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Ultraslow optical solitons and their storage and retrieval in an ultracold ladder-type atomic system
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We propose a scheme to obtain stable nonlinear optical pulses and realize their storage and retrieval in an
ultracold ladder-type three-level atomic gas via electromagnetically induced transparency. Based on Maxwell-
Bloch equations we derive a nonlinear equation governing the evolution of the probe-field envelope and show
that optical solitons with an ultraslow propagating velocity and extremely low generation power can be created
in the system. Furthermore, we demonstrate that such ultraslow optical solitons can be stored and retrieved by
switching a control field off and on. Due to the balance between dispersion and nonlinearity, the ultraslow optical
solitons are robust during propagation, and hence their storage and retrieval are more desirable than those of linear
optical pulses. This raises the possibility of realizing the storage and retrieval of light and quantum information
by using solitonic pulses.
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I. INTRODUCTION

In recent years, much effort has been paid to the study
of electromagnetically induced transparency (EIT), a typical
quantum interference effect occurring in resonant multi-
level atomic systems. The light propagation in EIT systems
possesses many striking features, including a substantial
suppression of optical absorption, significant reduction of
group velocity, and giant enhancement of Kerr nonlinearity.
Based on these features, many applications of nonlinear optical
processes at a weak light level can be realized [1].

One of the important applications of EIT is light storage
and retrieval, which can be explained by the concept of the
dark-state polariton [2], a combination of atomic coherence
and probe pulse. The dark-state polariton prominently shows
an atomic character when a control field is switched off and
an optical character when the control field is switched on. The
storage and retrieval of probe pulses based on EIT have been
verified in many experiments [3–15].

However, up to now most previous works on light storage
and retrieval based on EIT have been carried out in �-type
three-level atomic systems. In addition, the probe pulse used
is very weak and hence the system works in a linear regime,
except for the numerical study presented in Ref. [16]. It
is known that linear probe pulses suffer a spreading and
attenuation due to the existence of dispersion, which may
result in a serious distortion for retrieved pulses. For practical
applications, it is desirable to obtain optical pulses that are
robust during storage and retrieval.

In this article, we propose a scheme to produce stable weak
nonlinear optical pulses and realize their robust storage and
retrieval. The system we consider is an ultracold atomic gas
with a ladder-type three-level configuration working under
EIT conditions. Starting from Maxwell-Bloch (MB) equations
we derive a nonlinear Schrödinger (NLS) equation governing
the evolution of the probe-field envelope and show that
optical solitons with an ultraslow propagating velocity and
extremely low generation power can be created in the system.
Furthermore, we demonstrate that such ultraslow optical
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solitons can be stored and retrieved by switching a control
field off and on. Due to the balance between dispersion and
nonlinearity, the ultraslow optical solitons are robust during
propagation, and hence their storage and retrieval are more
desirable than those of linear optical pulses.

Before preceding, we note that, on the one hand, recently
much attention has focused on ultracold Rydberg atoms
[17,18] due to their intriguing properties, useful for quantum
information processing and nonlinear optical processes; on
the other hand, ultraslow optical solitons via EIT have been
predicted for �-type three-level atoms [19,20]. In a recent
work Maxwell et al. reported the storage of weak (i.e., linear)
probe pulses in a ladder-type system using ultracold Rydberg
atoms [21]. However, to the best of our knowledge, till now
there has been no report on the storage and retrieval of
ultraslow optical solitons in ladder-type atomic systems. Our
theoretical results given here raise the possibility of realizing
the storage and retrieval of light and quantum information by
using nonlinear solitonic pulses. Experimentally, it is hopeful
to employ low-density ultracold Rydberg atoms, where the
Rydberg state has a very long lifetime [17,18], to realize the
storage and retrieval of the ultraslow optical solitons predicted
in our work.

The article is arranged as follows. In Sec. II, the physical
model under study is described. In Sec. III, a derivation of
the NLS equation controlling the evolution of the probe-field
envelope is given, and ultraslow optical soliton solutions and
their interaction are presented. In Sec. IV, the storage and
retrieval of the ultraslow optical solitons are investigated in
detail. Finally, the last section presents a summary of the main
results of our work.

