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We present a systematic theoretical study to deal with linear and nonlinear light propagations in a Doppler-
broadened three-level � system via electromagnetically induced transparency (EIT), with incoherent population
exchange between two lower energy levels taken into account. Through a careful analysis of base state and linear
excitation, we show that the EIT condition of the system is given by |�c|2γ31 � 2γ21�ω2

D , where �c is half
the Rabi frequency of the control field, �ωD is the Doppler width, and γjl is the decay rate of the coherence
between states |j〉 and |l〉. Under this condition, the effect of incoherent population exchange is insignificant,
while dephasing dominates the decoherence of the system. This condition also ensures the validity of the weak
nonlinear perturbation theory used in this work for solving the Maxwell-Bloch equations with inhomogeneous
broadening. We then investigate the nonlinear propagation of the probe field and show that it is possible to
form temporal optical solitons in the Doppler-broadened medium. Such solitons have ultraslow propagating
velocity and can be generated in very low light power. The possibility of realizing (1 + 1)-dimensional and
(2 + 1)-dimensional spatial optical solitons in the adiabatic regime of the system is also discussed.
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I. INTRODUCTION

Optics in coherent media has attracted tremendous attention
due to the finding of electromagnetically induced transparency
(EIT) and related quantum coherence phenomena [1–3]. It has
been shown that EIT can be used not only for largely suppress-
ing optical absorption, but also for substantially enhancing the
efficiency of many nonlinear optical processes, including giant
Kerr nonlinearity [4–15] four-wave mixing [16–28], optical
solitons [29–37], and so on (see also Refs. [1–3] and cited
references therein). Up to now, a large amount of theoretical
work on linear and nonlinear properties of EIT systems has
been carried out. However, in comparison with the study of
cold atomic systems, EIT systems with inhomogeneous broad-
ening have been less investigated, although many experiments
have been made in hot atomic vapors in which the Doppler
effect cannot be neglected. In addition, as far as we know, there
is no report so far on nonlinear propagation of light pulses and
beams and possible optical solitons in Doppler-broadened EIT
systems.

There exist some previous theoretical studies on EIT-
cored atomic systems with Doppler broadening, spanning
the subjects of optimization of absorption reduction [38],
narrowing of linewidth [39–48], effect of velocity-changing
collisions [49,50], slowdown of light with both temporal
and spatial dispersion effects [51], and so on [52–57]. In
Ref. [38], a criterion for EIT for a �-type three-level system
with Doppler broadening, i.e., |�c|2 � 2

√
ln 2γ21�ωD , was

proposed, where �c, �ωD , and γ21 are half the Rabi frequency
of the control field, the Doppler width, and the decay rate of the
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coherence between two lower levels |2〉 and |1〉, respectively.
However, in another work [41], a different approach was given,
in which an incoherent population exchange was introduced;
this work stressed that one can still have EIT in the Doppler-
broadened system if |�c|2 � γ21γ31, which is nothing but the
EIT criterion for a cold atomic system without inhomogeneous
broadening. A recent experiment by Figueroa et al. [58]
demonstrated that it is dephasing that plays a dominant role
for the decoherence in the system, i.e., incoherent population
exchange gives a negligible contribution to the width of the
EIT transparency widow. In view of these different results, it is
necessary to make a detailed investigation of pulse propagation
and clarify the EIT condition in Doppler-broadened media.

In the present work, we make a systematic theoretical
study of linear and nonlinear pulse propagation in a Doppler-
broadened three-level � system. The aims of this work are
twofold. First, we shall clarify the relative importance of
decoherence mechanisms contributed by incoherent popula-
tion exchange and dephasing, and propose a criterion for
EIT in the three-level � system, i.e., |�c|2γ31 � 2γ21�ω2

D .
This criterion, valid for �ωD � γ31, is not only useful
for clear appearance of EIT, but also ensures the validity
of the self-consistent weak nonlinear perturbation method
used in this work for solving the Maxwell-Bloch (MB)
equations with inhomogeneous broadening. Second, we shall
investigate the nonlinear propagation of a probe pulse and
show that it is possible to form a temporal optical soliton
in the Doppler-broadened � system under EIT conditions.
This soliton has ultraslow propagating velocity and can be
generated in very low light power. We shall also demonstrate
both analytically and numerically the possibility of realizing
(1 + 1)-dimensional [(1 + 1)D] and (2 + 1)D spatial optical
solitons in the system.
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The paper is arranged as follows. In the next section,
we describe the model under study and discuss its linear
property. A criterion for the appearance of EIT in a �-type
three-level system with Doppler broadening is given. In
Sec. III, we develop a weak nonlinear perturbation method
for a density matrix with Doppler broadening and derive a
nonlinear envelope equation for the probe pulse. We show
that it is possible to realize an ultraslow optical soliton in the
Doppler-broadened system. In Sec. IV, we demonstrate that
the system can also support (1 + 1)D and (2 + 1)D spatial
optical solitons. Finally, in Sec. V we give a discussion and
summary of the main results obtained in this work.

II. THE MODEL AND ITS LINEAR PROPERTY

A. Model and base state solution

Consider an atomic system in which atoms have three en-
ergy levels with a �-type configuration, as shown in Fig. 1. The
two lower states |1〉 and |2〉 are hyperfine ground states, while
the state |3〉 is an excited state. A weak (strong) probe (control)
field of central angular frequency ωp (ωc) couples to the atomic
states |1〉 (|2〉) and |3〉. The quantities �3 = ωp − (ω3 − ω1)
and �2 = ωp − ωc − (ω2 − ω1) are respectively one- and
two-photon detunings for an atom at rest, with h̄ωj being
the eigenenergy of the state |j 〉 (j = 1,2,3). �ij represents the
decay rate from state |j 〉 to state |i〉. The electric-field vector
of the system is E = ∑

l=p,c elEl(z,t)ei(klz−ωl t) + c.c., where
el (kl) is the unit polarization vector (wave number) of the
electric-field component with the envelope El (l = p,c).

For a hot atomic vapor, the inhomogeneous broadening of
the atomic radiation spectrum line due to the Doppler effect
plays an important role in the optical response of the system.
To include this effect, the external motion of the atoms must
be taken into account properly. The interaction Hamiltonian
of an atom and the optical field under the electric-dipole
approximation and rotating-wave approximation is given by

ĤI = −h̄(�∗
pe−i[kp(z+vt)−ωpt]|1〉〈3|

+ �∗
ce

−i[kc(z+vt)−ωct]|2〉〈3|) + H.c., (1)

FIG. 1. (Color online) Energy-level diagram and excitation
scheme of the three-level � system under study, in which a weak
(strong) probe (control) field of central angular frequency ωp (ωc)
and half Rabi frequency �p (�c) couples to the atomic states |1〉 (|2〉)
and |3〉. �ij denotes the incoherent decay rate from state |j〉 to state
|i〉. �2 and �3 are two- and one-photon detunings for an atom at rest,
respectively.

