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We investigate the formation and propagation of optical solitons in an asymmetric double quantum-well
structure. Using a standard method of multiple scales we derive a nonlinear Schrödinger �NLS� equation with
some high-order correction terms that describe effects of linear and differential absorption, nonlinear disper-
sion, delay response of nonlinear refractive index, and third-order dispersion of a probe field. We show that in
order to make slowly varying envelope approximation be valid an excitation scheme of interband transition
should be adopted. We also show that for realistic quantum-well parameters the probe field with time length of
picosecond or shorter must be used to make dispersion and nonlinear lengths of the system be smaller than
absorption length, only by which a shape-preserving propagation of optical solitons is available. In addition,
we clarify validity domains for the perturbed NLS equation as well as the high-order NLS equation and provide
various optical soliton solutions in different regimes both analytically and numerically. We demonstrate that the
solitons obtained have ultraslow propagating velocity and can be generated under very low input light intensity.
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I. INTRODUCTION

In recent years, much attention has been paid to the study
of optical solitons due to their important applications for
optical information processing and transmission.1 However,
most optical solitons realized up to now are produced in
passive media such as glass-based optical fibers in which
far-off resonance excitation schemes are used for avoiding
serious optical absorption. Because nonlinear effect in pas-
sive media is extremely weak, for producing optical solitons
high-input light intensity and long propagation distance are
required. In addition, optical solitons generated in this way
generally travel with a speed very close to c, the light speed
in vacuum.2

The basic mechanism for the formation of temporal opti-
cal soliton is the balance between nonlinearity and disper-
sion. For reducing the formation distance of the soliton and
changing its propagating velocity far from c, a material with
large dispersion and Kerr nonlinearity is needed. It is well
known that Kerr nonlinearity and group-velocity dispersion
can be enhanced greatly if a system works near resonance. In
fact, in the early days of nonlinear optics there were substan-
tial efforts in utilizing resonant atomic systems to realize
efficient nonlinear optical processes. Unfortunately, reso-
nance enhancement of nonlinearity and dispersion usually
accompany with a strong absorption. For this reason, it was
generally recognized that even though large nonlinearity and
dispersion can be obtained in resonant media, it is practically
difficult to take advantages of such resonance enhancement.
However, in recent years such paradigm has been challenged
by the study of electromagnetically induced transparency
�EIT� in resonant atomic systems.3 Due to the quantum in-
terference effect induced by a control field, the propagation
of a weak probe field has many striking features, including
large suppression of optical absorption, significant reduction
in probe-field group velocity, and giant enhancement of Kerr
nonlinearity.3 Based on these important features, it has been

suggested recently that a new type of optical solitons, i.e.,
ultraslow optical solitons, are possible in highly resonant
atomic systems.4–9

On the other hand, in recent years there have been a lot of
efforts on similar quantum interference effects in semicon-
ductors. One of important motivations of such study comes
from the drastic increase in applications because of the wide-
spread use of semiconductor components in optoelectronics
and quantum information science. Quantum coherent phe-
nomena �e.g., lasing without inversion, coherent population
oscillations, EIT, and slow light, etc.� in semiconductor het-
erostructures have been explored both theoretically and
experimentally.10–25 Specifically, Fano interference in asym-
metric double quantum wells and related phenomenon of
tunneling-induced transparency �TIT� via intersubband tran-
sitions have been intensively investigated.26–33 It has also
been suggested that enhanced Kerr nonlinearity, all optical
switching, four-wave mixing, and slow optical solitons are
possible in such systems.34–40

In this work, we investigate the dynamics of optical soli-
tons in an asymmetric double quantum-well structure. We
shall show that, for realistic quantum-well parameters and to
make slowly varying envelope approximation �SVEA� be
valid, an excitation scheme with interband transitions must
be adopted, which is different from Refs. 40 and 41, where
an intersubband transition scheme was used. Furthermore,
we shall show that the probe field with time length of pico-
second or even shorter must be used to make dispersion and
nonlinear lengths less than absorption length, only under
such condition a shape-preserving propagation of an optical
soliton is available. Different from EIT-based atomic sys-
tems, where the probe pulse has time length generally around
microsecond4–9 and hence nonlinear and dispersion effects
are comparably weak, the optical soliton in the quantum-well
system have much shorter time length and thus the nonlinear
and dispersion effects are much stronger. Hence it is very
necessary to consider how high-order dispersion and high-
order nonlinear effects affect the property and dynamics of
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the optical soliton in the quantum-well system. By using a
standard method of multiple scales we derive a nonlinear
Schrödinger �NLS� equation with high-order correction
terms that describe effects of linear and differential absorp-
tion, nonlinear dispersion, delay response of nonlinear re-
fractive index, and third-order dispersion of the probe field.
We shall demonstrate that the high-order correction terms
take indeed a significant role when the probe pulse duration
is just less than one picosecond and provide various optical
soliton solutions that have ultraslow propagating velocity
and very low generation power.

