for n= �nz ,ns ,m� modes with Z=1+int�np /2� and

gn =
1

D3

− 4�2�n + 1��n + �m� + 1��np − 2n − 1��np − 2n�
2��̄nznsm

�0� �2/� − 2�m�� − 4n�n + �m� + �� − �2�np − 2n��np − 2n − 1 + 2��
,

where D3=2�−2�m��−4�n+1��n+ �m�+1+��−�2�np−2n
−2��np−2n−3+2��. The polynomials Pnp

�2ns��z̄ , s̄� form an or-
thonormal set on the interval 0� r̄�1, and the normalization
integral with weight s̄2�m��1− r̄2��−1 is given by Inznsm

���
�2�0

1s̄ds̄�0

1−s̄2/�dz̄s̄2�m��1− s̄2−�2z̄2��−1�Pnp

�2ns��z̄ , s̄��2. Conse-
quently, the normalized eigenfunctions read

�n
±�r� =

���̄nznsm
�0� �±1/2


4�Inznsm
���R�

3
�1 − s̄2 − �2z̄2���−1�/2�1/2s̄m

!Pnp

�2ns��z̄, s̄�eim�. �28�

With the zero-order solutions obtained we can go to the next
order of perturbation expansion. It is easy to get the first-
order correction of eigenvalues

��̄nznsm

�̄nznsm

=
�2

Jnznsm
�

0

1

ds̄ s̄�
0


1−s̄2/�
dz̄ s̄2�m��1 − r̄2��−3

!�Pnp

�2ns��z̄, s̄��2 1

�
��̄nznsm

�0� �2 − 2 − �2 − 2�m�

− 2�2 − ��
s̄ + �2z̄

1 − r̄2 − 2� �

� ln s̄
+ �2 �

� ln z̄
	

!ln Pnp

�2ns��z̄, s̄�� �29�

with Jnznsm
=�−1Inznsm

���+�Inznsm
��+q�.

For illustration we discuss the collective modes with np
=0,1. Then one has ns=0 and nz=0 and 1, respectively. The
zero-order eigenvalues are ��̄nz0m

�0� �2=����m�+�2nz�. Their
corrections to �2 order are given by

-2 -1 0 1 2
1�kFasc

1.414

1.4145

1.415

1.4155

1.416

1.4165

1.417

Ω
0
2
�

Ω
�

FIG. 2. Dimensionless oscillating frequencies of �̄02 mode vs
dimensionless interaction parameter 1 / �kFasc� for a spherical sym-
metrical trap ��=1�. The long-dashed line, solid line, and short-
dashed line correspond to N0=2!105 , 2!107, and �, respectively.
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��̄00m

�̄00m
�0� =

�2�

J00m
����m� − 2��m� + � − 1� − �2�

!B�1/2,� + �m� − 1�B��m� + 1,� − 2�

− 2�2 − ��B�1/2,� + �m� − 2�B��m� + 1,� − 3��
�30�

with I00m���=B�1/2 ,�+ �m�+1�B��m�+1,�� /2� and

��10m

�10m
�0� =

�2�

J10m
�����m� + �2� − 2��m� + � − 1� − 3�2�

!B�3/2,� + �m� − 1�B��m� + 1,� − 2�

− 2�2 − ��B�3/2,� + �m� − 2�B��m� + 1,� − 3��
�31�

with I10m���=B�3/2 ,�+ �m�+1�B��m�+1,�� /2�3. In Fig. 3
we have plotted the result of the quadrupole �002� and �102�
modes for m= ±2 and �=
8. The curves in the figure show
the 1/ �kFasc� dependence of the eigenfrequencies for azi-
muthal �Fig. 3�a�� and axial �Fig. 3�b�� excitations. The con-
tribution to the eigenfrequency by quantum pressure has a
similar behavior as shown in Fig. 2.