II. MODEL

We consider a life-broadened three-level atomic system
with a ladder-type level configuration [Fig. 1(a)], where
|1〉, |2〉, and |3〉 are ground, intermediate, and upper states,
respectively. Especially, state |3〉 can be taken as a Rydberg
state that has a very long lifetime. We assume that the atoms
work in an ultracold (e.g., μK) environment so that their
center-of-mass motion can be ignored. A probe field of center
angular frequency ωp couples to the transition |1〉 → |2〉 and
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FIG. 1. (Color online) (a) Energy-level diagram and excitation
scheme of the three-level ladder-type atoms, in which states |2〉 and |1〉
are coupled by the probe field with angular frequency ωp , and states
|3〉 and |2〉 are coupled by the control field with angular frequency
ωc. �2 and �3 are, respectively, one- and two-photon detunings; �13

(�23) is the spontaneous emission decay rate from |3〉 to |1〉 (from |3〉
to |2〉). (b) Absorption spectrum Im(K) of the probe field as a function
of ω. Solid and dashed lines correspond, respectively, to �c = 0 (no
EIT) and �c = 40 MHz (EIT).

a control field of center angular frequency ωc couples to the
transition |2〉 → |3〉.

For simplicity, we assume that both the probe and
the control fields propagate along the z direction. Then
the electric field of the system can be expressed as
E=∑

l=p,c elElexp[i(klz − ωlt)] + c.c. Here ep and ec (Ep and
Ec) are, respectively, the polarization unit vectors (envelopes)
of the probe and control fields; kp = ωp/c and kc = ωc/c are,
respectively, the wave numbers of the probe and control fields
before entering the medium.

Under electric-dipole and rotating-wave approximations,
the equations of motion for the density matrix elements in the
interaction picture read [22]

∂

∂t
σ11 = i�∗

pσ21 − i�pσ ∗
21 + �12σ22, (1a)

∂

∂t
σ22 = i�pσ ∗

21 + i�∗
cσ32 − i�∗

pσ21 − i�cσ
∗
32

−�12σ22 + �23σ33, (1b)

∂

∂t
σ33 = i�cσ

∗
32 − i�∗

cσ32 − �3σ33, (1c)

∂

∂t
σ21 = id21σ21 + i�p(σ11 − σ22) + i�∗

cσ31, (1d)

∂

∂t
σ31 = id31σ31 − i�pσ32 + i�cσ21, (1e)

∂

∂t
σ32 = id32σ32 + i�c(σ22 − σ33) − i�∗

pσ31, (1f)

where �p = (ep · p21)Ep/� and �c = (ec · p32)Ec/� are, re-
spectively, the half-Rabi frequencies of the probe and the
control fields, with pij the electric dipole matrix element
associated with the transition between |j 〉 and |i〉. In Eq. (1),
d21 = �2 + iγ21, d31 = �3 + iγ31, and d32 = (�3 − �2) +
iγ32, with �2 = ωp − (ω2 − ω1) and �3 = ωp + ωc − (ω3 −
ω1), respectively, the one-photon and two-photon detunings;

γij = (�i + �j )/2 + γ col
ij , �j = ∑

i<j �ij , with �ij denoting
the spontaneous emission decay rate from |j 〉 to |i〉 and γ col

ij

denoting the dephasing rate between state |i〉 and state |j 〉 [23].
The evolution of the electric field is governed by the

Maxwell equation, which, under a slowly varying envelope
approximation, yields [24]

i

(
∂

∂z
+ 1

c

∂

∂t

)
�p + κ12σ21 = 0, (2a)

i

(
∂

∂z
+ 1

c

∂

∂t

)
�c + κ23σ32 = 0, (2b)

where κ12 = Naωp|p12|2/(2ε0c�) and κ23 = Naωc|p23|2/
(2ε0c�), with Na the atomic density. Note that for simplicity
we have assumed that both the probe and the control fields
have a large beam radius in both the x and the y directions so
that the diffraction effect represented by the term (∂2/∂x2 +
∂2/∂y2)�p,c can be neglected.