The paper is arranged as follows. In Sec. II, we present
the theoretical model of the coupled double quantum well
and discuss its solution in linear regime. In Sec. III, we give
a detailed derivation of a high-order NLS equation describ-
ing the evolution of the probe field. In Sec. IV, we give
various soliton solutions both analytically and numerically
and discuss their formation and propagation dynamics. A
summary of main results obtained in this work is given in the
last section.

II. MODEL AND ITS SOLUTION IN LINEAR REGIME

The asymmetric couple quantum-well structure we con-
sider is the same as that in Ref. 42, which consists of a
narrow well and a wide well, separated by a narrow barrier,
as shown in Fig. 1. In such quantum-well system, the first
electron level in conduction band of the wide well can be
energetically aligned with the first electron level of the nar-
row well by applying a static electric field with a given po-
larity, whereas the first hole levels in valence band of both
the wide and narrow wells are never aligned for this polarity
of the static electric field �for detail, see Ref. 42�. Thus elec-
trons will delocalize and the levels will split into a bonding
and an antibonding states arising from tunneling effect, la-
beled �2� and �3�, respectively. The holes remain localized,
which correspond to �1� and �4�. The splitting �s between �2�
and �3� can be controlled by adjusting the height and width
of the tunneling barrier with applied bias voltage. As in Refs.
35–41, we assume �i� the system works in low-temperature

environment �e.g., in a continuous-flow cryostat at tempera-
ture of 10 K �Ref. 42�� and the carrier density in the wells is
low enough, and �ii� the difference between effective masses
in different subbands is small. The latter condition is, strictly
speaking, valid only for the situation when the subbands are
parallel and Coulomb and Fröhlich matrix elements have a
two-dimensional character. In this case, the quantized elec-
tron motion perpendicular to layers in growth direction of the
wells is decoupled from the free motion in the quantum-well
plane, and intrasubband electron-electron and electron-
phonon interactions do not affect intersubband coherence
�for detail, see Ref. 43�. Making such assumptions is for sake
of simplicity for theoretical analysis and we believe that
these effects are of significance only in final engineering op-
timization without changing basic physical property under
study.33

A weak probe optical pulse with angular frequency �p,
wave number kp=�p /c, polarization vector ep, and amplitude
Ep is assumed to propagate in z direction and interacts with
such four-level system. The probe pulse induces the transi-
tions �1�↔ �2� and �1�↔ �3� with the respective half Rabi
frequencies ��21·ep�Ep /� and ��31·ep�Ep /�, where �31, �21
are corresponding interband dipole moments. Detunings are
defined by �2=�p− �E2−E1� /� and �3= �E3−E1� /�−�p,
where Ej is the eigenenergy of the state �j�. Using the energy
splitting �s= �E3−E2� /�, we can express the detunings as
�2=�s /2+� and �3=�s /2−�, where �=�p− �E2+E3
−2E1� / �2��. Under electric dipole and rotating-wave ap-
proximations, the equations of motions controlling the evo-
lution of the probability amplitudes Aj of the state �j�
�j=1–3� are

i
�

�t
A1 + �p

�A2 + g1
��p

�A3 = 0, �1a�

�i
�

�t
+ d2�A2 + �pA1 − i�A3 = 0, �1b�

�i
�

�t
+ d3�A3 + g1�pA1 − i�A2 = 0 �1c�

with g1=�31 /�21, d2=�2+ i�2, d3=−�3+ i�3, and �p
	��21·ep�Ep / ���. Here total decay rate � j of the state �j�
consists of population decay rate � jl, primarily due to
longitudinal-optical-phonon emission events at low tempera-
ture, and dephasing rates � j

dph, determined by electron-
electron scattering, interface roughness and phonon-
scattering processes, i.e., � j =� jl+� j

dph. The population decay
rate � jl can be calculated by solving effective-mass
Schrödinger equation. For the temperatures up to 10 K, the
electric density kept below 5	1011 cm−2 per double well to
minimize dephasing from carrier scattering, the dephasing
decay rate � j

dph can be estimated according to experiments.44

In Eqs. �1b� and �1c�, the parameter �=
�2l�3l denotes the
cross coupling of states �2� and �3� via the longitudinal-
optical-phonon decay, describing the process in which a pho-
non is emitted by subband �2� and recaptured by subband
�3�.45,46

�

�

�

�

��

��
��

��

FIG. 1. �Color online� Energy-level diagram and excitation
scheme of the asymmetric double quantum-well structure. �2� and
�3� are delocalized bonding and antibonding electronic states of
conduction band arising from tunneling effect. �1� and �4� are local-
ized hole states of valence band. �p is the half Rabi frequency of
the probe field, �2 and �3 are detuning, and �s is the energy inter-
val between the state �2� and the state �3�.
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The evolution of the probe field is governed by the Max-
well equation �2E− �1 /c2��2E /�t2= �1 /
0c2��2P /�t2, where
P=N��31A1A3

� exp�kpz−�pt�+�21A1A2
� exp�kpz−�pt�+c.c.�.

