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We propose a new scheme to generate stable ultraslow optical solitons in lifetime-broadened three-state V -type
media via spontaneously generated coherence (SGC). We show that in the linear propagation regime, SGC in the
system can result in a significant change of dispersion and absorption, which may be used to completely eliminate
absorption and greatly reduce the group velocity of the probe field. In the nonlinear propagation regime, SGC can
largely enhance the Kerr nonlinearity of the system. By means of SGC, stable optical solitons with ultraslow
propagating velocity and ultralow generation power can be produced. Different from previous works, ultraslow
optical solitons obtained in the present system based on SGC have much smaller attenuation during propagation
and can be created by using only one laser field. © 2012 Optical Society of America

OCIS codes: 190.5530, 030.1640.

1. INTRODUCTION
The propagation of nonlinear optical pulses in resonant atom-
ic media has been an important subject of many studies. A lot
of progress has been made in this research direction, includ-
ing the solitons via the self-induced transparency [1] and the
simultons and adiabatons in multilevel media [2,3]. The forma-
tion of such nonlinear localized structures is obtained only for
short, strong nonlinear optical pulses, with the propagating
velocity not far from the light speed in vacuum.

Recently, much attention has been paid to optical pulse
propagation in coherent resonant media via electromagnetic-
induced transparency (EIT) [4]. Because of the quantum
interference effect induced by a coupling laser field, the ab-
sorption of a probe laser field propagating in an EIT medium
can be largely eliminated. In addition, a drastic change of dis-
persion of the system occurs, which results in a significant re-
duction of group velocity of the probe field. The drastic change
of dispersion, however, inevitably leads to a serious distortion
of the probe field during propagation. In order to suppress such
distortion, a weak nonlinear effect of the system has been used
to balance the dispersion, which leads to a new class of optical
solitons, i.e., ultraslow optical solitons [5–7], achievable at a
very low light level. Such shape-preserving slow light pulses
with low light intensity have potential applications in optical
and quantum information processing and transmission and de-
serve to be pursued in the fields of fundamental research and
technological development.

However, in EIT media it is crucial to have at least two laser
fields to create an atomic coherence. In addition, although the
linear optical absorption can be largely eliminated by the cou-
pling field, it cannot be eliminated completely. The existence
of the absorption results in attenuation of the probe field dur-
ing propagation. Especially, the attenuation will be significant
when propagation distance is long. Note that besides the EIT
technique, another type of important atomic coherence can

also be created by exploiting the quantum interference be-
tween two spontaneous emission channels without using any
coupling laser field, which is called spontaneously generated
coherence (SGC). SGC was first discovered in the context of
V -type media by Agarwal [8]. In recent years, much attention
has been paid to the study of SGC and related topics, including
lasing without inversion [9–12], coherent population trapping
[13], spectral narrowing and fluorescence quenching [14–18],
fluorescence squeezing [19], giant self-phase modulation [20],
ground-state quantum beats [21], cavity-mode entanglement
[22], electromagnetically induced gratings [23], and so on.

Although a large amount of research activities has been
done on SGC, most of it is focused on static properties, and
only a few works are dedicated to the study of pulse propaga-
tion in SGC media. Here we mention the work by Paspalakis
et al. [24] who studied pulse propagation in a four-level sys-
tem, where the ground state is coupled to two closely spaced
excited states by only a laser field. In that work, the optical
fields involved are intense enough so that the optical absorp-
tion and pulse distortion can be neglected. Optical pulse pro-
pagation with an adiabatonlike property is observed by using
numerical simulations.

In this article, we investigate, both analytical and numeri-
cally, the stable ultraslow optical solitons in lifetime-
broadened three-state V -type media with SGC. Instead of
adiabatons, we consider breatherlike weak nonlinear excita-
tions without using any adiabatic approximation. Our work
includes two aspects: (i) we study the linear propagating prop-
erties of the probe field with the SGC effect being taken into
account. We show that SGC in such a system can result in a
significant change of dispersion and absorption. In particular,
SGC can completely eliminate the linear absorption of the
probe field. At the same time, the group velocity of the probe
field is largely reduced. (ii) We demonstrate that in the non-
linear propagation regime, SGC can largely enhance the Kerr
nonlinearity of the system. By using SGC, stable optical
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solitons with ultraslow propagating velocity and ultralow gen-
eration power can be produced. We stress that the scheme for
generating ultraslow optical solitons presented in this work is
very different from those obtained based on EIT [5–7] because
the linear absorption of the system is completely suppressed
and only one laser field is needed in the soliton-generating
process. To the best of our knowledge, this is the first study
on optical solitons in resonant atomic media with SGC.