III. ULTRASLOW OPTICAL SOLITONS

A. Nonlinear envelope equation

We first consider the formation and propagation of ultraslow
optical solitons in the system. We assume that the probe field
is weakly nonlinear and pulsed with time duration τ0; the
control field is a continuous wave (i.e., its time duration is
much larger than τ0) and is strong enough so that its depletion
can be neglected during propagation, which means that �c can
be taken as a constant and hence Eq. (2b) can be disregarded.

In order to derive the nonlinear envelope equation of
the probe field, we make the asymptotic expansion σjl =
σ

(0)
j l + εσ

(1)
j l + ε2σ

(2)
j l + ε3σ

(3)
j l + · · · , �p = ε�(1)

p + ε2�(2)
p +

ε3�(3)
p + · · · , with σ

(0)
j l = δj1δl1 and ε a small parameter

characterizing the amplitude of �p. To obtain a divergence-
free expansion, all quantities on the right-hand side of the
expansion are considered as functions of the multiscale
variables zl = εlz (l = 0,1,2) and tl = εlt (l = 0,1).

Substituting the above expansion to the MB Eqs. (1) and
(2a) and comparing the coefficients of εl (l = 1,2,3, . . . ), we
obtain a set of linear but inhomogeneous equations which can
be solved order by order. At first order, we obtain the solution

�(1)
p = F eiθ , (3a)

σ
(1)
21 = ω + d31

D(ω)
Feiθ , (3b)

σ
(1)
31 = − �c

D(ω)
Feiθ , (3c)

with other σ
(1)
j l = 0. In the above expressions, D(ω) =

|�c|2 − (ω + d21)(ω + d31), θ = K(ω)z0 − ωt0 [25], with F

the envelope function of the slow variables zl , z2, and t1; K(ω)
is the linear dispersion relation of the system, given by

K(ω) = ω

c
+ κ12(ω + d31)

D(ω)
. (4)

Figure 1(b) shows Im(K), i.e., the imaginary part of K , as a
function of ω. When plotting the figure, we chose ultracold
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Rydberg atoms with the levels in Fig. 1(a) and the system
parameters as [21,26] follows:

|1〉 = |5s2S1/2,F = 2〉, |2〉 = |5p2P3/2,F = 3〉,
(5)

|3〉 = |60s2S1/2,〉.

�12/2π = 6 MHz, �23/2π = 3200 Hz,
(6)

γ21 ≈ 18.8 MHz, γ31 ≈ 1000 Hz.

In addition, we assume that Na ≈ 1.79 × 1011 cm−3, then κ12

takes the value 1.0 × 1010 cm−1 s−1. The solid and dashed lines
in Fig. 1(b) correspond, respectively, to the absence (�c = 0)
and the presence (�c = 40 MHz) of the control field. We see
that in the absence of �c the probe field has a large absorption
[solid line in Fig. 1(b)] (i.e., no EIT); however, in the presence
of �c a transparency window is opened in Im(K) [dashed line
in Fig. 1(b)], and hence the probe pulse can propagate in the
resonant atomic system with negligible absorption (i.e., EIT).
The openness of the EIT transparency window is due to the
quantum interference effect induced by the control field.

At second order, the divergence-free condition requires that

∂F

∂z1
+ 1

Vg

∂F

∂t1
= 0, (7)

with Vg = (∂K/∂ω)−1 being the group velocity of F .
The second-order solution reads σ

(2)
21 = A

(2)
21 (∂F/∂t1)eiθ ,

σ
(2)
31 = A

(2)
31 (∂F/∂t1)eiθ , σ

(2)
11 = A

(2)
11 |F |2e−2ᾱz2 , σ

(2)
33 =

A
(2)
33 |F |2e−2ᾱz2 , σ

(2)
32 = A

(2)
32 |F |2e−2ᾱz2 , with

A
(2)
21 = i

κ12

(
1

Vg
− 1

c

)
, (8a)

A
(2)
31 = i

�∗
c

[
−ω + d31

D(ω)
− (ω + d21)

κ12

(
1

Vg
− 1

c

)]
, (8b)

A
(2)
11 =

[i�23 − 2|�c|2M]N − i�12
( |�c|2

D(ω)∗d∗
32

− |�c|2
D(ω)d32

)
−�12�23 − i�12|�c|2M ,

(8c)

A
(2)
33 = 1

i�12

(
N − i�12A

(2)
11

)|F |2e−2ᾱz2 , (8d)

A
(2)
32 = 1

d32

(
− �c

D(ω)
+ 2�cA

(2)
33 + �cA

(2)
11

)
, (8e)

where ᾱ = ε−2α = ε−2Im[K(ω)], M = 1/d32 − 1/d∗
32, and

N = (ω + d∗
31)/D(ω)∗ − (ω + d31)/D(ω).