For simplicity, we assume that the probe field is homoge-
neous in the transverse �i.e., x and y� directions. Then under
the SVEA, i.e.,

��p

�z
� kp�p, �2a�

��p

�t
� �p�p, �2b�

the Maxwell equation is reduced to

i� �

�z
+

1

c

�

�t
��p + B�A2 + g1

�A3�A1
� = 0, �3�

where B=N�p��21�2 /2��0c with N being the electron density
in the valence band of the quantum well.

We first look at the eigensolutions of Eqs. �1a�–�1c� by
assuming that the probability amplitudes Aj follow the varia-

tion in �p. Writing Eqs. �1a�–�1c� as i��A /�t= ĤA with A

= �A1 ,A2 ,A3�T and Ĥ=���d2�2��2�+d3�3��3�+�p�2��1�
+g1�p�3��1�+c.c.�− i��3��2�− i��2��3��. Under the conditions
�g1�=1, � j �� j

dph, and �2��3, one can obtain the eigenvalues

of Ĥ as 1�0, 2= i�2+ 1
2 ��s

2+8��p�2−4�2
2�1/2, 3= i�2

− 1
2 ��s

2+8��p�2−4�2
2�1/2. Because both 2 and 3 are com-

plex, the corresponding eigenmodes attenuate rapidly. These
modes are not interesting for wave-propagation problem and
hence will not be considered further. However, the zero
mode �the eigenmode with 1�0� has a vanishing decay and
thus is important. It is easy to get the eigenvector of the zero
mode, which reads 1 / �1+8��p�2 /�s

2�1/2 ,−2�p / ��s
�1+8��p�2 /�s

2�1/2� , and −2�p / ��s�1+8��p�2 /�s
2�1/2��. Ob-

viously, if �s��p, nearly all electrons remain in the energy
level �1� and the population in energy levels �2� and �3� is
negligible, i.e., �A1 ,A2 ,A3���1,0 ,0�. In this case the probe
field does not feel the existence of energy levels �2� and �3�
and hence it can propagate transparently in the system. Thus
the zero-mode state of the system is similar to the dark state
in resonant atomic systems with EIT.3 However, the forma-
tion mechanism of the dark state here is different from that
of EIT since it results from a tunneling effect that induces the
mixing of the electronic levels between the wide and narrow
wells.

Before exploring weak nonlinear effects, it is necessary to
examine the linear property of the system. To this aim we
assume electrons are initially populated the energy level �1�
and the probe-field intensity is very small. In this situation
the population of the ground state �1� is not depleted during
time evolution, i.e., A1�1. Taking A2 and A3, and �p to be
proportional to exp�i�Kz−�t��, by the Maxwell-Schrödinger
Eqs. �1a�–�1c�, �2a�, �2b�, and �3� we obtain the linear-
dispersion relation of the system

K��� =
�

c
− B

�� + d3� + �g1�2�� + d2� + i�g1 + g1
���

D
�4�

with D	��+d2���+d3�+�2. In most cases, K��� can be
Taylor expanded around the center frequency of the probe
field, which corresponds to �=0, i.e., K���=K0+K1�
+ �K2 /2��2+¯, where Kj = �� jK /�� j� ��=0 with 1 /K1 repre-
senting a complex group velocity, and K2 the group-velocity
dispersion and additional loss of the probe field.

Shown in Figs. 2�a� and 2�b� are the imaginary part
Im K��� and the real part Re K��� of the linear-dispersion
relation, respectively. The dot-dashed, dashed, and solid lines
in the figure are the results for �s=0.62 meV �1.51
	1011 s−1�, 4.96 meV �1.2	1012 s−1�, and 9.96 meV
�2.41	1012 s−1�, respectively. Parameters we chosen are
suitable to a typical double quantum-well structure,42 which
has a 51-monolayer �ML� �145 Å� wide well and a 35-
monolayer �100 Å� narrow well, separated by an
9-monolayer �26 Å� Al0.2Ga0.8As buffer layer at the tem-
perature of 10 K, with �g1�=1.0 and B=6.2	105 m−1 meV.
Population decay rates and the dephasing rates of the sub-
bands �2� and �3� can be estimated according to Refs. 38 and
47. One can choose �2l=1.28 ns−1, �3l=1.29 ns−1, �2

dph

= 1
8 ps−1, �3

dph= 1
8 ps−1, and �s can be controlled by adjusting

the height and width of the tunneling barrier experimentally.
From Fig. 2�a� we see that for small �s the absorption

profile has only a single peak, hence the probe field with the
central angular frequency �p �corresponding to �=0� is
largely absorbed. However, if increasing �s to make �s