The rest of the article is arranged as follows. In Section 2,
the model of three-state V -type configurations with SGC is
introduced. Linear pulse propagations are discussed, and dis-
persion and absorption properties are analyzed. In Section 3,
the Kerr nonlinearity of the system is analyzed and ultraslow
optical solitons at very low light level are obtained. Finally,
Section 4 contains a summary of our main results.

2. MODELS AND PULSE PROPAGATION IN
THE LINEAR REGIME
We consider a three-level V -type atomic system, as shown in
Fig. 1(a), in which two closely spaced excited states j2i and
j3i decay simultaneously into the ground state j1i by the spon-
taneous emissionwith decay ratesΓ2 andΓ3, respectively. The
quantum interference between the two decay channels (from
j2i to j1i and j3i to j1i) results in SGC of the system [25]. A
weak, pulsed probe field (with duration τ0) of center frequency
ωp andwave vector kp, i.e.,Ep�r; t� � epEp�r; t�ei�kp·r−ωpt� � c:c,
couples the ground state j1i to the excited states j2i and j3i,
where ep and Ep�r; t� are the unit polarization vector and envel-
ope function of the probe field, respectively.

Under electric-dipole, rotating-wave, and Weisskopf–
Wigner approximations, the equations of motion for the
density matrix governing atomic dynamics are

_ρ22 � −Γ2ρ22 � iΩpρ12 − iΩ�
pρ21 − η

�����������
Γ2Γ3

p
2

�ρ23 � ρ32�; (1)

_ρ33 � −Γ3ρ33 � ipΩpρ13 − ipΩ�
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2
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− η

�����������
Γ2Γ3

p
2

ρ21; (4)

_ρ32 � −

�
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pρ31 � ipΩpρ12
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p
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�ρ22 � ρ33�; (5)

with ρ11 � ρ22 � ρ33 � 1. Here Ωp � ep · d12Ep ∕ℏ is half the
Rabi frequency of the probe field, with dij ≡ hijdjji being
the density-matrix elements related to states jii and jji, Δ �
�E3 − E2� ∕ �2ℏ� is the half-frequency difference between j2i

and j3i, and δ � ωp − �E3 � E2� ∕ �2ℏ� is one-photon detuning
[see Fig. 1(a)]. The cross-coupling term contributed by the
SGC effect is manifested by the factor η

�����������
Γ2Γ3

p
∕ 2, with η �

d12 · d13 ∕ jd12jjd13j � cos θ denoting the alignment of two di-
pole matrix elements d12 and d13, where θ is the misalignment
angle between d12 and d13 [see Fig. 1(b)]. If d12 and d13 are
parallel (i.e., θ � 0), one has η � 1, the system exhibits
maximum SGC; if d12 and d13 are perpendicular (i.e.,
θ � π ∕ 2), one has η � 0, the system displays no SGC. p �
jep · d13j ∕ jep · d12j � jd13j cos θ1 ∕ �jd12j cos θ2�, where θ1 (θ2)
is the misalignment angle between d12 (d13) and ep. In the fol-
lowing, we assume jd13j≃ jd12j and a particular case can be
found that θ is equally partitioned by ep, i.e., θ1 ≃ θ2 � θ ∕ 2, as
in [23]. In such a case, we have p≃ 1 and −1 ≤ η ≤ 1.

The equation of motion for the probe-field Rabi frequency
Ωp can be obtained by using the Maxwell equation. Under
slowly varying envelope approximation, it reads

i
�
∂

∂z
� 1

c
∂

∂t

�
Ωp � κ�ρ21 � pρ31� � 0; (6)

where κ � N aωpjep · d12j2 ∕ �2ϵ0cℏ� with N a being the atomic
concentration. For simplicity, we assume in the following
that Γ2 ≈ Γ3 ≡ Γ.