For breathing modes with nz=2, ns=0 and m=0, and nz
=0, ns=1 and m=0, we have P�z̄ , s̄�=1+b1z̄2+b2s̄2 with b2

=−���̄nznsm
�0� �2−���m�� / ���̄nznsm

�0� �2−����m�+2�� and b1=

−�2�m�+2− �̄nznsm
�0� 2 /�+���m�+2��b2. Equation �29� is simpli-

fied to

��̄nzns0

�̄nzns0
�0� =

�2B�1/2,� + 1�
2���� − 1��� − 2�Jnzns0

�� 1

�
�̄nzns0

�0�2 − 2 − �2	
!�2 −

1

4
+
�b1

�2 �1 +
3b1/4�2

� + 1/2
	 + �2� + 1

+
b1

�2	b2 + 2b2
2� − 2�� +

1

2
	�b1 + 2b2� +

3b1

2�2

+ �1 +
1

�2	b1b2 + 4b2
2� +

� − 2

� − 3
3�2 −

1

2
� −

1

2

+
�b1

�2 �5 +
21b1/4�2

� + 1/2
	 + �10� + 5 +

7b1

�2 	b2

+ 14b2
2�� , �32�

where ��̄nznsm
�0� �2=���m�+1+ 1

2�
2�+ ��m�+1+�2���±����m�

+1+��2− �3�− �m�−1+2��m�+�����2+ ��+ 1
2

�2
�4�1/2 and

Inzns0
���=

B�1/2,�+1�

�� � 1
2 +

b1/2�2+b2

�+3/2 +
3b1

2/8�4+b1b2/2�2+b2
2

��+5/2���+3/2� �. In Eqs.

�29�–�32� the condition of 1���2 �see in the last subsec-
tion� guarantees the validity of the correction for the eigen-
values in the TF regime. In particular, for �=1 �deep BEC
regime in the TF limit� �2 /q has a finite value although q
→0. Notice that our solutions presented here cover the spe-
cial solutions found by Heiselberg �16� and Cozzini and
Stringari �43� for the m=0 breathing modes, observed in re-

cent experiments by Grimm’s group and Thomas’s group
�8,9,11�.

In Fig. 4 we have shown the experimental and theoretical
results on 1/ �kFasc� dependence of the radial breathing mode
�010� �Fig. 4�a� with �=0.20� and axial breathing mode
�200� �Fig. 4�b� with �=0.05� for different N0. The dotted
lines are taken from experimental data �8,9�, the long-dashed
lines, thick solid lines, and short-dashed lines are our calcu-
lating results for N0=2!105, 2!107, and �, respectively,
and the thin solid lines are taken from theoretical results
�19�. From the figure we see that �i� in the BCS side, our
theoretical results on the collective-mode frequencies agree
well with the available experimental data �8,9� and theoreti-
cal curves �19� near and beyond the TF limit. �ii� In the BEC
side, our theoretical results are larger than the experimental
data even in the TF limit. This may be due to the reason of

-2 -1 0 1 2
1�kFasc

1.415

1.42

1.425

1.43

Ω
0
0
2
�

Ω
�

-2 -1 0 1 2
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3.16
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3.24

3.26

Ω
1
0
2
�

Ω
�

(a)

(b)

FIG. 3. Dimensionless oscillating frequencies vs the dimension-
less interaction parameter 1 / �kFasc� for �=
8. Panel �a� is for �̄002

mode �azimuthal excitation� and panel �b� is for �̄102 mode �axial
excitation�. The long-dashed lines, solid lines, and short-dashed
lines correspond to N0=2!105, 2!107, and �, respectively.
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the finite temperature �44�, the finite height of the trap po-
tential, and the beyond mean-field effect �12�. �iii� In the
whole crossover regime, the thick solid lines and short-
dashed lines are almost take the same value for N0=2!107,
and �. This means that the finite-size effects are not impor-
tant only when N0"1!107.