2 be
much larger than 4�2�3, the absorption profile displays a
large Autler-Townes absorption doublet �i.e., TIT transpar-
ency window�. For characterizing the absorption doublet, we
define TIT window width �w �i.e., the distance between the
maxima of the two absorption peaks of the doublet�, the
transmission width �t �i.e., the minimum distance between
two absorption peaks at half maxima�, and the absorption
linewidth �A ��B� which is the width of the absorption line A
�B�, as shown in Fig. 2�a�. From the linear-dispersion rela-
tion �4� and under the conditions �2��3��, and g1�−1,
we obtain the following explicit expressions
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FIG. 2. �Color online� Linear-dispersion relation as functions of
�. Panels �a� and �b� are curves of Im K��� and Re K��� charac-
terizing linear absorption and refractive index, respectively. The
doted, dashed, and solid lines in the figure correspond to �s=0.62,
4.96, and 9.96 meV, respectively. The other parameters are given in
the text. The definition of the transparency-window width �w, trans-
mission width �t, and absorption linewidth �A�B� are given in the
figure.
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�w =
2�2


�s
2 + 16�2

2 + 
�s
4 − 12�s

2�2
2 + 64�2

4


�s
2 − 16�2

2
, �5a�

�t =
− 2�2


�s
2 + 16�2

2 + 
�s
4 − 12�s

2�2
2 + 64�2

4


�s
2 − 16�2

2
, �5b�

�A � �B =
2�2


�s
2 + 16�2

2


�s
2 − 16�2

2
. �5c�

Obviously if �s��2, we have �w��t��s. Thus, the larger
the tunneling coupling �s, the larger the TIT transparency
window.

In addition to the appearance of the Autler-Townes dou-
blet in the absorption profile, the dispersion part that corre-
sponds to the linear refractive index �i.e., Re K���� also has
a drastic variation for the change in �s. From Fig. 2�b� we
see that when �s increases, the system is changed from an
anomalous dispersion regime to a normal dispersion regime,
and hence the sign of group velocity of the probe field, i.e.,
Vg	� Re K��� /��, is changed from negative to positive. In
the TIT transparency window, Vg is positive and can be very
small.

III. ASYMPTOTIC EXPANSION AND HIGH-ORDER
NLS EQUATION

We now turn to consider weak nonlinear excitations of the
system. Our aim is to get a nonlinear probe pulse that allows
shape-preserving propagation. Notice that, different from the
EIT in atomic systems where dispersion and Kerr nonlinear-
ity vanish at exact two-photon resonance,3 in the present TIT
system dispersion always exists because the detunings �2
and �3 cannot equal to zero simultaneously. Furthermore, for
a large-amplitude probe field the Kerr nonlinearity is also
significant. Thus we can use the balance between the disper-
sion and Kerr nonlinear effects to obtain a solitonlike non-
linear probe pulse. For this aim we use a standard method of
multiple scales5 to analyze the nonlinearly coupled Maxwell-
Bloch Eqs. �1� and �3�. We introduce the asymptotic expan-
sion Aj =�n=0

� �nAj
�n�, �p=�n=1

� �n�p
�n� with A1

�0�=1, A2
�0�=A3

�0�

=0, here � is a small parameter characterizing the small
depletion of the ground state and Aj

�n� and �p
�n� �n=1,2 , . . .�

are functions of the multiscale variables zl=�lz �l=0–3�, tl
=�lt �l=0,1�. Substituting these expansions into Eqs. �1� and
�3� one obtains a set of linear but inhomogeneous equations
of Aj

�n� and �p
�n�, which can be solved order by order.

The leading order �n=1� reads

�p
�1� = Fei�, �6a�

A2
�1� = −

�� + d3� + ig1�

D
Fei�, �6b�

A3
�1� = −

g1�� + d2� + i�

D
Fei�, �6c�

where �=K���z0−�t and F is a yet to be determined enve-
lope function depending on the slow variables x1, y1, t1, and

zj �j=1,2 ,3�. The dispersion function K��� is given by Eq.
�4�.