With the above result we proceed to third order. The
divergence-free condition in this order yields the nonlinear
equation for F ,

i
∂F

∂z2
− 1

2
K2

∂2F

∂t2
1

− We−2ᾱz2 |F |2F = 0, (9)

where K2 ≡ ∂2K/∂ω2 and W = −κ12[�∗
cA

(2)
32 + (ω +

d31)(2a
(2)
11 + A

(2)
33 )]/D(ω) are dispersion and nonlinear (Kerr)

coefficients, respectively.

B. Ultraslow optical solitons

Combining Eqs. (7) and (9) and returning to the original
variables we obtain

i

(
∂

∂z
+ α

)
U − K2

2

∂2U

∂τ 2
− W |U |2U = 0, (10)

where τ = t − z/Vg and U = εFe−ᾱz2 . Due to the resonant
character of the system, the NLS equation, (10), has complex
coefficients. Generally, this equation does not allow soliton
solution. However, if the imaginary part of the coefficients can
be made much smaller than their real part, it is possible to form
solitons in the system. We show below that this can indeed be
achieved in the present EIT system.

For ultracold Rydberg atoms with the energy levels assigned
by (5) and the system parameters given by (6), we ob-
tain K0 = (0.23 + i0.0002) cm−1, K1 = (1.15 + i0.0009) ×
10−7 cm−1s, K2 = (1.82 + i0.05) × 10−15 cm−1s2, and
W = (2.59 + i0.002) × 10−18 cm−1s2 when selecting �2 =
700 MHz, �3 = 2 MHz, κ12 = 1 × 1010 cm−1s−1, and �c =
300 MHz. We see that the imaginary parts of the coefficients
of the NLS equation, (10), are indeed much smaller than
their corresponding real parts. As a result, Eq. (10) can be
approximated as the dimensionless form

i
∂u

∂s
+ ∂2u

∂σ 2
+ 2u|u|2 = iνu, (11)

with s = −z/(2LD), σ = τ/τ0, u = U/U0, and ν =
2LD/LA. Here LD ≡ τ0

2/|K̃2|, LA ≡ 1/(2α), and U0 ≡
(1/τ0)

√
|K̃2/W̃ | are the characteristic dispersion length, ab-

sorption length, and Rabi frequency of the probe field,
respectively. Note that in order to obtain soliton solutions
we have assumed that LD is equal to LNL ≡ 1/(U 2

0 W̃ ) (the
characteristic nonlinearity length). The tilde symbol means
taking the real part [e.g., K̃2 = Re(K2)].

When taking τ0 = 1.0 × 10−7 s−1, we obtain U0 = 2.65 ×
108 s−1, LD = LNL = 5.48 cm, and LA = 2500 cm. Because
LA is much larger than LD and LNL, which gives ν = 0.0044,
the absorption term on the right-hand side of Eq. (11) can
be neglected in the leading-order approximation. Thus we
obtain a standard NLS equation that is completely integrable
and allows various soliton solutions. After returning to the
original variables, the half-Rabi frequency of the probe field
corresponding to single-soliton solution reads

�p(z,t) = 1

τ0

√
K̃2

W̃
sech

[
1

τ0

(
t − z

Ṽg

)]
exp

[
iK̃0z − i

z

2LD

]
,

(12)

where K̃0 = K̃(ω) |ω=0. With the above system parameters,
we obtain

Ṽg = 3 × 10−4 c; (13)

i.e., the soliton has an ultraslow propagating velocity, which
is essential for its storage and retrieval considered in the next
section.