where �p(c) = (ep(c) · p31(32))Ep(c)/h̄ is half the Rabi frequency
of the probe (control) field, with pij being the electric-dipole
matrix element associated with the transition from state |j 〉
to state |i〉. When obtaining the above expression, we have
assumed that the wave vectors of the probe and control fields
are along the z direction, and the velocity of the atom is v with
its z component being v. In the interaction picture, the density
matrix elements are σij (r,v,t) = ρij (r,v,t) exp{i[(kj − ki)
(z + vt) − [(ωj − ωi) − (�j − �i)]t]} (i,j = 1,2,3), with
k1 = 0, k2 = kp − kc, k3 = kp, �1 = 0, and ρij (r,v,t) being
the density matrix elements in the Schrödinger picture. The
optical Bloch equations are given by

i
∂

∂t
σ11 + i�21σ11 − i�12σ22 − i�13σ33

+ �∗
pσ31 − �pσ ∗

31 = 0, (2a)

i
∂

∂t
σ22 − i�21σ11 + i�12σ22 − i�23σ33

+ �∗
cσ32 − �cσ

∗
32 = 0, (2b)

i
∂

∂t
σ33 + i�3σ33 − �∗

pσ31 + �pσ ∗
31 − �∗

cσ32 + �cσ
∗
32 = 0,

(2c)(
i

∂

∂t
+ d21

)
σ21 − �pσ ∗

32 + �∗
cσ31 = 0, (2d)(

i
∂

∂t
+ d31

)
σ31 − �p(σ33 − σ11) + �cσ21 = 0, (2e)

(
i

∂

∂t
+ d32

)
σ32 − �c(σ33 − σ22) + �pσ ∗

21 = 0, (2f)

where we have defined d21 = −(kp − kc)v + �2 + iγ21, d31 =
−kpv + �3 + iγ31, and d32 = −kcv + (�3 − �2) + iγ32. The
population and coherence decay rates are defined by �1 =
�21, �2 = �12, �3 = �13 + �23, and γij = 1

2 (�i + �j ) + γ col
ij ,

respectively. Here γ col
ij denotes the dipole dephasing rate

caused by collisions. Notice that an incoherent population
exchange from state |1〉 to state |2〉 is allowed in the model and
hence one has nonvanishing �21, which is the key factor to get
the base state (7) given below. In addition, this is different from
the model used in Ref. [41], where �21 = �12 is assumed. In
our model �21 and �12 are two independent parameters.

The propagation of electromagnetic waves is described by
the Maxwell equation

∇2E − 1

c2

∂2E
∂t2

= 1

ε0c2

∂2P
∂t2

. (3)

Due to the Doppler effect, the electric polarization intensity of
the system is given by

P(r,t) = Na

∫ ∞

−∞
dvf (v)[p13σ31(r,v,t)ei(kpz−ωpt)

+ p23σ32(r,v,t)ei(kcz−ωct) + c.c.], (4)

where Na is the atomic concentration and f (v) is the
atomic velocity distribution profile. In thermal equilibrium,
the velocity distribution profile is Maxwellian, i.e., f (v) =
1/(

√
πvT ) exp[−(v/vT )2], with vT = (2kBT /M)1/2 being the

most probable atomic speed at temperature T . However,
the integration over the Maxwellian distribution leads to a
particular combination of error functions and is not easy
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to analyze. Instead of using the Maxwellian distribution, a
modified Lorentzian velocity distribution profile

f (v) = vT /
√

π

v2
T + v2

(5)

with the same Doppler width �ωD = kpvT is usually adopted
to derive analytic expressions without losing the validity of the
analysis [59].

Under the slow-varying-envelope approximation, Eq. (3) is
reduced to the following form:

i

(
∂

∂z
+ 1

c

∂

∂t

)
�p + c

2ωp

(
∂2

∂x2
+ ∂2

∂y2

)
�p

+ κ13

∫ ∞

−∞
dvf (v)σ31(r,v,t) = 0, (6)

with κ13 = Naωp|p13|2/(2ε0ch̄). In deriving the above equa-
tion we have assumed that the Rabi frequency of the control
field is strong enough so that �c can be taken as a constant
during time evolution.

The MB equations (2) and (6) provide us a framework
to study the optical property of a system with the Doppler
effect, which, by taking v = 0 in Eq. (2) and f (v) = δ(v)
in Eq. (6), return to the equations of the corresponding cold
atomic system. We choose a scheme in which the probe and
control beams are copropagating along the z axis in order to
maximally avoid the Doppler broadening of the two-photon
transition, which is important to realize better EIT in the
system.

The base state [60] of the system is that when the control
field is applied but with the probe field absent. From MB
Eqs. (2) and (6), it is easy to obtain the base state solution of
the system,

σ
(0)
11 = X1�12�3 + �12|�c|2 + �13|�c|2

X2
, (7a)

σ
(0)
22 = X1�21�3 + �21|�c|2

X2
, (7b)

σ
(0)
33 = �21|�c|2

X2
, (7c)

σ
(0)
32 = − �c

d32

X1�21�3

X2
, (7d)

σ
(0)
21 = σ

(0)
31 = 0, (7e)

where we have defined X1 = {[(�3 − �2) − kcv]2 + γ 2
32}/

(2γ32) and X2 = X1(�21 + �12)�3 + (2�21 + �12)|�c|2 +
�13|�c|2.

It is helpful to make some remarks on the properties
of the base state solution (7) and its implication for light
propagation in the system. First, if �21 = 0, i.e., there is no
incoherent population exchange, the ground state reduces to
σ

(0)
11 = (X1�12�3 + �12|�c|2 + �13|�2

c)/X2, and σ
(0)
j l = 0 for

j �= 1 and l �= 1, with X1 unchanged but X2 = X1�12�3 +
�12|�c|2 + �13|�c|2. That is to say, only state |1〉 is populated.
This case has been discussed in Ref. [38]. Second, for
nonvanishing �21, state |2〉 and state |3〉 get populated. The
magnitude of the population in different states is controlled
by �21 and �c. If the pumping effect by the control field
dominates, the system is a well resonant one and all particles

populate the state |1〉; in the opposite case, both the lower
states |1〉 and |2〉 get populated. To illustrate these results
quantitatively, we assume kp 	 kc, and take �13 	 �23 	
γ31 	 γ32 and γ31 � γ21,�12,�21. Then we have (i) With a
resonant control field (i.e., �3 = �2) and for a group of
stationary atoms (i.e., v = 0), one has σ

(0)
11 	 1 and σ

(0)
22 	 0 if

the condition

|�c|2 � γ21γ31 (8)

is satisfied. Inequality (8) is nothing but the EIT condition
obtained for cold atomic systems. (ii) For a group of atoms
moving with speed around the most probable atomic speeds
±vT , only when the condition (8) and another condition

|�c|2γ31 � 2γ21�ω2
D (9)

are satisfied simultaneously, can one obtain σ
(0)
11 	 1; hence

we can say that the pumping effect by the control field dom-
inates. At the other extreme, i.e., |�c|2γ31 
 2γ21�ω2

D , the
incoherent population exchange dominates, and hence one has
σ (0)

11 	 1 − �21/(2γ21) and σ
(0)
22 	 �21/(2γ21). Consequently,

when keeping the condition (8), by which the atomic group
of nearly zero speed undergoes EIT, and at the same time
keeping the condition (9), by which the atomic group of speed
around ±vT is strongly coupled with the optical field, one can
say that the incoherent population exchange plays a negligible
role in the base state. Because usually one has �ωD � γ31, the
condition of negligible incoherent population exchange effect
is thus given by Eq. (9), which is just the EIT condition in the
present Doppler-broadened system, as will be shown below.