At the second order �n=2�, a condition of eliminating a
secular term requires

i� �F

�z1
+

1

Vg

�F

�t1
� = 0. �7�

The second-order solution is given by

A1
�2� = −

1

2
� �� + d3 + i�g1�2 + �g1�� + d2� + i��2

�D�2 ��F�2e−�̄z2,

�8a�

A2
�2� = i

�� + d3��� + d3 + ig1�� + i��g1�� + d2� + i��
D2

�F

�t1
ei�,

�8b�

A3
�2� = i

�� + d2��g1�� + d2� + i�� + i��� + d3 + ig1��
D2

�F

�t1
ei�,

�8c�

�p
�2� = 0, �8d�

where �̄=2�−2 Im K���.
At the third order �n=3�, the condition of eliminating

secular term results in the NLS equation with complex coef-
ficients for F,

i
�F

�z2
−

1

2
K2

�2F

�t1
2 − W�F�2Fe−�̄z2 = 0 �9�

with

W = − B
��� + d3� + �g1�2�� + d2� + i��g1 + g1

���
�D�2D

	��� + d3 + i�g1�2 + �g1�� + d2� + i��2� . �10�

The third-order solution reads

A1
�3� = i��1F�

�F

�t1
− �1

�F
�F�

�t1
�e−�̄z2, �11a�

A2
�3� = ��2

�1��
2F

�t1
2 + �2

�2��F�2F�ei�, �11b�

A3
�3� = ��3

�1��
2F

�t1
2 + �3

�2��F�2F�ei�, �11c�

�p
�3� = 0, �11d�

where the coefficients �1, �2
�1�, �2

�2�, �3
�1�, and �3

�2� are given
in Appendix.

We note that Eq. �9� was also obtained by the method of
multiple scales for atomic EIT systems.5 In that system such
equation is enough to give a suitable description of solitons
because the probe pulse used in atomic systems has a long-
time length �typically around 10−6 s�. However, as we shall
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show below, for the present system the probe pulse has much
shorter time length �e.g., around 10−12 s�, which is necessary
for obtaining a nonadiabatic, coherent excitation because the
decay rates of quantum-well levels are much larger than
those of atomic systems. Accordingly, Eq. �9� is generally
invalid for the soliton excitations in the present quantum-
well system. Thus we have to go beyond the NLS description
by considering next-order approximations.

Using the above solutions from the first to third orders we
can solve the fourth-order equations. After a detailed calcu-
lation we obtain the condition of eliminating secular term

i
�F

�z3
− i

K3

6

�3F

�t1
3 − i�1e−�̄z2

�

�t1
��F�2F� + i�2e−�̄z2F

�

�t1
��F�2� = 0,

�12�

where coefficients �1 and �2 are also given in Appendix.
Combining Eqs. �7�, �9�, and �12� we obtain a high-order

NLS equation with complex coefficients after returning to
original variables,

i
�U

�z
+ i

�

2
U −

K2

2

�2U

��2 − i
K3

6

�3U

��3 − W�U�2U − i�1
�

��
��U�2U�

+ i�2U
�

��
��U�2� = 0, �13�

where �= t−z /Vg and U=�Fe−i�z/2.

IV. ULTRASLOW OPTICAL SOLITONS

A. A preliminary discussion of Eq. (13)

Equation �13� is a high-order Ginzburg-Landau
equation,48 which has complex coefficients and thus gener-
ally does not allows soliton solutions. However, if a practical
set of system parameters can be found so that the imaginary
part of these coefficients can be made much smaller than
their corresponding real part, it can be approximated as a
high-order nonlinear NLS equation. Thus it is possible to
obtain a shape-preserving soliton solution that can propagate
for a rather long distance without significant distortion. This
is just the case for the present system when working in the
normal dispersion regime, i.e., within the TIT transparency
window.

To demonstrate this point we consider a multiple
quantum-well structure grown by molecular-beam epitaxial
with 200 periods of double quantum wells and sandwiched
between 350 nm top and 579 nm bottom contact layer.49–51

Each double quantum well consists of a narrow well with
width of 35 ML and a wide well with width of 51 ML,
separated by a 9 ML Al0.2Ga0.8As barriers. The ML in the
wide and narrow wells is made by GaAs material with two-
dimensional electronic density 1011 cm−2 and has thickness
of 2.83 Å. Double quantum wells are isolated each other by
200 Å wide Al0.2Ga0.8As buffer layers. The energy spacing
E2−E1 is about 1.67 eV to allow the interband optical exci-
tation by a near-infrared laser with angular frequency �p
=2.537	1015 rad /s and the wavelength p=0.743 �m. For
such system one can use a set of experimentally achievable
parameters given by38,47 �2l=1.28 ns−1, �3l=1.29 ns−1,

�2
dph= 1

8 ps−1, �3
dph= 1

8 ps−1. We take �g1�=0.6, B=6.2
	105 m−1 meV, �s=9.96 meV, and �=−0.5	1012 s−1.
With these parameters we obtain the values of the coeffi-
cients of the high-order NLS Eq. �13� as follows:

K0 = �− 1.69 + i0.38� 	 103 cm−1,

K1 = �3.01 − i0.65� 	 10−9 cm−1 s,

K2 = �− 6.88 + i1.08� 	 10−21 cm−1 s2,

K3 = �2.70 − i0.16� 	 10−32 cm−1 s3,

W = �− 3.56 + i0.80� 	 10−21 cm−1 s2,

�1 = �1.52 − i0.30� 	 10−32 cm−1 s3,

�2 = �1.67 + i0.41� 	 10−32 cm−1 s3.