The linear optical response of the system can be obtained
by solving the Maxwell–Bloch Eqs. (1) and (6). Assuming Ωp is
a small quantity, ρ11 ≈ 1, and ρ21, ρ31, and Ωp are proportional
to exp�i�Kz − ωt��, we obtain the linear dispersion relation

K�ω� � ω

c
− κ

�
ω� d3 − ipηΓ ∕ 2

D�ω� � p2�ω� d2� − ipηΓ ∕ 2
D�ω�

�
; (7)

where D�ω� � �ω� d2��ω� d3� � η2Γ2 ∕ 4 with d2 � Δ�
δ� iΓ ∕ 2, and d3 � −Δ� δ� iΓ ∕ 2. By Taylor expanding
K�ω� around ω � 0 [26], we obtain K�ω� � K0 � K1ω�
1
2K2ω

2 � � � �, with the expansion coefficients Kj � �∂jK�ω� ∕
∂ωj �jω�0 (j � 0; 1; 2; � � �) explicitly given by K0 � −κ�p2d2�
d3 − ipηΓ� ∕ �d2d3 � η2Γ2 ∕ 4�, K1�1∕ c−κ�1�p2�∕ �d2d3�η2Γ2 ∕ 4�
�κ�p2d2�d3−ipηΓ��d2�d3�∕ �d2d3�η2Γ2 ∕ 4�2, and K2 � 2κ
�1� p2��d2 � d3� ∕ �d2d3 � η2Γ2 ∕ 4�2 � 2κ�p2d2 � d3 − ipηΓ� ∕
�d2d3 � η2Γ2 ∕ 4�2 − 2κ�p2d2 � d3 − ipηΓ��d2 � d3�2 ∕ �d2d3 � η2

Γ2 ∕ 4�3. Here, K0 � Re�K0� � iIm�K0� gives the phase shift
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Fig. 1. (Color online) Energy level diagrams and excitation schemes
of lifetime-broadened V -type three-level systems with SGC. Here, jji
(j � 1; 2; 3) are atomic bare states, Ep is a weak probe laser field, Δ
and δ are detunings, and Γj (j � 1; 2) are decay rates of relevant
states. (b) The definition of the alignment angles (θ1, θ2) of the dipole
matrix elements (d12, d13) related to the unit polarization vector ep of
the probe field. θ � θ1 � θ2 is the angle between d12 and d13.
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per unit length and absorption coefficient, K1 determines the
group velocity Vg�≡1 ∕ReK1�, and K2 represents the group-
velocity dispersion.

Shown in Figs. 2(a) and 2(b) are, respectively, the real and
imaginary parts of K as functions of ω, which characterize the
dispersion and absorption of the system. The solid lines in the
figure are for the case with the maximum SGC (i.e., η � 1),
whereas the dashed lines are for the case without SGC
(i.e., η � 0). System parameters are chosen as κ �
1.0 × 109 cm−1 s−1, Γ � 1.0 × 107 s−1, Δ � 1.0 × 107 s−1, δ � 0,
and p � 1. We see that in the region around ω � 0 the probe-
field displays a drastic change of dispersion [and hence a
drastic reduction of group velocity—panel (a)] and a large
suppression of absorption [panel (b)]. Obviously, the reduc-
tion of group velocity and the suppression of absorption with
SGC are much more significant than those without SGC.

It is instructive to discuss the SGC effect on the probe-field
absorption in more detail. From Fig. 2(b), we see that the
probe-field absorption is suppressed around ω � 0 in cases
with and without SGC, resulting in the appearance of transpar-
ency windows in the absorption spectrum. However, the
depth and width of the transparency windows are quite differ-
ent. The transparency windowwith the maximum SGC (η � 1,
the solid curve) is much more deeper and wider than that
without SGC (η � 0, the dashed curve).