Shown in Fig. 2(a) is the numerical result of the wave
shape |�p/U0|2 of the ultraslow optical soliton as a function of
z/LD and t/τ0. When making the calculation, Eq. (11) is used,
with solution (12) as an initial condition. Figure 2(b) shows
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FIG. 2. (Color online) Propagation of an ultraslow optical soliton and the interaction between two solitons. (a) Wav eshape |�p/U0|2 of
the ultraslow optical soliton as a function of z/LD and t/τ0. (b) Collision between two ultraslow optical solitons.

the collision between two ultraslow optical solitons, with the
initial condition given by u(0,σ ) = sech(σ − 5) exp(−iσ ) +
sech(σ + 5) exp(iσ ). We see that the ultraslow optical solitons
are robust during the propagation and the collision.

It is easy to calculate the threshold of the optical power
density Pmax for generating the ultracold optical soliton
predicted above by using Poynting’s vector [20]. We obtain

Pmax = 9.38 × 10−5 W. (14)

Thus, to generate ultraslow optical solitons in the system, a
very low input power is needed.

IV. STORAGE AND RETRIEVAL OF ULTRASLOW
OPTICAL SOLITONS

In a pioneer work [2], Fleischhauer and Lukin showed the
possibility of the storage and retrieval of optical pulses in a
three-level atomic system with a �-type level configuration.
They demonstrated that, when switching on the control field,
the probe pulse propagates in the atomic medium with nearly
vanishing absorption; by slowly switching off the control field
the probe pulse disappears and gets stored in the form of
atomic coherence; when the control field is switched on again
the probe pulse reappears. However, the intensity of the probe
pulse used in Ref. [2] and a series of studies carried out later
on (see Refs. [3–15] and references therein) is weak; i.e.,
systems used in those studies [2–15] work in the linear regime.
Now we extend these studies into a weakly nonlinear regime
and demonstrate that it is possible to realize the storage and
retrieval of ultraslow optical solitons in the ladder-type atomic
system via EIT.

To this end, we consider the solution of the MB equations
presented in Sec. II. We stress that for the storage and retrieval
of optical solitons the dynamics of the control field must be
taken into account; i.e., Eq. (2b) must be solved together with
Eqs. (1) and (2a). Because in this case analytical solutions are
not available, we resort to numerical simulation.

Figure 3 shows the time evolution of |�pτ0| and |�cτ0|
as functions of z and t for different input light intensities. In
the simulation, the switching-on and the switching-off of the

control field are modeled by the combination of two hyperbolic
tangent functions with the form

�c(0,t) = �c0

{
1 − 1

2
tanh

[
t − Toff

Ts

]
+ 1

2
tanh

[
t − Ton

Ts

]}
,

(15)

where Toff and Ton are, respectively, the times of switching-
off and switching-on of the control field with a switching
time approximately given by Ts . The system parameters are
chosen from a typical cold alkali 87Rb atomic gas with
�12/2π = 6 MHz, �23/2π = 3.2 kHz, γ21τ0 ≈ 1.88, γ31τ0 ≈
10−4, �2τ0 = 70, �3τ0 = 0.2, κ12τ0 = 1 × 103 cm−1, κ23τ0 =
2 × 103 cm−1, �c0τ0 = 30, Ts/τ0 = 0.2, Toff/τ0 = 5, and
Ton/τ0 = 10, with τ0 = 10−7 s. The wave shape of the in-
put probe pulse is taken as a hyperbolic secant one, i.e.,
�p(0,t) = �p0 sech(t/τ0), with different �p0 to represent
weak (i.e., linear), soliton (i.e., weak nonlinear), and strong
probe regimes. Lines 1 to 5 are for z = 0, 3, 6, 9, and 12 cm,
respectively.

Shown in Fig. 3(a) is the result for a weak (i.e., linear) probe
pulse, where �p(0,t)τ0 = 5 sech(t/τ0). In this case, the system
is dispersion dominant. Storage and retrieval of light pulses are
possible, but the probe pulse broadens rapidly before and after
the storage, which is not desirable for practical applications
because light information will be lost after storage.

Figure 3(b) shows the result for a weak nonlinear (i.e.,
soliton) probe pulse, where �p(0,t)τ0 = 10 sech(t/τ0). In this
situation, the system works in the regime with a balance
between dispersion and nonlinearity. We see that, first, the
probe pulse evolves into a soliton (i.e., its pulse width is
narrowed) before the storage; later the soliton is stored in
the atomic medium (i.e., �p = 0 when �c is switched off);
and then the soliton is retrieved after the storage (when �c is
switched on). The retrieved soliton has nearly the same wave
shape as that before storage.