We see that the imaginary part of these coefficients are in-
deed much smaller than their corresponding real part. After
neglecting the small imaginary part, which can be taken as a
perturbation and will be considered in later numerical simu-
lation, Eq. �13� is reduced to the following dimensionless
form

i
�u

�s
+

�2u

��2 + 2u�u�2

= i�d0u + d1
���u�2u�

��
+ d2u

���u�2�
��

+ d3
�3u

��3� + d4
�u

��
,

�14�

where we have introduced s=−z / �2LD�, �=� /�0, u=U /U0,
and dj =2LD /Lj �j=0–4�, with �0 the characteristic time

length of the probe pulse, LD=�0
2 / K̃2 the characteristic dis-

persion length, L0	LA=2 /� the characteristic absorption

length, L1=�0 / ��̃1U0
2� the characteristic nonlinear dispersion

length, L2=�0 / ��̃2U0
2� the characteristic delay length in non-

linear refractive index, L3=6�0
3 / K̃3 the characteristic third-

order dispersion length, L4=�0 / Im K1 the characteristic dif-

ferential absorption length, and U0= �1 /�0�
K̃2 /W̃ the
characteristic Rabi frequency of the probe field. Here, the

quantity with tilde mean its real part, e.g., K̃2	Re K2. No-
tice that in order to form soliton the characteristic Rabi fre-
quency U0 has been obtained by setting LD=LNL, where LNL
is the characteristic nonlinearity length defined by LNL

=1 / �W̃U0
2�.

Notice that each term in Eq. �14� has clear physical mean-
ing. The second and the third terms on the left-hand side
describe, respectively, the second-order dispersion and Kerr
nonlinearity of the system. The terms from the first to the
fourth ones in the square bracket on the right-hand side de-
scribe linear absorption �proportional to d0�, nonlinear dis-
persion �proportional to d1�, delay response of nonlinear re-
fractive index �proportional to d2�, and third-order dispersion
�proportional to d3�, respectively. The last term describes dif-
ferential absorption �proportional to d4�. If all dj’s �j=0–4�
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are zero, Eq. �14� becomes an integrable NLS equation,
widely studied in soliton theory.1,2

B. Soliton solutions of Eq. (14)

The property of the solution of Eq. �14� is determined by
coefficients dj �j=0–4�. Using the parameters specified in
Sec. IV A we have calculated the values of dj �j=0–4� as
functions of the pulse length �0 of the probe field, which is
shown in Fig. 3. We see that d3 and d4 are not sensitive to �0.
However, d0, d1, and d2 change rapidly as �0 varies. Based
on the result of Figs. 3�a� and 3�b� we can divide the Eq. �14�
into several regimes and hence obtain different soliton solu-
tions, which are given as follows: �1� if �0�5.0	10−12 s,
d1, d2, d3, and d4 are much smaller than d0 and hence can be
neglected. In this case Eq. �14� is reduced to the perturbed
NLS equation

i
�u

�s
+

�2u

��2 + 2u�u�2 = id0u , �15�

The single-soliton solution of this equation can be obtained
approximately. The Rabi frequency of the probe field corre-
sponding to such soliton, after returning to original variables,
reads5

�p =
e−d0z/LD

�0

K̃2

W̃
sech� e−d0z/LD

�0
�t −

z

Ṽg
��

	 exp�iK̃0z − i
1 − e−2d0z/LD

4d0
� . �16�

If d0=0, it is an envelope soliton of integrable NLS equation.
However, in the case of nonvanishing d0 the soliton displays
a decay of amplitude and an increase in spatial width. How-
ever, linear absorption �i.e., nonvanishing d0� has no effect
on the propagating velocity of the soliton. �2� If �0�2
	10−12 s, d0 and d4 are much smaller than d1, d2, and d3.
Thus Eq. �14� in this case is simplified into

i
�u

�s
+

�2u

��2 + 2u�u�2 = i�d1
���u�2u�

��
+ d2u

���u�2�
��

+ d3
�3u

��3� .

�17�

This equation admits exact soliton solutions.52–54 Hence we
obtain the Rabi frequency of the probe field

�p = U0
3�� + 3q2 − 2q�
d3

2�3c1 + c2�
sech�
� + 3q2 − 2q

d3

	� t − z/Ṽg

�0
+

�z

2d3LD
��exp�i�q3 − q2 + �� + 3q2 − 2q�

	�1 − 3q��
z

2d3
2LD

− i
q

d3

t − z/Ṽg

�0
+ iK̃0z� �18�

with the conditions �+3q2−2q�0 and q�1 /3, where � is a
free real number, c1=d1 / �2d3�, c2=d2 / �2d3�, and q= �3c1
+2c2−3� / �6�c1+c2��. Shown in the panel �a� of Fig. 4 is the
numerical result of soliton wave shape ��p /U0�2 based on
Eqs. �1� and �3� for �0=0.7	10−12 s by taking the soliton
solution �18� as initial condition. The other system param-
eters used are the same as those given in Sec. IV A. We see
that soliton is fairly stable when propagating to z=8LD. In
the initial stage, the amplitude of the soliton decreases. How-
ever, the amplitude increases when propagating to a larger
distance and then follows a decrease. At the same time a
small radiation appears on one of two wings of the soliton.
The physical reason of such behavior is due to the joint con-
tribution from the effects by linear and differential absorp-
tion, third-order dispersion and nonlinear dispersion.