The difference for the absorption spectra for the above two
cases can be understood more clearly by using the “decaying-
dressed states” [27,28]. For this aim, we can expressK�ω� into
the form

K�ω� � ω

c
� R1 � R2; �8�

where

R1 � −κ
K�

ω − ω�
; R2 � −κ

K−

ω − ω−

; (9)

denote two resonances with poles ω	 � −�δ� iΓ ∕ 2� 	���������������������������
Δ2 − η2Γ2 ∕ 4

p
and amplitudes K	 � 	��1� p2�ω	 � p2d2�

d3 − ipηΓ� ∕
������������������������
4Δ2 − η2Γ2

p
, respectively.

Each panel in Fig. 3 displays the imaginary part of the two
resonances separately [Im�R1� and Im�R2�, the solid and
dashed curves] and their combination as the total absorption
[Im�K�; the dotted curve]. The system parameters are the
same with those used in Fig. 2. In the left panels we show
the spectra without SGC (η � 0) with the increasing value
of Δ ∕Γ. A dip with nonzero minimum in the total absorption
can be interpreted as a gap between the two resonances,
which is a typical character of Autler–Townes (AT) splitting
[29]. The dip becomes more and more shallow, with the de-
crease of Δ ∕Γ characterizing the separation of the two reso-
nances. The corresponding spectra with the maximum SGC
(η � 1) are given in the right panels. Different from the case
without SGC, one can always observe a dip with zero mini-
mum in the total absorption. Once Δ ∕Γ < 1 ∕ 2 [Fig. 3(f)],
we observe the following crucial changes: (i) the two reso-
nances completely overlap (i.e., peak on peak); (ii) one reso-
nance remains positive, indicating the absorption, whereas
the other one becomes negative, indicating the gain; (iii) the
positive resonance is wider than the negative one. Thus, the
dip in total absorption can be regarded as an “imprint” of one
resonance into the other, which is a result of a destructive
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Fig. 2. (Color online) (a) Re�K� and (b) Im�K� as functions of ω ∕Γ
with maximum SGC (i.e., η � 1, the solid curve) and without SGC (i.e.,
η � 0, the dashed curve).

Fig. 3. (Color online) Im�R1� (solid curve), Im�R2� (dashed curve), and Im�K� (dotted curve) as functions of ω ∕Γ. (a), (c), (e) Spectra without SGC
(η � 0) for Δ ∕Γ � 1.0, 0.7, and 0.4, respectively. (b), (d), (f) Corresponding spectra with the maximum SGC (η � 1).
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interference between the two resonances. In fact, this phe-
nomenon comes from the quantum interference effect
between two spontaneous emission channels (i.e., the spon-
taneous emission from j2i to j1i and that from j3i to j1i), a
typical character of SGC. From these results, we clearly
see that it is the joint contribution from the AT splitting
and the SGC effect that make the absorption of the probe field
completely eliminated. Such a characteristic is very different
from that of EIT systems, where linear absorption always ex-
ists. Thus, the SGC effect provides the possibility for an in-
deed long-distance transmission of the probe field in both
the linear and nonlinear propagation regimes.

3. PULSE PROPAGATION IN NONLINEAR
REGIME
Kerr nonlinearity is essential for most nonlinear optical pro-
cesses, particularly for the formation of solitons. It can be lar-
gely enhanced in resonant optical media, but usually a serious
optical absorption is accompanied simultaneously. Here, we
show that in the present system, by the joint action of AT split-
ting and the SGC effect, the Kerr nonlinearity can be enhanced
greatly without suffering optical absorption.

The probe-field susceptibility for the system is defined as

χp � N ajep · d12j2
ϵ0ℏ

ρ21 � pρ31
Ωp

≃ χ�1�p � χ�3�p jEpj2; (10)

where χ�1�p and χ�3�p are linear and third-order susceptibilities,
respectively. The real part of χ�3�p contributes to the Kerr non-
linearity, while the imaginary part of χ�3�p contributes to the
nonlinear absorption or gain of the system. The explicit ex-
pressions of χ�1�p and χ�3�p can be obtained by solving Eq. (1)
under the steady-state approximation, which reads

χ�1�p � −
N ajep · d12j2

ϵ0ℏ
p2d2 � d3 − ipηΓ
d2d3 � η2Γ2 ∕ 4

; (11)

χ�3�p � N ajep · d12j4
ϵ0ℏ3

Ad3 � pBd2 − i�pA� B�ηΓ ∕ 2
d2d3 � η2Γ2 ∕ 4

: (12)