B. Linear dispersion relation

To obtain the EIT condition clearly, it is better to study
the linear excitation of the system, which can be done by
linearizing the MB equations (2) and (6). For simplicity,
we assume that the system is homogeneous in the x and
y directions. With this in mind, it is easy to get the linear
dispersion relation of the system through taking σjj = σ

(0)
jj

(j = 1,2,3), σ32 = σ (0)
32 [given by Eq. (7)], �p and σj1 (j =

2,3) being small quantities and proportional to exp(iθ ) with
θ = K(ω)z − ωt . Then we obtain the linear dispersion relation

K(ω) = ω

c
+ κ13

∫ ∞

−∞
dvf (v)

× (ω + d21)
(
2σ

(0)
11 + σ

(0)
22 − 1

) + �cσ
∗(0)
32

|�c|2 − (ω + d21)(ω + d31)
, (10)

The second term on the right-hand side (RHS) of Eq. (10)
can be calculated by consideration of a contour integration in
the complex plane and use of the residue theorem. For sim-
plicity we take �2 = �3 = 0. In this case, we find two poles
in the lower half complex plane, which are kpv = −ikpvT

and −i
√

γ31|�c|2/(2γ21). We take the contour consisting of
the lower half complex plane and the real axis and denote
K(ω) = ω/c + K1 + K2, where K1 and K2 are respectively
obtained from the residual of the two poles in the lower
complex half plane. The explicit expressions of K1 and K2

are given in the appendix.
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By Taylor-expanding K(ω) as K(ω) = K0 + K1ω +
(1/2)K2ω

2 + (1/6)K3ω
3 + · · ·, one can obtain the dispersion

coefficients Kj = [∂jK(ω)/∂ωj ]|ω=0 (j = 0,1,2,3, . . .). Ex-
pressions for these dispersion coefficients can be obtained
analytically but are omitted here because they are lengthy.
The first coefficient K0 describes the phase shift (real part)
and the absorption (imaginary part) per unit length; the real
parts of 1/K1 and 1/K2 represent the group velocity vg and
group-velocity dispersion, respectively.

At the center frequency of the probe field (i.e., at ω = 0),
we obtain the absorption

Im (K0) =
√

πκ13

γ21�ωD

(
γ21

1 + x1
− �21

1 + x1

1

1 + √
x

)
, (11)

where

x ≡ |�c|2γ31

2γ21�ω2
D

, x1 ≡ |�c|2
γ21�ωD

. (12)

From Eq. (11) we obtain the following conclusions.
(i) For the probe-field propagation, the dephasing (denoted

by γ21) contributes an absorption, while the incoherent popula-
tion exchange (denoted by �21) contributes a gain. Physically,
the absorption comes from the |1〉 → |3〉 → |2〉 transition
carried out by the atoms initially populating |1〉 due to the
dephasing, while the gain comes from the |2〉 → |3〉 → |1〉
transition carried out by the atoms initially populating |2〉 due
to the incoherent population exchange.

(ii) If x � 1, the second term on the RHS of Eq. (11),
which is contributed by the incoherent population exchange,
is not significant, the linear optical property of the system
contributes mainly through the |1〉 → |3〉 → |2〉 transition,
and hence Im(K0) is proportional to the first term of the RHS
of Eq. (11). Since usually �ωD � γ31, when x � 1 one has
also x1 � 1. So in this case almost all atoms of the system
undergo EIT.

(iii) When x 	 1, one still has x1 � 1. In this situation,
the second term on the RHS of Eq. (11) takes effect, i.e.,
the incoherent population exchange cannot be neglected. The
atoms that exhibit the |1〉 → |3〉 → |2〉 transition undergo EIT,
while other atoms that exhibit the |2〉 → |3〉 → |1〉 transition
undergo an active Raman gain process. Because the whole
system does not undergo a “pure” EIT, x1 � 1 (i.e., |�c|2 �
γ21�ωD) cannot be taken as an EIT criterion of the system.

(iv) When x 
 1 and x1 
 1, there exists a competition
between the absorption (contributed by dephasing) and the
gain (contributed by incoherent population exchange). In this
situation, on the one hand, the atoms that exhibit the |1〉 →
|3〉 → |2〉 transition do not undergo EIT and hence there is
a large absorption for the probe field. On the other hand, the
atoms that exhibit the |2〉 → |3〉 → |1〉 transition undergo a
Raman gain process, which suppresses the absorption and thus
induces a dip in the absorption profile of the probe field [see
Fig. 2(a)]. We must stress that the appearance of this dip is due
to the gain contributed by the incoherent population exchange
(i.e., by nonvanishing �21), and hence cannot be taken as a
manifestation of EIT of the system.

Based on the above analysis, we conclude that Eq. (9)
(i.e., x � 1) can be taken as the criterion for EIT in the
system with Doppler broadening and with nonvanishing
incoherent population exchange (i.e., �21 �= 0). This criterion
also ensures the validity of the weak nonlinear perturbation
theory developed in the next section for solving the MB
equations with inhomogeneous broadening (see Sec. III B
below).

If starting from the MB equations (2) and (6) in the absence
of incoherent population exchange (i.e., �21 = 0), one can
easily show that the EIT criterion for a �-type three-level
system will be given by x1 � 1 (or |�c|2 � γ21�ωD). This
criterion was proposed by Gea-Banacloche et al. [38], where
only the decoherence due to dephasing was considered. In
addition, for a ladder-type three-level system, since states
|1〉 and |2〉 are greatly separated from each other, incoherent
population exchange is insignificant. For such a system the
EIT criterion is also given by |�c|2 � γ21�ωD .

Figure 2(a) shows the profile of Im(K0) as a function of |�c|
with �21 = 0 (line 1), �21 = 0.5γ21 (line 2), and �21 = γ21

(line 3), respectively. We see that for very large |�c| (i.e.,
x � 1), Im(K0) is small and no obvious difference for different
�21 can be found; while for moderate and small |�c| the
Raman gain effect caused by �21 can be observed clearly.
In particular, when x1 
 1, a dip in the absorption profile
induced by nonvanishing �21 appears, which is shown in the
inset of Fig. 2(a).

Shown in Fig. 2(b) is the linewidth of transmission �

as a function of control-field intensity. In the case x 
 1,
which corresponds to the left-hand side of the figure (with

1 2
0
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|Ω
c
| (107 s−1)

Im
(K

0) 
(c

m
−

1 )

(a)
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m
−
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2
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3
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21
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21
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|Ω
c
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1
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21
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21
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21
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21

=0

FIG. 2. (Color online) (a) Im(K0) as a function of |�c| for 2�ωD = 100γ31 with different �21. Inset shows the appearance of a small dip
when �21 is increased for x1 = 0.1. (b) Linewidth of transmission of the probe field as a function of control-field intensity for 2�ωD = 100γ31

with different �21. In both panels, lines 1, 2, and 3 are for �21 = 0, �21 = 0.5γ21, and �21 = γ21, respectively.
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TABLE I. Comparison of linear optical properties, including absorption Im(K0), group velocity vg , and linewidth
of transmission �, for several different regimes. Definitions of x and x1 are given by Eq. (12). Other quantities have
been defined in the text.