D. Solutions of BdG equations for zero-energy mode

In a similar way we may solve Eqs. �11� and �12� for the
zero-energy mode. By taking �0

±�r��u0±v0 it is easy to
show that �0

− satisfies Eq. �4� and hence �0
−�r�=�G

=CG

��1− r̄2��/2��1− r̄�. By a simple calculation one can

obtain that the zero-order solution for �0
+ has the form �0

+

= �
̄0 /2���1− r̄2��/2−1��1− r̄�, where 
̄0�
0
�G�0� / ���
+1�c�G

� �0�� is determined by the normalization condition 1
=�d3r�u0

2−v0
2�= 
̄0�R�

3 
�G�0�B�3/2 ,�� / ����. By defining
the dimensionless density �̄0��10aho�3�u0

2−v0
2�, one has

the divergence-free density distribution �̄0�r�= �̄0�0�

!�1− r̄2��−1��1− r̄� with �̄0�0�=2!103
��3/2 / ��B�3/2 ,���
being the value at the center of the trapping potential and �
being the small value defined below Eq. �18�.

As an example, in Fig. 5 we have plotted the density
distribution of the zero-energy mode as a function of
1/ �kFasc� for �=1. We see that the values of � ,� ,� ,N0 con-
tribute obvious effects on the density distribution of the zero-
energy mode. Especially, there is a kinklike change of the
density in the trap center when 1/ �kFasc� passes through the
unitarity point �i.e., asc→ ±�� of the BCS-BEC crossover.

IV. SUMMARY

Ground state and elementary excitations are two key is-
sues in the physics of the BCS-BEC crossover. Because of
the existence of the trapping potential, it is hard to get the
ground state solution and all eigenvalues and eigenfunctions
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FIG. 4. Dimensionless breathing mode frequencies vs the di-
mensionless interaction parameter 1 / �kFasc�. �a� �̄010 in the xy
plane for �=0.20. �b� �̄200 in the z axis for �=0.05. In both panels,
the large solid circles are taken from experimental data �8,9�. The
thin solid lines are taken from theoretical result �19�. The long-
dashed lines, thick solid lines, and short-dashed lines are for N0

=2!105, 2!107, and �, respectively.
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FIG. 5. Dimensionless density distribution of the zero-energy
mode for �=1. �a� Density distribution as a function of radial dis-
tance �in the unit of aho� for N0=2!105. The long-dashed line,
solid line, and short-dashed line are for the interaction parameter
1 / �kFasc�=−0.5, 0, and 1.0, respectively. �b� Maximum density at
r=0 as a function of the dimensionless interaction parameter
1 / �kFasc�. The long-dashed line, solid line, and short-dashed line
are for N0=2!105, 2!106, and 2!107, respectively.
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for excitations in a consistent way. In the present work, we
have made a detailed investigation on the Bogoliubov collec-
tive excitations of trapped superfluid Fermi gases in the
BCS-BEC crossover beyond the TF limit. Starting from the
GGP equation and the simplified equation of state, valid for
the whole crossover, we have derived the time-independent
GGP equation for the ground state of the condensate and the
BdG equations for low-lying collective modes at zero tem-
perature. By introducing a variational parameter q in the
ground state wave function we have removed the nonconti-
nuity of its slope at the boundary of the condensate, which
appears in the TF limit. We have solved the BdG equations
analytically for the trapping potentials of spherical and axial
symmetries. The explicit expressions for all eigenvalues and
eigenfunctions, which are valid for various crossover re-
gimes, have been provided. We have discussed the features
of various collective modes in the BCS-BEC crossover and

made a comparison with available experimental data near
and beyond the TF limit. The results presented in this work
may be useful for understanding the physical property of
superfluid Fermi gases in the BCS-BEC crossover and guid-
ing experimental findings for observing new collective
modes predicted here. In addition, our results may be used to
consider the interaction between collective excitations in su-
perfluid Fermi gases and study the damping and frequency
shift of collective modes in various superfluid regimes.
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