For testing the above approximated analytical solutions,
the panel �b� of Fig. 4 shows the result of the numerical
simulation based on Eq. �14� by using the initial condition
the same as that used in panel �a�. We see that in this case the
soliton is more stable when propagating to z=8LD. The rea-
son is in this case there is exact balance between high-order
dispersion and high-order nonlinearity in Eq. �17�. �3� When
2	10−12��0�5	10−12 s, all dj’s �j=0–4� have the same
order of magnitude. In this case, one must solve solution of
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FIG. 3. �Color online� The absolute value of the coefficients d0,
d4 �panel �a��, and d1, d2, d3 �panel �b�� of Eq. �14� as function of
the pulse length �0. Both panels �a� and �b� are plotted by the
parameters given in Sec. IV.
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FIG. 4. Soliton wave shape of ��p /U0�2 as a function of t /�0 and
z /2LD. Panel �a�: numerical result based on Eqs. �1� and �3� for
�0=0.7	10−12 s and when the soliton propagates to z=8LD �LD is
dispersion length�. Panel �b�: numerical result based on Eq. �14� for
�0=0.7	10−12 s and when the soliton propagates to z=8LD. Panel
�c�: soliton solution based on Eq. �14� with �0=2	10−12 s. In all
numerical simulations the soliton solution �18� has been taken as an
initial condition.
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Eq. �14� numerically. The panel �c� of Fig. 4 shows the result
of the numerical simulation based on Eq. �14� with �0=2
	10−12 s by using the initial condition the same as that used
in panel �a�. We see that in this case the soliton is less stable
than the cases of panels �a� and �b�. When z�3LD, the soli-
ton distorts significantly and radiates a lot of small-amplitude
continuous waves. This is easy to understand because in this
case the high-order dispersion effect and high-order nonlin-
ear effect of the system take significant roles but they cannot
balance each other for large propagation distance and time.

We stress that for atomic EIT systems a parameter region
where all dj’s can be neglected exists, and hence a descrip-
tion by a simple NLS model is possible.4,5,8 However, in the
present quantum-well system such region does not exist and
thus a description by modified NLS equation or high-order
NLS equation is necessary.

We now estimate the propagating velocity of the solitons
presented above. Using the parameters specified in Sec. IV A
we obtain the propagating velocity of the soliton, Eq. �16�, as

Ṽg=1.0	10−2c for �0=0.7	10−12 s. The propagating ve-

locity ṼH of the soliton, Eq. �18�, is determined by

1

Ṽg
H

=
1

Ṽg

−
��0

2LDd3
. �19�

We get Ṽg
H=1.47	10−2c for �0=0.7	10−12 s and �=0.5.

We see that the optical solitons predicted here have very
slow propagating velocity comparing with the light speed in
vacuum.

It is easy to calculate the threshold optical power density
required to generate the ultraslow optical solitons given
above. The energy flux of the probe filed is given by Poynt-
ing’s vector integrated over the cross section of the quantum-
well sample, i.e., P=�dS�Ep	Hp� ·ez, where ez is the unit
vector in the propagation direction. Using Ep= �Ep ,0 ,0�,
Hp= �0,�0cnpEp ,0� �np=1+c Re K /�p is the refractive in-
dex�, and Ep= �� / ��12���p exp�i�kpz−�pt��+c.c., we can get
the expressions of P for different soliton solutions. Then the
integration of P over a carrier-wave period gives the average
energy flux of the probe field, i.e.,

P̄ = P̄max,1 sech2� 1

�0
�t −

z

Ṽg
��, �for the soliton�16�� ,

�20a�

P̄ = P̄max,2 	 sech2�
� + 3q2 − 2q

d3�0

	�t −
z

Ṽg
H��, �for the soliton�18�� �20b�

with corresponding peak powers

P̄max,1 � 2�0cnpS0� �

��12�
�2 1

�0
2

K̃2

W̃
, �21a�

P̄max,2 � �0cnpS0� �

��12�
�26�� + 3q2 − 2q�

d3
2�0

2�3c1 + 2c2�
K̃2

W̃
, �21b�

where S0=�R2 is the cross-section area of the probe laser
beam. Using the above numerical values of system param-
eters and take ��12�=2.688	10−28 mC and S0=�

	10−7 cm2 we obtain P̄max,1=41.50 mW and P̄max,2
=63.12 mW, respectively. Thus, only very low input power
is needed for generating the ultraslow optical solitons in the
semiconductor multiple quantum-well structure.