The coefficients A and B in Eq. (12) are given by A �
r�32 � 2r22 � r33 and B � r32 � p�r22 � r33�, where

r22 �
−iΓY 1jd32j2 � X � Γ�Y 3d23 − Y 4d32�ζ

Γ2jd32j2 � 2iΓd23ζ2 − 2iΓd32ζ2
;

r33 �
−iΓY 2jd32j2 − X � Γ�Y 3d23 − Y 4d32�ζ

Γ2jd32j2 � 2iΓd23ζ2 − 2iΓd32ζ2
;

r32 �
2i�Y 3 − Y 4�ζ2 − ΓY 3d23 � �Y 1 � Y 2�d23ζ

Γjd32j2 � 2id23ζ2 − 2id32ζ2
:

Here X � �d23 − d32��Y 1 − Y 2�ζ2, Y 1 � −�d3 − ipζ� ∕ �d2d3�
ζ2� � �d�3 � ipζ� ∕ �d�2d�3 � ζ2�, Y 2 �−�p2d2 − ipζ� ∕ �d2d3� ζ2��
�p2d�2 � ipζ� ∕ �d�2d�3 � ζ2�, Y 3�−�pd2−iζ� ∕ �d2d3�ζ2���pd�3
�ip2ζ� ∕ �d�2d�3 �ζ2�, Y 4 � −�pd3 − ip2ζ� ∕ �d2d3 � ζ2� � �pd�2�
iζ� ∕ �d�2d�3 � ζ2�, with d32 � 2Δ − iΓ and ζ � ηΓ ∕ 2.

Shown in Figs. 4(a) and 4(b) are Re�χ�3�� and Im�χ�3�� as
functions of η, respectively. System parameters are taken
as κ� 1.0 × 109 cm−1 s−1, Γ� 1.0× 107 s−1, Δ � 5.5 × 107 s−1,
δ � 1.0 × 107 s−1, and p � 1. From the figure we see that

jRe�χ�3��j grows as η increases, whereas jIm�χ�3��j reduces
as η increases. Thus, the SGC effect enhances the Kerr non-
linearity of the system significantly. In addition, Re�χ�3�� has
an order of 10−8 cm−1 s2; i.e., it is 1012 times larger than that of
conventional nonlinear optical media [30].

The Kerr nonlinearity enhancement obtained in the present
atomic system can be used to balance the dispersion of the
system and hence to obtain a nearly lossless and distortionless
optical pulse propagation in the nonlinear regime. To this end,
we apply the standard multiple-scale method to solve Eqs. (1)
and (6), which is beyond the steady-state and adiabatic ap-
proximations [6,7]. We make the following asymptotic expan-

sion ρjj � δ1j �
P

∞
n�1 ϵ

nρ�n�jj (j � 1, 2, 3), ρij �
P

∞
n�1 ϵ

nρ�n�ij

(i, j � 1, 2, 3, i ≠ j), and Ωp � P
∞
n�1 ϵ

nΩ�n�
p , where ϵ is a small

parameter characterizing the small population depletion of
the ground state. To obtain a divergence-free expansion, all
quantities on the right-hand side of the expansion are consid-
ered as functions of the multiscale variables zl � ϵlz (l � 0, 1,
2) and tl � ϵlt (l � 0, 1). Substituting the expansion and the
multiscale variables into Eqs. (1) and (6), we obtain a chain
of linear, but inhomogeneous, equations that can be solved
order by order.

At the leading order, we get the linear solution Ω�1�
p �

F expfi�K�ω�z0 − ωt0�g and the dispersion relation, given by
Eq. (7). At the second order, a divergence-free condition
requires ∂F ∕ ∂z1 � �1 ∕Vg�∂F ∕ ∂t1 � 0. Here F is a yet-to-be-
determined envelope function depending on the slow vari-
ables t1, z1 and z2. Vg is the group velocity.