System Im(K0) vg �

Cold atom system κ13γ21
|�c |2 ( 1

c
+ κ13

|�c |2 )−1 	 |�c |2
κ13

2|�c |2
γ31

Hot atoms (�21 	 γ21, x � 1)
√

π
κ13γ21
|�c |2 ( 1

c
+ √

π
κ13

|�c |2 )−1 	 |�c |2√
πκ13

2|�c |2
�ωD

Hot atoms (�21 	 γ21, x 
 1)
√

π
κ13

�ωD

√
x ( 1

c
+ √

π
κ13

|�c |2
√

x)−1 	 c 2
√

2γ21
γ31

|�c|
Hot atoms (�21 = 0, x1 � 1)

√
π

κ13γ21
|�c |2 ( 1

c
+ √

π
κ13

|�c |2 )−1 	 |�c |2√
πκ13

2|�c |2
�ωD

Hot atoms (�21 = 0, x1 
 1)
√

π
κ13

�ωD
( 1

c
+ √

π
κ13

γ21�ωD
)−1 	 γ21�ωD√

πκ13
0

x = 10−3 and x1 = 0.1), a nonlinear dependence on |�c|2 for
very small |�c|2 can be seen clearly for nonvanishing �21.
However, for large |�c|2 the linewidth � becomes a linear
function of |�c|2 for any value of �21, which corresponds to
the right part of the figure (with x = 1 and x1 = 100). When
plotting Fig. 2, we have used a practical example working
with the D1 line transition of 87Rb atoms, in which |5S1/2,

F = 1〉, |5S1/2,F = 2〉, and |5P1/2,F = 1〉 are selected as the
atomic states |1〉, |2〉, and |3〉, respectively. The decay rates
of coherence are assumed to have the relation γ21 = 10−4γ31.
Other parameters are taken as κ13 = 1.0 × 1010 cm−1s−1 and
2�ωD = 100γ31.

In Table I we have presented the calculated results for the
linear optical properties of the system, including the absorption
Im(K0), group velocity vg , and linewidth of transmission �,
for several different regimes. In the calculation (and those
in the rest of the paper), the condition (8) is assumed to
be satisfied. The first line in Table I is for a cold atomic
system. Values for Im(K0), vg , and � recover those obtained
in previous studies [1–3]; the second and the third lines are for
the Doppler-broadened system with �21 	 γ21, which recover
the result given in Ref. [41]; and the fourth line is for the
Doppler-broadened system with �21 = 0, which recovers the
result of Ref. [38]. From the table we see that when EIT
occurs, i.e., when x � 1 or x1 � 1, three systems (the first,
second, and fourth lines in the table) have almost the same
expressions for Im(K0) and vg (except for a factor π ), but the
�’s are different. Interestingly, � in the Doppler-broadened

systems can be obtained from that for the cold atomic system
by replacing γ31 with �ωD . In these three cases, the group
velocity vg becomes slow, and � has a linear dependence on
the control-field intensity and hence possesses the feature of
power broadening, which agrees well with the experimental
result reported in Ref. [58]. The third (fifth) line of Table I
is for a Doppler-broadened system with �21 	 γ21 and x 
 1
(�21 = 0 and x1 
 1). No transparency happens because in
this case � is very narrow (almost zero).

Shown in Fig. 3(a) is the absorption profile Im(K) as a
function of ω when 2�ωD = 100γ31 and �21 = γ21. Lines 1,
2, and 3 are for �c = γ31, 2γ31, and 3γ31, respectively. In this
situation, the system works in the EIT regime (i.e., the effect
due to the incoherent population change is suppressed). The
width of the EIT transparency window is large, and it grows as
|�c| increases. Figure 3(b) shows the result for group-velocity
dispersion, Re(K2), for a given control field (|�c| = 2γ31)
with different Doppler widths. Lines 1, 2, and 3 correspond
to 2�ωD = 60γ31, 2�ωD = 80γ31, and 2�ωD = 100γ31,
respectively. One can see that the group-velocity dispersion
increases as the Doppler width �ωD increases.

At the linear level, for probe field with the Gaussian
input form �p(0,t) = �p(0,0) exp(−t2/τ 2

0 ) we obtain its time
evolution

�p(z,t) = �p(0,0)√
b1(z) − ib2(z)

exp

(
iK0z− (K1z − t)2

[b1(z) − ib2(z)]τ 2
0

)
,

(13)
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FIG. 3. (Color online) Absorption and group-velocity dispersion when the system is in the EIT regime. (a) Im(K) as a function of ω for
2�ωD = 100γ31. Lines 1, 2, and 3 are for �c = γ31, 2γ31, and 3γ31, respectively. (b) Group-velocity dispersion of the system for |�c| = 2γ31.
From bottom to top, 2�ωD = 60γ31, 2�ωD = 80γ31, and 2�ωD = 100γ31, respectively.
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where b1(z) = 1 + 2zK2i/τ
2
0 ,b2(z) = 2zK2r/τ

2
0 with K2 =

K2r + iK2i ; �p(0,0) and τ0 are the initial half Rabi frequency
of the probe pulse and the pulse duration, respectively. We
see that, although the absorption can be greatly suppressed
by the EIT effect [i.e., Im(Kj ) (j = 0,1,2) become small],
the dispersion results in a rapid spreading of the probe pulse
during propagation.

III. WEAK-LIGHT ULTRASLOW SOLITONS

One of our main interests is to obtain a shape-preserving
propagation of the probe pulse, which is desirable for the ap-
plication of optical information processing and transmission.
Because the system under study is a highly resonant one, as
shown above the linear propagation of the probe pulse displays
a strong dispersion, which results in pulse distortion. To obtain
a probe pulse that is robust during propagation, it is natural to
increase the probe-field intensity to realize a balance between
the dispersion and nonlinear effects of the system. One of such
stable pulses is the optical soliton, which we shall explore in
the following.

A. Kerr nonlinearity of the system

Before studying optical solitons, we make a simple dis-
cussion of Kerr nonlinearity of the system. From the MB
equations (2) and (6), it is easy to get the probe-field
susceptibility

χp =
∫

v

dvf (v)
Na|p13|2

ε0h̄

σ31

�p

≈ χ (1)
p + χ (3)

pp |Ep|2 (14)

with χ (1)
p and χ (3)

pp being the linear susceptibility and third-order
(Kerr) susceptibility, respectively. Solving σ31 from Eqs. (2a)–
(2f) under the steady-state approximation and making a Taylor
expansion with respect to |�p|, we obtain

χ (1)
p = Na|P13|2

ε0h̄

∫
v

dvf (v)T1, (15a)

χ (3)
pp = Na|P13|4

ε0h̄
3

∫
v

dvf (v)

× iJ1(T1 − c.c.) + iJ2(d32�cT2 − c.c.) + �cT2

d∗
32(|�c|2 − d21d31)

,

(15b)

with

T1 = d21[γ31|�c|2 + γ21(kpv)2] + γ21|�c|2(kpv − iγ31)

[γ31|�c|2 + 2γ21(kpv)2](|�c|2 − d21d31)
,

(16a)

T2 = d31γ21�
∗
c (kpv − iγ31) + �∗

c [γ31|�c|2 + γ21(kpv)2]

[γ31|�c|2 + 2γ21(kpv)2](|�c|2 − d21d31)
,

(16b)

J1 = (|�c|2 + d21d
∗
32)

4|�c|2 + (kpv)2 + γ 2
31

2γ31|�c|2 + 4γ21(kpv)2

− 2|�c|2 − d21d
∗
32

γ31
, (16c)

J2 = |�c|2 + d21d
∗
32

2γ31|�c|2 + 4γ21(kpv)2
. (16d)
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FIG. 4. (Color online) Third-order susceptibility |χ (3)
pp | as a func-

tion of �3. Lines 1, 2, and 3 are for Doppler width 2�ωD = 60γ31,
2�ωD = 80γ31, and 2�ωD = 100γ31, respectively.