Shown in Fig. 3(c) is the result for a strong probe pulse,
where �p(0,t)τ0 = 15 sech(t/τ0). In this case, the system
works in a strong nonlinear (i.e., nonlinearity-dominant)
regime and hence a stable soliton is not possible. From the
figure we see that the probe pulse has a significant distortion;
especially, some new peaks are generated. Due to the large
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FIG. 3. (Color online) Time evolution of |�pτ0| and |�cτ0| as functions of z and t for different input light intensities. (a) Storage and
retrieval of a weak (i.e., linear) pulse, with �p(0,t)τ0 = 5 sech(t/τ0). (b) Storage and retrieval of a soliton pulse, with �p(0,t)τ0 = 10 sech(t/τ0).
(c) Storage and retrieval of a strong pulse, with �p(0,t)τ0 = 15 sech(t/τ0). Lines 1 to 5 in each panel correspond to z = 0, 3, 6, 9, and 12 cm,
respectively.

distortion, the light information will be lost rapidly even before
storage.

From the result in Fig. 3, we conclude that, compared with
the linear pulse and the strong nonlinear pulse, the soliton pulse
is desirable for storage and retrieval. One may ask the question
how the optical soliton is stored in the atoms when both the
probe and the control fields have a vanishing value. In fact,
during the light storage the probe-field energy is converted
into atomic degrees of freedom; i.e., the atomic coherence σ13

has a nonvanishing value even when both �c and �p are 0.
Shown in Fig. 4 is the result of σ13 for different input light

intensities as functions of z and t . The corresponding evolution
of |�cτ0| is also plotted. Initial probe pulses used in each panel

are the same as those used in Fig. 3. Lines 1 to 5 in each
panel correspond to z = 0, 3, 6, 9, and 12 cm, respectively.
From Fig. 4 combined with Fig. 3 we see that indeed σ13 �=
0 in the time interval when �c = �p = 0. Since the probe
pulse is stored in the form of atomic coherence σ13 when the
control field is switched off and is retained until the control
field is switched on again, the atomic coherence σ13 can be
taken as the intermediary for the storage and retrieval of the
probe pulse.

Now we give a simple explanation of the numerical result
given above. Note that when the control pulse is switched off,
the probe pulse becomes nearly 0. Thus in the weak nonlinear
regime, the probe pulse can be approximated as

�p(z,t) ≈

⎧⎪⎪⎨
⎪⎪⎩

A
τ0

√
K̃2

W̃
sech

[
1
τ0

(
t − z

Ṽg

)]
ei[K̃0−1/(2LD )]z for t < Toff,

0 for Toff � t � Ton,

B
τ0

√
K̃2

W̃
sech

[
1
τ0

(
t − z

Ṽg

)]
ei[K̃0−1/(2LD )]z+iφ0 for t > Ton,

(16)

where A and B are constants depending on the initial condition
and φ0 is a constant phase factor.

From both Figs. 3 and 4, we see that the control field
is changed before and after storage of the probe field. To
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FIG. 4. (Color online) Atomic coherence σ13 as a function of distance z and time t for different input light intensities. The corresponding
evolution of |�cτ0| is also shown. Initial probe pulses used in (a), (b), and (c) are the same as those used in Figs. 3(a)–3(c), respectively. Lines
1 to 5 in each panel correspond to z = 0, 3, 6, 9, and 12 cm, respectively.

analyze the dynamics (depletion) of the control field before
and after storage of the probe soliton, we solve Eq. (2b) using
a perturbation method. The numerical result shown in Figs. 3
and 4 suggests making the perturbation expansion

�c = �(0)
c + ε�(1)

c + ε2�(2)
c , (17)

which is valid for the time interval before and after probe
soliton storage where the leading order of �c (i.e., �(0)

c )
has a large value. Substituting expansion (17) into Eq. (2b)
and solving the equations for �(l)

c (l = 0,1,2), we obtain the
following conclusions. (i) �(0)

c is a constant, which corresponds
to the horizontal line in the upper part of Figs. 3 and 4.
(ii) �(1)

c (t,z) = �(1)
c (t − z/c) describes a hole below

the horizontal line in the upper part of Figs. 3
and 4, which propagates at velocity c (i.e., the light speed
in vacuum). The concrete form of �(1)

c relies on the initial con-
dition. (iii) �(2)

c satisfies the equation i∂�(2)
c /∂z = −κ23σ

(2)
32 .