C. Discussion on validity conditions of SVEA

Recall that SVEA condition, Eq. �2�, has been used for
obtaining Eq. �3� governing the evolution of the Rabi fre-
quency �p of the probe field. In the case of the soliton solu-
tions given above, such condition corresponds to

p � Ṽg�0, �22a�

�p�0 � 1. �22b�

It is easy to check that the soliton solutions presented above
satisfy these conditions. In fact, by using the system param-
eters specified in Sec. IV A, we have p=0.743 �m, �p

=2.537	1015 rad s−1, and Ṽg=1.0	10−2c. Since �0=0.7

	10−12 s, we obtain Ṽg�0=2.11 �m and �p�0=1.776
	103, which validate fairly well the SVEA condition �22�.

In order to make a low-light soliton generated effectively
and propagate stably in the quantum-well system, additional
requirement

LD = LNL � L , �23a�

LD � LA, �23b�

Lsol � L , �23c�

should also be fulfilled, where Lsol	 Ṽg�0 is the spatial length
of the soliton and L is the length of the multiple quantum-
well structure. In our system

L = �51 	 2.83 Å�wide well thickness� + 9

	 2.83 Å�barrier thickness� + 35

	 2.83 Å�narrow well thickness�

+ 200 Å�buffer layer thickness�� 	 200�period�

= 9.377 �m,

the probe-field time length �0 is chosen as the order of pico-
second, we have Lsol=2.11 �m, LD=0.71 �m, L
=9.377 �m, and LA=26.12 �m. Thus the requirement, Eq.
�23�, can also be satisfied. We stress that the interband tran-
sition scheme adopted in the present study, which makes the
probe wavelength p is in near-infrared �visible� region, is
crucial for satisfying the SVEA condition �22� and the addi-
tional requirement, Eq. �23�, listed above.

However, if adopting an intersubband transition the
SVEA condition is hard to be satisfied. The main reason is
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that the probe wavelength p is too long �about 10 �m or
larger� and probe pulse length �0 cannot be too big due to the
constraint from large energy-level decay rates of quantum-
well systems. Recently, slow-light solitons have been sug-
gested by the authors of Refs. 40 and 41 based on intersub-
band transition scheme. Unfortunately, the calculation in
those works violate either the SVEA condition �22� or the
additional requirement, Eq. �23�, and hence the scheme
adopted is unrealistic in physics.

V. SUMMARY

We have investigated the formation and propagation of
optical solitons in an asymmetric double quantum-well struc-
ture. By using a standard method of multiple scales we have
derived a high-order nonlinear NLS equation, which includes
effects of linear and differential absorption, nonlinear disper-
sion, delay response of nonlinear refractive index, and third-
order dispersion of the probe field. We have shown that, in
order to make slowly varying envelope approximation be
valid, an excitation scheme of interband transition should be
adopted. We have also shown that for realistic quantum-well
parameters the probe field with time length of picosecond or
shorter must be used to make dispersion and nonlinear
lengths of the system be smaller than absorption length, only
under such conditions a shape-preserving propagation of op-
tical solitons is available. In addition, we have clarified the
validity domain for the perturbed NLS equation as well as
the high-order NLS equation and provide various optical
soliton solutions in different regimes. We have demonstrated
that the solitons obtained have ultraslow propagating veloc-
ity and can be generated under very low input light intensity.
The results presented in this work may be useful for the
experimental generation of ultraslow optical solitons in mul-
tiple quantum-well systems and useful for the application of
optical information processing and transmission.
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APPENDIX

Expressions of �1, �2
�1�, �2

�2�, �3
�1�, and �3

�2� in Eq. �11� are
given by

�1 =
�� + d3�2�� + d3� + �g1�� + d2��2�� + d2� + i�q + �2R

2�D�2D�
,

�A1�

�2
�1� =

�� + d3�3 + i�g1Q − �2�3� + 2d3 + d2� − i�3g1

D3 ,

�A2�

�2
�2� = −

W�� + d3 + i�g1�
2B�

, �A3�

�3
�1� =

g1�� + d2�3 + i�Q − �2g1�3� + 2d2 + d3� − i�3

D3 ,

�A4�

�3
�2� = −

W�g1�� + d2� + i��
2B�

�A5�

with R= �g1�2��+d2�+ ��+d3�−�� and Q= ��+d2�2+ ��
+d2���+d3�+ ��+d3�2.

Expressions of �1 and �2 in Eq. �12� read

�1 =
2B�

D
��1 + �1

�� − � 1

Vg
−

1

c
�WD

B�
, �A6�

�2 =
2B�

D
��1 + 2�1

�� −
1

2
� 1

Vg
−

1

c
�WD

B�
, �A7�

where q=g1��+d2���+d3
��+c.c. and �= ��+d3�+ �g1�2��

+d2�+ i��g1+g1
��.
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