The use of the modified Lorentzian distribution (5) gives
χ (1)

p = 2(K1 + K2)/kp, with K1 and K2 the same as those
given in Eqs. (A1) and (A3), but the variable ω being replaced
by �3. χ (3)

pp can also be evaluated by use of the residue theorem.
The result is quite lengthy and hence not listed explicitly here.
Shown in Fig. 4 is the profile of |χ (3)

pp | versus the detuning
�3 inside the EIT transparency window. Parameters are the
same as those used in Fig. 3(b). We see that at the central
point (�3 = 0), where the system undergoes an ideal EIT, no
nonlinearity exists. Therefore, to obtain a nonlinear effect a
deviation from the ideal EIT is necessary. This is the same
as the case of cold atomic systems [29–37]. Indeed, |χ (3)

pp |
grows as �3 increases. Shown in Fig. 4 is |χ (3)

pp | as a function
of �3. Lines 1, 2, and 3 in the figure are for the Doppler
width 2�ωD = 60γ31, 2�ωD = 80γ31, and 2�ωD = 100γ31,
respectively. We see that the Kerr nonlinearity is inversely
proportional to the Doppler width, which means that, to obtain
a large Kerr effect, the temperature of the system cannot be
too high.

B. Asymptotic expansion and nonlinear envelope equation

We now begin to study the nonlinear pulse propagation
in the system by using a weak nonlinear perturbation theory.
Recently, a method of multiple scales for solving MB equations
for cold atomic systems has been developed [61]. Here we
extend this method to the present Doppler-broadened hot
atomic system. We take the following asymptotic expansion:

σjj − σ
(0)
jj = ε2σ

(2)
jj + ε3σ

(3)
jj + · · · (j = 1,2,3), (17a)

σj1 = εσ
(1)
j1 + ε2σ

(2)
j1 + ε3σ

(3)
j1 + · · · (j = 2,3), (17b)

σ32 − σ
(0)
32 = ε2σ

(2)
32 + ε3σ

(3)
32 + · · · , (17c)

�p = ε�(1)
p + ε2�(2)

p + ε3�(3)
p + · · · , (17d)

where σ
(0)
ij is the base state solution given by Eq. (7), and ε

is a dimensionless small parameter characterizing the small
depletion of the ground state |1〉. All quantities on the right-
hand side of the expansion are considered as functions of
the multiscale variables zn = εnz (n = 0,1,2), tn = εnt (n =
0,1), x1 = εx, and y1 = εy. Notice that to make the weak
nonlinear theory valid, all quantities on the RHS of the above
expansion that are proportional to ε(j ) (j = 1,2, . . .) must be
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finite during pulse propagation. For the Doppler-broadened
system, this requirement means that �p cannot have large
gain coming from the incoherent population exchange �21. In
other words, the system must work in the EIT condition given
by the inequality (9).

Substituting the expansion (17) into the MB equations (2a)–
(2f) and (6), we obtain a series of equations for σ

(l)
ij and �(l)

p

(l = 1,2,3):

i

(
∂

∂z0
+ 1

c

∂

∂t0

)
�(l)

p + κ13

∫
v

dvf (v)σ (l)
31 = M (l), (18a)

(
i

∂

∂t0
+ d21

)
σ

(l)
21 − �(l)

p σ
∗(0)
32 + �∗

cσ
(l)
31 = N (l), (18b)

(
i

∂

∂t0
+ d31

)
σ

(l)
31 − �(l)

p

(
2σ

(0)
11 + σ

(0)
22 − 1

) + �cσ
(l)
21 = P (l),

(18c)(
i

∂

∂t0
+ d32

)
σ

(l)
32 + �c

(
σ

(l)
11 + 2σ

(l)
22

) = Q(l), (18d)

i
∂

∂t0
σ

(l)
11 + i(�21 + �13)σ (l)

11 − i(�12 − �13)σ (l)
22 = Y (l), (18e)

i
∂

∂t0
σ

(l)
22 + i(�12 + �23)σ (l)

22 − i(�21 − �23)σ (l)
11

+ �∗
cσ

(l)
32 − �cσ

∗(l)
32 = Z(l), (18f)

which can be solved order by order in a systematic way. The
explicit expressions for M (l), N (l), P (l), Q(l), Y (l), and Z(l) (l =
1,2,3) can be systematically and analytically derived; they are
omitted to save space.

(i) First-order approximation. The leading order l = 1
is the linear excitation studied in Sec. II. The solution
reads

�(1)
p = Feiθ , (19a)

σ
(1)
31 = (ω + d21)

(
2σ

(0)
11 + σ

(0)
22 − 1

) + �cσ
(0)
32

|�c|2 − (ω + d21)(ω + d31)
Feiθ , (19b)

σ
(1)
21 = − (ω + d31)σ ∗(0)

32 + �∗
c

(
2σ

(0)
11 + σ

(0)
22 − 1

)
|�c|2 − (ω + d21)(ω + d31)

Feiθ , (19c)

where F is a yet-to-be determined envelope function depend-
ing on the slow variables z1, z2, and t1; θ = Kz0 − ωt0 with
K (linear dispersion relation) given by Eq. (10).

(ii) Second-order approximation. In the second order
(l = 2), a divergence-free solution for �(2)

p requires

i

(
∂F

∂z1
+ ∂K

∂ω

∂F

∂t1

)
= 0, (20)

which shows that the envelope function F travels with com-
plex group velocity (∂K/∂ω)−1. The second-order solution
reads

�(2)
p = 0, σ

(2)
11 = a

(2)
11 |F |2e−2ᾱz2 , σ

(2)
22 = a

(2)
22 |F |2e−2ᾱz2 , σ

(2)
32 = a

(2)
32 |F |2e−2ᾱz2 , (21a)

σ
(2)
31 = i

[|�c|2 + (ω + d21)2]
(
2σ

(0)
11 + σ

(0)
22 − 1

) + (2ω + d21 + d31)�cσ
∗(0)
32

[|�c|2 − (ω + d21)(ω + d31)]2

∂

∂t1
Feiθ , (21b)

σ
(2)
21 = i

(2ω + d21 + d31)�∗
c

(
1 − 2σ

(0)
11 − σ

(0)
22

) − [|�c|2 + (ω + d31)2]σ ∗(0)
32

[|�c|2 − (ω + d21)(ω + d31)]2

∂

∂t1
Feiθ , (21c)

with α = Im(K) = ε2ᾱ. The explicit expressions of a
(2)
11 , a

(2)
22 , and a

(2)
32 are

a
(2)
11 =

{[
i(�12 + �23) + 2|�c|2

(
1

d∗
32

− 1

d32

)] (
(ω + d∗

21)
(
2σ

(0)
11 + σ

(0)
22 − 1

) + �∗
cσ

(0)
32

|�c|2 − (ω + d∗
21)(ω + d∗

31)
− c.c.

)

− i(�13 − �12)

(
�c

d∗
32

(ω + d31)σ ∗(0)
32 + �∗

c

(
2σ

(0)
11 + σ

(0)
22 − 1

)
|�c|2 − (ω + d21)(ω + d31)

− c.c.

) }/[
i|�c|2(2�21 + �12 + �13)

(
1

d∗
32

− 1

d32

)

−�3(�12 + �21)

]
, (22a)

a
(2)
22 = −i

�13 − �12

{(
(ω + d∗

21)
(
2σ

(0)
11 + σ

(0)
22 − 1

) + �∗
cσ

(0)
32

|�c|2 − (ω + d21)(ω + d31)
− c.c.