Thus we obtain

�(2)
c = i

κ23�3

(|�c|2 − �2�3)2

1

τ 2
0

K̃2

W̃
tanh

[
1

τ0

(
t − z

Ṽg

)]
,

(18)

which has propagating velocity Ṽg and contributes a small
hump to the horizontal line in the upper part of Figs. 3

and 4. That is, the hump propagates at the same velocity as the
probe soliton. Physically, the appearance of the control-field
hump (depletion) is due to the energy exchange between the
control field and the probe field via the atomic system as an
intermediary.

In addition, we can also provide a simple theoretical
explanation of the behavior observed in Fig. 4(b), where before
and after storage of the probe soliton, σ13 behaves like a soliton,
but during storage it is constant. First, let us consider the time
interval before and after storage of the probe soliton where
�c ≈ �(0)

c [for simplicity we neglect the small hump described
by Eq. (18)]. In this region, the perturbation expansion given
in Sec. IIIA is still valid. Thus the result obtained there can
be used here. From Eqs. (3a) and (3c), evaluated at the center
frequency of the probe pulse (i.e., ω = 0), we obtain

σ13 = − �∗
c

D∗(0)
�∗

p ≈ − �∗(0)
c

D∗(0)

1

τ0

√
K̃2

W̃
sech

[
1

τ0

(
t − z

Ṽg

)]

× exp

[
−iK̃0z + i

z

2LD

]
. (19)

We see that, before and after storage of the probe soliton, σ13

is also a soliton with propagating velocity Ṽg , as expected.
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The behavior of σ13 in the time interval during probe soliton
storage cannot be explained by using the perturbation theory
developed in Sec. IIIA because in this case �c is a small
quantity. To solve this problem, we start to consider the Bloch
equation, (1), directly [27]. Since d31σ31 and �pσ32 are small,
by Eq. (1e) we have

σ21 ≈ − i

�c

∂σ31

∂t
. (20)

Furthermore, since σ11 ≈ 1 and σ22 ≈ 0, Eq. (1d) gives

σ31 ≈ −�p

�∗
c

+ 1

i�∗
c

(
∂

∂t
− id21

)
σ21. (21)

Substituting Eq. (20) into Eq. (21) we obtain

σ13 = −�∗
p

�c

− 1

|�c|2
(

∂

∂t
+ id21

)
σ13

≈ −�∗
p

�c

. (22)

Although in the time interval of the storage both the probe
and the control fields tend to 0, the ratio �∗

p/�c can maintain
a finite constant value, as shown in the numerical simulation
presented in Fig. 4. The physical reason is that in our study
the system starts from the dark state |D〉 = �∗

c |1〉 − �p|3〉 =
�∗

c (|1〉 − (�∗
p/�c)∗|3〉) and it approximately remains in this

dark state during time evolution. As a result, the atomic
coherence σ13 can have a nonzero value even when both �c

and �p are small.

V. SUMMARY

In the present contribution, we have proposed a method for
obtaining stable nonlinear optical pulses and realizing their
storage and retrieval in an ultracold ladder-type three-level
atomic gas via EIT. Starting from the MB equations, we
have derived an NLS equation governing the evolution of
the probe-field envelope. We have shown that optical solitons
with an ultraslow propagating velocity and extremely low
generation power can be created in the system. Furthermore,
we have demonstrated that such ultraslowly propagating,
ultralow-light-level optical solitons can be stored and retrieved
by switching the control field off and on. Because of the
balance between dispersion and nonlinearity, the ultraslow
optical solitons are robust during propagation, and hence their
storage and retrieval are more desirable than those of linear
optical pulses. Our study provides the possibility of realizing
light information storage and retrieval by using solitonlike
nonlinear optical pulses.
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