The nonlinear equation for the envelope function F can be
obtained at the third order; a divergence-free condition
requires

i
∂F
∂z2

−
K2

2
∂2F

∂t21
−W exp�−β̄z2�F jF j2 � 0; (13)

where β̄ � ϵ−2β with β � 2Im�K0� and

W � −κ
Ad3 � pBd2 − i�pA� B�ηΓ ∕ 2

d2d3 � η2Γ2 ∕ 4
;

with A and B being the same with those defined in Eq. (12).
After returning to original variables, Eq. (13) becomes

i
�
∂

∂z
� β

2

�
U −

K2

2
∂2U
∂τ2

−W jUj2U � 0; (14)

where τ � t − z ∕Vg and U � ϵFe−β̄z2 ∕ 2. Equation (14) usually
has complex coefficients due to the resonant character of the
system. However, as we shall show below, under the joint
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Fig. 4. (Color online) (a) Re�χ�3�� and (b) Im�χ�3�� as functions of η,
respectively.

2012 J. Opt. Soc. Am. B / Vol. 29, No. 8 / August 2012 C. Hang and G. Huang



action of SGC and the AT splitting, a practical set of system
parameters can be found to make the imaginary part of the
coefficients be much smaller than their real part. Then
Eq. (14) can be approximated as a nonlinear Schrödinger
(NLS) equation, which allows soliton solutions being able
to propagate for a rather long distance without significant at-
tenuation and distortion. The dimensionless form of Eq. (14) is

i
∂u
∂s

� ∂2u

∂σ2
� 2ujuj2 � iμu; (15)

where s � −z ∕ �2LD�, σ � τ ∕ τ0, and u � U ∕U0, μ � 2LD ∕LA,

with LD � τ20 ∕
�� ~K2

�� being the characteristic dispersion length,

LA � 1 ∕ β the characteristic absorption length, and U0 �

�1 ∕ τ0�
������������������� ~K2 ∕

~W
��q
the characteristic Rabi frequency of the probe

field. The tilde symbol denotes the real part of the correspond-
ing quantity.

If LD is much less than LA (i.e., μ ≪ 1, which is the case in
the presence of SGC), the term on the right-hand side of
Eq. (15) can be treated as a small perturbation and can be ne-
glected at the first order. Hence, Eq. (15) reduces to the stan-
dard NLS equation, which is completely integrable and allows
multisoliton solutions. After returning to the original vari-
ables, a single soliton solution of the NLS Eq. (15) corresponds
to the half Rabi frequency of the probe field

Ωp � 1
τ0

�������
~K2

~W

s
sech

�
1
τ0

�
t −

z
~Vg

��
exp

�
iϕz − i

z
2LD

�
: (16)

We now present a practical numerical example to support
the above results. Consider a cold alkali atomic gas, for which
the system parameters can be taken as d24 ≈ d34 �
2.5 × 10−27 cm−1C, κ�1.0×109 cm−1 s−1, Γ2 ≈Γ3�1.0×107 s−1,
Δ� 5.5× 107 s−1, δ� 1.0 × 107 s−1, and p � 1. In Table 1 we
list the values of K0, K1, K2, and W without (η � 0) and with

(η � 1) the maximum SGC. We note that SGC plays an impor-
tant role to make the optical absorption of the system be lar-
gely eliminated; i.e., the imaginary part of K0 is much smaller
than its real part with the maximum SGC. However, the linear
absorption characterized by the imaginary part of K0 is not
completely eliminated in this case. This is because we have
set δ to be nonzero. If δ � 0, the coefficient W will be pure
imaginary and hence no nonlinearity can be provided by
the medium. In the absence of SGC, the value of the imaginary
part of K0 increases about 16 times, which means the appear-
ance of a significant linear absorption and hence the probe
field will attenuate rapidly. The propagating velocity of the
soliton is given by

Vg � 4.6 × 10−5c; (17)

i.e., the soliton formed travels indeed with an ultraslow velo-
city. We must stress that the present scheme for generating
the ultraslow optical soliton needs only one laser field, which
is different from the EIT scheme, where at least two laser
fields are required [5–7].