)
− i(�21 + �13)a(2)

11

}
, (22b)

a
(2)
32 = 1

d32

(
(ω + d∗

31)σ (0)
32 + �c

(
2σ

(0)
11 + σ

(0)
22 − 1

)
|�c|2 − (ω + d∗

21)(ω + d∗
31)

− �c

(
a

(2)
11 + 2a

(2)
22

))
. (22c)
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(iii) Third-order approximation. This is the order (l = 3) in
which the Kerr nonlinearity plays a role. A divergence-free
solution for �(3)

p requires

i
∂F

∂z2
+ c

2ωp

(
∂2

∂x2
1

+ ∂2

∂y2
1

)
F

− 1

2

∂2K

∂ω2

∂2F

∂t2
1

− W |F |2Fe−2ᾱz2 = 0, (23)

where

W = −κ13

∫
v

dvf (v)
�ca

∗(2)
32 + (ω + d21)

(
2a

(2)
11 + a

(2)
22

)
|�c|2 − (ω + d21)(ω + d31)

.

(24)

Combination of Eqs. (20) and (23) gives the nonlinear envelope
equation

i

(
∂

∂z
+ α

)
U + c

2ωp

(
∂2

∂x2
1

+ ∂2

∂y2
1

)
U − 1

2

∂2K

∂ω2

∂2U

∂τ 2

− W |U |2Ue−2αz = 0, (25)

where τ = t − z/vg and U = εF exp(−iαz).

C. Ultraslow solitons at low light level

The formation and propagation of an optical soliton in
the system requires the following conditions. First, there is a
balance between the dispersion and nonlinearity. Second, the
absorption of the probe field is negligibly small. In general,
coefficients of the envelope Eq. (25) are complex, which means
that a soliton solution, even if it exists and is produced, may
be highly unstable during propagation. However, if a realistic
set of system parameters under some condition can be found
so that the imaginary part of these coefficients can be much
smaller than their corresponding real part, it is possible to get
a shape-preserving, localized solution that can propagate a
rather long distance without a significant distortion. In the
present system, the condition of relatively small imaginary
parts of the coefficients is nothing but the EIT condition (9).
Under this condition, Eq. (25) with neglect of the small imagi-
nary part of the coefficients can be written in the dimensionless
form

i
∂u

∂s
+ ∂2u

∂σ 2
+ 2|u|2u = id0u + d1

(
∂2

∂ξ 2
1

+ ∂2

∂η2
1

)
u, (26)

where s = −z/(2LD), σ = τ/τ0, (ξ,η) = (x,y)/R⊥, and
u = U/U0. LD = τ 2

0 /K2r is the characteristic dispersion
length, R⊥ is the beam radius, and U0 = (1/τ0)

√
K2r/Wr is the

typical Rabi frequency of the probe field, with K2r and Wr de-
noting the real parts of K2 and W , respectively. Dimensionless
coefficients are defined by d0 = LD/LA and d1 = LD/Ldiff ,
with LA = 1/(2α) being the characteristic absorption length
and Ldiff = ωpR2

⊥/c the characteristic diffraction length. In
obtaining Eq. (26) we have assumed LD = LNL, i.e., a balance
of dispersion and nonlinearity, in order to favor the formation
of solitons. If the conditions d0 
 1 and d1 
 1 are satisfied,
Eq. (26) can be reduced to a standard nonlinear Schrödinger
(NLS) equation, which is completely integrable and

allows multisoliton solutions. A single bright soliton solution
reads

u = 2βsech [2β(σ − σ0 + 4δs)]

× exp[−2iδσ − 4i(δ2 − β2)s − iφ0], (27)

where β, δ, σ0, and φ0 are real free parameters that determine
the amplitude (as well as the width), propagating velocity,
initial position, and initial phase of the soliton, respectively.
When taking β = 1/2 and δ = σ0 = φ0 = 0, we have u =
sechσ exp(is), or in terms of the field

�p = 1

τ0

√
K2r

Wr

sech

[
1

τ0

(
t − z

ṽg

)]
exp

(
iK0rz + i

z

2LD

)
,

(28)

which describes a bright soliton traveling with propagating
velocity ṽg =Re(vg) and K0r = Re[K(0)].

We now give a practical example for the formation
of the optical soliton given above. We choose the 87Rb
D1 line transition, with system parameters given by κ13 =
5.0 × 109 cm−1 s−1, �c = 3.6 × 107 s−1, �2 = �3 = 3.5 ×
104 s−1, and 2�ωD = 100γ31. With these parameters, we have
|�c|2γ31/(2γ21�ωD) = 8 � 1, and hence the system is in
the EIT regime. In this case, the coefficients in Eq. (25) are
K2 = (1.4 + 0.3i) × 10−12 cm−1 s2 and W = (2.0 + 0.04i) ×
10−15 cm−1 s2. We see that the imaginary parts of these
coefficients are indeed much smaller than their corresponding
real parts. The physical reason for this small imaginary part
is the quantum interference effect induced by the control
field, by which the role of population and coherence decay
rates for the propagation of the soliton is largely suppressed.
When taking τ0 = 1.5 × 10−6 s and R⊥ = 0.05 cm, we have
the characteristic lengths LD = 1.6 cm, LA = 54.6 cm, and
Ldiff = 200 cm, which ensure the validity of neglecting absorp-
tion and diffraction of the probe pulse when the propagation
distance is not much larger than the dispersion length, i.e.,
d0 
 1 and d1 
 1 are satisfied. We have to mention that the
perturbation term id0u in Eq. (26), contributed by population
and coherence decay rates, may result in a small deformation
of the soliton by decreasing its amplitude, increasing its width,
and radiating small continuous dispersive waves (for a detailed
discussion, see Ref. [30]), which is, however, not fatal for a
soliton propagating to distance LD . Using the above data it is
easy to estimate the propagating velocity of the soliton, which
reads

ṽg = 6.6 × 10−6c. (29)

Consequently, the optical soliton obtained may travel with an
ultraslow propagating velocity in the Doppler-broadened EIT
system.

The input power for generating the ultraslow optical
soliton can be estimated by calculating Poynting’s vector.
The average flux of energy over a carrier-wave period is
P̄ = P̄maxsech2[(t − z/ṽg)/τ0], with the peak power P̄max =
2ε0cnpS0(h̄/p13)2K2r/(Wrτ

2
0 ). Here, np = 1 + cK0r/ωp is

the refractive index and S0 is the cross-section area of the
probe field. Using the above parameters, we obtain

P̄max = 9.7 × 10−6 W. (30)
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FIG. 5. (Color online) Evolution of dimensionless probe-field intensity |�p/U0|2 as a function of dimensionless time t/τ0. Initial conditions
are �p(0,t)/U0 = 1.6 exp(−t2/τ 2

0 ) (a) and �p(0,t)/U0 = 1.6 sech(1.6t/τ0) (b), respectively. In both panels, curves from 1 to 5 are wave
shapes after propagating z = 0.8 cm, z = 1.6 cm, z = 2.4 cm, and z = 3.2 cm, respectively.

This is a drastic contrast to the case in conventional media such
as optical fibers, where pico- or femtosecond laser pulses are
usually needed to reach a very high peak power to stimulate
enough nonlinearity for the formation of solitons.

To make a further confirmation of the soliton solutions and
check their stability, we have made a numerical simulation
directly from Eqs. (2a)–(2f) and (6). Shown in Fig. 5(a) is the
result for |�p/U0|2 as a function of t/τ0. The curves from 1 to
5 are wave shapes after propagating z = 0.8 cm, z = 1.6 cm,
z = 2.4 cm, and z = 3.2 cm, respectively. The initial condition
is given by a Gaussian form u = 1.6 exp(−t2/τ 2

0 ). We see
that when propagating to z = LD = 1.6 cm the probe pulse
becomes higher and sharper due to the self-phase-modulation
induced by the Kerr effect. Then it suffers no serious distortion
during the propagation, indicating the formation of an optical
soliton in the system. Shown in Fig. 5(b) is the formation
and propagation of an optical soliton with the initial condition
being u = 1.55 sech (1.55t/τ0).

An extra simulation for a stronger initial probe field has also
been made, with the result shown in Fig. 6. We see that in this
situation the wave shape of the probe pulse is well preserved
within the distance LD; however, as the propagation distance
increases, a distortion of the pulse contributed by higher-order
dispersion and high-order nonlinearity appears, which results
in a raising of the pulse amplitude and a radiating of dispersive
waves. We mention here that the regime when both probe and
control fields are strong and both beams propagate together
[62–66] is a topic of great interest, which is, however, beyond
the scope of our present work.

The properties of collisions between two ultraslow op-
tical solitons have also been investigated. We take u =
1.0 sech(t/τ0) exp(iθ1) + 1.0 sech(t/τ0 − 7.5) exp(iθ2) as the
initial condition, where θj (j = 1,2) is the initial phase of
the j th soliton. The result for �θ = θ2 − θ1 = 0 is shown
in Fig. 7(a). We see that both solitons resume their original
shapes after the collision and the interaction between them is
repulsive. The physical essence of the repulsion phenomenon
is that the light intensity in the central collision region is
decreased by the overlap of the two solitons, which leads to
a decrease of the refractive index, and hence more light is
ejected from the central region. In addition, a phase shift is
observed after the collision. In Fig. 7(b) we show the result

for �θ = π/2, and a pair of attractive solitons is found. This
phenomenon results in an increase in the light intensity in
the central collision region because of the overlap of the two
solitons, which leads to an increase of the refractive index and
hence attracts more light to the central region.

IV. WEAK-LIGHT SPATIAL SOLITONS

In this section, we focus on the adiabatic regime in which the
envelope of the probe pulse varies slowly with respect to time
(i.e., the pulse duration τ0 is large), so that the atomic response
can follow the variation of the probe field adiabatically. In
this regime the time-derivative terms (and hence the dispersion
effect) in the MB Eqs. (2a)–(2f) and (6) can be safely neglected.
We consider the possibility of the existence of spatial optical
solitons in the system. The physical mechanism of realizing
spatial solitons is the interplay and balance between diffraction
and nonlinearity. In the case of (1 + 1) dimensions- [67], a
spatial soliton can form by use of cubic nonlinearity. The cubic
nonlinearity can be obtained by Taylor-expanding the probe-
field susceptibility with respect to the probe-field intensity.
When only the leading order (third-order) nonlinearity is kept,
the system supports the existence of stable (1 + 1)D spatial
solitons; this has been shown in cold atomic systems under EIT

−3 2 7 12 16
0

2.5

5

t/τ
0

|Ω
p/U

0|2

line 1: z=0.0 cm
line 2: z=0.8 cm
line 3: z=1.6 cm
line 4: z=2.4 cm
line 5: z=3.2 cm

5
4

321

FIG. 6. (Color online) Evolution of stronger probe-field intensity
|�p/U0|2 as a function of dimensionless time t/τ0. Initial condition
is �p(0,t)/U0 = 2.0 sech(2.0t/τ0). Curves from 1 to 5 are wave
shapes after propagating z = 0.8 cm, z = 1.6 cm, z = 2.4 cm, and
z = 3.2 cm, respectively.
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FIG. 7. (Color online) Wave shape of |�p/U0|2 with the initial condition given by u = 1.0 sech(t/τ0) exp(iθ1) + 1.0 sech (t/τ0 −
7.5) exp(iθ2). (a) and (b) show collisions for �θ ≡ θ2 − θ1 = 0 and π/2, respectively. Parameters are given in the text.

conditions [68]. However, the existence of (2 + 1)D spatial
solitons requires higher-order nonlinearities, and hence large
probe field intensity, as shown in Refs. [31,69].

For a weak probe field with transverse radii Rx 
 Ry , only
the diffraction in the x direction is significant. In this case the
Maxwell Eq. (6) can be reduced to the form

i
∂

∂z
�p + c

2ωp

∂2

∂x2
�p + Ks�p − Ws |�p|2�p = 0, (31)

where Ks = kpχ (1)
p /2 and Ws = −κ13ε0h̄

3χ (3)
pp /(Na|p13|4),

χ (3)
pp being given in Eq. (15b). Under the EIT condition, the

imaginary parts of Ks and Ws are much smaller than their
real parts. Neglecting the small imaginary part and taking
the transformation �p = F (z,x) exp(iKsrz), Eq. (31) can be
recast into

i
∂

∂z
F + c

2ωp

∂2

∂x2
F − Wsr |F |2F = 0. (32)

This is the (1 + 1)D NLS equation and allows single- and
multisoliton solutions, which are well known in soliton theory
and hence not presented here to save space.

However, if only the cubic nonlinearity is included,
(1 + 1)D solitons are unstable for long-wavelength transverse
perturbations. To realize a stable high-dimensional spatial
optical soliton, higher-order nonlinearities must be included
and thus the probe-field intensity must be strong enough. In
the case of saturation nonlinearity, the Maxwell Eq. (6) takes
the form

i
∂

∂z
�p + c

2ωp

(
∂2

∂x2
+ ∂2

∂y2

)
�p

+ κ13

∫
v

dvf (v)
d21�p

D(1 + V |�p|2)
= 0, (33)

with D = |�c|2 − d21d31 and V = (|d21|2 + |�c|2)/|D|2.
Generally, it is very difficult to make an analysis of (33). For
simplicity, we evaluate the integral in the last term of the RHS
by replacing d31 with �31 + i�ωD , as all parameters are much
smaller than the Doppler width. Then Eq. (33) is reduced to

i
∂

∂z
�p+ c

2ωp

(
∂2

∂x2
+ ∂2

∂y2

)
�p +κ13

d21

D̃(1 + Ṽ |�p|2)
�p =0,

(34)

where D̃ = (|�c|2 + γ21�ωD − �2
3) − i�3�ωD and Ṽ =

(�2
3 + |�c|2)/[(|�c|2 + γ21�ωD − �2

3)2 + �2
3�ω2

D]. In ob-
taining Eq. (34), the condition of the control field being
resonant has been assumed.

For a clear demonstration, we introduce dimensionless vari-
ables s = z/Ldiff , (ξ,η) = (x,y)/R⊥, and u = �p/U0, where

Ldiff = ωpR2
⊥/c, R⊥, and U0 = 1/

√
Ṽ are the characteristic

diffraction length, beam radius, and Rabi frequency of the
probe field, respectively. With these variables, Eq. (34) can be
written as the dimensionless form

i
∂u

∂s
+ 1

2

(
∂2

∂ξ 2
+ ∂2

∂η2

)
u + au

1 + |u|2 = 0, (35)

where a = κ13d21Ldiff/D̃ ≡ ar + iai , with ar = κ13Ldiff�3

(|�c|2 + γ21�ωD − �2
3)/[(|�c|2 + γ21�ωD − �2

3)2 + �2
3�

ω2
D] and ai = κ13Ldiff�

2
3�ω2

D/[(|�c|2 + γ21�ωD − �2
3)2 +

�2
3�ω2

D]. One recognizes that ai ∝ �2
3 when |�c|2 +

γ21�ωD − �2
3 �= 0, and thus ai can be greatly suppressed if

�3 is sufficiently small.
Because under the EIT condition one can obtain a practical

set of system parameters that make ai 
 ar (see below),
in leading order approximation the coefficients of Eq. (35)
can be taken as real. By introducing the transformation
u = υ exp(iars) and assuming that the solution is cylindrically
symmetric with the form υ(s,r =

√
ξ 2 + η2) = exp(iβs)ψ(r),

where β is a real wave number and ψ(r) is a real function,
Eq. (35) is reduced to

∂2ψ

∂r2
+ 1

r

∂ψ

∂r
− 2ψ

(
arψ

2

1 + ψ2
+ β

)
= 0. (36)

The propagation constant β can be determined by choice
of the peak soliton amplitude ψ(s = 0) = ψ0. The boundary
conditions for solving Eq. (36) are ∂ψ/∂r = 0 at r = 0 and
∂ψ/∂r = ψ = 0 at r → ∞. We numerically integrate Eq. (36)
by changing the value of β until the computed spatial profile
ψ(r) satisfies the given boundary conditions. The calculated
result for several soliton profiles for different peak values ψ(0)
is shown in Fig. 8(a).From the figure we see that the soliton
beam size varies inversely with its field amplitude.