After taking τ0 � 0.8 × 10−7 s, we have LD � 0.45 cm,
U0 � 1.5 × 107 s−1, and LA � 4.3 cm with the maximum SGC.
The generation power of the ultraslow optical soliton can be
estimated by calculating the Poynting vector. The peak power
P̄peak ≈ 2ϵ0cnpS0�ℏ ∕ jp32j�2U2

0, with np and S0 being the reflec-
tive index and the cross-section area of the probe beam,
respectively. With the above parameters, it is easy to estimate

Table 1. K0, K1, K2, and W without and with the
Maximum SGC

η � 0 η � 1

K0�cm−1� 6.66� i3.62 6.83� i0.23
K1�cm−1 s� �0.71� i0.07� × 10−6 �0.73� i0.05� × 10−6

K2�cm−1 s2� �0.13� i0.09� × 10−13 �0.14� i0.06� × 10−13

W�cm−1 s2� �1.00� i0.05� × 10−14 �1.00� i0.03� × 10−14

Fig. 5. (Color online) (a), (b) Wave shapes of jΩp ∕U0j2 as a function of z ∕LD and τ ∕ τ0 with (a) η � 0 and (b) η � 1]. The results are numerically
obtained from Eq. (14) with full complex coefficients taken into account. (c), (d) Wave shapes of jΩp ∕U0j2 as a function of τ ∕ τ0 with (c) η � 0 and
(d) η � 1. The results are obtained by directly integrating Eqs. (1) and (6) at z � 0, 0.5LDiff , and LDiff in (c) and at z � 0, LDiff , and 2LDiff in (d).
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the peak power of the ultraslow optical soliton, which is given
as

P̄peak � 0.65 μW; (18)

with S0 � π × 10−4 cm2. Thus, we see that very low power is
needed for generating the ultraslow optical soliton due to the
enhancement of Kerr nonlinearity.

We have also studied the propagation of the ultraslow op-
tical soliton presented above by using numerical simulations.
Shown in Figs. 5(a) and 5(b) are the wave shapes of jΩp ∕U0j2
as a function of z ∕LD and τ ∕ τ0 without (η � 0) and with
(η � 1) the maximum SGC, respectively. We see that the so-
liton is completely absorbed in a short propagation distance
without SGC. However, its amplitude undergoes only a slight
decrease while its width undergoes a slight increase after pro-
pagating a long distance with the maximum SGC.

Finally, we have made a numerical simulation by directly
integrating Eqs. (1) and (6) to confirm the analytical predic-
tion. The results are shown in Figs. 5(c) and 5(d). We see that,
contrary to the case without SGC, the solitons obtained with
the maximum SGC can indeed propagate a long distance with-
out significant attenuation.

4. DISCUSSION AND SUMMARY
SGC occurs in systems having near-degenerated levels with
the same angular momentum quantum numbers J and mJ

and nonorthogonal dipole moments, which are usually hard
to satisfy in atomic media [31]. However, in a recent experi-
ment [32], SGC has been observed in a rubidium atoms with
N - and inverted Y -type level configurations. In addition, the
quantum interference via SGC can be observed in many other
systems such as semiconductor quantum wells and quantum
dots [33–35], autoionizing media [36], and the anisotropic va-
cuum [37]. Our theoretical approach presented above can be
easily generalized to these systems with SGC.

We have also considered other two types of three-state
quantum system, i.e., the Λ- and Ξ-type systems with SGC
[13,38,39]. However, calculating results (which are omitted
here) show that SGC has no effect on the dispersion and ab-
sorption and no Kerr-nonlinearity enhancement can be ob-
tained. Hence the Λ- and Ξ-type systems with SGC cannot
be taken to realize a nearly lossless propagation of ultraslow
optical solitons.

In conclusion, in this work we have proposed a new scheme
to generate stable ultraslow optical solitons in lifetime-
broadened three-state V -type media through SGC). We have
shown that in the linear propagation regime, SGC in the sys-
tem can result in a significant change of dispersion and
absorption and may be used to completely eliminate the
absorption and greatly reduce the group velocity of probe
field. In the nonlinear propagation regime, SGC can largely
enhance the Kerr nonlinearity of the system. We demon-
strated that by means of SGC, stable optical solitons with
ultraslow propagating velocity and ultralow generation power
can be produced. Different from previous works via EIT,
ultraslow optical solitons obtained in the present system
based on the atomic coherence via SGC have much smaller
attenuation during propagation and can be created by using
only one laser field.
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