The stability of (2 + 1)D spatial solitons has been in-
vestigated by use of the Vakhitov-Kolokolov (VK) criterion
[70]. Shown in Fig. 8(b) is the power P = 2π

∫ ∞
0 ψ(r)2rdr

contained in each soliton versus the propagation constant β.
We see that at each point of the curve we have ∂P/∂β > 0.
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/(
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FIG. 8. (Color online) (a) Soliton profile ψ as a function of radial coordinate r , obtained by numerically integrating Eq. (36) with
aR = −15.4. Profiles labeled 1, 2, and 3 are for the peak value ψ0 of 2.1, 1.5, and 1.25, respectively. (b) The power P of each soliton versus
propagation constant β.

According to the VK criterion, this proves that the (2 + 1)D
spatial optical soliton obtained is stable.

We use the 87Rb D1 line transition as a practical example
for obtaining the (2 + 1)D spatial soliton in the system with
Doppler broadening. Parameters are taken as κ13 = 2.5 ×
1011 cm−1 s−1, �c = 3.6 × 107 s−1, γ21 = 10−4γ31, 2�ωD =
100γ31, �3 = −0.4 × 105 s−1, and Rx = 50 µm. With these
parameters we obtain the characteristic diffraction length
Ldiff = 2.0 cm and a = −15.4 + 1.0i. Thus the imaginary part
of a is about 15 times smaller than the real part and hence can be
neglected safely. Although the Vakhitov-Kolokolov criterion
holds only for a conservative limit, we expect that a very small
dissipative perturbation will induce only a small deformation
of the spatial soliton.

We have also made a numerical simulation for Eq. (35) by
using a split-step Fourier method. Figure 9 shows the results
of probe-field intensity |�p/U0|2 versus s. In the simulation
a Gaussian initial condition u = 0.7 exp[−(ξ 2 + η2)] is taken,
which is shown in Fig. 9(a) with the beam’s center located
at the origin of the x-y plane. Plotted in Fig. 9(b) is the
resulting probe beam at propagation distance s = 2.5, which
shows indeed that the initial Gaussian beam shown in Fig. 9(a)
evolves into a (2 + 1)D spatial soliton as s increases.

V. DISCUSSION AND SUMMARY

In this work, we have presented a systematic theoretical
study for dealing with linear and nonlinear light propaga-
tions in a Doppler-broadened three-level � system. In our

model, both the decoherence contributed by the incoherent
population exchange between two lower energy levels and the
decoherence due to the dephasing of off-diagonal elements of
the density matrix have been taken into account. Through a
careful analysis of the base state and the linear excitation of
the system, we have illustrated clearly the relative importance
of these two decoherence mechanisms. We have shown that, if
|�c|2γ31 
 2γ21�ω2

D , the incoherent population exchange is
significant. Although in this situation a small dip may appear in
the absorption profile of the probe field, it is not an EIT because
the appearance of this small dip is due to the gain contributed
by the incoherent population exchange. However, under the
condition |�c|2γ31 � 2γ21�ω2

D the dephasing becomes the
main source of decoherence. In this case, the incoherent
population exchange effect is negligible and hence the system
supports an EIT. The argument in the literature about the
EIT criterion in Doppler-broadened media is thus clarified.
The EIT criterion (9) also ensures the validity of the weak
nonlinear perturbation theory used in this work for solving
the MB equations with inhomogeneous broadening. Another
important aspect of this work is the study of nonlinear
excitations and their stable propagation in the system. We
have shown that it is indeed possible to form temporal optical
solitons in a Doppler-broadened medium. Such solitons have
ultraslow propagating velocity and can be generated in very
low light power. In addition, we have also demonstrated the
possibility of realizing (1 + 1)D and (2 + 1)D spatial optical
solitons in the adiabatic regime of this Doppler-broadened
system. Note that in many systems, such as atomic and

FIG. 9. (Color online) Formation and propagation of (2 + 1)D spatial optical solitons. (a) The initial Gaussian beam. (b) Formation of
(2 + 1)D spatial optical soliton by the evolution of the Gaussian beam at distance s = 2.5.
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molecular gases filled in hollow-core photonic-crystal band-
gap fibers, both dephasing and incoherent population exchange
play significant roles [71]. The theoretical method proposed
in the present work can be applied to such systems with
inhomogeneous broadening. The results predicted here may
be useful for guiding experimental investigations of linear and
nonlinear optical properties of inhomogeneously broadened
systems and for applications of optical information processing
and engineering based on hot vapors.
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APPENDIX: EXPLICIT EXPRESSIONS OF K1 AND K2

For the pole at kpv = −i�ωD , we obtain

K1 = − i
√

πκ13

2AZ1
[(B1 − ω2) + i�ωDω](C1 + iD1ω),

(A1)

where

A = −2γ21�ω2
D + γ31|�c|2, (A2a)

Z1 = �ω2
Dω2 + (|�c|2 + γ21�ωD − ω2)2, (A2b)

B1 = |�c|2 + γ21�ωD, (A2c)
C1 = −2γ21γ31|�c|2 + 2γ21(2γ21 − �21)�ω2

D

+ 2γ21�21|�c|2�ωD, (A2d)
D1 = −2(2γ21 − �21)�ω2

D + 2γ31|�c|2. (A2e)

For the pole at kpv = −i
√

γ31|�c|2/(2γ21), we obtain

K2 = i
√

πκ13�21γ31|�c|2�ωD

2γ21AZ2y
[(B2 − ω2) + iyω](C2 + iω),

(A3)

where y =
√

γ31|�c|2/(2γ21) and

Z2 = (|�c|2 + γ21y − ω2)2 + y2ω2, (A4a)

B2 = |�c|2 + γ21y, (A4b)

C2 = −γ21 + |�c|2
y

. (A4c)

When obtaining the expressions forK1 and K2, we have
assumed the condition (8) and �ωD � |�c|,γ31 � γ21,�21,
i.e., all parameters are assumed much smaller than the Doppler
width.

[1] S. E. Harris, Phys. Today 50, 36 (1997).
[2] M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Rev. Mod.

Phys. 77, 633 (2005).
[3] K. Hammerer, A. S. Sorensen, and E. S. Polzik, Rev. Mod. Phys.

82, 1041 (2010).
[4] S. E. Harris, J. E. Field, and A. Imamoglu, Phys. Rev. Lett. 64,

1107 (1990).
[5] H. Schmidt and A. Imamoglu, Opt. Lett. 21, 1936 (1996).
[6] M. D. Lukin, P. R. Hemmer, M. Löffler, and M. O. Scully, Phys.
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